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Abstract: The main objective of this paper is to explore if the JT/ST algebraic relationship could
be helpful for the identification of ischemic changes in the human cardiovascular system. The
suggested visualization technique highlights the specifics of complex dynamical processes in the
self-organization of the heart system during the load and recovery processes. It is demonstrated that
the nonlinear algebraic relationship between the duration of the JT interval and the ST amplitude
can be beneficial for a deeper interpretation of dynamical processes in the human cardiovascular
system. The JT/ST relationship is used for the identification of the ischemic changes and for the
characterization of individual performance of the person during the load and recovery processes.

Keywords: electrocardiography; cycle ergometry; ischemic heart disease

1. Introduction

Electrocardiography (ECG) analysis is the basic and the most studied noninvasive
technique used for the contemporary investigation of the functionality of the cardiovascular
system. Cardiac time intervals are sensitive markers of cardiac dysfunction.

Interrelations between ECG parameters are still an active area of research (e.g., func-
tional relations among RR, JT, and ST intervals). A fixed model of relationships between
ECG parameters cannot always hold even for a particular person. The alteration between
ECG parameters occurs due to various physiological and pathological reasons. Therefore,
it is probably not reasonable to seek a unified deterministic model that could describe
the relationships between ECG parameters. It makes sense to investigate the dynami-
cal processes of interconnections that could lead to complex and chaotic behavior in the
human organism.

Changes in the patterns of interconnection (connectivity) and patterns of variation over
time (variability) contain useful information about the state of the entire system [1], as the
spatial and temporal organization of a complex system defines its very nature. Estimating
the absolute value of a clinical parameter such as heart rate provides highly significant,
clinically useful information. However, evaluating interconnections of ECG characteristics
provides additional useful clinical information, which, in fact, is more valuable than heart
rate alone, particularly when heart rate is within normal limits [2].

A good blood supply to the heart is an important performance indicator of its work.
The blood supply to an organ can be characterized by the intensity of its metabolic rate.
In its turn, metabolic changes in the heart are associated with changes in repolarization.
Therefore, the JT interval is a good indicator of cardiac metabolic changes. The JT interval
represents the repolarization part of the cardiac electric systole, and the changes of the
interval are associated with the variation of the myocardial metabolism [3]. A shorter JT
interval indicates that myocardium metabolic processes are faster. A longer JT interval
indicates slower repolarization and slower metabolic processes. Normally, the duration of
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the JT interval varies between 160 ms and 360 ms. It is well known that the prolonged QT
interval predicts cardiac mortality [4,5]. However, the JT interval is proposed as a more
appropriate measure of the duration of the ventricular repolarization than the QT interval
because the value of the QT interval is limited when increased QRS duration contributes to
QT prolongation [6]. The duration of the JT interval is defined as the time interval from the
ECG junction point J to the end of the T wave (Figure 1).

Figure 1. Diagram of typical ECG cardiac intervals and amplitudes used in the study.

There is a well-known parabolic relationship between the HR (heart rate) and JT
interval—when HR rises, JT interval shortens [3,7–9]. Shortening of JT interval reflects
heart metabolism acceleration and vice versa. T wave and ST segment (Figure 1) show the
repolarization of the heart ventricle. Cardiac activity is more essential than the activity of
other organs, even in rest conditions, and myocardial need for oxygen must be met given
any level of metabolism [10]. If coronary blood vessels supply an inadequate amount of
blood, it changes the metabolic balance and action potentials in the myocytes, while in the
electrocardiogram, the changes in ST-segment amplitude are registered. ST-segment ampli-
tude deviation from the norm, both at rest and during physical activity, shall be considered
as an indication of typical heart failure and possible functional ischemia. Therefore, the
changes of ST interval amplitude could be, and is, taken as an indicator of hemodynamic
effectiveness in the heart in clinical cardiology [11].

The objective of this research is to propose a visualization technique of the relationship
between the duration of the JT interval and the ST amplitude, which could reveal the evo-
lution of complex dynamical processes in the self-organization of the heart system during
the load. Two algebraic relationships (RR/JT, RR/QRS) have already been investigated
in [12,13]. As mentioned previously, the main objective of this paper is to explore if the
JT/ST algebraic relationship could be helpful for the identification of ischemic changes in
the human cardiovascular system.

2. Materials and Methods
2.1. The Description of the Experimental Setup

The presented research met all standards for the ethics of experimentation. The permit
to perform biomedical investigation was granted by Kaunas Regional Ethics Commit-
tee for Biomedical Investigations, No. BE-2-51, 23.12.2015. ECG stress test on a cycle
ergometer was used to record cardiac intervals and their parameters. The “Kaunas–Load”
system [14,15] developed at the Institute of Cardiology (Lithuanian University of Health
Sciences) was used to perform synchronous registration of 12 leads and different standard
parameters of the ECG (including the duration of JT and the amplitude of ST intervals for
each cardiac cycle). The second ECG lead is used for the signal processing task.

The registration of the ECG is started at the beginning of the bicycle ergometry exercise
with the load set to 50 W. The load is kept constant for two minutes and then increased
by 50 W. The person is asked to maintain a constant cycle ergometer spinning rate at 60
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revolutions per minute during the whole bicycle ergometry exercise. The stress test is
terminated when the person fails to maintain the spinning rate, or first clinical indications
for load limitation are observed according to the American Heart Association (AHA).

The cohort comprised 10 physically active men but not professional sportsmen. The
mean and standard deviation of the age was 41.9 ± 12.1 years old; height 1.80 ± 0.098 m;
weight 80.29 ± 20.34 kg; body mass index 24.54 ± 4.31 kg/m2. Three subjects experienced
clinical indications for load limitations, and therefore, the load was kept constant for
one minute and then increased by 50 W.

2.2. Corrected versus Noncorrected Cardiac Intervals

The present study utilizes the JT interval but not the JTc (the corrected JT) interval.
JTc is calculated as the difference between QTc (the corrected QT interval) and QRS dura-
tion. The reasons why corrected cardiac intervals are not used in this study are explained
in this subsection.

QTc is the QT interval corrected for the heart rate (the RR interval). The relationship
between QT and RR intervals was first proposed by [16]. The average statistical nonlinear
dependence between the QT interval and the heart rate is defined by this relationship
(and provides tolerance intervals for the QT interval). However, despite the fact that
this relationship has been around for 100 years, debates about its legitimacy continue.
The development of new analytical functions and confidence intervals for the corrected
intervals and interparameter relationships continues. Unfortunately, many of these cor-
rections either work well when adapted only to a specific cohort or cannot be validated
by other researchers.

An alternative approach based on algebraic relationships between noncorrected car-
diac intervals is presented in [12,13]. It appears that relationships between noncorrected
cardiac intervals enable the visualization of effects such as the collapse of complexity [12],
transit through the anaerobic threshold, self-organization, and competition between differ-
ent attractors [13], which would not be observable otherwise. Unlike the aforementioned
papers, in this study, we observed two double consecutive declines that could indicate the
ischemic episodes of the heart.

2.3. The Algorithm for the JT/ST Algebraic Relationship

The duration of the JT interval and the ST amplitude is continuously and synchronously
recorded throughout the experiment and denoted as vectors x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn) accordingly; where n is the total number of heartbeats recorded during
the whole experiment. The algebraic relationship between time series x and y is reconstructed
using the algorithm presented in [12]. This algorithm comprises three basic parts.

Step #1. Six elements xk−δ, xk, xk+δ, yk−δ, yk, yk+δ are mapped into a two-dimensional
perfect matrix of Lagrange differences (the concept of perfect matrices of Lagrange dif-
ferences is introduced in [12], where δ is the time lag; k = (1 + δ), (2 + δ), . . . , (n− δ).
Altogether, 18 different perfect matrices of Lagrange differences exist [8]. For example, the

first perfect matrix of Lagrange differences L(1)
δ,k =

[
xk xk+δ − yk+δ

xk−δ − yk−δ yk

]
is used

in [13]. In general, one could choose one of the 18 different matrices in accordance with the
optimal architecture of the matrix (the optimality of the matrix architecture is defined in
the further steps of the algorithm).

Step #2. The sequence of matrices L(β)
δ,k is transformed into a scalar sequence using a

mapping F : R2×2 → R1 , where β ∈ {1, 2, . . . , 18}. The mapping F is defined as the maxi-
mal modulus of the two eigenvalues of L(β)

δ,k in [12] and [13]. We generalize the mapping

by setting F = ‖L(β)
δ,k ‖ in this paper. The norm of the matrix ‖A‖ = supz∈R2

(
‖Az‖2
‖z‖2

)
=

supz,‖z‖2=1(‖Az‖2) ≥ max(|λ1|, |λ2|) where λ1 and λ2 are two eigenvalues of A, and 2-
norm is the Euclidian norm [17]. Note that the inequality becomes equality when matrix A
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is symmetric. Therefore, we increase the sensitivity of the method by replacing the maximal
modulus of the eigenvalues with the norm in the definition of the mapping.

Step #3. Finally, internal and external smoothing is applied for the scalar sequence
‖L(β)

δ,k ‖. If the radius of the internal smoothing is denoted by Ri and the radius of the
external smoothing is denoted by Re, then the smoothed sequence depicting the algebraic
relationship between time series x and y reads as follows:

sk(Ri, Re, β) =
1

Ri(2Re + 1)

k+Re

∑
j=k−Re

Ri

∑
δ=1
‖L(β)

δ,j ‖ (1)

where k = (1 + Ri + Re), (2 + Ri + Re), . . . , (n− Ri − Re). A well-posed optimization
problem in respect of the smoothing parameters is formulated in [8] for the whole co-
hort of persons resulting into Ri = 3, Re = 4 and β = 1. These values of the parameters are
kept fixed in this paper as well. All further numerical computations are based on sk(3, 4, 1).

2.4. Qualitative Evaluation of Two Consecutive Declines in the JT/ST Algebraic Relationship

We raise a hypothesis that two consecutive declines in algebraic relationships between
the duration of the JT interval and the ST amplitude during the bicycle ergometry exercise
can be used for the early detection of episodes of ischemic heart disease.

The following algorithm is proposed in order to quantitively describe two
consecutive declines.
Step #1

Determine the average value of the algebraic relationship between the duration of
the JT interval and the ST amplitude in the observation window centered around the
termination of the ergometry exercise moment. The averaging is required to minimize local
effects induced by the inevitable additive noise. Our recommendation is to use observation
windows with an averaging radius of three time steps around the termination moment.

S =
1
7

[
ST(3, 4, 1) +

3

∑
j=1

(
ST−j(3, 4, 1) + ST+1(3, 4, 1)

)]
(2)

Step #2
Fix the upper boundary at S and mark the areas below S and the JT/ST algebraic

relationship separately for the load and recovery processes in different colors.

3. Results

The dynamics of the JT/ST relationship during the load and the recovery processes
are illustrated and discussed for seven healthy persons (persons #1–#7) and three persons
with the suspected ischemic heart disease (persons #8–#10).

3.1. Person #1

The total area of the algebraic relationship function under S during the load is marked
in red in Figure 2A. The total area of the algebraic relationship function under S during
the recovery process is marked in blue in Figure 2A. Note that the thick black vertical line
represents the end of the load (and the start of the recovery process), and the thin black
dashed horizontal line represents the numerical value of S in Figure 2A.
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Figure 2. The dynamics of the JT/ST relationship during the load and the recovery processes for
person #1 The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning
of the cycle ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts.
The right y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST
relationship is represented by the thin dashed black line in part A. The thick black solid vertical line
in part A marks the end of the load.

The algebraic JT/ST relationship reveals interesting dynamic behavior during the load
and recovery processes (Figure 2). It has been shown in [12] that the collapse of complexity
occurs in the algebraic relationship between RR/JT intervals at the end of the load process.
However, the situation is completely different now. The JT/ST relationship drops down
and reaches the first minimum much earlier than the end of the load process (Figure 2A).
After reaching the first minimum, the JT/ST relationship starts rising until the end of the
load process. The JT/ST relationships start decreasing again, reach the second minimum,
and continue to grow during the recovery process (Figure 2A).

It can be observed that the variability of the JT/ST relationship grows before the
termination of the load. Similar growth of low-frequency fluctuations before the end of
the exercise is observed in RR/QRS relationship [13] and in a quasi-isometric arm-curl
exercise [18]. However, the behavior of the JT/ST relationship is completely different if
compared to the RR/JT or RR/QRS relationships. The JT/ST relationship becomes more
fluctuated and grows to a local maximum at the moment of the termination of the exercise
and thus forms the first pit during the load process (marked in red in Figure 2A).

The second pit is formed during the recovery process (marked in blue in Figure 2A).
Such a different behavior of the JT/ST relationship, compared to other relationships,
can be explained by the fact that the JT and ST intervals represent completely different
aspects of the self-organization of the cardiovascular system. These aspects and possible
interpretations will be considered in more detail in the Discussion Section.

3.2. Healthy Persons #2–#7

A number of bicycle ergometry experiments with other persons are performed in
order to observe and compare the transient behavior of the cardiovascular system and its
self-organization during the load and recovery processes of the bicycle ergometry exercise.

The dynamics of the JT/ST relationship during the load and recovery processes for
person #2 are depicted in Figure 3. It can be observed that the global minimum in the first
pit is reached a little later for person #2, compared to person #1. However, the fluctuations
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before the termination of the load are also higher for person #2 (Figure 3A). The recovery
process can be also characterized by much more violent fluctuations (Figure 3A). We
speculate that the self-organization of the cardiovascular system of person #2 is much
more complex if compared to person #1. This complexity can be characterized by higher
fluctuations and a less stable recovery process. Yet, the red and the blue pits are clearly
visible in Figure 3A. Indeed, all persons are individual, and one should not expect to
reproduce identical transient trajectories of the JT/ST dynamics for different persons. One
could also observe that the physical endurance of person #1 is better if compared to person
#2. Both persons did terminate the exercise at 300 W load, but person #1 managed to last
almost 14 min (person #2 lasted less than 13 min).

Figure 3. The dynamics of the JT/ST relationship during the load and recovery processes for person
#2. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of the cycle
ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts. The right
y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST relationship
is represented by the thin dashed black line in part A. The thick black solid vertical line in part A
marks the end of the load.

The dynamics of the JT/ST relationship during the load and the recovery processes
for person #3 are depicted in Figure 4. Firstly, it can be observed that person #3 did manage
to reach only 250 W maximum load, and the bicycle ergometry exercise did last for only
almost 11 min. Additionally, though both pits (the red and the blue one) are clearly visible
in Figure 4A, the fluctuations before the load termination moment, and the complexity
of the transient process after the global minimum of the second pit, are much higher if
compared to person #2 (and person #1, of course). This is a clear indication that the ability
of the cardiovascular system of person #3 to adapt to the load and recover after the load is
less pronounced, compared to person #2 and person #1. Needless to say, these aspects of
self-organization of the cardiovascular system can be visualized by plotting the dynamics
of the algebraic JT/ST relationship.
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Figure 4. The dynamics of the JT/ST relationship during the load and recovery processes for person
#3. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of the cycle
ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts. The right
y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST relationship
is represented by the thin dashed black line in part A. The thick black solid vertical line in part A
marks the end of the load.

The dynamics of the JT/ST relationship for person #4 are even more different, compared
to the previous three ones. In fact, one single pit does not exist during the load process
(Figure 5A). The JT/ST relationship fluctuates violently in the time interval between the
first minimum point and the point of the termination of the exercise (Figure 5A). The self-
organization of the cardiovascular system of person #4 is very complex. In fact, it seems that
the cardiovascular system of person #4 is trying to seek an optimal configuration in the second
part of the load process. Indeed, it fails to find a stable configuration until the termination of
the load (Figure 5A). This could be due to physical load intolerance. However, the recovery
process is much smoother, and the blue pit is clearly expressed (Figure 5A). Note that person
#4 did manage to endure the increasing load for almost 11 min.

Figure 6 depicts the dynamics of the JT/ST relationship for person #5. The red pit is
clearly expressed at the first part of the load (Figure 6A). However, the JT/ST relationship
becomes unstable at the second part of the load, and these fast oscillations are much
stronger, compared to persons #1–4. Nevertheless, person #5 managed to continue the
exercise for more than 13 min (Figure 6A). Such violent oscillations before the termination of
the load are probably a sign of extreme efforts to keep up with the load. As a consequence,
the recovery process was long. The JT/ST relationship is still at the bottom of the blue pit
after 23 min from the beginning of the experiment (Figure 6A).

The dynamics of the JT/ST relationship for person #6 are shown in Figure 7. Person
#6 managed to run the exercise for the longest period of time (more than 14 min). The
global minimum (the collapse of the complexity of the JT/ST relationship) was reached
soon (right after the fourth minute). Then, the dynamics of the JT/ST relationship were
rather smooth, compared to other persons, until the end of the load process. However, the
start of the recovery process is marked by several strong peaks (Figure 7A). In fact, that is
the reason why the average value S is much higher if compared to other persons. Later, the
recovery process is rather smooth again, and the blue pit is clearly expressed in Figure 7A.
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Figure 5. The dynamics of the JT/ST relationship during the load and recovery processes for person
#4. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of the cycle
ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts. The right
y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST relationship
is represented by the thin dashed black line in part A. The thick black solid vertical line in part A
marks the end of the load.

Figure 6. The dynamics of the JT/ST relationship during the load and recovery processes for person
#5. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of the cycle
ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts. The right
y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST relationship
is represented by the thin dashed black line in part A. The thick black solid vertical line in part A
marks the end of the load.
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Figure 7. The dynamics of the JT/ST relationship during the load and recovery processes for person
#6. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of the cycle
ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts. The right
y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST relationship
is represented by the thin dashed black line in part A. The thick black solid vertical line in part A
marks the end of the load.

Finally, the JT/ST relationships for person #7 are shown in Figure 8. The variation of
the ST/JT relationship for person #7is similar to that of person #6. Person #7 managed to
keep running the exercise for almost 14 min; the variability of the JT/ST relationship is not
very high before the termination of the load. The recovery process is also similar to that of
person #6. The main difference between person #7 and person #6 is that strongly expressed
peaks are missing right after the termination of the load (Figure 8A).
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Figure 8. The dynamics of the JT/ST relationship during the load and recovery processes for person
#7. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of the cycle
ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts. The right
y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST relationship
is represented by the thin dashed black line in part A. The thick black solid vertical line in part A
marks the end of the load.

3.3. Persons with Suspected Ischemic Heart Disease #8–#10

The results of bicycle ergometry experiments with healthy persons demonstrate that
the double consecutive decline of the JT/ST relationship (the red and the blue pits) can be
used for subtle characterization of the self-organization of the cardiovascular system during
the load and the recovery processes. It is interesting to observe if similar patterns could be
observed in the JT/ST relationship for persons having different suspected ischemic heart
disease conditions.

Person #8 had ischemic effects in the myocardium and could continue the exercise
for less than 4 min (Figure 9). The first pit during the load did not have enough time
to develop (Figure 9A). The blue pit during the recovery process is missing completely.
In fact, the trajectory of the JT/ST relationship during the recovery process reminds a
wandering chaotic process. The ability of the cardiovascular system to self-organize during
the recovery process is impaired.

Similar results are observed in Figure 10. Person #9 managed to reach only 100 W
load. The red and the blue pits are completely missing. However, the recovery process
for person #9 looks better, compared to person #8. The JT/ST relationship quickly returns
and then starts wandering around the initial state (Figure 10A). Person #9 had ischemic
changes in the heart. The supply of oxygen to the heart becomes deficient soon after the
beginning of the physical exercise.

The dynamics of the JT/ST relationship for person #10 are depicted in Figure 11. The
maximal load is 250 W; however, this load is reached in around 5 min only (Figure 11B).
Clearly expressed pits do not form during the load or recovery processes.
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Figure 9. The dynamics of the JT/ST relationship during the load and the recovery processes for
person #8. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning
of the cycle ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts.
The right y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST
relationship is represented by the thin dashed black line in part A. The thick black solid vertical line
in part A marks the end of the load.

Figure 10. The dynamics of the JT/ST relationship during the load and recovery processes for person
#9. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of the cycle
ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts. The right
y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST relationship
is represented by the thin dashed black line in part A. The thick black solid vertical line in part A
marks the end of the load.
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Figure 11. The dynamics of the JT/ST relationship during the load and recovery processes for person
#10. The x-axis in parts (A,B) represents the time (measured in minutes) from the beginning of
the cycle ergometry exercise. The left y-axis in part (B) represents the power of the load in Watts.
The right y-axis in part (B) represents the variation of the RR interval in ms. The algebraic JT/ST
relationship is represented by the thin dashed black line in part A. The thick black solid vertical line
in part A marks the end of the load.

4. Discussion

The depression of the amplitude of the ST segment during the stress exercise is a
traditional biomarker for the diagnosis of coronary heart disease (CHD). However, the
prognostic information of this variable has not yet been specifically studied and compared
with more traditional exercise ECG variables such as a simple end-exercise ST-segment
depression, or heart rate-adjusted ST/HR index [19,20] and ST/HR slope [21,22]. Since ST-
segment depression has limited diagnostic characterization at exercise electrocardiography
(ECG), ST-segment depression/heart rate (ST/HR) hysteresis and cardiopulmonary exer-
cise test (CPET)-derived parameters have been proposed as alternatives for the diagnosis
of the exercise-induced myocardial ischemia [23].

Recently, the prognostic information of other exercises, i.e., ECG variables based on the
combined ST/HR data sampled during exercise and recovery phases (the so-called stress
recovery index (SRI) [24]) has been demonstrated by [25,26]. The ST/HR hysteresis takes
also into account a recovery phase but is not so susceptible to the reached maximum heart
rate during the exercise. To obtain more precise information about an individual patient’s
exercise capacity, the measurements of metabolic equivalents and oxygen consumption
should be analyzed accurately [27].

This paper introduces a novel approach that provides valuable information about
individual metabolic performance from the variation of the algebraic JT/ST relationship
during the load and the recovery processes. The JT interval corresponds to the cardiac
electric systole in the repolarization phase, and its changes are associated with the intensity
of the myocardial metabolism. The alterations of the JT interval are influenced by the
regulatory nervous system. Metabolic changes in the organism are closely associated
with repolarization changes. ECG leads, where the JT interval is shorter, show that the
repolarization processes happen faster in those myocardium areas. A longer duration of
the JT interval indicates slower repolarization (and slower metabolic reactions) [28].

The limitations of this study are, first of all, related to the fact that this study included
only men (in order to avoid higher dispersion of the obtained data). All data were recorded
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during the bicycle ergometry tests, and the functional state evaluation was performed only
on these data.

Every assessed parameter reflects only specific physiological information of the human
body. Our hypothesis is that all circuits of the organ control systems that have been
activated during the load return to the baseline levels during the recovery process (for
healthy people). In fact, the minimum level of the JT/ST relationship was in the range
between 0.3 and 0.5 for all observed persons. We assume that when the human organism
reaches this limit, it can no longer fall below this range, and then the reorganization
of the cardiovascular system takes place. There are two possible options during the
repolarization process—the compensatory mechanisms are turned on for healthy persons
or are completely imbalanced for persons with ischemic heart disease.

It can be observed that healthy persons are submitted to protocols with rather high
loads. The possible transit through the anaerobic threshold could be a factor affecting
the JT/ST relationship. Therefore, the variation of the RR interval (the interbeat interval)
during the load and the recovery processes is depicted for all subjects in Figures 2B, 3B,
4B, 5B, 6B, 7B, 8B, 9B, 10B and 11B. In 1982, Conconi [29,30] stated that the anaerobic
threshold correlates to a deflection point in the heart rate during the exercise (the heart rate
reaches a plateau at near maximal exercise intensities). However, the RR interval reaches
a sharp minimum at the load termination moment (for all persons except person #6 and
person #8). Therefore, it can be concluded that the anaerobic threshold does not play the
role of a causal factor that influences the formation of two consecutive declines in the JT/ST
algebraic relationship.

5. Conclusions

The JT/ST algebraic relationship reveals interesting and important information on the
dynamics of self-organization of the human cardiovascular system during the load and
recovery processes for healthy persons. The JT/ST relationship starts rising at higher loads
until the end of the exercise. Such an effect can be related to the activation of compensatory
adaptive mechanisms of the cardiovascular system. The JT/ST relationship decreases again
at the beginning of the recovery process. Such an effect indicates the shutdown of the
compensatory mechanisms. Finally, the function of the cardiovascular system returns to
the idle state observed before the exercise.

The dynamics of the JT/ST relationship for persons with suspected ischemic heart
disease revealed a single decrease during the load process. Such an effect shows a relatively
small activation of compensatory mechanisms and could serve as an early predictor of
ischemic heart disease.
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