
 

Kaunas University of Technology 

Faculty of Electrical and Electronics Engineering 

Personalized Deep Learning Models for Pain Level 

Classification from Photoplethysmography Signals 

Master’s Final Degree Project  

 

Povilas Piartli 

Project author 

 

Prof. Vaidotas Marozas 

Supervisor 

 

Kaunas, 2021 



 

Kaunas University of Technology 

Faculty of Electrical and Electronics Engineering 

Personalized Deep Learning Models for Pain Level 

Classification from Photoplethysmography Signals 

Master’s Final Degree Project  

Biomedical Engineering (6211EX002) 

  

Povilas Piartli 

Project author 
 

  

Prof. Vaidotas Marozas 

Supervisor 
 

  

Prof. Žilvinas Nakutis 

Reviewer 
 

  

Kaunas, 2021 



 

 
Kaunas University of Technology 

Faculty of Electrical and Electronics Engineering 

Povilas Piartli 

Personalized Deep Learning Models for Pain Level 

Classification from Photoplethysmography Signals 

Declaration of Academic Integrity  

I confirm the following:  

1. I have prepared the final degree project independently and honestly without any violations of the 

copyrights or other rights of others, following the provisions of the Law on Copyrights and Related 

Rights of the Republic of Lithuania, the Regulations on the Management and Transfer of 

Intellectual Property of Kaunas University of Technology (hereinafter – University) and the ethical 

requirements stipulated by the Code of Academic Ethics of the University;  

2. All the data and research results provided in the final degree project are correct and obtained 

legally; none of the parts of this project are plagiarised from any printed or electronic sources; all 

the quotations and references provided in the text of the final degree project are indicated in the list 

of references; 

3. I have not paid anyone any monetary funds for the final degree project or the parts thereof unless 

required by the law; 

4. I understand that in the case of any discovery of the fact of dishonesty or violation of any rights 

of others, the academic penalties will be imposed on me under the procedure applied at the 

University; I will be expelled from the University and my final degree project can be submitted to 

the Office of the Ombudsperson for Academic Ethics and Procedures in the examination of a 

possible violation of academic ethics. 

Povilas Piartli  

Confirmed electronically 



 

Piartli, Povilas. Personalized Deep Learning Models for Pain Level Classification from 

Photoplethysmography Signals. Master's Final Degree Project / supervisor Prof. Vaidotas Marozas; 

Faculty of Electrical and Electronics Engineering, Kaunas University of Technology. 

Study field and area (study field group): ): Bioengineering, Engineering Sciences. 

Keywords: deep learning, machine learning, pain, PPG, photoplethysmography. 

Kaunas, 2021. 56 pages. 

Summary 

The aim of this work is to develop a system which detects and classifies pain into 4 categories, 

based on finger photoplethysmographic signal. To accomplish the task first medical literature was 

analyzed to find how to experimentally stimulate pain and how the body reacts to pain, what are 

expected physiological changes and how currently pain is measured, it was found that with pain 

there is an increased activation of sympathetic nervous system, and with it changes in 

cardiovascular system. Currently the golden standard for pain estimation is patient self-report, in 

cases where this is not possible there are scales based on patient’s movement, body position, sound, 

etc. Then technical literature review was performed to find state of the art in automatic pain 

recognition and classification., it was found that almost all research is focused on using facial video 

recordings and very few methods used physiological signals, and only one used 

photoplethysmogram signals, this is due to limited available databases and open databases having 

only ECG, EDA, and EMG signals. Other methods relied heavily on EDA signal due to its large 

initial reaction to pain. Methods were constructed to extract and process heartbeat pulses from PPG 

signals, features were then extracted to describe the pulse morphology. The extracted pulses were 

then passed through a quality control algorithm which determined is the PPG pulse artefact free. 

The extracted pulses were then separated into datasets by person. The task of 4 classes was split into 

2 neural networks, an initial binary classifier for pain/no pain detection, and a secondary trinary 

classifier for pain class detection. Three different neural network architectures were designed with 

10 different types of input. Results showed that all neural networks performed well in binary 

classification with feature based networks performing better than signal based networks. With 

highest achieved accuracy of 0.92 in testing dataset and 1.00 in training dataset. In trinary classifier 

all networks performed poorly, with signal based networks performing better than feature based. 

With highest achieved accuracy of 0.61 in testing dataset and 1.00 in training dataset. 
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Santrauka 

Šio darbo tikslas - sukurti sistemą, kuri atpažintų ir klasifikuotų skausmą į klases, naudojant piršto 

fotopletizmogramos signalą. Tam pirma buvo atlikta medicininės literatūros analizė siekiant 

išsiaiškinti kaip eksperimentiškai stimuliuoti skausmą, kaip kūnas reaguoja į skausmą ir kaip 

skausmas yra matuojamas. Buvo rasta, kad skausmo metu suaktyvėja simpatinė nervinė sistema ir 

dėl to yra pokyčių širdies veikloje ir kraujotakos sistemoje. Dabartinis  skausmo vertinimo etalonas 

yra subjektyvios skausmo vertinimo skalės, pagal kurias pacientai patys įvertina patiriamo skausmo 

lygį. Tuo atveju kai pacientas negali apibrėžti patiriamo skausmo lygį, gydytojas, pasinaudodamas 

ilgamete praktika, vertina skausmą subjektyviai pagal paciento veido išraišką, judesius ir kitus 

intuityviai suprantamus požymius.  Mokslinės techninės literatūros analizė atskleidė, kad beveik 

visi metodai remiasi veido vaizdo įrašais, tik keli tyrimai yra paremti fiziologinių signalų analize ir 

tik viename naudojama fotopletizmograma (FPG). Literatūros analizė taip pat parodė laisvai 

prieinamų duomenų bazių trūkumą. Siūlomas skausmo objektyvaus vertinimo algoritmas remiasi 

FPG signalo kokybės vertinimu, segmentavimu į širdies dūžius, signalo atkarpų aprašymu 

morfologiniais požymiais ir požymių klasifikavimu dirbtiniais neuroniniais tinklais (DNT) . FPG 

signalo segmentai buvo  padalinti į 2 rinkinius, DNT  apmokymui ir testavimui. Pirmajame DNT 

apmokymo etape buvo siekiama ištirti skausmo atpažinimo galimybes (binarinis klasifikavimas), o 

antrajame– skausmo lygio įvertinimo galimybes (klasifikavimas į 3 klases). Taip pat buvo įvertintas 

giliojo mokymo DNT efektyvumas klasifikuoti skausmo lygį remiantis FPG signalo morfologija 

nenaudojant jokio signalo parametrizavimo. Tyrimo rezultatai parodė, kad neuroniniai tinklai gerai 

pasirodė dvinarėje klasifikacijoje, savybių pagrindu veikiantys tinklai pasirodė geriau negu gryno 

signalo pagrindu veikiantys. Bendrai geriausi pasiekti rezultatai yra 0,92 tikslumas testavimo 

rinkinyje ir 1,00 apmokymo rinkinyje. Trinarėje klasifikacijoje visi tinklai pasirodė prastai, gryno 

signalo tinklai pasirodė geriau negu savybių pagrindo. Bendrai geriausi rezultatai pasiekti yra 0,61 

tikslumas testavimo rinkinyje ir 1,00 apmokymo rinkinyje.  
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Introduction 

Pain is a mechanism for the body to indicate that there is a threat or damage, however it is not 

always needed and can have undesirable effects, as such there is a need for pain reduction or 

elimination. Currently pain is reduced using various analgesics, however, pain is also often 

mismanaged, even for cases with severe pain[1]. This mismanagement stems from subjective factor 

in pain evaluation from the medical staff. Currently pain is recognized and classified in two ways, 

by patient self-report which is later evaluated by the medical staff or by direct evaluation by 

medical staff in cases with non-verbal patients. However, these methods are not always suitable, in 

cases such as heavily sedated, non-verbal adults or small children it is hard to ask or evaluate their 

pain properly. A solution for this problem is pain detection and classification from physiological 

signals, currently this area is very new but quickly developing due to application of machine 

learning techniques and miniaturization of sensors, including wearable sensors for continuous 

monitoring[2]. Particularly photoplethysmography is interesting due to its devices being small, 

energy efficient, and already present in clinical setting as blood oxygen saturation meters. Currently 

there are no commercial solutions for pain detection and classification which use physiological 

signals. In this research finger photoplethysmography signals will be analyzed, their features will be 

extracted and used in developing pain classification algorithms. Both parametrization of the signal 

and signal waveforms will be tested with neural networks to determine which approach provides 

better accuracy with basic neural networks. Additionally, different types will be tested to determine 

if recurrency or convolution provides additional advantage. Different time windows were tested to 

determine of longer recordings help with pain classification. 

 

The aim of this work is to develop a system which detects and classifies pain into 4 categories, 

based on finger photoplethysmographic signal. 

The objectives are the following: 

1. To analyze pain effects on the body to determine how to measure it; 

2. To analyze currently applied pain recognition and classification methods; 

3. To propose features describing PPG signal morphology; 

4. To propose PPG signal quality control algorithm; 

5. To test and evaluate different types of neural networks with both features and raw signals. 
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1. State of the art and previous research  

1.1. Clinical background 

Clinical background overview is split into 2 parts, pain stimulation methods and pain estimation 

methods. Pain stimulation methods were overviewed in order so select the most suitable one for 

testing on volunteers. Pain estimation methods were overviewed to analyze  

1.1.1. Pain stimulation methods 

There are several different pain stimulation methods and can be classified according to how pain 

stimulation is performed: mechanical, thermal, electrical, and ischemic (Fig. 1). Besides, each 

method can be classified as invasive or non-invasive: 

• Invasive methods affect more nerve fibers and provide a higher-level stimulation compared to 

non-invasive methods. Invasive methods activate sensory cells which are responsible for 

sensation and damage and always leave lasting effects on the organism. 

• Non-invasive methods provide lower-level stimulation compared to invasive methods. 

However, they are more often used because they carry lower risk than invasive methods;  

also, they are easily repeatable and leave less lasting effects. 

Pain stimulation methods

Mechanical Thermal IschemicElectrical

Touch

(non-invasive)

Pinprick

(invasive)

Pressure pain

(non-invasive)

Thermode

(non-invasive)

Cold pressor

(non-invasive)

Nerve fiber 

stimulation

(invasive & 

non-invasive)

Skin 

stimulation

(non-invasive)

Tourniquet

(non-invasive)

 

Fig. 1. Classification of pain stimulation methods 

Mechanical pain stimulation methods 

Mechanical pain stimulation methods are performed using a controlled pressure which affects 

mechanoreceptors and nociceptors. Mechanoreceptors sense a wide variety of modalities (e.g., 

touch, pressure, vibration). Meanwhile, nociceptors sense all previously mentioned modalities and 

one additional (damage of cells). Nociceptors trigger from higher values of those modalities.  

Most mechanical pain stimulation methods affect both receptors. In this case, when both types of 

receptors are affected, the sensation of pain is reduced [3]. It is hypothesized that this pain reduction 

is an adaptation mechanism due to mundane tasks. Mechanical pain stimulation methods can be 

categorized into three groups [4]: 
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• Touch method uses additional light pressure which can be performed by fingers or Von Frey 

hair (Fig. 2 a). Von Frey hair is calibrated filament that bends when a certain pressure is 

reached [4]. This method usually used when there is increased skin sensitivity. 

• Pinprick method is invasive, and stimulation is applied to a very concentrated area using  

a needle or safety pin [4] (Fig. 2 b). It leaves lasting damage to the skin and is unsuitable for 

repeatability studies. 

• Pressure method is performed by applying controlled pressure (controlled pain) to specific 

locations on the body (e.g. earlobe, finger, toe) [4]. Pressure pain method is usually 

performed using pressure algometer (Fig. 2.c). 

 

Fig. 2. Examples of mechanical pain stimulation methods: a) touch method – Von Frey hair, b) Pinprick 

method – needle (adapted from [5]), c) pressure method – algometer [6] 

Advantages and disadvantages of mechanical pain stimulation methods are presented in Table 1. 

These methods can be quite easily performed but can be used only in specific situations (e.g. 

pinprick method only can be used by a trained specialist). In many cases, the disadvantages of 

mechanical methods overcome their advantages. 

Table 1. Advantages and disadvantages of mechanical pain stimulation methods 

 Advantages Disadvantages 

Touch 

method 

A concentrated effect area; 

Non-invasive. 

Stimulates mechanoreceptors, could be avoided with a 

slow application; 

Low maximum stimulation; 

Often used in situations with increased sensitivity on the 

skin from other factors. 

Pinprick 

method 

A concentrated effect area; 

Strong stimulation. 

Invasive; 

Difficult to control the strength of stimulation; 

Cannot be repeated on the same location with repeatable 

results (causes hyperalgesia [4]). 

Pressure 

method 

A high degree of control (area, pressure, 

location); 

Can be applied slowly by limiting the 

effect of mechanoreceptor suppression [7]. 

Slow; 

A large area of minimal stimulation. 
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Thermal pain stimulation methods 

Thermal pain stimulation methods can be easily applied by using controlled hot or cold stimulus on 

the subject's skin and affects skin's thermoreceptors. There are two main thermal pain stimulation 

methods: 

• Thermode method (TM) uses thermodes for a fast and controlled thermal stimulation of  

a small area of the body. Applied temperature varies from 0 °C to +51 °C [8]. 

• Cold pressor (CP) test (CPT) uses immersion of hand, forearm or foot into the cold water of 

0-15 °C [9]. The CP test is famous in the studies due to its simplicity and lack of danger  

to the participant. The advantages and disadvantages of thermal pain stimulation methods 

are summarized in Table 2. 

Table 2. Advantages and disadvantages of thermal pain stimulation methods 

 Advantages Disadvantages 

Thermode 

method 

Easy location control; 

Limitation of maximum temperature to avoid burns; 

Potential for experiment automation; 

Could be used for both invasive and non-invasive tests 

[10] 

Equipment is bulky (liquid exchange type 

thermodes) and expensive; 

Cold 

pressor test 

Cheap and simple equipment (bucket and cold water); 

Simple testing protocols; 

Easy to control (the test can be easily stopped by the 

participant if the pain is too high). 

Very varied protocols (stirred/not stirred, 

temperature, depth of immersion, time of 

immersion); 

Experiment imposable to automate; 

Increase vasoconstriction. 

Both thermal pain stimulation methods are widely applied in practice. Comparative analysis of 

specific protocols, times of stimulation, and other information is summarized in Table 3. 

Table 3. Comparative analysis of cold pressor test (sorted by CPT water temperature) 

Protocol Baseline 

time 

CPT water 

temperature, °C 

CPT duration, 

min 

Psychological 

evaluation 

Post CPT 

evaluation 

Stone [11] 25 min 0-1 3 - - 

Dixon [12] - 0-2 5 VAS-I, VAS-U - 

Ghiasi [13] 3 min 0-4 3 - 4 min 

Imai [14] - 0-4 TT VAS - 

Malarvili [15] 30 min 0-5 5 - 5 min 

Patryla [16] 2 min  

37 °C water 

1 - 0-100 NRS - 

Mitchell [17] 1 min  

32 °C water 

1,3,5,7 5 VAS, PRI 1 min 32°C 

Wirch [18] 5 min 4-5 6 - 15 min 

Campbell [19] - 5 5 0-20 scale - 
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Table 3. Continuation 

Protocol Baseline 

time 

CPT water 

temperature, °C 

CPT duration, 

min 

Psychological 

evaluation 

Post CPT 

evaluation 

Chalaye [20] - 7 5 VAS-I, VAS-U (every 

15 s) 

- 

Kaushik [21] 15 min 10 1 - - 

Gehling [22] - 10 1 0-100 NRS - 

Mizeva [23] 10 min - 3 - 10 min 

Geisser [24] - - 5 0-10 (every 10 s), 

McGill scale 

- 

VAS-I – visual analogue pain intensity scale , VAS – visual analogue scale, PRI – Pain Rating Index scale,  

NRS – numeric rating scale; TT – till threshold. 

Electrical pain stimulation methods 

Electrical pain stimulation can be easily applied and controlled; however, it activates nerves 

unnaturally (in a very synchronized manner), excites full spectrum of peripheral nerve fibers, and 

bypasses sensory nerve endings. An alternative is to apply a smaller stimulus which produces  

a stinging or burning sensation on the skin. There are two types of electrical pain stimulation 

methods (summarized in Table 4): 

• Nerve fiber stimulation – electrodes are placed in a way for the electric current to activate 

the nerve fibers directly, without activating the appropriate nociceptors. The stimulation can 

be performed invasively (needle electrodes, lower voltages, provide minimal stimulation  

to the surrounding areas) and non-invasively (skin electrodes, higher voltages, affect and 

stimulate the surrounding tissues) [4]. 

• Skin mechanoreceptors stimulation tries to imitate natural pain by using skin electrodes and 

limited voltage. Limited voltage reduces stimulation effect on nociceptors and in that way 

only mechanoreceptors are activated. Therefore, pain is more natural [7]. 

Table 4. Advantages and disadvantages of electrical pain stimulation methods 

 Advantages Disadvantages 

Nerve fiber 

stimulation 

Fast and simple control; 

Can be non-invasive. 

Bypass of receptors, effects could be different from natural 

stimulation; 

May require abrasion or damage to the skin  

to reduce resistance. 

Skin 

mechanoreceptors 

stimulation 

Imitate natural pain; 

Easy to control; 

Non-invasive. 

A large area of stimulation; 

Slow and weak stimulation. 

 

Ischemic pain stimulation methods 

Ischemic pain stimulation is a specific stimulation applied by using a tourniquet. Ischemic pain felt 

when blood flow is reduced to some parts of the body. The stimulation is usually performed on 
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limbs (e.g. hand, leg); however, it is also possible to use it for other parts of the body. There are two 

types of ischemic pain stimulation methods (summarized in Table 5): 

• Stationary method – ischemic pain is caused by a tourniquet applied to a limb in a stationary 

position. A tourniquet is held until the pain becomes unbearable but not longer than 2 hours 

[4]. 

• Exercise method – the same as the tourniquet method except a tourniquet is applied not  

in a stationary position but before or just after the end of physical activity [25]. 

Table 5. Advantages and disadvantages of ischemic pain stimulation methods 

 Advantages Disadvantages 

Stationary 

method 

Simple control and equipment; 

Pain fades away quickly after  

the test. 

Potentially low test-retest reliability [26]; 

Subjects to experience fatigue before pain [26]; 

Slow application. 

Exercise 

method 

Simple and fast; 

Indifferent to the fitness level of  

the participant. 

Sex differences; 

Protocols vary across studies. 

1.1.2. Body reaction to pain 

Pain induces reaction in physiological systems, which in turn results in changes in specific 

parameters which can be recorded and evaluated. More specifically pain induces increased 

reactivity of the autonomic nervous, cardiovascular and respiratory systems. Pain level is also 

associated with physiological parameters(e.g. heartrate, respiration rate, blood pressure, skin 

conductance, etc.) 

This section mainly analyses the changes caused only by thermal pain. When cold environments 

expose skin's thermoreceptors, they detect temperature drop and pass this information through  

the afferent nerves to the anterior hypothalamus, which controls the heat balance. The control center 

emits control signals to other areas of the hypothalamus that regulate the rate of heat release.  

When physiological thermoregulatory measures become ineffective in maintaining thermal 

homeostasis, the heat generation center begins to stimulate efferent nerves of the sympathetic 

nervous system [27]. Activation of the sympathetic nervous system tries to counter heat loss and 

maintain homeothermy. Increased activity of the sympathetic nervous system increases sweating 

(electrodermal activity), respiratory rate, heart rate, blood pressure, and vasoconstriction and 

dilation of the arteries. 

Pain and changes in heart activity, arterial blood pressure, and respiration 

The heart rate is a well-known indicator of pain and activity of the sympathetic(SNS) and 

parasympathetic(PNS) nervous system[28]. The relative increase in SNS activity is associated with 

increased HR and increase in PNS activity is associated with decreased HR. Therefore, the PNS 

influences are the ones capable of producing rapid changes in the measurement of the interbeat 

intervals (IBI). IBI sequences are described as the time interval between R peaks in ECG signal. 

Different time intervals are used for HRV evaluation. These are three main groups (domains) used 

for the analysis of IBI: 1) time-domain, 2) frequency-domain, and  

3) nonlinear-domain. The time-domain analysis measures HRV parameters of normal-to-normal  

(N-N) intervals: 1) a standard deviation of all N-N intervals (SDNN) and 2) the square root of the 
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mean of the sum of squares of differences between adjacent N-N intervals (RMSSD) [29].  

The frequency-domain analysis measures HRV parameters of N-N intervals by using fast Fourier 

transformation and calculates the power spectrum of specific frequency ranges. The pain studies 

focus on three main HRV parameters: low-frequency (LF), high frequency (HF), and the ratio of LF 

and HF (LF/HF ratio) [29]. In a study[30] of 101 subject it was found that during cold pressor test 

LF component increases, HF component decreases and LF/HF ration is also increasing. This 

indicates that during CPT SNS is dominant, similar results were found in [31] and [32]. The 

disadvantage of HRV analysis is that long periods (5 minute recordings being standard[33] however 

shorter recording based estimations exist[34]) of monitoring are required for accurate evaluation of 

LF component, this reduced the usability of HRV for pain evaluation into only being applicable for 

long term pain. 

Mean arterial blood pressure (MAP) increases during cold pressure test due to increased peripheral 

vascular resistance [26]. The increased peripheral vascular tone of peripheral muscular 

arteries/arterioles has a significant effect; it fasters velocity of reflected arterial pressure waves [35]. 

The early return of arterial pressure waves augments the amplitude of central systolic and pulse BP, 

resulting in elevated wave reflection intensity. However, clinically approved continuous MAP 

measurement tools are invasive which limits its usage to patients which would have MAP measured 

for other reasons. 

The amplitude of the photoplethysmogram (PPG) signal is related to volume changes in the 

peripheral circulation. Therefore, the amplitude of the PPG signal decreases due to the narrowing of 

the arterial blood vessels caused by the activated sympathetic nervous system and pain. A study 

[36] showed that the intensity of relatively mild pain caused by two heat stimuli (43 and 48 °C) has 

no relationship to changes in PPG signal amplitude. In contrast, the cold pressure test caused more 

severe pain and reduced the amplitude of the PPG signal. It can be concluded that the amplitude of 

PPG signal changes significantly in response to even mild pain stimuli, but has limited specificity in 

the assignment of pain intensity [36]. In another study [37] it was found that PPG AC amplitude 

decreases during CPT and increases with hand immersed in hot water(55°C), with IR PPG AC 

changing more than red PPG AC. PPG is a good candidate for pain evaluation due to its ease of 

measurement and quick reaction to pain. 

Another parameter combining ECG and PPG signals is pulse arrival time (PAT). PAT is the time 

delay in between R wave peak of ECG and onset of corresponding PPG signal. A significant rise in 

arterial blood pressure increases the vascular tone, and the arterial wall becomes stiffer, causing the 

PAT to shorten. In opposite, a decrease in vascular tone due to a fall in BP causes PAT to lengthen. 

The study [38] showed that PAT was slightly lower during CPT compared to rest. PAT recovers 

within in 1 min while amplitude and slope do not recover entirely by 5 min. However, PAT requires 

measurement of both PPG and ECG and for good synchronization between devices, this is possible 

and not difficult compared to MAP, but it makes the equipment more bulky and harder to apply. 

Breathing and pain model studies showed that sudden skin pain increases inspiratory flow by 

reducing inspiratory time or by increasing inspiratory volume, or by combining both. The 

inspiratory flow rate has a correlation with inspiratory intensity [8]. The studies have found that 

acute pain increases respiratory rate and volume [39]. However, respiration is inconvenient to 

measure, requiring either a respiration belt or a sensor in face area. 
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Pain and skin and muscular responses 

Increased sympathetic tone leads to increased sweating. Sweating occurs because of sudomotor 

(sweat gland) activation; it has two effects – decreased skin resistance and a small electrical 

potential is developed during sudomotor activation. Increased skin conductance has been associated 

with pain response [40], [41], [42]. Studies identified time points with moderate or severe 

postoperative pain (with 90 % sensitivity, 64 % specificity and 89 % sensitivity, 74 % specificity 

respectively) [40], [42]. However, skin conductance is significantly impacted by external 

conditions, which can change evaporation speed. Another method to investigate sympathetic skin 

responses is to register sudomotor activation, during the activation a small electrical potential is 

developed. The advantage of this method is that the signal directly shows when the sweating is 

happening and not after it happened enough to have a change in skin conductance. Sudomotor 

activity has been shown to have a correlation with pain response [43]. However, sudomotor activity 

measurement is inconvenient as it shares the frequency range with EMG and requires specific 

electrode placement for low noise and high signal level(low muscular activity with high sweating 

activity). 

It is generally assumed that stress induces muscular tension [44] and pain as a stress-inducing agent 

should have this effect also. It has been shown that electromyography (EMG) activity in trapezius 

muscle is significantly increased during a painful experience [44]. However, EMG monitoring is 

inconvenient due to high noise levels from movement and inconvenient application of electrodes. 

1.1.3. Patient reported pain level 

The current golden standard for pain evaluation is patient self-report. Self-reporting is done with the 

help of standardized pain scales. Examples of the most popular pain scales can be seen in Table 6. 

The table is divided into 2 main groups of scales, by the type – qualitative and quantitative. 

Qualitative scales serve the main purpose to find the type of pain, its location, while Quantitative 

scales are used for pain value, how strong is the pain.  

Table 6. Comparison table of verbal patient pain estimation methods 

Name Type Range Method of expression 

McGill pain questionnaire 

(MPQ) 

Qualitative - Verbal 

Coping Strategies 

Questionnaire (CSQ) 

Qualitative - Verbal 

Kohn Reactivity Scale 

(KRS) 

Qualitative - Verbal 

Pennebaker Inventory of 

Limbic Languidness (PILL) 

Qualitative - Verbal 

Visual analogue scale 

(VAS) 

Quantitative 0-100% Verbal or manipulatory 

Verbal descriptor scale 

(VDS) 

Quantitative 1-3 or 1-5 

Predefined meanings 

1 – none, 2 – mild, 3 – moderate,           

4 – severe, 5 – unbearable  

Verbal 

Numerical pain rating scale 

(NPRS) 

Quantitative 0-10 or 0-100 Verbal 
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Psychophysical methods are based on the participant's individual (personal, subjective) assessment 

of the pain. Commonly used psychophysical methods [45]: 

VAS, VDS, and NPRS methods are quantitative and serve the purpose to evaluate pain level. 

Meanwhile, MPQ method is the multidimensional instrument and describes the pain in a qualitative 

way with the purpose to identify location and type of pain. VAS and NPRS methods are often used 

in daily practice, while, VDS and MPQ methods more commonly used in clinical research [46]. The 

major disadvantage of subjective pain evaluation methods is that the intensity of measured pain 

highly dependents on various factors such as the previous experience of pain, emotional status, 

physiology, location, type of pain, etc. 

Patient reported scales have an additional limitation that they require a patient capable of cognitive 

functions and communication. 

1.1.4. Medical staff reported pain level 

There are various scales which can be used by medical staff, however, all of them require a 

responding patient. This means that sedated patients which do not show any expressions, whether 

they are facial or full body, cannot be evaluated for their pain levels. The scales seen in Table 7 

show various characteristics that are used for pain evaluation, such as body and facial movements, 

sounds, body position. Particularly facial and body movements are used as they are present in all 

pain scales. However, body movements are harder to capture and as such are suitable for automated 

methods. Facial movements are easier to capture as such have been popular in machine learning 

community. However, they still have the mentioned issue of not being present in some patients. 

Table 7. Comparison table of non verbal patient pain estimation methods[47] 

Name Range Domain 

Facial 

expression 

Body 

movement 

Body 

posture 

Verbal 

response 

Ventilator 

compliance  

Physiologic 

dimension 

Behavioral 

Pain Rating 

Scale [48] 

0-3 per 

domain 

0-12 

total 

None to 

constant 

frowning 

or 

grimacing 

Quiet to very 

restless 

Relaxed to 

extreme 

tenseness 

Normal 

speech to 

crying 

- - 

PAIN 

Algorithm 

[49] 

0-1 None to 

frown/ 

grimace/ 

wince 

None/slow 

movement to 

restless 

None to 

rigid/ 

splinting/ 

tenseness 

None to 

crying/ 

moaning 

- Changes in 

heartrate, 

blood 

pressure, 

respiration, 

pallor 

Behavioral 

Pain Scale 

[50] 

1-4 per 

domain 

3-12 

total 

Relaxed to 

grimacing  

None to limbs 

retracted 

permanently 

- - Tolerating 

movement 

to unable to 

control 

ventilation 

- 

Nonverbal 

Pain Scale 

(NVPS) [51] 

0-2 per 

domain 

0-10 

total 

None/smile 

to frequent 

grimace, 

frown 

Lying quietly to 

restless, excess 

activity or 

withdrawal from 

stimulus 

Lying 

quietly to 

rigid/ stiff 

- - Vital sign 

changes in 

past 4 hours. 

Changes in 

skin 

moisture/color 

or pupil size 
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Table 7. Continuation 

Name Range Domain 

Facial 

expression 

Body 

movement 

Body 

posture 

Verbal 

response 

Ventilator 

compliance  

Physiologic 

dimension 

Pain 

Behavior 

Assessment 

Tool [52] 

0-1 10 

descriptors 

15 descriptors - 7 

descriptors 

- - 

Critical Care 

Pain 

Observation 

Tool 

(CPOT) [53] 

0-2 per 

domain 

0-8 

total 

Relaxed to 

grimacing 

None to restless Relaxed to 

very 

tense/rigid 

For non-

intubated 

patients: 

Normal 

speech or 

no 

vocalization 

to crying 

For 

intubated 

patients: 

tolerate 

ventilator 

or 

movement 

to fighting 

ventilator 

- 

 

1.2. Objective pain assessment methods 

Current research on automatic pain recognition or classification is very dependent on available 

databases and researcher specializations. Due to these factors most of databases and research 

currently is based on image or audio processing and not on physiological signals. The few databases 

that have physiological signals have a very limited variety – ECG, EDA, EMG signals. This results 

in research focused on using those signals. The issue is how to describe these signals, how to extract 

their features and here a limitation is encountered – most researchers use statistical descriptors for 

specified time windows. 

Additionally there is only a single commercial project for automatic pain recognition[54], however, 

it is not currently sold, pending FDA approval. The PainQx operates using EEG data and aims to 

map brain activity for pain detection. This kind of approach is suitable for longer term monitoring, 

but EEG equipment is comparably heave and hard to set up, especially compared to PPG readers, 

making this product a bad choice for quick measurement applications. 

1.2.1. Automatic pain recognition 

There has been a very large review in 2019 about automatic pain recognition and classification 

methods[55]. The methods can be separated into 3 categories, video recording analysis, 

physiological signal analysis and combined. In this research the goal is to classify pain from 

physiological signals, as such, methods using video recordings will be ignored. It is also noticed 

how research is very centered around the available databases, this resulted in most of the research 

using BioVid database. In Table 8 you can see some examples of research on pain classification 

using automated methods which use physiological signals, however, signals are centered around 

EDA, ECG, facial and back EMG. ECG is used to extract blood volume pulse it should be similar 

to photoplethysmography, but it is not exactly the same and that it does not have pulse wave 

morphology. This means that the blood volume pulse does not have information of how the 

vascular system is changing. This research will be new in that it will include the information from 

the vascular system.  
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Most of the research which used BioVid database mentions that the most informative signal is skin 

level conductance, this is an expression of sweating. However, skin level conductance has a sharp 

peak with the beginning of pain and then decreases to normal levels, as such, it is not suitable for 

longer term pain as it only reacts to the increase in pain and not presence of pain.  

Table 8. Comparison table of machine learning based automatic pain recognition algorithms using 

physiological signals [55] 

Author Model Physiological signals Accuracy 

achieved 

Dataset 

Kächele ’16[56] Random forest 

and k-NN 

ECG, EDA, EMG (trapezius) - BioVid 

Amirian ’16[57] RBF Neural 

Network 

ECG, EDA, EMG (trapezius) 80% Binary 

32.1% 5 class 

BioVid 

Lopez-M. ’17[58] Multi-task neural 

network 

ECG, EDA, EMG (trapezius) - BioVid 

Lopez-M. ’18[59] Recurrent Neural 

Networks 

ECG, EDA - BioVid 

Jiang ’17[60] Neural network EDA, facial EMG, HR, 

RSP 

70.6% 3 class 

 

- 

Hinduja ’20[61] Random forest DBP, MBP, SBP, EDA, RBP, 

Pulse, RSP rate, RSP volts 

77.7% Binary BP4D+ 

Chu ’17[62] Genetic algorithm 

and principal 

component 

analysis 

ECG, EDA, PPG 75% 4 class - 

DBP – diastolic blood pressure, MBP – mean blood pressure, SBP – systolic blood pressure, EDA – 

Electrical dermal activity, skin conductance, RBP – Raw blood pressure, RSP – respiration, HR – 

heart rate. 

The research performed by Chu et al[62] is the closest to what is aimed at this research. The 

distinction from other research is in the usage of PPG signals. While others estimated blood volume 

pulse from ECG signal, Chu used PPG signal. However, the same as research based on BioVid 

database, pain intensity is registered by the applied stimulus intensity and not volunteers evaluation. 

While in our research pain intensity will be coded by volunteers evaluation, this makes accuracy 

comparisons hard.  

1.2.2. Available Databases 

In Table 9 publicly available databases and their available modalities can be seen. It can see that 

very few databases have physiological signals. For any groups attempting research without their 

own data acquisition this is a big limiting factor. Because of this, research is focused on video and 

audio methods. Only BioVid, BP4D+, EmoPain, SenseEmotion, and X-ITE databases have 

physiological signals and those are mostly limited to ECG, EDA, EMG, with BP4D+ being an 

exception with heartrate, respiration rate and blood pressure as additional measurements. As such 

any research which collects and examines other physiological signals will be very new and 

beneficial. 
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Table 9. Publicly available databases[55] 

Database Subjects Pain stimulation 

method 

Video/Audio Physiological 

signals 

UNBC-McMaster 25 adults Exercise for 

chronic shoulder 

pain affected limb 

Facial video  

BioVid 90 healthy adults Heat pain, 

thermode 

Facial video EDA, ECG, 

EMG(trapezius, 

corrugator, 

zygomaticus 

muscles ) 

BP4D 41 healthy adults Cold pressor test Facial video  

BP4D+ 140 healthy adults Cold pressor test Facial video heart rate, 

respiration rate, 

blood pressure, 

EDA 

MIntPain 20 healthy adults Electrical pain Facial video  

EmoPain 22 adults Exercise for 

chronic lower back 

pain patients 

Video, audio, motion 

capture 

EMG( trapezius, 

lumbar, 

paraspinal 

muscles) 

SenseEmotion 45 healthy adults Heat pain Facial video, audio EDA, ECG, EMG 

(trapezius 

muscle), RSP 

X-ITE 134 healthy adults Heat and electrical 

pain 

Facial video, body 

video, audio 

EDA, ECG, 

EMG(trapezius, 

corrugator, 

zygomaticus 

muscles ) 
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2. Methodology 

2.1. Data acquisition 

Data was collected in-house for a SzeleSTIM project. Data collection took place indoors at the 

Biomedical Engineering Institute (Kaunas, Lithuania) in a quiet, temperature-controlled (24 °C ± 1 

°C) room at the same time of the day (08:00-13:00), protocol can be seen in Fig. 3. Participants 

were instructed to put their arm up to the middle of the forearm into water during warm and cold 

water phases, indicate their pain as often as they can distinguish differences and to pull out their 

hand if the pain feels too uncomfortable to continue. 

Rest1
Cold water1: 

7 °C
Rest2

Cold water2: 

10 °C
Rest3

00:00 10:00 11:00 13:00 18:00 20:00 30:00

Warm water: 

32 °C

Deep 

breathing
Rest4

31:00 36:00

 

Fig. 3. Protocol of the study 

PPG was registered on a finger using Nautilus II data acquisition system (1000Hz, Kaunas 

University of Technology Biomedical Engineering Institute, Kaunas, Lithuania The data is labeled 

by using NPRS pain scale data collected during experiment. Non-uniformity of NPRS data is 

corrected using linear interpolation. Fifty-one healthy volunteers (26 women), 36.25 ± 10.34 years 

old (range 22 to 64 years), with a height of 1.76 ± 0.09 m, weight of 74.68 ± 14.89 kg, and body 

mass index of 24.11 ± 3.70 kg/m2 participated in the study. The subjects were fully informed about 

the investigation and any possible related risks and discomfort. The study was conducted by 

following the ethical principles of the Declaration of Helsinki and with approval from the Kaunas 

Region Biomedical Research Ethics Committee (No. BE-2-24). Identifiable information was 

removed from the collected data to ensure participant anonymity.  

Sensor and electrode placement can be seen in Fig. 4 and Fig. 5. 

 

Fig. 4. Placement of sensors and electrodes. Body outline source [63] 
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Fig. 5. Electrode placement for ear bioimpedance measurement 

Below are data examples from a single volunteer. Finger photoplethysmogram (PPG), seen in Fig. 

6. Changes in peak-to-peak level can be seen (2% at CPT2 to 4% and Rest1 phase), however there 

are no clear morphology changes. 

 

Fig. 6. Red color PPG signal recorded from finger (white – baseline, light brown – 32 °C warm water, blue – 

7 °C cold water, light blue – 10 °C cold water, green – deep breathing) 

 

2.2. Algorithm 

The proposed pain classification algorithm is split into 2 main parts – data preparation and 

processing with neural networks. The first part can be seen in Fig. 7, while the second part is seen in 

Fig. 8. Data preparation algorithm is used to convert data from signals into segments of standard 

length and to extract morphology features. The second part of the solution is to use neural networks 

for pain classification, the task was split into two neural networks, first for binary classification 

pain/ no pain, second for 3 class classification into light/moderate/heavy pain. 
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This splitting was initiated after initial trials showed that a direct 4 class classifier performed very 

poorly. 

Signals for NN Features for NN

Derivative 
Calculation

 
Fig. 7. Data preparation algorithm, from raw data to signals and features for usage in neural 

networks 

 
Fig. 8. Pain classification algorithm, input of features/ signals, classification into 4 classes of no/ 

light/ moderate/ heavy pain 

2.3. Data preparation 

The process is separated into 7 steps: 

1. Heartbeat pulse detection 

2. Baseline removal 

3. Heartbeat pulse resampling to uniform length 

4. Heartbeat pulse amplitude normalization 

5. Derivative heartbeat pulse calculation 

6. Feature extraction 

7. Feature normalization 
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2.3.1. Data preprocessing and normalization 

First the signal is filtered by high-pass (Butterworth, order of 4, 0.5hz cut-off) and low-pass 

(Butterworth, order of 2, 10hz cut-off) filters, using zero-phase filtering algorithm. The next step is 

to segment the signal heartbeat by heartbeat. For simplification this was done with the help of ECG 

signal, R peaks were extracted and used as guides for PPG heartbeat detection. Intervals between 2 

heartbeats are searched for minimum value. These minimum values are used to describe a single 

heartbeat segment as a segment from one minimum to another.  

Baseline is additionally removed by calculating a straight line from beginning to end and 

subtracting it from the segment, example can be seen in Fig. 9. Heartbeats are then additionally 

normalized. It is assumed that a previous 2-minute recording without pain would be available and as 

such its maximum is considered as 1. Additionally, derivatives up to fifth order are calculated for 

the entire signal, segmented based on normal signal segmentation points and normalized and unified 

with the same method with the exception of additional baseline removal. 

 

Fig. 9. Length unification algorithm 

2.3.2. Quality control 

Quality control is performed in 2 steps. 

First step is manual  median signal shapes are calculated for the first rest period, these are evaluated 

manually if they represent PPG signals, good example in Fig. 10, bad signal example in Fig. 11. 
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Fig. 10. Examples of good PPG signal shapes 
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Fig. 11. PPG Finger median signals of first rest period which were rejected due to their median signal not 

having sufficient quality or not representing PPG signal 

The second step is automatic, each segment is compared to previously generated median signal of 

the first rest period. Comparison is performed by calculating root square error for each datapoint in 

the segment and summing it into a single value. A threshold was set as 90% quantile of all segments 

of all signals left after step 1, which equals to 0.1327 for the tested database. Segments which have 

error value above the threshold were removed. 

 

Fig. 12. RMSE values for each subject 

2.3.3. Feature extraction 

For PPG, VPG and APG parameters are defined as in [64]. Extraction is based on zero crossing in 

signals derivative. Additionally JPG (jerk plethysmogram), SPG(snap plethysmogram), 

CPG(crackle plethysmogram) are also used. These higher derivatives have not been investigated 

due to them being out of scope for most fields, however as observed in the collected data, they still 

have sufficient signal-noise level for feature extraction and as such could provide some new 

parameters. JPG and SPG parameters are extracted in the same way as PPG, VPG and APG. While 

SPG is only used for zero crossing detection for JPG intensity features. CPG does not have 

sufficient signal to noise level and as such will be rejected. 
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VPG, APG, JPG signals have a high enough signal to noise ratio after the initial filtering while JPG, 

SPG, CPG where additionally filtered with a low-pass filter (Butterworth, order of 2, 25hz cut-off, 

assuming 500hz sampling ratio after signal length unification), using zero-phase filtering algorithm. 

Judicial points are extracted from derivates by detecting zero crossings. To have equal numbers of 

features minimum number of fiducial points for entire database have been calculated. This results in 

not all fiducial points being used, but the methods are applicable to a larger part of population. 

Another distinction in features are intensity and time features. Intensity coded features are 

problematic for PPG signal, this is due to non-uniform signal levels for applications of the device. 

Currently used database has a continuous signal and as such amplitude features will be used, further 

deployment would require hardware or software solutions to uniform signal acquisition. Temporal 

features are amplitude independent and as such are a lot more resilient and more applicable for 

PPG. 

In my research I will use both features. Usage of both features will also reveal which feature set is 

more useful and if amplitude features are required for pain classification. Zero crossings will be 

considered as temporal features. 

Features are then additionally normalized. It is assumed that a previous 2-minute recording without 

pain would be available and as such its feature median is considered as 1. Sign is additionally 

corrected to have all features in positive range, this is needed for later machine learning application. 

Table 10. Signal and derivatives properties and preprocessing 

Signal Minimum number of 

fiducial points 

Number of features Filtering 

PPG( plethysmogram ): 1 2 area+ 1 amplitude + 2 angle = 5 

Amplitude features 

 

LP (10Hz) +HP (0.5Hz) 

VPG(velocity 

plethysmogram): 

4 5 area + 4 amplitude + 5 angle = 

14 Amplitude features 

1 time feature 

LP (10Hz) +HP (0.5Hz) 

APG(acceleration 

plethysmogram): 

4 5 area + 4 amplitude + 5 angle = 

14 Amplitude features 

4 time feature 

LP (10Hz) +HP (0.5Hz) 

JPG(jerk plethysmogram): 6 7 area + 6 amplitude + 7 angle = 

20 Amplitude features 

4 time feature 

LP (10Hz) +HP (0.5Hz) 

+ LP (25Hz) 

SPG(snap 

plethysmogram): 

52 6 time feature LP (10Hz) + HP(0.5Hz) 

+ LP (25Hz) 

CPG(crackle 

plethysmogram): 

144  LP (10Hz) +HP (0.5Hz) 

+ LP (25Hz) 
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Fig. 13. Detected fiducial points which were later used for feature extraction 
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Fig. 14. Intensity feature maps of volunteers 6 and 7, empty zones – bad quality data. Volunteer 7 has very 

clear areas where most feature have lower amplitude, these areas match the time with cold period. X axis- 

time, y axis- feature no. and color-value 

2.3.4.  Training and testing datasets 

Datasets are split by age and gender groups, by selecting 1 person from each age (20-29, 30-39, 40-

49, 50-65)/gender (male, female) group for testing and validation.  

This results in validation and testing dataset of 8 people. Training dataset contains 41 people. 2 

people were removed due to insufficient signal quality. 

Pain values are reduced from 0-100 range to 4 categories, this is based on clinical practice [65–

68].Which are 0- no pain, 1 – slight pain, non-opioids, 2- mild pain -weak opioids ,3 – strong pain, 

strong opioids. Cut-off points and ranges seen in Table 11, cut off points were chosen based on 

previous research[66, 67]. 

Table 11. Pain classes and their respective ranges in NPRS scales 

Pain class Range 

0 0-9 

1 10-49 

2 50-69 

3 70-100 

 

Training dataset was additionally oversampled by duplicating blocks of signals with pain classes of 

1, 2 and 3. This oversampling was used in order to balance the datasets, which helps with model 

training. Real quantities and quantities in equalized datasets can be seen in Table 12, Table 13.  

Table 12. Single-beat training dataset size table 

Pain class Real Quantity Quantity in trinary 

oversampled dataset 

Quantity in binary 

oversampled dataset 

0 73171  73171 

1 7444 7443 76063 

2 2149 6444 

3 1294 7764 

 



31 

Table 13. Single-beat testing dataset size table 

Pain class Real Quantity 

0 17000 

1 1562 

2 505 

3 366 

Additionally, 5 and 12 beat sets were created. 5 beat set was created to test if multiple beats provide 

additional information for the neural networks. 12 beat set was created to later average it into single 

beat and eliminate respiratory component. Multi-beat datasets were created in the same way with 

addition that all consecutive beats have to pass quality control, the pain value is assigned from the 

last beat. Multi-beat dataset quantities can be seen in Table 14, Table 15, Table 16, Table 17. 

Table 14. 5-beat training dataset size table 

Pain class Real Quantity Quantity in trinary 

oversampled dataset 

Quantity in binary 

oversampled dataset 

0 60031  60031 

1 5105 5104 57985 

2 1396 5580 

3 708 4956 

Table 15. 5-beat testing dataset size table 

Pain class Real Quantity 

0 16075 

1 1467 

2 471 

3 371 

Table 16. 12-beat training dataset size table 

Pain class Real Quantity Quantity trinary in 

oversampled dataset 

Quantity binary in 

oversampled dataset 

0 51459  51459 

1 3410 3409 51964 

2 953 3808 

3 393 3537 

Table 17. 12-beat testing dataset size table 

Pain class Real Quantity 

0 15223 

1 1254 

2 408 

3 364 
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2.4. Neural networks 

Neural networks were used for pain classification. Two types of input data were tested – signals and 

features. Feature approach is more traditional and is expected to give better results, however, raw 

data approach requires less computational power and, as such, is of interest in future applications. 

Additionally, signals may have additional information which is not available in the selected 

features. Tree different neural network architectures were tested – Multi Layer Perceptron (MLP) as 

a baseline indicating accuracy of a simple network, Long-Short Term Memory (LSTM) as an 

indicator if recurrent neural networks have an advantage in pain classification, Convolutional 

Neural Networks (CNN) as an indicator if convolution has advantage in pain classification. 

MLP neural network was tested as a baseline to see if a simple network can extract the information 

and baseline accuracy. A simple MLP(Fig. 15) was created with 4 layers with Relu activation 

functions, layer sizes were changed according to which dataset was used, with the keyword 

multiplier indicating how many beat features there are – 1, 5, 12 and keyword input_length 

indicating if its feature or signal neural network and keyword n denoting whether it’s a binary or 

trinary classificator A Softmax layer is used in the end to normalize the results for classification. 

Input 
Layer(input_length*

multiplier)
Relu(input_length) Relu(input_length)

Relu(input_length) Relu(input_length) Softmax(n)

 

Fig. 15. MLP architecture, where multiplier denotes number of heartbeats(1, 5, 12) and n denotes number of 

classes( 2 for first neural network and 3 for second) 

The second tested architecture is based on convolutional neural networks, size is variable in the 

same way as MLP network with the keyword multiplier indicating how many beat features there are 

– 1, 5, 12 and keyword input_length indicating if its feature or signal neural network and keyword n 

denoting whether it is a binary or trinary classificator. 

The CNN (seen in Fig. 16) is based on a 3 convolution-maxpooling layers for feature extraction and 

a 3 layer MLP network for decisions.  

At last a LSTM neural network (Fig. 17) was tested to see if recurrent neural networks would have 

any advantages. For multi-beat datasets the beats were input as timesteps. LSTM length was also 

variable with multiplier corresponding to beat number in dataset – 1, 5, 12 and keyword 

input_length indicating if its feature or signal neural network and keyword n denoting whether it’s a 

binary or trinary classificator.  
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Input 
Layer(input_length*

multiplier)
Conv1D(136, relu) MaxPooling1D(2)

Conv1D(256, relu) MaxPooling1D(2) Conv1D(40, relu)

MaxPooling1D(2) Flatten Relu(256)

Relu(256) Relu(128) Softmax(n)

 

Fig. 16. CNN architecture 

Input 
Layer(multiplier,inpu

t_length)

LSTM(input_length*
multiplier)

Softmax(n)

 

Fig. 17. LSTM architecture 

2.5. Accuracy evaluation 

Accuracy is evaluated separately for both classifiers by using testing datasets composed of signals 

with values suitable for the datasets. For binary classification pain classes from 1 to 3 are combined 

into a single group, locally named class 1, and tested in comparison to pain class 0.  

While for trinary classification only pain classes 1 to 3 are used, while pain class 0 is excluded.  

 

Neural networks were split in this way because third party created classifiers can be created later or 

based on the case an assumption can be made that the patient is in pain, but it is unknown how 

painful the experience is.  

Binary classifier is analyzed with a standard confusion matrix and calculating its accuracy, 

sensitivity, specificity. 

Accuracy is calculated according to formula (1), accuracy shows how much of the classes are 

predicted correctly. 

                       (1) 

If: TP, TN, FP, FN can be seen in Table 18. 

Sensitivity is calculated according to formula (2), sensitivity shows how much of the predicted class 

0 is predicted correctly. 

                         (2) 

If: TP, FN can be seen in Table 18. 
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Specificity is calculated according to formula (3), specificity shows how much of the predicted 

class 1 is predicted correctly. 

                         (3) 

If: TP, FN can be seen in Table 18. 

Trinary classifier is analyzed by forming a confusion matrix and calculating precision and recall. 

Precision is calculated according to formula (4), precision shows show much of the class was 

correctly predicted 

                      (4) 

If: TP, FN1, FN2 for class 2 can be seen in Table 18. 

Recall is calculated according to formula (5), recall shows how much of the predicted class 0 is 

predicted correctly. 

                         (5) 

If: TP, FP1, FP2 for class 2 can be seen in Table 18. 

Table 18. Confusion matrices of binary and trinary classifiers. In trinary classifier variables are 

name for class 2 example calculations 

Binary 

classification  Predicted value 
Trinary 
classification  Predicted value  

   class 0 class     class 1 class 2 class 3 

Real value class 0 TP FP Real Value class 1   FP1   

 class 1 FN TN  class 2 FN1 TP FN2 

     class 3   FP2   

2.6. Personalization of the method 

The issue with the currently proposed method is that it is partially personalized. Personalization is 

performed in the normalization part of the algorithm. It is assumed that previous recordings of 2 

minutes in resting state would be available, the assumption is that if the method would be deployed 

in real life the resting state would be recorded during annual family doctor visits, the signals would 

then be uploaded to a patient database and associated with the persons personal ID number and 

could be pulled by the device if pain measurement is required.  
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3. Results 

Result section is separated into 2 main categories – morphology and machine learning results. 

Morphological changes are then separated into intensity and temporal changes and their 

corresponding features. Intensity changes refer to amplitude related changes and temporal changes 

refer to time related changes. 

3.1. Analysis of signal morphology changes 

The main changing component in PPG signals is amplitude. Main factors changing it are – outside 

light, fixing pressure, tissue composition and blood flow. All factors except blood flow are slow 

changing and as such are easily removable by a high pass filter and further removed by additional 

baseline removal. Below PPG signal and five of its derivatives are displayed. Median, 25% and 

75% quantiles are displayed to show variations in signal level. From Fig. 18 it can be seen that PPG 

signal level highly decreases during CPT and partially recovers after it. Partial recovery could be 

associated with limited time available.  

 

Fig. 18. Signal level changes in PPG signal of all volunteers combined 
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Fig. 19. Signal level changes in first derivative of PPG signal of all volunteers combined 

Fig. 19 shows the first derivative of PPG – velocity plethysmogram, in all phases big changes from 

Rest1 phase can be seen, with the only exception being Rest4, which could be expected due to 

longer period from CPT to Rest4. The clearest difference can be seen in the second peak, in other 

phases it is suppressed and is under the 0 line.  

Fig. 20 shows the second derivative signal, and again it shows similar tendency, however the 

distinction from the first derivative is faster recovery. During Rest2, Rest3, Rest4 a partial recovery 

is seen. However, stimulating phases are not only CPT, which could provide false positives if it is 

used for pain recognition. 

 

Fig. 20. Signal level changes in second derivative of PPG signal of all volunteers combined 
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Fig. 21. Signal level changes in third derivative of PPG signal of all volunteers combined 

Fig. 21 shows the third derivative. The third derivative behaves similarly to the second, however, in 

terms of zero crossings the third derivative stays above zero in second and third peak, while the 

second derivatives second peak dips below zero. 

Fig. 22 shows the fourth derivative. The fourth derivative behaves similarly to the third, with the 

difference mostly seen in the third peak. In the fourth derivative the third peak is just reaching the 

zero line for the median signal in signals with stimulation and is starting to recover in Rest4, the 

recovery can be seen in 75% quantile signal. 

 

 

Fig. 22. Signal level changes in fourth derivative of PPG signal of all volunteers combined 
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Fig. 23. Signal level changes in fifth derivative of PPG signal of all volunteers combined 

Fig. 23 shows the fifth derivative. The fifth derivative behaves the most similarly to the fourth 

derivative, the second positive peak is balancing around the zero line and decreasing in stimulating 

phases. 

In a short conclusion the overlook on derivative signal shows that the second, third and fifth 

derivatives react to all stimulating phases, not just CPT. In all derivatives the Rest2 and Rest3 

periods are not long enough to fully recover, while the Rest 4 shows partial recover. The main issue 

is that signals tend to react to all stimulating phases, not only CPT and as such it can be hard to 

differentiate for pain recognition algorithms. 

3.2. Analysis of feature changes 

The signals are then further broken down into area (seen in Fig. 24), angle (seen in Fig. 26), 

amplitude (seen in Fig. 28) and time features (seen in Fig. 30) features.  

Area features can be seen in Fig. 24 and Fig. 25. Fig. 24 shows a collection of all volunteers and it 

shows population tendencies. While Fig. 25 is an example of an individual, showing that for some 

features, such as Area 5, do not follow the trend of the study population. This differences between 

population and individual shows that there are some additional differences. A prospect for future 

studies would be to find identifiers for these differences to separate population into groups with 

similar behavior of features. 

Area features 5,6, 11 do not show any clear distinction between pain levels, while area 5 and 6 also 

does not show distinction with different pain classes. 
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Fig. 24. Area features of all volunteers, y axis- value, x axis – pain level. Where Area 1-2 is from PPG 

signal, Area 3-8 is from VPG, Area 9-14 is from APG, Area 15-19 is from JPG 

 

Fig. 25. Area features of volunteer no. 1, y axis- value, x axis – pain level. Where Area 1-2 is from PPG 

signal, Area 3-8 is from VPG, Area 9-14 is from APG, Area 15-19 is from JPG 
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Fig. 26. Angle features of all volunteers, y axis- value, x axis – pain level. Where Angle 1-2 is from PPG 

signal, Angle 3-8 is from VPG, Angle 9-14 is from APG, Angle 15-19 is from JPG 

Angle features are seen in Fig. 26 and Fig. 27. Angle features show the same differences as in area 

features, the single volunteer features are not always following study population trends. Examples 

of this can be seen in features Angle18 and Angle19. 

 

Fig. 27. Angle features of volunteer no. 1, y axis- value, x axis – pain level. Where Angle 1-2 is from PPG 

signal, Angle 3-8 is from VPG, Angle 9-14 is from APG, Angle 15-19 is from JPG 
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Fig. 28. Amplitude features of all volunteers, y axis- value, x axis – pain level. Where Amplitude 1 is from 

PPG, Amplitude 2-5 is from VPG, Amplitude 6-9 is from APG, Amplitude 9 -15 is from JPG 

Amplitude features are seen in Fig. 28 and Fig. 29. Amplitude features show the most difference 

between individual and study population. Amplitude 3, 4, 7, 8, 9, 12, 13, 14, 15 features do not 

follow study population feature trends. While features like Amplitude 1, 2, 7, 10, 11 follow study 

population trends 

 

Fig. 29. Amplitude features of volunteer no. 1, y axis- value, x axis – pain level. Where Amplitude 1 is from 

PPG, Amplitude 2-5 is from VPG, Amplitude 6-9 is from APG, Amplitude 9 -15 is from JPG 

 

Fig. 30. Time based features- zero crossing location in the pulse, of all volunteers, y axis- value, x axis – 

pain level. Where Zerocross1 is from VPG, Zerocross 2-5 are from APG, Zerocross 6-9 are from JPG and 

Zerocross 10-15 are from SPG 

Temporal features consist of signal zero crossing locations. Temporal features can be seen in Fig. 

30 and Fig. 32. Just like in intensity features, differences between individual and population can be 

seen. We also see a very large number of outliers on both sides in Fig. 30. This indicates that the 

population is likely split into 2 groups- with ascending and descending feature sets. Zerocross 3, 4, 
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5 features in Fig. 32 show another interesting behavior, in pain classes 2 and 3 the variability is 

highly reduced compared to classes of 0 and 1., however this could partially be caused by limited 

number of samples. Fig. 31 shows histogram of Zerocross9 feature, the figure clearly shows a 

bimodal distribution, based on box plot figures it can expected that similar bimodal distributions are 

present in other zerocross features. 

Zerocross 10-15 are from JPG. 

 

Fig. 31. Histogram of all volunteer Zerocross9 feature – showing bimodal distribution 

 

Fig. 32. Time based features- zero crossing location in the pulse, of volunteer no. 1, y axis- value, x axis – 

pain level. Where Zerocross1 is from VPG, Zerocross 2-5 are from APG, Zerocross 6-9 are from JPG and 

Zerocross 10-15 are from SPG 

3.3. Binary classification results 

Table 19 shows results of feature based binary classifier training. In all cases the accuracy of 

training dataset reached above 0.89, with some reaching 1. Those that did not reach 1, stabilized 

around their values. For training data the accuracy measurement is sufficient due to oversampled 

datasets. Additionally, sensitivity and specificity are also provided. We can see that the lowest 

prediction accuracy is 0.7822, however, metric of accuracy is not very suitable in this case due to 

imbalance in the dataset, as such measure of specificity is more suitable as it shows which models 

are better at assigning painful class to the painful signals.  While overviewing specificity value of 

various models it can be seen that most models still have difficulty assigning painful signals to the 

painful class. While class 0 signals are mostly correctly assigned as being class 0(seen by sensitivity 

values). 

In MLP models performed better when they had access to more heart, and even better when a 

sequence of heartbeats was averaged into a single heartbeat. LSTM models showed similar 

tendency with exception of 5 averaged heartbeat being an exception with reduced values, however 

it has increased sensitivity compared to non-averaged model. CNN models however showed 

different tendencies, with non-averaged multi-beat models being better than averaged of single beat 

model, however a more surprising part is that 5 beat model performed better than 12. 



43 

The best performer in terms of both accuracy and specificity is an MLP network using 12 averaged 

heartbeat signal features. This model achieved accuracy of 0.9 and specificity of 0.69. The models 

were not additionally tuned to perform in their best configuration and show only general tendencies 

in which methods are more suitable for application and on which it is better to focus in future 

research. In general, all models were good at picking out class 0 signals, but failed correctly 

assigning painful signals. This could be partially explained by the dataset imbalance, there were a 

lot more signals in class 0, which also allowed for the model to learn better. 

Table 19. Feature based binary classifier results  

S Dataset set Binary classification 

accuracy 

Binary classification 

specificity 

Binary classification 

sensitivity 

Training 

dataset 

Testing 

dataset 

Testing dataset Testing dataset 

MLP Single heartbeat 0.90 0.78 0.32 0.95 

5 heartbeats 1.00 0.81 0.34 0.93 

12 heartbeats 1.00 0.83 0.37 0.94 

5 heartbeats 

averaged 
0.99 0.84 0.39 0.93 

12 heartbeats 

averaged 
0.96 0.92 0.69 0.94 

LSTM Single heartbeat 0.91 0.85 0.42 0.95 

5 heartbeats 1.00 0.85 0.41 0.92 

12 heartbeats 1.00 0.85 0.40 0.93 

LSTM 5 heartbeats 

averaged 
0.97 0.79 0.31 0.93 

12 heartbeats 

averaged 
0.99 0.89 0.54 0.94 

CNN Single heartbeat 1.00 0.84 0.38 0.92 

5 heartbeats 1.00 0.88 0.52 0.93 

12 heartbeats 1.00 0.86 0.42 0.93 

5 heartbeats 

averaged 
1.00 0.86 0.43 0.92 

12 heartbeats 

averaged 
1.00 0.87 0.43 0.92 

Table 20 shows results of signals based binary classifier training. In most cases the accuracy was 

above 0.89 but some failed earlier, with examples being MLP 5 and 12 heartbeat networks with 

only 0.69 and 0.74. For training data the accuracy measurement is sufficient due to oversampled 

datasets. 

Contrary to feature based classifiers in signal based classifiers averaged heartbeats performed worse 

than non averaged. The best networks in terms of accuracy are all single heartbeat, with MLP model 

performing the best at 0.85, following it is LSTM and CNN models. CNN model has an interesting 

exception in that 12 heartbeat non-averaged model performed the best, in accuracy but suffered in 

specificity. 
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Overall feature based methods have higher accuracy, specificity and sensitivity, indicating that 

feature extraction and application in binary classification is beneficial. Future improvements are 

possible in better feature extraction, more research in possible features, model tuning and approach 

using decision tree type models instead of NN. 

Table 20. Raw data based binary classifier results 

Method Dataset set Binary classification 

accuracy 

Binary classification 

specificity 

Binary classification 

sensitivity 

Training 

dataset 

Testing 

dataset 

Testing dataset Testing dataset 

MLP 

 

Single heartbeat 0.99 0.85 0.43 0.93 

5 heartbeats 0.69 0.77 0.33 0.97 

12 heartbeats 0.74 0.64 0.23 0.97 

5 heartbeats 

averaged 
0.65 0.61 0.23 0.97 

12 heartbeats 

averaged 
0.98 0.82 0.27 0.91 

LSTM 

 

Single heartbeat 0.78 0.84 0.43 0.98 

5 heartbeats 0.98 0.82 0.33 0.92 

5 heartbeats 

averaged 
0.90 0.61 0.17 0.90 

12 heartbeats 

averaged 
0.96 0.68 0.17 0.91 

CNN Single heartbeat 0.89 0.83 0.39 0.95 

5 heartbeats 1.00 0.80 0.26 0.90 

12 heartbeats 1.00 0.83 0.31 0.91 

5 heartbeats 

averaged 
0.99 0.80 0.27 0.90 

12 heartbeats 

averaged 
0.99 0.82 0.30 0.92 

Both feature and signal based binary classifiers were tested. In both cases it was observed that for 

training datasets (made of 41 people) in feature based models the minimum accuracy was 0.89 

while in signal based models the minimum accuracy was much lower at 0.65, it seems that some of 

the models reach their capability ceiling much earlier and as such the simple architecture is not 

enough. Additionally, the CNN models seem the most consistent as they all have good accuracies 

(above 0.98 with a single model exception) in both feature based and signal based types. While in 

the testing dataset(made of 8 people) accuracy is much lower. This shows that people on which the 

models were trained do not completely match the people it was tested on, and as such a larger 

dataset is needed for successful application in real world environment. 12 heartbeat LSTM network 

was eliminated due to excessive training time (3 days of continuous calculation).  

Fig. 33 shows result of single heartbeat CNN model being applied to a signal of a volunteer from 

the training group. It can be seen that the network correctly predicted the range in which the 

volunteer is in pain, with the exception of the end of painful periods. 

Fig. 34 shows the same model applied to a signal from a volunteer in the test dataset. The 

performance is much worse, with many false positives. However, it is also seen that most of the 
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false positives arise only after pain, this could indicate of a slower than noticeable physiological 

response. Additional post processing (10th order moving average filter), like in Fig. 35 could also 

help with final prediction. 

 

Fig. 33. Volunteer no. 4(training dataset) signal processed by single heartbeat feature binary CNN model. 

Blue- predicted painful period, Orange – subjective evaluation 

 

Fig. 34. Volunteer no. 1(testing dataset) signal processed by single heartbeat feature binary CNN model. 

Blue- predicted painful period, Orange – subjective evaluation 

 

Fig. 35. Volunteer no. 1(testing dataset) signal processed by single heartbeat feature CNN model, 

additionally filtered with an averaging filter of order 10. Blue- predicted painful period, Orange – subjective 

evaluation 

3.4. Trinary classification results 

Comparing NN in trinary classification is difficult, especially with different dataset sizes and 

different effects of misclassification (assigning class 1 instead of 2 will have much smaller 

consequences compared to assigning class 1 instead of class 3). Comparison is performed using 

precision and recall metrics. 

Table 21 shows precision values of all tested feature based NN. It can be seen from the accuracy 

column that the trained models reached the ceiling of their capability as they stabilized around the 

presented values, all models except 1 reached accuracy higher than 0.95. In the case of training 

dataset accuracy metric was suitable because training was performed with an oversampled dataset. 

We can see that in testing dataset class 1 has the highest precision, meaning that out of the 

performed predictions class 1 is the most assigned correctly, however classes 2 and 3 suffer with 

very low precision. This tendency is seen across all types of signals and all types of NN. An 

interesting example can be seen in 12 averaged heartbeat LSTM network, it has the highest 

precision in class 2, but fails completely in class 3, many other networks perform similarly, having 

good class 1 precision, but failing in classes 2 and 3. Class 3 shows especially bad results with no 

network correctly identifying it in the testing dataset. 
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Table 21. Feature based trinary classification precision 

Method Dataset set Accuracy Trinary 

classification 

precision, class 1 

Trinary 

classification 

precision, class 2 

Trinary 

classification 

precision, class 3 

Training 

dataset 

Testing 

dataset 

Testing dataset Testing dataset Testing dataset 

MLP Single 

heartbeat 
0.95 0.56 0.79 0.22 0.04 

5 heartbeats 1.00 0.59 0.86 0.13 0.08 

12 heartbeats 1.00 0.58 0.80 0.41 0.00 

5 heartbeats 

averaged 
0.99 0.61 0.84 0.33 0.08 

12 heartbeats 

averaged 
0.99 0.56 0.80 0.32 0.00 

LSTM Single 

heartbeat 
0.76 0.54 0.69 0.36 0.15 

5 heartbeats 1.00 0.54 0.82 0.09 0.00 

12 heartbeats 1.00 0.52 0.76 0.25 0.00 

5 heartbeats 

averaged 
0.95 0.58 0.83 0.23 0.00 

12 heartbeats 

averaged 
1.00 0.61 0.84 0.43 0.03 

CNN Single 

heartbeat 
1.00 0.56 0.80 0.23 0.04 

5 heartbeats 1.00 0.60 0.94 0.00 0.08 

12 heartbeats 1.00 0.58 0.83 0.31 0.00 

5 heartbeats 

averaged 
0.99 0.58 0.78 0.33 0.09 

12 heartbeats 

averaged 
0.97 0.46 0.62 0.39 0.00 

Table 22 shows recall values for feature based trinary classification. Recall shows how much of the 

class was assigned correctly. We can see that class 1 is has the highest rates of recall indicating that 

it is most assigned correctly, while classes 2 and 3 have very low values and even 0 in some cases, 

showing that these classifiers failed, and a different approach is required. The only exception being 

the previously mentioned 12 averaged heartbeat LSTM, it has a class 3 recall of 0.79, and not 

outstanding recall values in class 1(0.67) and class 2(0.40), but its class 3 precision is still very low 

(0.03). This shows that the network is skewed towards class 3 and is likely to falsely predict other 

class signals as class 3 signal.  

Table 22. Feature based trinary classification recall 

Method Dataset set Trinary classification 

recall, class 1 

Trinary classification 

recall, class 2 

Trinary classification 

recall, class 3 

Testing dataset Testing dataset Testing dataset 

MLP 

 

Single heartbeat 0.66 0.28 0.09 

5 heartbeats 0.68 0.23 0.16 

12 heartbeats 0.66 0.33 0.00 
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Table 22. Continuation 

Method Dataset set Trinary classification 

recall, class 1 

Trinary classification 

recall, class 2 

Trinary classification 

recall, class 3 

Testing dataset Testing dataset Testing dataset 

MLP 5 heartbeats 

averaged 
0.69 0.40 0.21 

12 heartbeats 

averaged 
0.66 0.29 0.00 

LSTM Single heartbeat 0.72 0.36 0.08 

5 heartbeats 0.61 0.16 0.15 

12 heartbeats 0.61 0.24 0.00 

5 heartbeats 

averaged 
0.65 0.29 0.00 

12 heartbeats 

averaged 
0.67 0.40 0.79 

CNN Single heartbeat 0.67 0.29 0.13 

5 heartbeats 0.63 0.03 0.01 

12 heartbeats 0.64 0.32 0.00 

5 heartbeats 

averaged 
0.67 0.34 0.23 

12 heartbeats 

averaged 
0.59 0.24 0.00 

Table 23 shows precision values for signal based trinary classifiers. It can be seen from the 

accuracy column that the trained models reached the ceiling of their capability as they stabilized 

around the presented values, all models except 1 reached accuracy higher than 0.87. Overall in 

terms of training dataset the feature based models performed better. Signal based trinary classifier 

shows lower class 1 precision values compared to the feature-based ones. However, class 3 

precision is higher than compared to featured based alternative, while class 2 shows just slightly 

higher precision, this shows that these networks are more skewed towards the higher 2 classes.  

Table 23. Signal based trinary classification precision 

Method Dataset set Accuracy Trinary 

classification 

precision, class 1 

Trinary 

classification 

precision, class 2 

Trinary 

classification 

precision, class 3 

Training 

dataset 

Testing 

dataset 

Testing dataset Testing dataset Testing dataset 

MLP Single 

heartbeat 
0.99 0.60 0.72 0.24 0.12 

5 heartbeats 0.66 0.60 0.43 0.38 0.30 

12 heartbeats 0.94 0.60 0.58 0.38 0.18 

5 heartbeats 

averaged 
0.94 0.58 0.76 0.20 0.16 

12 heartbeats 

averaged 
0.91 0.56 0.71 0.15 0.30 
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Table 23. Continuation 

Method Dataset set Accuracy Trinary 

classification 

precision, class 1 

Trinary 

classification 

precision, class 2 

Trinary 

classification 

precision, class 3 

Training 

dataset 

Testing 

dataset 

Testing dataset Testing dataset Testing dataset 

LSTM Single 

heartbeat 
0.88 0.59 0.71 0.44 0.34 

5 heartbeats 0.95 0.56 0.74 0.25 0.20 

5 heartbeats 

averaged 
0.89 0.51 0.70 0.17 0.18 

12 heartbeats 

averaged 
0.91 0.51 0.55 0.54 0.36 

CNN Single 

heartbeat 
0.98 0.53 0.81 0.28 0.16 

5 heartbeats 0.95 0.40 0.81 0.34 0.09 

12 heartbeats 0.96 0.47 0.78 0.48 0.11 

5 heartbeats 

averaged 
0.96 0.55 0.78 0.58 0.09 

12 heartbeats 

averaged 
0.96 0.52 0.72 0.40 0.17 

Table 24 shows recall values of the signal based trinary classifier. Here the same results as in 

precision scores can be seen, the signal based classifiers show higher recall values indicating that 

the network is more evenly distributed in terms of class recognition performance.  

The best performing model seems to be LSTM 12 averaged heartbeat based, it shows good results 

in both feature and signal based variants. However, it has difficulties with class 2. 

Table 24. Signal based trinary classification recall 

Method Dataset set Trinary classification 

recall, class 1 

Trinary classification 

recall, class 2 

Trinary classification 

recall, class 3 

Testing dataset Testing dataset Testing dataset 

MLP Single heartbeat 0.66 0.26 0.17 

5 heartbeats 0.76 0.17 0.28 

12 heartbeats 0.73 0.19 0.29 

5 heartbeats 

averaged 
0.73 0.19 0.20 

12 heartbeats 

averaged 
0.72 0.13 0.34 

LSTM Single heartbeat 0.77 0.35 0.33 

5 heartbeats 0.71 0.22 0.32 

5 heartbeats 

averaged 
0.68 0.17 0.21 

12 heartbeats 

averaged 
0.79 0.23 0.60 
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Table 24. Continuation 

Method Dataset set Trinary classification 

recall, class 1 

Trinary classification 

recall, class 2 

Trinary classification 

recall, class 3 

Testing dataset Testing dataset Testing dataset 

CNN Single heartbeat 0.69 0.38 0.26 

5 heartbeats 0.71 0.32 0.22 

12 heartbeats 0.72 0.33 0.45 

5 heartbeats 

averaged 
0.71 0.33 0.19 

12 heartbeats 

averaged 
0.74 0.29 0.27 

Fig. 36 shows a result of trinary classifier applied to the signal of the fourth volunteer(training 

dataset), additionally results from binary classifier, seen in Fig. 33, were used as a mask. It can be 

seen that the pattern of predicted pain matches the pattern of the subjective evaluation. Fig. 37 and 

Fig. 38 shows results of the same model applied in the same way on the first volunteer( testing 

dataset), here the results look much worse, especially in figure Fig. 37. However, by adding an 

additional moving average filter (10th order) a more expressed result can be seen. The predictions in 

the painful regions are more frequent and consistent resulting in more continuous signals. 

 

Fig. 36. Volunteer no. 4(training dataset) signal processed by single heartbeat feature trinary CNN model. 

Blue- predicted painful period, Orange – subjective evaluation 

 

Fig. 37. Volunteer no. 1(testing dataset) signal processed by single heartbeat feature trinary CNN model. 

Blue- predicted painful period, Orange – subjective evaluation 

 

Fig. 38. Volunteer no. 1(testing dataset) signal processed by single heartbeat feature trinary CNN model, 

additionally filtered with an averaging filter of order 10. Blue- predicted painful period, Orange – subjective 

evaluation 
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Overall, it was found that for binary classification feature based models showed better results 

compared to signal based models and in trinary classification signal based models performed better 

than feature based. This shows an interesting possible solution to use mixed models for final pain 

class classification, however first the current models should be tuned to see what final accuracy 

could be extracted as the current model only indicated which networks are more capable in pain 

classification. Additionally, there is space for improvement in feature extraction, it has been noticed 

that PPG waveforms can differ a lot and as such an approach where the waveforms are first 

classified into different types and then have different features and different classifiers could provide 

better accuracy. Another possible approach is combining model results by using 3 or more models 

and deciding on the final value based on the common output of the models. Overall, There is still a 

lot of space for improvement in this field as all of the research is very new, currently the main 

limitation is data, there is not enough to properly train models for entire population, as a temporary 

method it would be possible to employ leave one out technique, it works by using all people except 

one for training, this can be repeated for all people, however if this is performed for all people 

computational power issues arise, depending on used NN type and architecture. Other researchers 

have used decision tree type classifiers these could also be interesting to test on features tested in 

this research.  



51 

Conclusions 

1. Literature analysis was performed to analyze how pain affects the human body. It was 

found that during pain, sympathetic nervous system is stimulated, which subsequently 

modulates cardiovascular regulation. Therefore, it can be hypothesized that finger 

photoplethysmogram signal might be useful in an objective pain assessment. 

2. State-of-the-art analysis of pain recognition algorithms revealed very few studies using 

physiological signals, most are using face recordings. Most algorithms use statistical 

methods for limited time windows, however this can also be attributed to the nature of the 

signals, as EDA and EMG do not provide a constant signal with morphology to analyze. A 

single research using PPG signal was found investigating a very small sample size. 

3.  PPG signal was parametrized with 53 intensity and 15 time features based on zero 

crossing in signal derivatives up till fourth order. Higher order derivatives were not 

recommended due to increasing noise level. 

4. PPG signal quality control algorithm was developed to distinguish which heartbeat signals 

are suitable for pain recognition and classification. The algorithm operates by comparing 

suspected heartbeat with a median heartbeat from a baseline period. 

5. In total 60 artificial neural networks were investigated. It was found that artificial neural 

networks perform adequately well in binary classification when classifying signals into 

“pain” and “no pain” episode, with highest achieved accuracy of 0.92 in testing dataset and 

accuracy of 1.00 in training dataset. However, artificial neural networks were significantly 

less accurate in trinary pain level classification, especially in identifying classes with 

higher pain levels with accuracies 0.61 and 1.00 for testing and training datasets, 

respectively. 
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