| Abstract [eng] |
Snake robots have emerged as a transformative class of bio-inspired robotic systems, offering unparallelled adaptability in navigating complex unstructured terrains. Their limbless design, inspired by biological snakes, enables efficient movement across diverse environments, including rough terrains, confined spaces, and hazardous conditions where traditional wheeled or legged robots struggle. This review provides a comprehensive analysis of the design and development of snake robots, covering their locomotion strategies, mechanical configurations, sensor integration, control schemas, and actuation mechanisms. The review further explores the evolution of mechanical structures from rigid, soft, and hybrid designs, emphasising advancements in actuation and sensor technologies in enhancing adaptability and navigation. Applications of snake robots extend across various domains, including search and rescue (SAR), industrial inspection, and exploration of extreme environments. Despite significant progress, challenges such as optimising energy efficiency, improving environmental perception, and achieving real-time adaptability remain open research areas. This review serves as a foundational reference for researchers and engineers working towards advancing the next generation of snake robots, paving the way for their integration into real-world applications. |