
 

Kaunas University of Technology 

Faculty of Informatics 

Applying DNN for HTML Generation from Webpage 

Screenshot 

Master's Final Degree Project  

 

Povilas Simanaitis  

Project author 

 

Prof. Rytis Maskeliūnas 

Supervisor 

 

Kaunas, 2021 



 

Kaunas University of Technology 

Faculty of Informatics 

Applying DNN for HTML Generation from Webpage 

Screenshot 

Master's Final Degree Project / 

Informatics (62111BX007) 

  

Povilas Simanaitis 

Project author 
 

  

Prof. Rytis Maskeliūnas 

Supervisor 
 

  

Dr. Šarūnas Packevčius 

Reviewer 
 

  

Kaunas, 2021 



 

 

Kaunas University of Technology 

Faculty of informatics 

Povilas Simanaitis 

Applying DNN for HTML Generation from Webpage 

Screenshot 

Declaration of Academic Integrity 

I confirm that the final project of mine, Povilas Simanaitis, on the topic "Applying DNN for HTML 

generation from webpage screenshot "is written completely by myself; all the provided data and 

research results are correct and have been obtained honestly. None of the parts of this thesis has been 

plagiarised from any printed, Internet-based or otherwise recorded sources. All direct and indirect 

quotations from external resources are indicated in the list of references. No monetary funds (unless 

required by Law) have been paid to anyone for any contribution to this project. 

I fully and completely understand that any discovery of any manifestations/case/facts of dishonesty 

inevitably results in me incurring a penalty according to the procedure(s) effective at Kaunas 

University of Technology. 

 

  

(name and surname filled in by hand)  (signature) 



 

Povilas Simanaitis. Applying DNN for HTML generation from webpage screenshot. Master's Final 

Degree Project supervisor Prof. Rytis Maskeliūnas; Faculty of Informatics, Kaunas University of 

Technology. 

Study field and area (study field group): Informatics, Physical sciences 

Keywords: pix2code, multimodal-space, Html, code generation. 

Kaunas, 2021. 82 pages. 

Summary 

In this paper, we apply deep neural networks for generating HTML code from a webpage screenshot. 

First, synthesise our dataset in which web page screenshots are like pix2code, but differently from 

pix2code, we use a plain Html instead of a domain-specific language, which increases task 

complexity. While still following encoder-decoder network architecture, we replace decoders LSTM 

architecture with transformer-based architecture, and for some of the experiments, we also replace 

CNN based encoder with Transformer. Thus our applied model either follow image captioning with 

stacked attention architecture or full transformer architecture for image captioning. Using these newer 

architectures allows us to achieve better accuracy than pix2code authors. 

 



 

Povilas Simanaitis Hiperteksto žymėjimo kalbos dokumento rengimas, pagal vaizdą naudojant 

dirbtinį intelektą. Magistro baigiamasis projektas vadovas Prof. Rytis Maskeliūnas; Kauno 

technologijos universitetas, informatikos fakultetas. 

Studijų kryptis ir sritis (studijų krypčių grupė): Informatika, Fiziniai mokslai. 

Reikšminiai žodžiai: pix2code, Html, kodo generavimas. 

Kaunas, 2021, 82 p. 

Santrauka 

Šiame darbe yra apžvelgiama giliųjų neurotinių tinkle taikymas kuriant HTML kodą pagal saityno 

svetainės nuotrauka. Mes sukūrėme sintetinį duomenų sąrašą, kurio paveiksliukai yra panašūs į 

pix2code duomenų sąrašo, tačiau skirtingai nuo pix2code naudojamos domeno kalbos mūsų duomenų 

sąrašas naudoja HTML. Šis sekos pakeitimas padidina sekos ilgį ir sekoje panaudotų žodžių 

žodyną.Mes naudojama užkuoduotojo-atkoduotojo tinkle struktūrą, tačiau pakeičiam atkoduotoją 

“transformer” pagrindo tinklu, nes anksčiau naudotas ilgalaikės trumpalaikės atminties tinklas negeba 

teisingai nuspėti ilgų sekų. Mes taip pat išbandome keturis skirtingus tinklus, viename iš jų sąsukų 

tinklai užkoduotojoje pakeičiami vaizdo transformerio tinklu. Panaudojant šiuos tinklus pasiekiama 

taiklesnis spėjimas atkuriant sekas tiek ir su mūsų,tiek ir su pix2code duomenų sekomis.  

 



6 

Table of contents 

List of tables ................................................................................................................................ 11 

List of abbreviations and terms .................................................................................................. 12 

Introduction ................................................................................................................................ 13 

Relevance of the project. ............................................................................................................... 13 

Purpose and objectives .................................................................................................................. 13 

Document Structure ...................................................................................................................... 13 

1. Analysis .................................................................................................................................. 15 

1.1. Various image processing architectures ................................................................................ 15 

1.1.1. Alexnet.............................................................................................................................. 15 

1.1.2. VGGnet ............................................................................................................................. 15 

1.1.3. Efficient Net ...................................................................................................................... 16 

1.1.4. Resnet ............................................................................................................................... 16 

1.1.5. Inception ........................................................................................................................... 17 

1.1.6. DenseNet........................................................................................................................... 17 

1.1.7. Xception ............................................................................................................................ 18 

1.1.8. DilatedNet ......................................................................................................................... 18 

1.1.9. Nasnet ............................................................................................................................... 18 

1.1.10. Resnet Inception ................................................................................................................ 18 

1.1.11. Vision transformer............................................................................................................. 19 

1.1.12. Image processing networks comparison ............................................................................. 19 

1.2. Various language predicting models. .................................................................................... 20 

1.2.1. RNN.................................................................................................................................. 20 

1.2.2. LSTM ............................................................................................................................... 20 

1.2.3. GRU.................................................................................................................................. 21 

1.2.4. Sequence to Sequence ....................................................................................................... 21 

1.2.5. Attention mechanism. ........................................................................................................ 21 

1.2.6. Transformer ...................................................................................................................... 22 

1.2.7. Denoising autoencoders ..................................................................................................... 23 

1.2.8. Reformer ........................................................................................................................... 23 

1.2.9. Sequence modelling models comparison ........................................................................... 24 

1.3. Image captioning architectures predicting models. ................................................................ 24 

1.3.1. Encoder decoder architecture. ............................................................................................ 24 

1.3.2. Show Attend and tell ......................................................................................................... 25 

1.3.3. Captioning Transformer with Stacked Attention Module ................................................... 25 

1.3.4. Image Captioning: Transforming Objects into Words ........................................................ 26 

1.3.5. Meshed memory transformer for image captioning ............................................................ 26 

1.3.6. Full Transformer Network for Image Captioning ............................................................... 27 

1.3.7. Image captioning models comparison ................................................................................ 27 

1.4. Html generation from image models ..................................................................................... 28 

1.4.1. Pix2Code........................................................................................................................... 28 

1.4.2. Automatic Graphics Program Generation using Attention-Based Hierarchical Decoder ..... 28 

1.5. Analysis conclusion.............................................................................................................. 29 

2. Specification of solution ........................................................................................................ 30 

2.1. Dataset generator .................................................................................................................. 32 



7 

2.1.1. Requirements for dataset synthesiser ................................................................................. 32 

2.1.2. Dataset synthesiser components overview ......................................................................... 33 

2.2. Training environment ........................................................................................................... 33 

2.2.1. Requirements for environment .......................................................................................... 33 

2.2.2. Training environment overview ......................................................................................... 34 

2.2.3. The optimiser used for model training ............................................................................... 35 

2.2.4. K-fold cross-validation ...................................................................................................... 35 

2.2.5. The model ......................................................................................................................... 35 

2.2.6. Teacher forcing ................................................................................................................. 36 

2.2.7. Dropout ............................................................................................................................. 36 

2.2.8. Model layers overview ...................................................................................................... 36 

2.3. Data management for our solution ........................................................................................ 36 

3. Implementation ..................................................................................................................... 38 

3.1.1. Dataset synthesiser ............................................................................................................ 38 

3.1.2. Implementation of model ................................................................................................... 39 

3.1.3. Implementation of training environment ............................................................................ 40 

4. Experiments ........................................................................................................................... 41 

4.1. Preparation for experiments .................................................................................................. 41 

4.1.1. Dataset processing ............................................................................................................. 41 

4.1.2. Models .............................................................................................................................. 41 

4.1.3. Model evaluation ............................................................................................................... 41 

4.2. Experiments with pix2code dataset and model with VGG16 encoder.................................... 42 

4.2.1. Grid search results ............................................................................................................. 42 

4.2.2. Best performing model confusion matrix and classification report ..................................... 42 

4.3. Experiments with pix2code dataset and model with Visual transformer encoder ................... 44 

4.3.1. Grid search results ............................................................................................................. 44 

4.3.2. Most accurate model confusion matrix and classification report ........................................ 45 

4.4. Experiments with pix2code dataset and model with EfiecientNet encoder ............................ 47 

4.4.1. Grid search results ............................................................................................................. 47 

4.4.2. Best performing model confusion matrix and classification report ..................................... 47 

4.5. Experiments with pix2code dataset and model with ResNet encoder .................................... 49 

4.5.1. Grid search results ............................................................................................................. 49 

4.5.2. Best performing model confusion matrix and classification report ..................................... 49 

4.6. Experiments with pix2code overview ................................................................................... 50 

4.7. Experiments with our dataset and model with VGG16 encoder ............................................ 52 

4.7.1. Grid search results ............................................................................................................. 52 

4.7.2. Best performing model confusion matrix and classification report ..................................... 52 

4.8. Experiments with our dataset and model with visual transformer encoder ............................. 52 

4.8.1. Grid search results ............................................................................................................. 53 

4.8.2. Best performing model confusion matrix and classification report ..................................... 53 

4.9. Experiments with our dataset and model with EfiecientNet encoder ..................................... 53 

4.9.1. Grid search results ............................................................................................................. 53 

4.9.2. Best performing model confusion matrix and classification report ..................................... 54 

4.10. Experiments with our dataset and model with ResNet encoder ............................................. 54 

4.10.1. Grid search results ............................................................................................................. 54 

4.10.2. Best performing model confusion matrix and classification report ..................................... 55 



8 

4.11. Experiments with our dataset and ......................................................................................... 55 

Conclusions ................................................................................................................................. 56 

List of references ......................................................................................................................... 57 

Appendices .................................................................................................................................. 60 

  



9 

Fig. 1 VGGnet layers visualised .................................................................................................... 15 

Fig. 2 Various CNN scaling techniques ......................................................................................... 16 

Fig. 3 Shortcut connection visualisation ........................................................................................ 16 

Fig. 4 Inception module with dimensions reduction ...................................................................... 17 

Fig. 5 Dense connections visualised .............................................................................................. 17 

Fig. 6 Xception module................................................................................................................. 18 

Fig. 7 Inception resnet p n module ................................................................................................ 19 

Fig. 8 Image cutting into patches and feeding into VIT encoder .................................................... 19 

Fig. 9 RNN network ..................................................................................................................... 20 

Fig. 10 LSTM cell visualised. ....................................................................................................... 21 

Fig. 11 GRU network cell ............................................................................................................. 21 

Fig. 12 Attention mechanism ........................................................................................................ 22 

Fig. 13 Transformer architecture ................................................................................................... 22 

Fig. 14 Denoising autoencoder ...................................................................................................... 23 

Fig. 15 Reversible and standard connection visual comparison ..................................................... 24 

Fig. 16 Image captioning architecture ........................................................................................... 25 

Fig. 17 Show attend and tell model explanation ............................................................................ 25 

Fig. 18 Captioning transformer loss calculation ............................................................................ 26 

Fig. 19 Image captioning with geometry attention ......................................................................... 26 

Fig. 20 Meshed memory transformer ............................................................................................ 27 

Fig. 21 Full transformer for image captioning network visualised ................................................. 27 

Fig. 22 Pix2Code model visualised ............................................................................................... 28 

Fig. 23 Model with Attention-Based hierarchical decoder ............................................................. 28 

Fig. 24 Use case diagram of our solution....................................................................................... 30 

Fig. 25 Training image sample ...................................................................................................... 32 

Fig. 26 Dataset synthesiser component diagram ............................................................................ 33 

Fig. 27 Training environment component overview ...................................................................... 34 

Fig. 28 learning rate graph ............................................................................................................ 35 

Fig. 29 Captioning transformer with stacked attention modules..................................................... 36 

Fig. 30 Our solution deployment diagram ..................................................................................... 37 

Fig. 31 Pix2code and our dataset images ....................................................................................... 38 

Fig. 32 Our models' implementation ............................................................................................. 40 

Fig. 33 Model with VGG16 grid search results ............................................................................. 42 

Fig. 34 Model with VGG16 encoder confusion matrix .................................................................. 44 

Fig. 35 Model with visual transformer encoder grid search results ................................................ 45 

Fig. 36 Model with Visual transformer encoder confusion matrix ................................................. 46 

Fig. 37 Model with EfiecientNet encoder grid search .................................................................... 47 

Fig. 38 Model with EfiecientNet confusion matrix ........................................................................ 48 

Fig. 39 Model with Resnet encoder grid search results .................................................................. 49 

Fig. 40 Model with Resnet encoder confusion matrix .................................................................... 50 

Fig. 41 Various models with pix2code F1 scores comparison ........................................................ 51 

Fig. 42 Model with VGG16 encoder grid search results ................................................................ 52 

Fig. 43 Model with Visual transformer encoder grid search results ............................................... 53 

Fig. 44 Model with EfiecientNet encoder grid search results ......................................................... 54 

Fig. 45 Model with Resnet encoder grid search results .................................................................. 55 

Fig. 46 Model with VGG16 encoder and our dataset confusion matrix .......................................... 67 



10 

Fig. 47 Model with Resnet encoder and our dataset confusion matrix ........................................... 70 

Fig. 48 Model with Visual transformer encoder and our dataset confusion matrix ......................... 73 

Fig. 49 Model with Efficientnet encoder and our dataset confusion matrix .................................... 76 

 



11 

List of tables 

Table 1 Image processing networks comparison ........................................................................... 20 

Table 2 Language processing networks comparison on WMT2014-English german dataset.......... 24 

Table 3 Image captioning networks results ................................................................................... 27 

Table 4 Dataset generation use case .............................................................................................. 30 

Table 5 Model creation usecase .................................................................................................... 31 

Table 6 K-fold cross-validation on the given model use case ........................................................ 31 

Table 7 Save experiments externally ............................................................................................ 31 

Table 8 Comparison between pix2code and pix2html dataset ....................................................... 38 

Table 9 Encoders comparison ....................................................................................................... 41 

Table 10 Hyperparameters used for grid search ............................................................................ 42 

Table 11 Model with VGG16 encoder accuracy report ................................................................. 43 

Table 12 Model with Visual transformer encoder accuracy report................................................. 45 

Table 13 Model with EfiecientNet accuracy report ....................................................................... 47 

Table 14 Model with Resnet encoder accuracy report ................................................................... 49 

Table 15 Each network top configuration with pix2code dataset results while doing a grid search 50 

Table 16 Our dataset grid search top results .................................................................................. 55 

Table 17 Model with VGG16 encoder and pix2code dataset grid search results ............................ 60 

Table 18 Model with Resnet and pix2code grid search results ...................................................... 60 

Table 19 Model with Visual transformer encoder and pix2code dataset grid search results ........... 61 

Table 20 Model with Eficientnet encoder and pix2code dataset grid search results ....................... 62 

Table 21 Model with EfiecientNet encoder and our dataset grid search results .............................. 63 

Table 22 Model with VGG16 encoder and our dataset grid search results ..................................... 64 

Table 23 Model with Resnet encoder and our dataset grid search results....................................... 64 

Table 24 Model with vision transformer encoder and our dataset grid search results ..................... 65 

Table 25 Model with VGG16 encoder and our dataset precision report ......................................... 67 

Table 26 Model with Resnet encoder and our dataset accuracy report ........................................... 70 

Table 27 Model with Visual transformer encoder and our dataset accuracy report ........................ 73 

Table 28 Model with EfficientNet encoder and our dataset accuracy report .................................. 76 

Table 29 Best performing modes different encoders and our dataset F1 accuracy comparison ...... 79 

  



12 

List of abbreviations and terms 

Abbreviations: 

LSTM. – Long Short-Term Memory. 

GUI. – Graphical user interface. 

DSL. – Domain-specific language. 

CNN. – Convolutional neural network. 

DNN. – Deep neural network. 

RNN. – Recurrent neural network. 

HTML. – Hypertext Markup Language. 

API. – Application programming interface. 

CNTK. – Microsoft cognitive toolkit. 

NAS. – Neural architecture search. 

GUI – Graphic user interface 

PWA – Progressive web app  

WBA – A web-based application 

GRU – Gated recurrent unit 

 



13 

Introduction 

Creating software to this day is mainly done by humans; however, recent advancements in the 

machine learning field hint that some parts could be replaced by applying machine learning solutions.  

Relevance of the project.  

Web-based applications are becoming more widely used and acknowledged. Since progressive web 

apps (PWAs) became distributable via App Store and Google Play store, they started to compete with 

native mobile applications. Even before introducing PWA, web-based applications (WBA) were 

making their way as desktop applications, replacing cross-platform applications based on virtual 

machine runtimes such as JAVA or Visual Basic. There is even an operating system Chrome-OS, 

which primarily utilises WBAs. Recent changes, which enabled applications to work offline, access 

device hardware, other features accessible only to native apps, and WBA's ability to work on multiple 

operating systems, made WBA a common choice among software developers. 

All WBAs have two things in common; they use JavaScript and Hypertext Markup Language 

(HTML). Until this day, most HTML is created by humans. There is little research done in trying to 

automate this task. Our project aims to apply a deep neural network to automate HTML creation. 

Our produced software and investigation could be used for further research. Data-synthesizer, 

synthesising larger and more complex datasets. Although every internet page can be treated as a data 

instance, the HTML standard receives constant updates, making not every website compatible with 

the current standard. Thus, a dataset synthesiser provides a way to configure and generate clean 

datasets which follow the current HTML standard datasets. 

Purpose and objectives  

Our main goal is to investigate Deep Neural Network (DNN) appliances for generating HTML by 

creating a model that would convert images to HTML. Achieving this goal can be split into the 

following objectives: 

1 Analyse image processing, language modelling, and captioning image models and find the 

best theoretical architecture for generating HTML from webpage screenshots. 

2 Create software that would generate a pix2html dataset (similar to pix2code in image part, 

but uses HTML instead of DSL in sequence part) 

3 Create various DNN capable of generating HTML from a webpage screenshot and 

investigate their results. 

4 Compare our solution with already present solutions. 

Document Structure 

The rest of this paper consists of five main sections that describe our investigation, projecting, 

implementation, and experimentation done while creating our model and all related software. In the 

first section, we analyse related problems and their solutions by overviewing related research. We do 

an overview of various Convolutional Neural Networks (CNN) improvements over the past decade, 

typical image captioning techniques, and related images to code conversion papers and the evolution 

of sequence prediction-related networks. In the second section, we describe the requirements and 

design of our solution (model and additional dataset generating software) needed to achieve and their 

various UML diagrams. The third section focuses on implementing our solution. And its performance, 



14 

measured by tweaking different hyperparameters and executing multiple experiments. In section four, 

we describe various experiments we have performed while doing research. In the fifth, final section, 

we conclude, Outlining the most relevant results and discoveries of our research. 



15 

1. Analysis 

This part is made from five subparts. In the first subpart, we overview the history of image processing 

networks. In the second one, we overview language processing models. In the third, we overview 

image captioning models. Furthermore, in the fourth subpart, we overview work related to code 

generation from images.  

1.1. Various image processing architectures 

CNN has initially introduced 30 years ago as a solution for handwritten zip code recognition (1) and, 

ever since, have been many advancements by applying various techniques. CNN has at least one 

hidden convolutional layer, which uses filters, which are convoluted either through the whole image 

or the results of previous convolution layers. Thus the name convolutional neural network. 

1.1.1. Alexnet 

Introduced in 2012, he popularised two novelties in CNN, Rectified Linear Unit (ReLU) activation 

function, which allowed their network to train faster than a network that uses sigmoid activation. 

Furthermore, it also introduced overlapping pooling. They observed that the model which uses 

overlapping pooling is less likely to overfit. Alexnet has eight layers, with the first five being 

convolutional and the rest three fully connected. (2) 

1.1.2. VGGnet 

VGGnet architecture was introduced as an improvement for conventional convolutional networks. It 

focused on the importance of depth in visual representation by having more convolutional layers. 

Traditional VGG networks are either 16 or 19 layers, which in 2015 were very deep. Exact network 

configurations Fig. 1 VGGnet layers  (3) 

 

Fig. 1 VGGnet layers visualised 



16 

1.1.3. Efficient Net   

CNN architecture is usually improved from previous state-of-the-art architecture by either making 

network deeper, increasing the network's layer size, or accepting higher resolution images as shown 

in Fig. 2 Various CNN scaling techniques. This paper investigates various combinations of network 

improvements and finds compound coefficients. That enables us to determine the most effective way 

to scale a network. They scale various networks while achieving better results and at the same having 

smaller networks. Their compound coefficient could is expressed as 𝑎 ∗ 𝑏2 ∗ 𝑐2  ≈  2 where a 𝑎 ≥

1 b  ≥ 1 c  ≥ 1 and a stand for network width, b stands for network depth, and c stands for input 

image resolution.  (4) 

 
Fig. 2 Various CNN scaling techniques 

1.1.4. Resnet 

Resnet architecture aims to solve the issue that appears when trying to train networks, which have 

many layers, thus having vanishing/exploding gradients. It achieves lower complexity than VGG16 

even with the network, which has up to 8 times more layers. This network overcomes vanishing 

exploding gradients by introducing residual block, which enables to connect to two not sequential 

layers directly via identity shortcut connection (marked as x identity in Fig. 3 Shortcut connection 

visualisation). (3) 

 
Fig. 3 Shortcut connection visualisation 



17 

1.1.5. Inception 

Inception architecture was inspired by the network in network architecture, which adds a 1x1 

convolutional kernel to reduce dimensions. Inception takes this several steps forward by having 

multiple convolutions in a single layer, as shown in Fig. 4 Inception module with dimensions 

reduction (5) 

 
Fig. 4 Inception module with dimensions reduction 

Also, there was an improvement for this architecture called InceptionV2. It was achieved by firstly 

replaced 5x5 convolution with two 3x3 convolutions, improving speed by 2.78 times. Then 3x3 

convolutions were replaced with a layer of 1x3 and 3x1 convolution, further enhancing the 

performance of the inception module by 33%. InceptionV3 introduces an additional 7x7 kernel which 

is factorized (split into 1x7 and 7x1 convolutions)  (6) 

1.1.6. DenseNet  

DenseNet introduces a new connection between layers pattern, where each layer has a direct link 

from all subsequent layers, as shown in Fig. 5 Dense connections visualised.Fig. 5 Dense connections  

However, differently from Resnet, it does not combine features via summation. They combine them 

via concatenation. Authors reduced network complexity by using transition layers between 2x2 

average pooling with a stride of two and a layer of 1x1 convolution. Thus, enabling to perform deep 

supervised learning, which resulted in better whole network accuracy. (7) 

 
Fig. 5 Dense connections visualised 



18 

1.1.7. Xception 

Xception (meaning extreme Inception) proposed a CNN based entirely on depth-wise separable 

convolution layers. It replaces inception modules with extreme inception modules, as shown in Fig. 

6 Xception module. It shows slight performance gain in terms of accuracy over inceptionV3 (8) 

 
Fig. 6 Xception module 

1.1.8. DilatedNet  

Dilated Residual Networks focused on applying dilation instead of subsampling. Their research 

shows that replacing subsampling with dilation models could result in a more accurate model without 

adding additional layers or making the whole model more complex. By applying dilation, they try to 

preserve spatial information. However, dilation may cause grinding artefacts, and in their research, 

they find out that max-pooling can exacerbate these artefacts. Therefore, they replaced max pooling 

with convolutional filters, then they added more layers with lower dilation, and finally, they removed 

residual connection in the last layers. Thus, creating a network with having the same number of 

parameters but higher accuracy. This kind of architecture network is commonly used for landscape 

recognition. (9) 

1.1.9. Nasnet 

In Nasnet RNN based controller selects building blocks to create end-to-end architecture. Even 

though its final structure is already predefined, the algorithm figures out exact blocks to be fitted 

inside the chosen structure; this generally results in similar to ResNets or DenseNets architectures. It 

combines different combination and configuration of commonly used image recognition building 

blocks. Since discovering network architecture is a computationally demanding process, authors 

trained networks on small datasets and then transferred that architecture to big datasets. Their research 

results prove that transferring architecture does not result in a significant loss of accuracy. (10) (11) 

1.1.10. Resnet Inception 

InceptionResnet is similar to inceptionV3. However, it uses different residential connections, as 

shown in Fig. 7 Inception resnet p n module. It has a more negligible computational cost than 

inceptionV3 while being slightly more accurate than inceptionV3. (12) 



19 

 
Fig. 7 Inception resnet p n module 

1.1.11. Vision transformer 

It replaces convolutional layers with attention-based architecture. Though results vary between 

datasets, Vision transformer is still outperformed by Resnet on a smaller dataset but given a larger 

dataset (14M-300M images), researchers at Google found it to top its CNN-based rivals. Vison 

transformer works by first cutting an image into patches. Then it patches are linearly embedded and 

passed to a standard Transformer encoder while adding position embeddings as shown in Fig. 8 Image 

cutting into patches and feeding into VIT .(13) 

 
Fig. 8 Image cutting into patches and feeding into VIT encoder 

1.1.12. Image processing networks comparison 

After various image processing, network analysis, we notice that accuracy significantly increases by 

increasing network width, resolution, depth, introducing new types of cells, or new connections 

between network nodes or layers. Also, according to Table 1 Image processing networks comparison, 

we can generally say that having more parameters results in higher accuracy, and the highest network, 

which has 224x224x3 dimensions, is Resnet. 



20 

Table 1 Image processing networks comparison 

Architecture name Input dimensions Number parameters ImageNet accuracy 

Alexnet 256x256x3 60M 63.3  % 

VGGnet-16 224x224x3 138M 74.4 % 

EfficientNet-B0 224x224x3 5.3M 76.3 % 

Resnet 222x224x3 25M 77.15 % 

Inception-V2 299x299x3 11.2M 77.8 % 

Xception 299x299x3 22.8M 79  % 

ResnetInception 299x299x3 55.8M 80.1 % 

Vision Transformer 256x256x3 307M 87.76 % 

1.2.Various language predicting models. 

Sequence prediction plays an essential part in our model. Generating long sequences was always a 

challenge for deep neural networks. In this section, we will overview the evolution of sequence 

prediction models. 

1.2.1. RNN 

RNN was introduced back in 1985 by David E. Rumelhart, and James L. McClelland in their article 

Learning Internal Representations by Error Propagation. They introduced an autoregressive network, 

which means that it uses self-previous outputs as a part of the input for the next prediction.   Thus, 

the network can take a sequence as an input and produce a sequence as an output. Their suggested 

network is displayed in Fig. 9 RNN network. where t means another time step and U its output.  (14) 

 

 
Fig. 9 RNN network 

1.2.2. LSTM 

Even though RNN could use sequential data for prediction, the order of data entries inside sequence 

played a crucial part, meaning that neighbouring data entries impacted prediction a lot more than data 

entries that are further away. The difference in impact on the next prediction is known as the 

exploding-vanishing gradient problem. To solve it, Sepp Hochreiter, Jürgen Schmidhuber introduced 

an LSTM cell with an additional forget gate as shown in Fig. 10 LSTM cell visualised. Forget gate 

discovers which details can be discarded from the cell. That is decided via sigmoid function by 

looking at the previous state (ht-1) and the input(Xt) and outputs for each cell state Ct−1. (15) 



21 

 
Fig. 10 LSTM cell visualised. 

1.2.3. GRU 

Gated recurrent unit (GRU) aims to solve the same vanishing gradient problem, though it was 

introduced 17 years later than LSTM. GRU has two additional reset and update gates while retaining 

input and output gates. That enables a cell to keep information from a long time ago without losing it 

through time or removing information irrelevant to the prediction. Their proposed activation is 

displayed in Fig. 11 GRU network cell where the update gate, z, selects whether the hidden state 

should update with a new hidden state h˜. The reset gate r decides whether the previous hidden state 

is ignored (16) 

 
Fig. 11 GRU network cell 

1.2.4. Sequence to Sequence 

This architecture uses encoder-decoder architecture, where both encoder and decoder are recurrent 

neural networks, the encoder extract information to a context vector from which is then used by the 

decoder to predict. It aims to solve an issue with different lengths of input and output sequence. 

However, since the context vector is a fixed length, this network cannot remember long sequences. 

(17)  

1.2.5. Attention mechanism. 

It aims to help the seq2seq model to solve the long source sentence problem. Instead of building a 

single context vector out of the encoder's last hidden states, it creates shortcuts (called global 

alignment scores shown in  Fig. 12 Attention mechanism) between the context vector and the entire 

input. The weight of each of these shortcuts is trained together with the network. Decoder attends 

over the sum of hidden states weighted by alignment scores. (18) 



22 

 
Fig. 12 Attention mechanism 

1.2.6. Transformer 

Transformer architecture proposes to ditch recurrent neural networks in favour of attention. It 

eliminates various RNN forms and uses positional encoding (sometimes referred to as positional 

embedding) and multiheaded attention. Multi-head attention aims to establish a connection between 

long-distance dependencies, while positional encoding helps the network to understand the 

importance of sequence order. Multi-head attention used in the first layer of the encoder is called self-

attention because all parts of it come from the same place - the previous layer. Multi-head attention 

in the first layer of the decoder is similar to encoders' self-attention. However, to preserve auto-

regressive property, they implement scaled dot product attention that masks SoftMax inputs. This 

masking is needed because of the teacher-forcing used to train this network, and if the masking is not 

present, the network results in illegal connections.  The second Multi-head attention inside decoder 

queries comes from the first subpart of the decoder. Still, keys and values come from the encoder, 

thus creating combined attention on both encoder-decoder parts. The whole transformer architecture 

is displayed in Fig. 13 Transformer architecture (19) 

 
Fig. 13 Transformer architecture 



23 

1.2.7. Denoising autoencoders 

It uses a non-autoregressive model, which uses latent variables to predict sequence tokens 

independently from other predictions. That model enables the parallelisation of the training process. 

That is impossible when training LSTM with an attention network because forward and backwards 

pass through the sequence during training. Furthermore, when using a transformer-based, it is not 

possible to parallelise decoding at the test time. Denoising autoencoder uses simple supervised 

optimisation to calculate latent variables and minimising cross-entropy between ground truth and 

predictions. They also use distillation, a good autoregressive model prediction, as a target to their 

non-autoregressive model. It allowed them to improve their results by 10-15%. Their architecture is 

based on a transformer. However, they do have two decoders instead of one. Using adaptive training 

second decoder keeps on running until the output stops changing. The whole network architecture is 

shown in Fig. 14 Denoising autoencoder. (20) 

 
Fig. 14 Denoising autoencoder 

1.2.8. Reformer 

Even though the transformer can achieve the state-of-the-art result, its computation cost rapidly grows 

when increasing input size. It makes it hard to train models with long sequence inputs on the public 

accessible computing device. It introduces two significant enhancements to the transformer model. 

First, they changed dot product attention with locality-sensitive hashing, thus only calculating nearest 

neighbours' attention rather than with the whole sequence.  Second, they added reversible layers. 

They removed a necessity to store activations for backward propagation. Thought increased 

calculation time, but it reduced needed memory even further. The reversible layer is displayed in Fig. 

15 Reversible and standard connection visual comparison (21) 



24 

 
Fig. 15 Reversible and standard connection visual comparison 

1.2.9. Sequence modelling models comparison 

Various sequence processing network analysis indicates that using attention allows for better results 

and that the original LSTM shortcoming inability to deal with long sequences is solved. According 

to Table 2 Language processing networks comparison on WMT2014-English german dataset, 

Reformer yields the best results when translating from English to German; however, the accuracy 

increases just by 1.8 BLEU. At the same time, calculations get significant increase. 

Table 2 Language processing networks comparison on WMT2014-English german dataset 

Architecture name BLEU score 

Denoising autoencoder 21.54 

Transformer 27.3 

Reformer 29.1 

1.3.Image captioning architectures predicting models. 

The task of generating code from the image is very similar to image captioning. Image captioning is 

a combination of computer vision and language modelling problems. Captioning models follow 

encoder-decoder architecture. In this section, we will overview the evolution of image captioning 

models 

1.3.1. Encoder decoder architecture. 

Today, image captioning models implement a decoder-encoder framework, which takes at least two 

Long Short-Term Memory (LSTM) layers. Where one's final layer becomes the other input layer. In 

captioning, encoder output is a combination of result from deep CNN which attended over image and 

LSTM, which attended over the caption, that results in multimodal space vector  (22), which is used 

as input for Decoder an LSTM as shown in Fig. 16 Image captioning architecture .(23) 



25 

 
Fig. 16 Image captioning architecture 

1.3.2. Show Attend and tell 

This paper introduces soft and hard attention-based image captioning generators. Generators follow 

encoder-decoder architecture, while additionally, they can visualise how a network attends over an 

image while generating a caption. This work's novelty is that instead of the previously used last fully 

connected layer of CNN for feature extraction, it uses a previous layer. That allows the decoder to 

select parts that it wants to "focus" on. Model is visualised in Fig. 17 Show attend and tell model 

explanation.(24) 

 
Fig. 17 Show attend and tell model explanation 

1.3.3. Captioning Transformer with Stacked Attention Module 

Introduce architecture change in which LSTM is replaced with the transformer in encoder-decoder 

architecture. Their decoder has six layers. They also introduce a new multi-level supervision learning 

method where each decoder layer output is used to calculate a loss, as shown in Fig. 18 Captioning 

transformer loss calculation. (25) 



26 

 
Fig. 18 Captioning transformer loss calculation 

1.3.4. Image Captioning: Transforming Objects into Words 

This model follows encoder-decoder architecture, where the decoder consists of a standard 

transformer decoder block. The encoder, rather than image feature vectors as in Captioning 

transformer with stacked attention, uses features obtained from specific image regions. These regions 

are obtained by using an image detector, which improves image captioning results. Additionally, they 

use spatial information obtained from image detectors, such as region size and relative location. They 

incorporate this relative geometry information into the encoder layer attention part, naming it 

geometry attention as shown in Fig. 19 Image captioning with geometry attention (26) 

 
Fig. 19 Image captioning with geometry attention 

1.3.5. Meshed memory transformer for image captioning  

This network structure replaces LSTM with an attention mechanism too. It encodes image regions in 

a multi-level fashion, which considers both low-level and high-level relations. Meshed memory 

transformer introduces a novelty by connecting every encoder layer to decoder layers. These relations 

contributions are weight at every stage, thus creating mesh connectivity. It outperforms any other 

state-of-the-art captioning model which uses LSTM. The exact model architecture is shown in Fig. 

20 Meshed memory transformer. (27) 



27 

 
Fig. 20 Meshed memory transformer 

1.3.6. Full Transformer Network for Image Captioning 

This network replaces CNN used in the encoder with the visual transformer already described in 

section 1.1.10. Since they use a transformer architecture for the encoder and decoder, it is called full 

transformer architecture or CPTR. In their work, it demonstrates that it manages to surpass CNN + 

transformer networks. Networks visualisation is shown in Fig. 21 Full transformer for image 

captioning network visualised (28) 

 
Fig. 21 Full transformer for image captioning network visualised 

1.3.7. Image captioning models comparison 

All reviewed image captioning models uses encoder-decoder architecture. That enable encoding 

image features into multi-modal space and decode a sequence from them. The highest accuracy (81.7) 

on MS COCO is achieved by a full transformer network for image captioning, as shown in Table 3 

Image captioning networks results 

Table 3 Image captioning networks results 

Architecture name MS COCO BLEU1 score 

Show attend and tell 71.8 

Image captioning with stacked transformers 73 

Meshed memory transformer 81.6 

Full transformer network for image captioning 81.7 



28 

1.4. Html generation from image models 

There are a couple of papers published on this that are trying to solve this problem. In this section, 

we will overview both of them.  

1.4.1. Pix2Code 

Pix2Code model follows encoder-decoder structure, and for image processing, it uses VGG16 

architecture.  Their language model is made from two LSTM layers, 128 cells each, and their decoder 

is made from two layers of LSMT, which has 528 cells in each layer. They use 1500 synthesised data 

entries for training and 250 for validation. Their image dimensions are 224x224. In our upcoming 

research, we will be following these image dimensions and dataset size.  A high-level overview is 

shown in Fig. 22 Pix2Code model visualised. Pix2Code uses DSL to reduce search space. They 

achieved 88.99% accuracy for recognizing DSL from an image.  

 
Fig. 22 Pix2Code model visualised 

1.4.2. Automatic Graphics Program Generation using Attention-Based Hierarchical Decoder 

It uses intermediate filter responses similar to pix2Code and decoder encode framework; however, 

its novelty is in their proposed Hierarchical visual decoder model. It consists of two models. One 

LSTM model with a single layer hidden size of 512 cells is used to determine many blocks GUI will 

consist of and generate guiding vectors for each block. Which then is passed to another model two-

layer LSTM model, with a hidden state of 512 cells that creates code tokens. Additionally, they resize 

images to 256x256 pixels dimension rather than the initial 224x224, and they achieve increased 

accuracy. Their network is visualised in Fig. 23 Model with Attention-Based hierarchical decoder  

(29) 

 
Fig. 23 Model with Attention-Based hierarchical decoder 



29 

1.5. Analysis conclusion 

After analysis, we will implement encoder-decoder architecture with a transformer used in the 

decoder because the transformer is shown to deal with long sequences. As for the encoder will either 

be using a visual transformer or cnn. We will reuse the pix2code dataset and use it as a baseline for 

our model. Also, we will create a new dataset with 1500 training/validation and 250 testing entries. 

Then we will compare how our model deals with more extended sequence and see if our model 

accuracy degrades after increasing models vocabulary and sequence length. 



30 

2. Specification of solution  

To compare our solution with Pix2Code, we need to generate similar images to Pix2code while 

replacing DSL with HTML. Thus we need to create a dataset generator. To investigate various model 

variants, we need to create software that would generate models. Finally, we need to be to train and 

evaluate multiple models. Therefore, our solution can be split into two main parts: dataset generator 

and training environment. The high level of our solution use cases is shown in Fig. 24 Use case 

diagram of our solution 

 

Fig. 24 Use case diagram of our solution 

Table 4 Dataset generation use case 

Use case id 1 

Name  Generate dataset 

Description Generates multiple HTML documents that would follow a given set of rules. 

Actors System 

Initial requirements The set of rules must be provided 

Main steps 1.1.1. Take the set of rules, creates HTML code from it, and saves it into 

multiple files.  



31 

1.1.2. Process files generated in 1.1.1 by puppeteer resulting in webpage 

screenshots. Finally, all results are shuffled and split into subsets.  

1.1.3. Html is adjusted by replacing not Html tokens with an unknown token. 

Available Html tokens are written to JSON file.  

Final results A new dataset is split into the test, and train/validate subsets, each containing a 

JSON file with an array of sequences and image names and a list of image files. 

Table 5 Model creation usecase 

Use case id 2 

Name  Create model 

Description Creates a model 

Actors System 

Initial requirements Model and encoder type must be known 

Main steps 2.1 Create encoder 

2.2 Created decoder 

Final results Funcional keras model 

Table 6 K-fold cross-validation on the given model use case 

Use case id 3 

Name  Cross validate the model with data 

Description Splits dataset into k-folds, fits given model onto various data combinations 

calculate average 

Actors System 

Initial requirements Model, dataset and fold size must be provided 

Main steps 3.1 Generate dataset from data 

3.2 Generate various models configurations 

3.3 Train give dataset with model 

Final results Fitted models and their training results 

Table 7 Save experiments externally 

Use case id 4 

Name  Load and demonstrate the model 

Description Calculates prediction for specific token data and save experiments results 

externally 

Actors System 

Initial requirements Predictions and original dataset must be present 

Main steps Calculates top k 1 accuracy, calculate top k 5 accuracy, calculated unpredicted 

tokens ratio, calculated wrong prediction rate 

Final results Prediction metrics are save in weight and biases 



32 

2.1.Dataset generator 

To compare our model result to Pix2code results first, we must synthesise the dataset in which images 

are similar to Pix2code while the sequence is entirely different.  

2.1.1. Requirements for dataset synthesiser 

Dataset generator requirements can are split into functional and non-functional requirements. They 

are listed below. Functional requirements: 

• Generate multiple HTML documents that would follow a given set of rules. 

• Generate an image from a given HTML document. 

• Generate dataset, which later will be used for training and evaluating the model. 

Non-functional requirements are: 

• Ensure that rare samples are included in the dataset. 

• It is implemented using ECMAScript-262. 

• Use pseudo-random selection for sequence generation. 

• Use Durstenfeld shuffle. 

Generating a pix2code dataset is not a trivial task because that dataset has 10477080 unique possible 

variants from which we will be using only 1750 (1500 for training/validating and 250 for testing). 

Because we are following amounts used in pix2code. All possible dataset variants can be calculated 

using the formula (1): 

𝑛 = ℎ ∗ ∑ ∑ 𝑠𝑐∗𝑟
𝑐 ∈𝐶𝑟=𝑅  (1) 

Where n is the total number of unique variants, h is the number of header combinations, R is the set 

of possible row amount (in our case, it is 1,2,3), C is the set of possible columns combinations (in our 

case, it is 1,2,4), and s is the number of possible standard block variants. Data entry can contain two 

up to 5 header buttons (buttons at the top of  Fig. 25 Training image sample). The single one is blue, 

while the others are black, resulting in 5! = 120 possible combinations. The standard element is an 

element shown in a heading text, plain text, and a button, either red, green, or yellow, resulting in 

three unique standard blocks.  

 
Fig. 25 Training image sample 



33 

Therefore, resulting in 10477080 variants, and since we are taking only 1500 out of them, the chance 

of our training dataset would include an entry that contains one single column with a single row is 

~6.01%. That arises an issue that our model could be completely unaware of such an instance. We 

address it by splitting data into 38 sets where each entry has a unique sequence of standard block 

positioning and size. We take 54 cases from each group and randomly select two additional dataset 

entries.  

2.1.2. Dataset synthesiser components overview 

Dataset synthesiser can is split into four main components: 

1. Variant's generator 

2. Html generator 

3. Image generator 

4. Dataset collector 

Dataset collector collects all the data in each directory by extracting HTML content and writing it to 

a single JSON file. Image generators iterate through HTML files, creating their respective image as 

a screenshot for each rendered HTML document and then resizes it to given dimensions. Since both 

the image generator and dataset collector use the file system as their inputs, they can generate a dataset 

from any Html files. The HTML generator creates HTML from a given tree structure. That created 

document is stored in a given directory. Once the files are stored, the variants generator calculates all 

possible variants from given parameters, selects the pseudo-random number of used data instances, 

and splits the dataset into train/validate and test datasets. We will be comparing results to pix2code. 

We need our dataset synthesis to replicate their dataset images. Integral components are displayed in 

Fig. 26 Dataset synthesiser component diagram. 

 
Fig. 26 Dataset synthesiser component diagram 

2.2. Training environment 

The training environment is where we execute all the experiments and collect all the data for our 

research. 

2.2.1. Requirements for environment 

Training environment requirements can be split into functional and non-functional requirements. 

They are listed below. Functional requirements: 



34 

• Able to train the model. 

• Do K-cross validation. 

• Provide training metric logs. 

• Save metric logs to external storage. 

• Demonstrate the model. 

Non-functional requirements are: 

• Contained inside Jupyter notebook format. 

• Be computing provider environment is independent, meaning that the environment would 

work the same in Google collab, paper space, or Floyd hub environments. 

• Utilise Weighs and Biasias. 

• Be trainable on using TPU. 

2.2.2. Training environment overview 

Our training environment is made out of 4 main components: variants trainer, K-fold cross validator, 

Model creator, and Dataset loader. Detailed components diagram is shown in Fig. 27 Training 

environment component overview. 

 
Fig. 27 Training environment component overview 

The variants trainer using the hparams package modifies various hyperparameters for models 

provided by the model creator, which is then passed to the k-fold cross validator and the dataset 

loader's data.  K-fold cross validator trains the model and returns every fold results and the 

accumulated result to variants trainer, which then passes this data to the wandb package to be saved 

externally inside weight and biases platform. 



35 

2.2.3. The optimiser used for model training 

While training our model for weight optimisation, we will be using Adam optimiser with weight 

decay because Adam L2 regularisation is not practical compared to standard gradient descent (30). 

Having L2 regularisation decreases the chance to overfit our model. Our optimiser also has to have 

warmup steps because having them is shown to benefit attention mechanism based architecture 

accuracy. Our exact learning rate is shown in Fig. 28 learning rate graph. 

 
Fig. 28 learning rate graph 

2.2.4. K-fold cross-validation 

K-fold cross-validation is a process that uses the same dataset by resampling the dataset into various 

compositions same size, training, and validation datasets. Pix2ode and Pix2html use the same size 

(1750) dataset, from which 250 samples are used for validation and the rest for training. Thus every 

different model configuration will be trained and evaluated seven more times. This strategy reduces 

the dataset entries' order impact on training and validating accuracy. 

2.2.5. The model 

Our model generator has requirements that can be split into functional and non-functional they are 

listed below. Functional: 

• Generate models from a given set of parameters. 

• Generated models could take an image testing given jpeg image. 

• Model weights can be saved and loaded. 

• Model does not run into exploding/diminishing gradient problem. 

Non-functional: 

• Reach better accuracy than pix2code. 

• Use Keras functional API. 

• Follow encoder-decoder architecture. 

• Not consume more 16Gb of memory during training. 

• Be trainable using TPU. 

• Use transformer for the decoder. 



36 

2.2.6. Teacher forcing 

Our model uses teache. Initially, the model would use a previously predicted token. However, when 

using teacher forcing, previous token actual sequences are provided instead of predicted ones. Thus 

the model can make the following prediction on correct data even if the previous prediction was 

wrong. To achieve this, we are passing the look ahead mask, which prevents the model from looking 

into future predictions. 

2.2.7. Dropout  

Our model should also include dropout layers. Drop is one of regularisation method which prevents 

the model from overfitting. The co-adaptation of cells can cause overfitting. However, this co-

adaptation is broken by introducing a dropout (making various cells unavailable during the training 

period). Thus, cells no longer strongly rely on their specific previous layer cells and pay more 

attention to overall input. That enables the model to generalise more accurately. (31)  

2.2.8. Model layers overview  

Our model follows encoder-decoder architecture where the decoder is a Transformer that uses 

information from both: available sequence and image. As for the encoder, we are using either CNN 

or an image processing transformer. Thus our network looks like a Transformer with stacked attention 

modules architecture as shown in Fig. 29 Captioning transformer with stacked attention modules. Or 

as full transformer architecture image captioning demonstrated in Fig. 21 Full transformer for image 

captioning network visualised 

 
Fig. 29 Captioning transformer with stacked attention modules 

2.3. Data management for our solution  

Since the local environment is not an option for cloud providers, we will store our data in various 

data storage hardware and software solutions; thus, our components can be stored in multiple 

platforms communicate via TPC/IP protocol as shown in Fig. 30 Our solution deployment diagram. 

 



37 

 
Fig. 30 Our solution deployment diagram 

Dataset will store in the git repository, and experiment results will be in the weights and biases 

platform. Keeping data this way will enable us to recover quickly from various crashes and return 

experiments if they yield some unexpected results to double-check. Finally, by saving our dataset in 

weights and biases platform, we should take advantage of various visualisations and insights provided 

by this platform. 



38 

3. Implementation 

In this section, we will overview the implementation details of our dataset synthesiser and our training 

environment.  

3.1.1. Dataset synthesiser 

We are using NodeJs 15.5.0 as a runtime to perform dataset synthesis. Datasets synthesiser is written 

using ECMAScript because of many helpful and up-to-date packages for generating images from 

HTML. NodeJs (ECMAScript runtime) can also be easily installed on many operating systems. We 

aim to achieve images similar to pix2code, allowing our model to gain a decent result with pix2code 

images while training our model with our dataset. Original pix2code image on the left, and our dataset 

image is on the right. 

 
Fig. 31 Pix2code and our dataset images  

Our dataset sequence is generated from 85 unique tokens, while the pix2code dataset has 16 unique 

tokens. Our max sequence length is 1827, while the pix2code dataset max sequence length is 88. We 

generate 1750 dataset entries to match the pix2code dataset amount. We split our dataset into 1500 

training and 250 evaluating instance pairs. Split is done by firstly shuffling the dataset using 

Durstenfeld shuffle and taking the first 1500 pairs to train, while the rest goes to the test dataset. 

Comparison between our is shown in table Table 8 Comparison between pix2code and pix2html 

dataset. 

Table 8 Comparison between pix2code and pix2html dataset 

Dataset Unique tokens min length Average length Max  

Pix2code 16 16 ~53.95 90 

Our 73 132 ~481.31 860 

Detailed examples of pix2code and our dataset entry contained a header with five buttons and a single 

row single block containing a text is given  below  



39 

header { 

  btn-inactive , 

  btn-inactive ,  

 btn-inactive , 

  btn-active , 

  btn-inactive  

}  

 

row {  

 single {  

  small-title,  

  text,  

  btn-red 

  }  

} 

 
<body> 

<header style="display:flex; flex-direction:row; margin:15px 0; ">  

<button style="background:#333333; color:#2f79b9; margin:5px; padding: 0 20px; align-self:baseline; 

border-radius:4px; height:40px; font-size:14px; border:none; "> Sent stiff </button> 

<button style=" background : #333333 ; color : #2f79b9 ; margin : 5px ; padding : 0 20px ; align-

self : baseline ; border-radius : 4px ; height : 40px ; font-size : 14px ; border : none ; "> Harder 

</button>  

<button style=" background : #333333 ; color : #2f79b9 ; margin : 5px ; padding : 0 20px ; align-

self : baseline ; border-radius : 4px ; height : 40px ; font-size : 14px ; border : none ; "> Upward 

list </button> 

<button style=" background : #2f79b9 ; color : #ffffff ; margin : 5px ; padding-right : 20px ; 

padding-left : 20px ; align-self : baseline ; border-radius : 4px ; font-size : 14px ; height : 40px 

; border : none ; "> Stems traffic </button>  

<button style=" background : #333333 ; color : #2f79b9 ; margin : 5px ; padding : 0 20px ; align-

self : baseline ; border-radius : 4px ; height : 40px ; font-size : 14px ; border : none ; "> 

Receive toy </button>  

</header> 

<div style=" display : grid ; grid-template-columns : repeat(4,1fr) ; gap : 20px ; grid-template-

rows : repeat(3,140px) ; "> 

<div style=" background-color : #f5f5f5 ; grid-row : 0 ; border-radius : 4px ; padding : 20px ; 

display : flex ; flex-direction : column ; justify-content : space-around ; grid-column : 1/5 ; "> 

<h4 style=" margin : 5px ; font-size : 18px ; font-weight : 500 ; "> Inside buy </h4> 

<span style=" margin : 5px ; "> Leave church capital </span> <button style=" color : white ; 

background-image : linear-gradient(#fbb450,#f89406) ; padding-right : 20px ; padding-left : 20px ; 

align-self : baseline ; border-radius : 4px ; border-color : rgba(0,0,0,0.25) ; border-style : solid 

; border-width : 1px ; min-height : 34px ; font-size : 14px ; text-shadow : 0 -1px 0 rgba(0,0,0,0.2) 

; box-shadow : inset 0 1px 0 rgba(255,255,255,0.15), 0 1px 1px rgba(0,0,0,0.08) ; "> Brought numeral 

</button>  

</div> 

</div> 

</body> 

3.1.2. Implementation of model 

We have implemented four different models. All of them follow the encoder-decoder structure. Three 

of them uses cnn for the encoder, while the other uses a transformer. For the decoder, we use a 

transformer like a decoder with two-layer decoder layers. Implemented architectures loosely follow 

image captioning with stacked attention. However, we do not calculate the combined loss. We have 

tried using Relu as in the original transformer, and we have also tried Gelu because it is used in 

training state of the art models such as GPT-2 and Bert. We found that using Gelu yields better results. 

We do use Adam with a weight decay optimiser with a custom learning rate that includes warmup 

steps. All of the models implemented using Keras functional API and TensorFlow and TF-models 

package. Using this technology stack enables us to use nonlinear topology models with multiple 

inputs and efficiently scale on multiple GPU and even use TPU pods. Our model accepts the following 

hyperparameters: model size, number of attention heads, vocabulary and dropout size. Both CNN and 

Transformer encoders based models are shown in Fig. 32 Our models' implementation 



40 

 
Fig. 32 Our models' implementation 

3.1.3. Implementation of training environment 

Our training environment is implemented using Jupyter notebook, tensorboard hparams API, and 

weight and biases. We use hparams to set a list of hyperparameters to do a grid search for optimal 

parameters and weight and biases for saving and visualising training logs. The training environment 

also takes care of loading and preprocessing data later used for model training. We sort both (training 

and validation) datasets by tokenised sequence length, which improves model training performance. 

Then we tokenise HTML using tokens provided by the dataset synthesiser. After tokenisation, we 

pad our text sequences with padding tokens, making each sequence vector the same length. Lastly, 

we preprocess images, turning their web page screenshots into tensors, first by resizing them to 

224x224 dimensions and then normalising each pixel value. Once our HTML and image are turned 

into a sequence, they are passed to the model fit. While searching for optimal hyperparameters, we 

used k-fold cross-validation. We split our dataset into two parts: test and training datasets. We do not 

use testing dataset for hyperparameters search. Then we split our training dataset into six parts, each 

containing 250 entries. Five of them make a dataset on which models are trained, and one is used to 

calculate validation accuracy. Then we rearrange a set by moving the set used for validation into the 

training dataset and choosing the not already used set for validation. We repeat this process six times, 

and we calculated all the metrics by adding all results and dividing them by the number of folds. We 

train our models for 30 epochs using a batch size of 25 



41 

4. Experiments 

In this section, we overview our experiments in which we are evaluating four different models based 

on two different architectures,  

4.1. Preparation for experiments 

In this subsection, we describe every experiment steps in details. The raw dataset is processed, then 

the model is constructed, then it is then evaluated with train/validation with processed dataset using 

k-fold cross-validation. Finally, each most accurate configuration model is then trained again using 

the whole train/validate dataset for training and evaluated using the test dataset. 

4.1.1. Dataset processing 

Both datasets have only known tokens during the data preprocessing stage. We use a batch size of 

25. Using a larger batch size would result in more than 16GB usage of random access memory for 

the full transformer architecture model above our non-functional requirements. 

4.1.2. Models 

Three of them are following image captioning with stacked attention and using processing. While 

every model decoder uses transformers like architecture, they have different encoders. We have 

chosen three CNN architectures because their input dimensions are 224x224, and they are already 

available as a part of the Keras library. We also implemented vision as a transformer as an encoder 

for the fourth model. We have chosen a hidden layer size of 120 because it second least common 

denominator of numbers from one to six (a number of heads used for hyperparameters optimisation). 

We also have a tried models with a hidden layer size of 60. However, it resulted in very low accuracy 

with our dataset. Detailed encoder comparison is shown in Table 9 Encoders comparison.  

Table 9 Encoders comparison 

Encoder Input pixel size Trainable params Non-trainable params 

Vgg16 224x224 14,776,248 0 

resnet 224x224 23,765,240 45,440 

EfficientNetB0 224x224 4,161,268 42,023 

Vit16 224x224 469,680 0 

4.1.3. Model evaluation 

Firstly, we did various models grid search for both datasets. We use k fold cross-validation with six-

folds. Each fold is trained for 30 epoch with a batch size of 25 and the optimiser described in 2.2.3. 

We evaluated the model's accuracy from one to six attention heads and three different dropout values. 

Since we have two different datasets and four different models, this resulted in 144 different 

combinations being evaluated using k-fold cross-entropy. Hyperparameters used for grid search are 

shown in Table 10 Hyperparameters used for grid search. We calculate their average train and 

validate accuracies. Thus we can compare how dropout and the number of attention of heads impact 

overall results and overfitting.  



42 

Table 10 Hyperparameters used for grid search 

Hyperparameter name Possible value 

Attention heads used in multi-head attention 6,5,4,3,2,1 

Dropout 0.0, 0.05, 0.1 

After grid search, we take every type of model best-performing variant, train it on a train/validate 

dataset and evaluate it on the test dataset, and their results analyse the following metrics: train 

accuracy, validate accuracy, confusion matrix and accuracy report (precision, recall, f1-score and 

support) 

4.2. Experiments with pix2code dataset and model with VGG16 encoder  

This section will overview grid search results with our models and pix2code dataset and analyse the 

best performing model accuracy. 

4.2.1. Grid search results 

The best performing model had 0.05 dropout and six attention heads and achieved 0.9404 validation 

and 0.9428 training accuracy. Also, it is worth noticing that models with a 0.05 dropout achieved a 

better average than models without a dropout. Models with four attention heads achieved slightly 

better average validation accuracy (0.9333)  than models with five heads (0.9325).  

 
Fig. 33 Model with VGG16 grid search results 

4.2.2. Best performing model confusion matrix and classification report 

According Table 11 Model with VGG16 encoder accuracy report model achieves one F1 score on 

the whole header row. It has no problem correctly predicting the whole header row, including inside 

buttons and opening-closing tokens. The lowest F1 score is for button green, orange and red buttons 

(0.49, 0.46 and 0.36). 



43 

Table 11 Model with VGG16 encoder accuracy report 

According to Fig. 34 Model with VGG16 encoder, confusion matrix Model is often confusing red, 

orange and green buttons.  

Label Precision Recall F1-Score Support 

<pad> 1 1 1 9097 

Header 1 1 1 250 

{ 1 1 1 2462 

Btn-active 1 1 1 250 

Btn-inactive 1 1 1 629 

} 0.99 0.99 0.99 2462 

row 0.99 0.99 0.99 666 

single 0.99 0.96 0.98 228 

small-title 0.99 0.96 0.98 1546 

text 1 1 1 1546 

btn-orange 0.47 0.46 0.46 508 

double 0.98 0.04 0.98 434 

Btn-red 0.36 0.36 0.36 514 

quardruple 0.99 0.99 0.99 884 

Btn-green 0.47 0.51 0.49 524 

start 0.92 0.96 0.94 250 



44 

 
Fig. 34 Model with VGG16 encoder confusion matrix 

4.3. Experiments with pix2code dataset and model with Visual transformer encoder  

This section will overview grid search results with our models and pix2code dataset and analyse the 

most accurate model with a visual transformer encoder. 

4.3.1. Grid search results 

Best results were achieved with six heads and 0 dropout (0.8633). However, the configuration with 

five attention heads reached similar accuracy ( 0.861). The average five attention heads accuracy is 

0.8544, while configurations with six heads have average validation accuracy of 0.8565. This 

indicated that increasing attention heads from five to six attention heads does not significantly 

increase. Also, all zero dropout configurations outperformed 0.05 dropout configurations with the 

same attention heads count. Furthermore, 0.05 configurations outperformed configurations with 0.1 

dropout, while having dropout overfitting (different between training and validation accuracy) is 

decremental to overall validation accuracy. 



45 

 
Fig. 35 Model with visual transformer encoder grid search results 

4.3.2. Most accurate model confusion matrix and classification report 

According to the Table 11 Model with VGG16 encoder accuracy report, the first two tokens of a 

sequence (Header and {) got have F1 score of 1 and 0.99. Padding token and text token also have a 

precision score of 1. Token of double and single have a relatively low F1 score (0.15 and 0.21). All 

three (orange, red and green) buttons have similar F1 scores (0.42, 0.46 and 0.48 and precisely the 

same precision of 0.45.). 

Table 12 Model with Visual transformer encoder accuracy report 

Label Precision Recall F1-Score Support 

<pad> 1 1 1 9097 

Header 1 1 1 250 

{ 1 0.99 0.99 2462 

Btn-active 0.36 0.068 0.11 250 

Btn-inactive 0.64 0.83 0.72 629 

} 0.82 0.86 0.84 2462 

row 0.64 0.62 0.63 666 

single 0.46 0.14 0.21 228 



46 

small-title 0.75 0.99 0.86 1546 

text 1 1 1 1546 

btn-orange 0.45 0.46 0.46 508 

double 0.41 0.094 0.15 434 

Btn-red 0.45 0.39 0.42 514 

quardruple 0.56 0.53 0.55 884 

Btn-green 0.45 0.5 0.48 524 

start 0.77 0.71 0.74 250 

According to Fig. 34 Model with VGG16 encoder confusion matrix this model confuses orange, red 

and green buttons and between active and inactive buttons. It also mixes double, quadruple and } 

tokens. 

 

Fig. 36 Model with Visual transformer encoder confusion matrix 



47 

4.4. Experiments with pix2code dataset and model with EfiecientNet encoder  

This section will overview grid search results with our models and pix2code dataset and analyse the 

best performing model accuracy. 

4.4.1. Grid search results 

According to Fig. 37 Model with EfiecientNet encoder grid search best performing model had six 

attention heads and 0 dropout. Also, all three best performing models have six attention heads. Thus 

we can reason that EfficientNet provides features that can benefit from additional dimensions in 

multimodal space. Additionally, increasing dropout did not significantly reduce model overfitting. 

 
Fig. 37 Model with EfiecientNet encoder grid search 

4.4.2. Best performing model confusion matrix and classification report 

Similarly to the VGG16 and visual transformer, it has one F1 score first tokens (Header and {) as 

well padding token and text token. It struggles with orange, red and green buttons and active  Whole 

accuracy report, shown in Table 13 Model with EfiecientNet accuracy report. 

Table 13 Model with EfiecientNet accuracy report 

Label Precision Recall F1-Score Support 

<pad> 1 1 1 9097 

Header 1 1 1 250 

{ 1 1 1 2462 

Btn-active 0.59 0.26 0.36 250 

Btn-inactive 0.75 0.8 0.77 629 



48 

} 0.86 0.88 0.87 2462 

row 0.74 0.73 0.74 666 

single 0.68 0.61 0.64 228 

small-title 0.85 0.97 0.91 1546 

text 1 1 1 1546 

btn-orange 0.33 0.45 0.38 508 

double 0.56 0.48 0.52 434 

Btn-red 0.3 0.15 0.2 514 

quardruple 0.88 0.73 0.8 884 

Btn-green 0.35 0.41 0.38 524 

start 0.57 0.78 0.7 250 

According to Fig. 38 Model with EfiecientNet confusion matrix, this model mixes coloured button 

predictions and double with quadruple and single tokens. 

 
Fig. 38 Model with EfiecientNet confusion matrix 



49 

4.5. Experiments with pix2code dataset and model with ResNet encoder  

This section will overview grid search results with our models and pix2code dataset and analyse the 

best performing model accuracy. 

4.5.1. Grid search results 

According to Fig. 39 Model with Resnet encoder grid search results, the best resulting combination 

is six attention heads and 0.05 dropout. It reaches 0.9303 validation accuracy. Interestingly 

configurations with 0.05 dropout on average outperform their counterparts with different dropout. 

 
Fig. 39 Model with Resnet encoder grid search results 

4.5.2. Best performing model confusion matrix and classification report 

According to Table 14 Model with Resnet encoder accuracy report this configuration also predict the 

whole header row precisely. It also achieves the lowest F1 score with red, green and orange buttons. 

Table 14 Model with Resnet encoder accuracy report 

Label Precision Recall F1-Score Support 

<pad> 1 1 1 9097 

Header 1 1 1 250 

{ 1 1 1 2462 

Btn-active 1 1 1 250 

Btn-inactive 1 1 1 629 

} 0.94 0.97 0.96 2462 

row 0.96 0.92 0.94 666 

single 0.88 0.87 0.88 228 

small-title 0.92 1 0.95 1546 



50 

text 1 1 1 1546 

btn-orange 0.43 0.38 0.41 508 

double 0.85 0.53 0.65 434 

Btn-red 0.38 0.45 0.42 514 

quardruple 0.87 0.87 0.87 884 

Btn-green 0.41 0.38 0.39 524 

start 0.94 0.83 0.83 250 

According to Fig. 40 Model with Resnet encoder confusion matrix this model confuses reg, green and 

orange buttons, double and quadruple tokens. 

 
Fig. 40 Model with Resnet encoder confusion matrix 

4.6. Experiments with pix2code overview  

According to Table 15 Each network top configuration with pix2code dataset results while doing a 

grid search all the most accurate models have six attention heads. We can reason that having more 

attention heads enable extracting information from multiple dimensions in multimodal space. Best 

performing models (VGG16 and Resnet based encoders) have 0.05 dropout showing that they start 

to overfit, where training accuracy increase while validation accuracy drops. 

Table 15 Each network top configuration with pix2code dataset results while doing a grid search 

Network encoder  Number of heads Dropout Validate Accuracy Test accuracy 

VGG16 6 0.05 0.9428 0.9404 



51 

ResNet 6 0.05 0.9393 0.9303 

Vit16 6 0 0.8643 0.8633 

EffNetB0 6 0 0.8846 0.8788 

When comparing their F1 score to respective tokens, we can see that all of them struggle with button 

colours. While the visual transformer did not achieve the best overall accuracy, it made the best 

predictions regarding the button colours. Also, we can reason that our decoder learns a comprehensive 

set of recurring sequence patterns with placeholders for tokens that are likely to change and then tries 

to predict that token. 

 
Fig. 41 Various models with pix2code F1 scores comparison 

1

1

1

0.36

0.77

0.87

0.74

0.64

0.91

1

0.38

0.52

0.2

0.8

0.38

0.7

1

1

0.99

0.11

0.72

0.84

0.63

0.21

0.86

1

0.46

0.15

0.42

0.55

0.48

0.74

1

1

1

1

1

0.96

0.94

0.88

0.95

1

0.41

0.65

0.42

0.87

0.39

0.83

1

1

1

1

1

0.99

0.99

0.98

0.98

1

0.46

0.98

0.36

0.99

0.49

0.94

<pad>

Header

{

Btn-active

Btn-inactive

}

row

single

small-title

text

btn-orange

double

Btn-red

quardruple

Btn-green

start

Best perfoming models F1 scores comparison with pix2code

VGG16 Resnet Visual transformer EfiecientNet



52 

4.7. Experiments with our dataset and model with VGG16 encoder  

This section will overview grid search results with our models and pix2code dataset and analyse best 

performing model accuracy. 

4.7.1. Grid search results 

According to Fig. 42 Model with VGG16 encoder grid search results best-performing model has a 

0.05 dropout and five attention heads. Interestingly on average, zero dropout configuration were less 

accurate than configurations with 0.05 and 0.1 drop. 

 
Fig. 42 Model with VGG16 encoder grid search results 

4.7.2. Best performing model confusion matrix and classification report 

According to Table 25 Model with VGG16 encoder and our dataset precision report and Fig. 46 

Model with VGG16 encoder and our dataset confusion matrix we see that model usually misses 

prediction where similarly sequence has branches. Such as tokens ‘1/5’, ‘1/3’, and ‘3/5’, which 

always follow token ‘grid-column’. Similarly to pix2code dataset, it also mixes button colour 

defining tokens Model also confuses tokens such as ‘14px’ and ‘18px’, which always appear after 

token ‘font-size’. Also heardest to predict was a token with its value ‘3’ token ‘#ffffff’ value. 

‘#ffffff’ is used to indicate white text colour for active header button element as well as button 

colour identifying tokens. Finally, it is the only model configuration that received a zero F1 score 

for any tokens. 

4.8. Experiments with our dataset and model with visual transformer encoder 

This section will overview grid search results with our models and pix2code dataset and analyse the 

best performing model accuracy. 



53 

4.8.1. Grid search results 

According to Error! Reference source not found., the best validation accuracy was achieved by 

configuration of six attention heads and 0.05 dropout.  

 
Fig. 43 Model with Visual transformer encoder grid search results 

4.8.2. Best performing model confusion matrix and classification report 

According to Table 27 Model with Visual transformer encoder and our dataset accuracy report and 

Fig. 48 Model with Visual transformer encoder and our dataset confusion matrix we see that similarly 

to pix2code results, this model predicts button colours deciding tokens the best compared to other 

models. However, it is the only model that achieves zero F1 scores for tokens. Oddly it also confuses 

various closing tags, and it predicts ‘</button>’, ‘</span>’  instead of ‘</h4>’ and vice versa. 

4.9. Experiments with our dataset and model with EfiecientNet encoder  

This section will overview grid search results with our models and pix2code dataset and analyse best 

performing model accuracy. 

4.9.1. Grid search results 

According to Fig. 44 Model with EfiecientNet encoder grid search results highest validation accuracy 

was achieved by configuration of six attention heads and zero dropout. However, on average, the 0.05 

dropout configuration reached higher validation accuracy than the zero dropout configurations. 



54 

 
Fig. 44 Model with EfiecientNet encoder grid search results 

4.9.2. Best performing model confusion matrix and classification report 

According to Table 28 Model with EfficientNet encoder and our dataset accuracy report we can see 

and to Fig. 49 Model with Efficientnet encoder and our dataset confusion matrix we see that this 

model also struggles with predicting colours of buttons it has zero F1 scores for five tokens, which 

means that it never predicts them. 

4.10. Experiments with our dataset and model with ResNet encoder  

This section will overview grid search results with our models and pix2code dataset and analyse best 

performing model accuracy. 

4.10.1. Grid search results 

According to the Fig. 45 Model with Resnet encoder grid search results, the best performing model 

has 0 dropout and six attention heads. Similarly to EfiecientNet encoder results, configuration with 

0.05 performed better than configurations without dropout. 



55 

 
Fig. 45 Model with Resnet encoder grid search results 

4.10.2. Best performing model confusion matrix and classification report 

According to Table 26 Model with Resnet encoder and our dataset accuracy report and Fig. 47 Model 

with Resnet encoder and our dataset confusion matrix we see that it also mixes button colours 

predictions and receive zero F1 predictions for four tokens 

4.11. Experiments with our dataset and  

Like the pix2code dataset, the most accurate networks use VGG16 and Resnet Cnn architectures for 

their encoders. Also, having 0.05 on average allows networks to achieve higher or the same accuracy 

as having no dropout while being less overfit. 

Table 16 Our dataset grid search top results 

Network encoder  Number of heads Dropout Validate Accuracy Test accuracy 

VGG16 6 0.05 0.9233 0.9162 

ResNet 6 0 0.919 0.9066 

Vit16 6 0 0.8707 0.8701 

EffNetB0 6 0 0.9028 0.8987 

From Table 29 Best performing modes different encoders and our dataset F1 accuracy comparison 

we can see that tokens which can be paired without alternatives (such as ‘justify-content:’ and ‘space-

around;’ achieves higher F1 score, than those with alternatives (for example ‘background and linear-

gradient(#fbb450,#f89406); or ‘linear-gradient(#62c462,#51a351);’ or ‘linear-

gradient(#ee5f5b,#bd362f);’) and more possible tokens pair is the lower F1 score gets. Also, since 

this noticeable from both datasets, we can assume that model well predicts high-level features, such 

as the count and order of components. However, it struggles to predict low-level features, like 

component colour. 



56 

Conclusions 

1. After analysing various image processing, language modelling, and image captioning networks. 

We came with two hypotheses: either Full transformer architecture for image captioning s or using 

image captioning with stacked attentions with cnn with pre-trained weights would yield the best 

result. 

2. In this paper, we described an implementation software and rules used to generate the pix2html 

dataset. We generate a dataset with similar images but ~8.9 times longer sequences and a ~4.5 times 

broader vocabulary than the original pix2code dataset. This dataset will help to evaluate our solution 

performance on simple and more complicated datasets. 

3.We successfully implemented and applied two different architectures for image captioning, which 

resulted in four different models. All were able to generate HTML from an image with accuracy 

higher than pix2code. We expected that the best-performing model would use a visual transformer in 

its image processing part. However, the results show that models with VGG16 decoder achieve the 

highest overall accuracy. This result could be explained via the VGG16 extracting higher-level 

features and not paying much attention to minor details, thus having a lower accuracy in image 

classification tasks but higher for our particular problem. We have also observed similarities and 

differences between various tokens predictions accuracies and noticed that the model that uses vision 

transformer predicts the most challenging part (green, orange and red buttons) better than cnn based 

encoder models. We have also noticed that most confused tokens are indicating colours for both our 

and pix2code datasets buttons. Furthermore, we noticed that predicting HTML sequence from images 

of size 224x224 pixels struggles to differentiate low-level features such as font size of 14px or 18px. 

4.After comparing our solutions with already present ones, we found that our solution reaches higher 

accuracy with both our and pix2code datasets. We also noticed only a slight accuracy decrease 

(0.9355 with pix2code versus 0.9336 with our dataset). 



57 

List of references 

1. Y. LeCun, et al. Backpropagation 

Applied to Handwritten Zip Code Recognition.  

2. KRIZHEVSKY, A., SUTSKEVER, I. and HINTON, G. ImageNet Classification with Deep 

Convolutional Neural Networks. New York: ACM, May 24, 2017 Available from: 

http://dl.acm.org/citation.cfm?id=3065386 ABI/INFORM Collection China. ISBN 0001-0782. DOI 

10.1145/3065386. 

3. HE, K., ZHANG, X., REN, S. and SUN, J. Deep Residual Learning for Image Recognition. , Dec 

10, 2015 Available from: 

https://www.openaire.eu/search/publication?articleId=od________18::e7235b2295e7fd00c3555a8b

feb2c6b0. 

4. TAN, M. and LE, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural 

Networks, May 28, 2019. Available from: https://arxiv.org/abs/1905.11946. 

5. SZEGEDY, C., et al. Going Deeper with Convolutions. , Sep 16, 2014 Available from: 

https://www.openaire.eu/search/publication?articleId=od________18::5df6d69237f0851889698436

1ca7485a. 

6. SZEGEDY, C., et al. Rethinking the Inception Architecture for Computer Vision. Computer 

Vision and Pattern Recognition 2016, Dec 1, 2015 Available from: 

https://www.openaire.eu/search/publication?articleId=dedup_wf_001::e3ccf9935e81d95ffbc9afc5f3

6a2092. 

7. Gao Huang, Zhuang Liu, VAN DER MAATEN, L. and WEINBERGER, K.Q. Densely 

Connected Convolutional Networks. IEEE, Jul 2017 Available from: 

https://ieeexplore.ieee.org/document/8099726 ISBN 1063-6919. DOI 10.1109/CVPR.2017.243. 

8. CHOLLET, F. Xception: Deep Learning with Depthwise Separable Convolutions. IEEE, Jul 

2017 Available from: https://ieeexplore.ieee.org/document/8099678 ISBN 1063-6919. DOI 

10.1109/CVPR.2017.195. 

9. YU, F., KOLTUN, V. and FUNKHOUSER, T. Dilated Residual Networks. IEEE, Jul 2017 

Available from: https://ieeexplore.ieee.org/document/8099558 ISBN 1063-6919. DOI 

10.1109/CVPR.2017.75. 

10. CAI, H., ZHU, L. and HAN, S. ProxylessNAS: Direct Neural Architecture Search on Target 

Task and Hardware, Dec 2, 2018. Available from: https://arxiv.org/abs/1812.00332. 

11. ZOPH, B., VASUDEVAN, V., SHLENS, J. and LE, Q.V. Learning Transferable Architectures 

for Scalable Image Recognition. IEEE, Jun 2018 Available from: 

https://ieeexplore.ieee.org/document/8579005 DOI 10.1109/CVPR.2018.00907. 

12. SZEGEDY, C., IOFFE, S., VANHOUCKE, V. and ALEMI, A. Inception-V4, Inception-ResNet 

and the Impact of Residual Connections on Learning. , Feb 23, 2016 Available from: 

https://www.openaire.eu/search/publication?articleId=od________18::44ac8f8822c35366d643221e

f4b97e42. 

http://dl.acm.org/citation.cfm?id=3065386
https://www.openaire.eu/search/publication?articleId=od________18::e7235b2295e7fd00c3555a8bfeb2c6b0
https://www.openaire.eu/search/publication?articleId=od________18::e7235b2295e7fd00c3555a8bfeb2c6b0
https://arxiv.org/abs/1905.11946
https://www.openaire.eu/search/publication?articleId=od________18::5df6d69237f08518896984361ca7485a
https://www.openaire.eu/search/publication?articleId=od________18::5df6d69237f08518896984361ca7485a
https://www.openaire.eu/search/publication?articleId=dedup_wf_001::e3ccf9935e81d95ffbc9afc5f36a2092
https://www.openaire.eu/search/publication?articleId=dedup_wf_001::e3ccf9935e81d95ffbc9afc5f36a2092
https://ieeexplore.ieee.org/document/8099726
https://ieeexplore.ieee.org/document/8099678
https://ieeexplore.ieee.org/document/8099558
https://arxiv.org/abs/1812.00332
https://ieeexplore.ieee.org/document/8579005
https://www.openaire.eu/search/publication?articleId=od________18::44ac8f8822c35366d643221ef4b97e42
https://www.openaire.eu/search/publication?articleId=od________18::44ac8f8822c35366d643221ef4b97e42


58 

13. WU, B., et al. Visual Transformers: Token-Based Image Representation and Processing for 

Computer Vision, Jun 05, 2020. Available from: https://arxiv.org/abs/2006.03677. 

14. CHO, K., et al. Learning Phrase Representations using RNN Encoder–Decoder for Statistical 

Machine Translation. Association for Computational Linguistics (ACL), 2014 Available from: 

https://search.datacite.org/works/10.3115/v1/d14-1179 DOI 10.3115/v1/d14-1179. 

15. HOCHREITER, S. and SCHMIDHUBER, J. Long Short-Term Memory. Neural Computation, 

Nov, 1997, vol. 9, no. 8. pp. 1735-1780. Available from: 

https://search.datacite.org/works/10.1162/neco.1997.9.8.1735 MEDLINE. ISSN 1530-888X. DOI 

10.1162/neco.1997.9.8.1735. 

16. CHUNG, J., GULCEHRE, C., CHO, K. and BENGIO, Y. Empirical Evaluation of Gated 

Recurrent Neural Networks on Sequence Modeling, Dec 11, 2014. Available from: 

https://arxiv.org/abs/1412.3555. 

17. GOOGLE, I.S., ORIOL, V., Google and LE GOOGLE, Q.V. Sequence to Sequence Learning 

with Neural Networks. , -12-14, 2014. 

18. BAHDANAU, D., CHO, K. and BENGIO, Y. Published as a Conference Paper at ICLR 2015 

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE.  

19. VASWANI, A., et al. Attention is all You Need, Jun 12, 2017. Available from: 

https://arxiv.org/abs/1706.03762. 

20. LEE, J., MANSIMOV, E. and CHO, K. Deterministic Non-Autoregressive Neural Sequence 

Modeling by Iterative Refinement, Feb 19, 2018. Available from: https://arxiv.org/abs/1802.06901. 

21. KITAEV, N., KAISER, Ł and LEVSKAYA, A. Reformer: The Efficient Transformer, Jan 13, 

2020. Available from: https://arxiv.org/abs/2001.04451. 

22. AKBARI, H., et al. Multi-Level Multimodal Common Semantic Space for Image-Phrase 

Grounding, Nov 28, 2018. Available from: https://arxiv.org/abs/1811.11683. 

23. HOSSAIN, M.Z., SOHEL, F., SHIRATUDDIN, M.F. and LAGA, H. A Comprehensive Survey 

of Deep Learning for Image Captioning, Oct 6, 2018. Available from: 

https://arxiv.org/abs/1810.04020. 

24. XU, K., et al. Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. , 

Feb 10, 2015 Available from: 

https://www.openaire.eu/search/publication?articleId=od________18::938e5c5c3b2dd7812b5d23e3

719d7b86. 

25. ZHU, X., et al. Captioning Transformer with Stacked Attention Modules. Applied Sciences, 

May 07, 2018, vol. 8, no. 5. pp. 739. Available from: 

https://search.proquest.com/docview/2321853478 CrossRef. ISSN 2076-3417. DOI 

10.3390/app8050739. 

26. HERDADE, S., KAPPELER, A., BOAKYE, K. and SOARES, J. Image Captioning: 

Transforming Objects into Words, Jun 13, 2019. Available from: https://arxiv.org/abs/1906.05963. 

https://arxiv.org/abs/2006.03677
https://search.datacite.org/works/10.3115/v1/d14-1179
https://search.datacite.org/works/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1412.3555
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1802.06901
https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/1811.11683
https://arxiv.org/abs/1810.04020
https://www.openaire.eu/search/publication?articleId=od________18::938e5c5c3b2dd7812b5d23e3719d7b86
https://www.openaire.eu/search/publication?articleId=od________18::938e5c5c3b2dd7812b5d23e3719d7b86
https://search.proquest.com/docview/2321853478
https://arxiv.org/abs/1906.05963


59 

27. CORNIA, M., STEFANINI, M., BARALDI, L. and CUCCHIARA, R. Meshed-Memory 

Transformer for Image Captioning. IEEE, Jun 2020 Available from: 

https://ieeexplore.ieee.org/document/9157222 DOI 10.1109/CVPR42600.2020.01059. 

28. LIU, W., et al. CPTR: Full Transformer Network for Image Captioning, Jan 26, 2021. Available 

from: https://arxiv.org/abs/2101.10804. 

29. ZHU, Z., XUE, Z. and YUAN, Z. Automatic Graphics Program Generation using Attention-

Based Hierarchical Decoder, Oct 26, 2018. Available from: https://arxiv.org/abs/1810.11536. 

30. LOSHCHILOV, I. and HUTTER, F. Decoupled Weight Decay Regularization, Nov 14, 2017. 

Available from: https://arxiv.org/abs/1711.05101. 

31. SRIVASTAVA, N., HINTON, G., KRIZHEVSKY, A. and SALAKHUTDINOV, R. Machine 

Learning; Reports Summarize Machine Learning Study Results from University of Toronto 

(Dropout: A Simple Way to Prevent Neural Networks from Overfitting). Atlanta: NewsRx, Dec 15, 

2014 Available from: https://search.proquest.com/docview/1634927573 ISBN 1944-1851.  

 

https://ieeexplore.ieee.org/document/9157222
https://arxiv.org/abs/2101.10804
https://arxiv.org/abs/1810.11536
https://arxiv.org/abs/1711.05101
https://search.proquest.com/docview/1634927573


60 

Appendices 

Appendix 1. Grid search results with pix2code dataset 

Table 17 Model with VGG16 encoder and pix2code dataset grid search results 

Dropout Heads Train accuracy Validate accuracy 

0.05 6 0.942761 0.940367 

0 6 0.941713 0.939184 

0.05 5 0.940158 0.93779 

0.05 4 0.93812 0.935371 

0.1 6 0.937464 0.934996 

0.1 4 0.936266 0.934479 

0 5 0.933551 0.931491 

0 4 0.931899 0.930187 

0.1 5 0.930769 0.928352 

0.05 3 0.930001 0.928277 

0 3 0.92608 0.924464 

0.1 3 0.926379 0.923805 

0.05 2 0.917131 0.91585 

0 2 0.916152 0.914772 

0.1 2 0.91277 0.911318 

0.05 1 0.89027 0.889191 

0.1 1 0.881294 0.880794 

0 1 0.879801 0.877595 

Table 18 Model with Resnet and pix2code grid search results  

Dropout Heads Train accuracy Validate accuracy 

0.05 6 0.939252 0.930322 

0 6 0.942379 0.928951 



61 

0 5 0.93606 0.922472 

0.05 5 0.935074 0.922225 

0 4 0.934111 0.921318 

0.1 5 0.925185 0.917498 

0.1 6 0.927398 0.917318 

0.05 4 0.929919 0.915378 

0.05 3 0.914808 0.906217 

0.1 4 0.913213 0.905918 

0 2 0.912211 0.902075 

0 3 0.919809 0.900397 

0.1 3 0.906805 0.900097 

0.05 2 0.903878 0.894876 

0.1 2 0.895723 0.888112 

0.05 1 0.892286 0.886637 

0.1 1 0.878405 0.873213 

0 1 0.877206 0.869019 

Table 19 Model with Visual transformer encoder and pix2code dataset grid search results 

Dropout Heads Train accuracy Validate accuracy 

0 6 0.864255 0.863326 

0 5 0.862172 0.861011 

0 4 0.858793 0.856629 

0.05 6 0.855646 0.854592 

0 3 0.854709 0.853266 

0.05 5 0.852991 0.852165 

0.1 6 0.851774 0.851723 



62 

0.1 5 0.85047 0.850157 

0 2 0.85121 0.850022 

0 1 0.844478 0.844487 

0.05 4 0.834355 0.834921 

0.1 4 0.654628 0.655828 

0.05 3 0.603535 0.601993 

0.05 1 0.439176 0.436996 

0.1 3 0.389298 0.386082 

0.1 1 0.380948 0.381678 

0.05 2 0.243837 0.244936 

0.1 2 0.188221 0.187131 

Table 20 Model with Eficientnet encoder and pix2code dataset grid search results 

Dropout Heads Train accuracy Validate accuracy 

0 6 0.88462 0.878801 

0 5 0.882465 0.876487 

0 4 0.880297 0.875311 

0.05 6 0.877305 0.873348 

0.05 5 0.876633 0.872742 

0 3 0.872947 0.868884 

0.05 4 0.868082 0.866285 

0.1 6 0.868876 0.866232 

0.1 4 0.86489 0.862442 

0.05 3 0.864305 0.861715 

0 2 0.865079 0.861655 

0.1 5 0.863932 0.861026 



63 

0.05 2 0.859307 0.857363 

0.1 3 0.856623 0.855835 

0.1 2 0.855525 0.8537 

0.05 1 0.852254 0.851453 

0 1 0.853836 0.851176 

0.1 1 0.848349 0.847206 

Appendix 2. Grid search results with our dataset 

Table 21 Model with EfiecientNet encoder and our dataset grid search results 

Dropout Heads Train accuracy Validate_accuracy 

0 6 0.902788 0.898702 

0.05 6 0.899456 0.896196 

0.1 6 0.897817 0.895667 

0.05 5 0.897399 0.89556 

0 5 0.898839 0.895377 

0.1 5 0.896316 0.894511 

0 4 0.890299 0.888553 

0.05 4 0.890119 0.888036 

0.1 4 0.885628 0.883659 

0.05 3 0.884464 0.883135 

0 3 0.88328 0.881503 

0.1 3 0.881352 0.880012 

0.05 2 0.875236 0.875008 

0 2 0.873882 0.872221 

0.1 2 0.869894 0.870111 

0.05 1 0.862907 0.862508 



64 

0.1 1 0.860355 0.859741 

0 1 0.859249 0.857682 

Table 22 Model with VGG16 encoder and our dataset grid search results 

Dropout Heads Train accuracy Validate accuracy 

0.05 5 0.923273 0.916224 

0 6 0.925481 0.915613 

0.05 6 0.924408 0.915107 

0 5 0.921609 0.914064 

0.1 6 0.920465 0.912556 

0.05 4 0.916282 0.911488 

0.1 5 0.913407 0.906987 

0 4 0.912149 0.906539 

0.1 4 0.908158 0.904542 

0.05 3 0.907003 0.902743 

0.1 3 0.901336 0.898486 

0 3 0.903837 0.897839 

0.05 2 0.898988 0.896409 

0.1 2 0.893162 0.891781 

0 2 0.885546 0.881367 

0.05 1 0.871992 0.87169 

0.1 1 0.866007 0.864246 

0 1 0.800499 0.800454 

Table 23 Model with Resnet encoder and our dataset grid search results 

Dropout Heads Train accuracy Validate accuracy 

0 6 0.919045 0.906634 



65 

0.05 6 0.911493 0.905534 

0.05 5 0.904925 0.900028 

0.1 6 0.903257 0.899408 

0.1 5 0.903351 0.899365 

0 4 0.906398 0.898538 

0.05 4 0.900766 0.896932 

0.05 3 0.897189 0.895973 

0.1 4 0.89733 0.89538 

0 5 0.907392 0.895048 

0.1 3 0.891107 0.890251 

0 3 0.892362 0.887668 

0.05 2 0.885501 0.883014 

0.1 2 0.880744 0.880193 

0.05 1 0.872037 0.871063 

0 2 0.869387 0.865764 

0.1 1 0.865844 0.863594 

0 1 0.843682 0.843148 

Table 24 Model with vision transformer encoder and our dataset grid search results 

Dropout Heads Train accuracy Validate accuracy 

0.05 6 0.870698 0.870102 

0 6 0.871257 0.869333 

0.05 5 0.86944 0.868458 

0.05 4 0.864151 0.864754 

0 4 0.864459 0.86385 

0 5 0.864874 0.863842 



66 

0 3 0.861395 0.860714 

0 2 0.854681 0.854519 

0 1 0.852632 0.852334 

0.1 5 0.846624 0.845166 

0.1 4 0.650462 0.649752 

0.05 3 0.519767 0.520078 

0.1 1 0.44156 0.44158 

0.05 1 0.44156 0.44158 

0.05 2 0.437145 0.438595 

0.1 3 0.435996 0.434909 

0.1 2 0.316371 0.322737 

Appendix 3. Most accurate models with our dataset confusion matrixes and accuracy reports 



67 

 
Fig. 46 Model with VGG16 encoder and our dataset confusion matrix 

Table 25 Model with VGG16 encoder and our dataset precision report 

Token Precision Recall F1 Support 

0 1.0000 1.0000 1.0000 93733 

1 1.0000 1.0000 1.0000 250 

2 1.0000 1.0000 1.0000 7599 

3 0.7675 0.6562 0.7075 2042 

4 1.0000 1.0000 1.0000 1792 

5 1.0000 1.0000 1.0000 1792 

6 1.0000 1.0000 1.0000 250 

7 0.6482 0.9728 0.7780 4265 

8 1.0000 1.0000 1.0000 250 

9 0.8916 0.9906 0.9385 847 

10 0.9299 0.8760 0.9022 7599 

11 1.0000 0.5800 0.7342 250 



68 

12 0.9593 1.0000 0.9792 2473 

13 1.0000 1.0000 1.0000 931 

14 0.7418 0.7250 0.7333 931 

15 0.9159 0.5022 0.6487 2473 

16 0.7143 0.0600 0.1107 250 

17 1.0000 1.0000 1.0000 4015 

18 0.9981 0.8733 0.9315 1792 

19 1.0000 1.0000 1.0000 6057 

20 0.4673 0.4978 0.4820 1792 

21 0.6203 0.6579 0.6385 2473 

22 1.0000 1.0000 1.0000 2473 

23 1.0000 1.0000 1.0000 4015 

24 1.0000 1.0000 1.0000 4015 

25 0.8411 0.8770 0.8587 4015 

26 0.8354 0.8370 0.8362 2473 

27 0.8054 1.0000 0.8922 931 

28 1.0000 1.0000 1.0000 931 

29 1.0000 1.0000 1.0000 931 

30 1.0000 1.0000 1.0000 931 

31 0.5724 0.7788 0.6598 2473 

32 0.7315 1.0000 0.8449 681 

33 0.7566 0.7521 0.7543 2223 

34 1.0000 1.0000 1.0000 681 

35 1.0000 1.0000 1.0000 1542 

36 1.0000 1.0000 1.0000 1542 

37 0.3622 0.3566 0.3594 516 

38 0.6920 0.7983 0.7413 1542 

39 1.0000 1.0000 1.0000 1542 

40 1.0000 1.0000 1.0000 1542 

41 1.0000 1.0000 1.0000 1542 

42 1.0000 1.0000 1.0000 1542 

43 1.0000 1.0000 1.0000 1542 

44 1.0000 1.0000 1.0000 1542 

45 1.0000 1.0000 1.0000 1542 

46 0.3885 0.4475 0.4159 514 

47 0.3213 0.2773 0.2977 512 



69 

48 0.4759 0.4747 0.4753 1542 

49 0.7378 0.7354 0.7366 1542 

50 1.0000 1.0000 1.0000 1542 

51 1.0000 1.0000 1.0000 1542 

52 0.4765 0.3807 0.4232 1542 

53 1.0000 1.0000 1.0000 1542 

54 0.4046 0.2529 0.3113 1542 

55 0.8819 1.0000 0.9372 1792 

56 1.0000 1.0000 1.0000 250 

57 1.0000 1.0000 1.0000 250 

58 1.0000 1.0000 1.0000 250 

59 1.0000 1.0000 1.0000 250 

60 0.6781 0.7920 0.7306 250 

61 1.0000 1.0000 1.0000 250 

62 1.0000 1.0000 1.0000 1542 

63 0.9176 0.3035 0.4561 1542 

64 1.0000 1.0000 1.0000 1542 

65 1.0000 1.0000 1.0000 1542 

66 0.7335 0.5583 0.6340 557 

67 1.0000 1.0000 1.0000 1542 

68 1.0000 1.0000 1.0000 1542 

69 1.0000 1.0000 1.0000 1542 

70 0.7747 0.7676 0.7711 654 

71 0.4093 0.4093 0.4093 215 

72 0.6440 0.7088 0.6748 388 

73 0.5472 0.6744 0.6042 215 

 



70 

 
Fig. 47 Model with Resnet encoder and our dataset confusion matrix 

Table 26 Model with Resnet encoder and our dataset accuracy report 

Token Precision Recall F1 Support 

0 1.0000 1.0000 1.0000 93733 

1 1.0000 1.0000 1.0000 250 

2 1.0000 1.0000 1.0000 7599 

3 0.5317 0.5837 0.5565 2042 

4 0.9537 1.0000 0.9763 1792 

5 1.0000 1.0000 1.0000 1792 

6 1.0000 1.0000 1.0000 250 

7 0.5957 0.9991 0.7464 4265 

8 1.0000 1.0000 1.0000 250 

9 0.8582 0.8501 0.8541 847 

10 0.8562 0.9068 0.8808 7599 

11 0.0000 0.0000 0.0000 250 



71 

12 0.9382 1.0000 0.9681 2473 

13 0.8450 0.9957 0.9142 931 

14 0.7035 0.7315 0.7172 931 

15 0.9757 0.3732 0.5399 2473 

16 0.0000 0.0000 0.0000 250 

17 1.0000 1.0000 1.0000 4015 

18 1.0000 0.8605 0.9250 1792 

19 1.0000 0.9988 0.9994 6057 

20 0.4142 0.2277 0.2938 1792 

21 0.4968 0.6567 0.5657 2473 

22 1.0000 1.0000 1.0000 2473 

23 1.0000 1.0000 1.0000 4015 

24 1.0000 1.0000 1.0000 4015 

25 0.8638 0.7569 0.8068 4015 

26 0.7162 0.8043 0.7577 2473 

27 0.7180 0.8314 0.7705 931 

28 1.0000 1.0000 1.0000 931 

29 0.8478 0.9936 0.9149 931 

30 1.0000 1.0000 1.0000 931 

31 0.5100 0.6385 0.5671 2473 

32 0.7309 0.9971 0.8435 681 

33 0.6691 0.6122 0.6394 2223 

34 0.9898 1.0000 0.9949 681 

35 1.0000 0.9773 0.9885 1542 

36 1.0000 1.0000 1.0000 1542 

37 0.3418 0.4690 0.3954 516 

38 0.5630 0.7185 0.6313 1542 

39 1.0000 1.0000 1.0000 1542 

40 1.0000 1.0000 1.0000 1542 

41 1.0000 1.0000 1.0000 1542 

42 1.0000 1.0000 1.0000 1542 

43 1.0000 1.0000 1.0000 1542 

44 1.0000 1.0000 1.0000 1542 

45 1.0000 1.0000 1.0000 1542 

46 0.3370 0.2393 0.2799 514 

47 0.3433 0.3145 0.3282 512 



72 

48 0.3957 0.3444 0.3682 1542 

49 0.6090 0.4890 0.5424 1542 

50 1.0000 1.0000 1.0000 1542 

51 1.0000 1.0000 1.0000 1542 

52 0.2671 0.3301 0.2952 1542 

53 1.0000 1.0000 1.0000 1542 

54 0.3533 0.1680 0.2277 1542 

55 0.8682 1.0000 0.9295 1792 

56 1.0000 0.6520 0.7893 250 

57 1.0000 1.0000 1.0000 250 

58 1.0000 1.0000 1.0000 250 

59 1.0000 1.0000 1.0000 250 

60 0.0000 0.0000 0.0000 250 

61 1.0000 1.0000 1.0000 250 

62 0.9466 1.0000 0.9726 1542 

63 0.9342 0.0460 0.0878 1542 

64 1.0000 1.0000 1.0000 1542 

65 1.0000 1.0000 1.0000 1542 

66 0.5137 0.6732 0.5828 557 

67 1.0000 1.0000 1.0000 1542 

68 1.0000 1.0000 1.0000 1542 

69 1.0000 1.0000 1.0000 1542 

70 0.7633 0.6162 0.6819 654 

71 0.4311 0.3349 0.3770 215 

72 0.6547 0.3763 0.4779 388 

73 0.5315 0.3535 0.4246 215 



73 

 
Fig. 48 Model with Visual transformer encoder and our dataset confusion matrix 

Table 27 Model with Visual transformer encoder and our dataset accuracy report 

Token Precision Recall F1 Support 

0 0.9982 1.0000 0.9991 93733 

1 0.9690 1.0000 0.9843 250 

2 0.9927 0.9991 0.9959 7599 

3 0.5027 0.2321 0.3176 2042 

4 0.8771 0.9961 0.9328 1792 

5 1.0000 1.0000 1.0000 1792 

6 1.0000 0.9760 0.9879 250 

7 0.5164 0.8996 0.6562 4265 

8 0.0000 0.0000 0.0000 250 

9 0.6298 0.8194 0.7122 847 

10 0.7379 0.8741 0.8002 7599 

11 0.0000 0.0000 0.0000 250 



74 

12 0.9318 0.8900 0.9104 2473 

13 0.8389 0.6208 0.7136 931 

14 0.6897 0.6874 0.6885 931 

15 0.6246 0.3182 0.4216 2473 

16 0.0000 0.0000 0.0000 250 

17 0.9307 0.9963 0.9623 4015 

18 0.9961 0.8560 0.9208 1792 

19 0.9247 0.9982 0.9601 6057 

20 0.3868 0.2935 0.3338 1792 

21 0.4627 0.7315 0.5668 2473 

22 1.0000 0.9964 0.9982 2473 

23 0.9825 0.9940 0.9882 4015 

24 1.0000 0.9973 0.9986 4015 

25 0.6763 0.7452 0.7091 4015 

26 0.6394 0.7214 0.6779 2473 

27 0.6082 0.4286 0.5028 931 

28 1.0000 1.0000 1.0000 931 

29 0.6747 0.3899 0.4942 931 

30 1.0000 1.0000 1.0000 931 

31 0.3942 0.6268 0.4840 2473 

32 0.7304 0.9868 0.8395 681 

33 0.4387 0.3527 0.3910 2223 

34 0.9478 0.3730 0.5353 681 

35 0.9662 0.9442 0.9551 1542 

36 1.0000 0.9981 0.9990 1542 

37 0.3869 0.3081 0.3430 516 

38 0.5665 0.6543 0.6073 1542 

39 1.0000 0.9916 0.9958 1542 

40 1.0000 0.9929 0.9964 1542 

41 1.0000 0.9916 0.9958 1542 

42 0.9916 0.9968 0.9942 1542 

43 0.9948 0.9857 0.9902 1542 

44 1.0000 0.9916 0.9958 1542 

45 0.9878 0.9968 0.9923 1542 

46 0.3577 0.3716 0.3645 514 

47 0.3707 0.4004 0.3850 512 



75 

48 0.2985 0.2853 0.2918 1542 

49 0.4376 0.3457 0.3862 1542 

50 0.9929 0.9981 0.9955 1542 

51 1.0000 0.9916 0.9958 1542 

52 0.3564 0.1770 0.2366 1542 

53 1.0000 0.9909 0.9954 1542 

54 0.2169 0.1913 0.2033 1542 

55 0.8567 0.8571 0.8569 1792 

56 0.0000 0.0000 0.0000 250 

57 1.0000 1.0000 1.0000 250 

58 1.0000 1.0000 1.0000 250 

59 1.0000 1.0000 1.0000 250 

60 0.0000 0.0000 0.0000 250 

61 1.0000 1.0000 1.0000 250 

62 0.9270 0.9968 0.9606 1542 

63 0.2103 0.0292 0.0513 1542 

64 1.0000 0.9838 0.9918 1542 

65 1.0000 0.9981 0.9990 1542 

66 0.3654 0.2998 0.3294 557 

67 0.9974 0.9955 0.9964 1542 

68 1.0000 0.9981 0.9990 1542 

69 1.0000 1.0000 1.0000 1542 

70 0.6131 0.1865 0.2860 654 

71 0.4500 0.0419 0.0766 215 

72 0.5027 0.2397 0.3246 388 

73 0.2632 0.1163 0.1613 215 

74 0.000 0.000 0.000 250 

 



76 

 
Fig. 49 Model with Efficientnet encoder and our dataset confusion matrix 

Table 28 Model with EfficientNet encoder and our dataset accuracy report 

token precision recall f1 support 

0 0.9999 1.0000 0.9999 93733 

1 1.0000 1.0000 1.0000 250 

2 0.9999 1.0000 0.9999 7599 

3 0.4941 0.4892 0.4916 2042 

4 0.9086 0.9989 0.9516 1792 

5 1.0000 1.0000 1.0000 1792 

6 1.0000 0.9960 0.9980 250 

7 0.6545 0.9147 0.7630 4265 



77 

8 1.0000 0.9840 0.9919 250 

9 0.8763 0.8784 0.8774 847 

10 0.8491 0.8516 0.8503 7599 

11 0.0000 0.0000 0.0000 250 

12 0.9364 1.0000 0.9671 2473 

13 0.7690 0.9979 0.8686 931 

14 0.7106 0.7304 0.7203 931 

15 0.7050 0.5499 0.6179 2473 

16 0.0000 0.0000 0.0000 250 

17 0.9990 1.0000 0.9995 4015 

18 1.0000 0.8605 0.9250 1792 

19 1.0000 1.0000 1.0000 6057 

20 0.4084 0.3086 0.3516 1792 

21 0.4898 0.6005 0.5395 2473 

22 1.0000 1.0000 1.0000 2473 

23 1.0000 1.0000 1.0000 4015 

24 1.0000 1.0000 1.0000 4015 

25 0.7787 0.8087 0.7934 4015 

26 0.7132 0.7513 0.7318 2473 

27 0.7365 0.8195 0.7758 931 

28 1.0000 1.0000 1.0000 931 

29 0.8646 0.9463 0.9036 931 

30 1.0000 1.0000 1.0000 931 

31 0.5120 0.5884 0.5475 2473 

32 0.7312 0.9985 0.8442 681 



78 

33 0.6196 0.7188 0.6656 2223 

34 1.0000 1.0000 1.0000 681 

35 0.9993 0.9825 0.9908 1542 

36 1.0000 1.0000 1.0000 1542 

37 0.3752 0.4167 0.3949 516 

38 0.5820 0.5590 0.5703 1542 

39 0.9994 0.9994 0.9994 1542 

40 1.0000 1.0000 1.0000 1542 

41 1.0000 1.0000 1.0000 1542 

42 1.0000 1.0000 1.0000 1542 

43 1.0000 1.0000 1.0000 1542 

44 1.0000 0.9955 0.9977 1542 

45 1.0000 1.0000 1.0000 1542 

46 0.3223 0.3035 0.3126 514 

47 0.3443 0.3262 0.3350 512 

48 0.3400 0.4073 0.3706 1542 

49 0.5638 0.5156 0.5386 1542 

50 0.9891 1.0000 0.9945 1542 

51 1.0000 1.0000 1.0000 1542 

52 0.3225 0.3619 0.3411 1542 

53 1.0000 1.0000 1.0000 1542 

54 0.3119 0.1511 0.2036 1542 

55 0.8707 0.9581 0.9123 1792 

56 1.0000 0.2800 0.4375 250 

57 1.0000 1.0000 1.0000 250 



79 

58 1.0000 1.0000 1.0000 250 

59 1.0000 0.9520 0.9754 250 

60 0.0000 0.0000 0.0000 250 

61 1.0000 1.0000 1.0000 250 

62 0.9483 0.9987 0.9728 1542 

63 0.6795 0.1141 0.1954 1542 

64 0.9961 1.0000 0.9981 1542 

65 1.0000 1.0000 1.0000 1542 

66 0.6048 0.7307 0.6618 557 

67 1.0000 1.0000 1.0000 1542 

68 1.0000 1.0000 1.0000 1542 

69 1.0000 1.0000 1.0000 1542 

70 0.6526 0.5657 0.6061 654 

71 0.3617 0.1581 0.2201 215 

72 0.5688 0.3943 0.4658 388 

73 0.000 0.0000 0.0000 215 

74 0.000 0.000 0.000 250 

Table 29 Best performing modes different encoders and our dataset F1 accuracy comparison 

Token VGG16 Resnet Efiecient VIT 

<pad> 1.0000 1 0.9999 0.9991 

<header 1.0000 1 1 0.9843 

style=" 1.0000 1 0.9999 0.9959 

display: 0.7075 0.5565 0.4916 0.3176 

flex; 1.0000 0.9763 0.9516 0.9328 

flex-direction: 1.0000 1 1 1 

row; 1.0000 1 0.998 0.9879 

margin: 0.7780 0.7464 0.763 0.6562 



80 

15px 1.0000 1 0.9919 0 

0; 0.9385 0.8541 0.8774 0.7122 

"> 0.9022 0.8808 0.8503 0.8002 

</header> 0.7342 0 0 0 

<button 0.9792 0.9681 0.9671 0.9104 

background: 1.0000 0.9142 0.8686 0.7136 

#2f79b9; 0.7333 0.7172 0.7203 0.6885 

color: 0.6487 0.5399 0.6179 0.4216 

#ffffff; 0.1107 0 0 0 

5px; 1.0000 1 0.9995 0.9623 

padding-right: 0.9315 0.925 0.925 0.9208 

20px; 1.0000 0.9994 1 0.9601 

padding-left: 0.4820 0.2938 0.3516 0.3338 

align-self: 0.6385 0.5657 0.5395 0.5668 

baseline; 1.0000 1 1 0.9982 

border-radius: 1.0000 1 1 0.9882 

4px; 1.0000 1 1 0.9986 

font-size: 0.8587 0.8068 0.7934 0.7091 

14px; 0.8362 0.7577 0.7318 0.6779 

height: 0.8922 0.7705 0.7758 0.5028 

40px; 1.0000 1 1 1 

border: 1.0000 0.9149 0.9036 0.4942 

none; 1.0000 1 1 1 

</button> 0.6598 0.5671 0.5475 0.484 

#333333; 0.8449 0.8435 0.8442 0.8395 

padding: 0.7543 0.6394 0.6656 0.391 

0 1.0000 0.9949 1 0.5353 

white; 1.0000 0.9885 0.9908 0.9551 

background-image: 1.0000 1 1 0.999 

linear-gradient(#ee5f5b,#bd362f); 0.3594 0.3954 0.3949 0.343 

border-color: 0.7413 0.6313 0.5703 0.6073 



81 

rgba(0,0,0,0.25); 1.0000 1 0.9994 0.9958 

border-style: 1.0000 1 1 0.9964 

solid; 1.0000 1 1 0.9958 

border-width: 1.0000 1 1 0.9942 

1px; 1.0000 1 1 0.9902 

min-height: 1.0000 1 0.9977 0.9958 

34px; 1.0000 1 1 0.9923 

linear-gradient(#fbb450,#f89406); 0.4159 0.2799 0.3126 0.3645 

linear-gradient(#62c462,#51a351); 0.2977 0.3282 0.335 0.385 

<h4 0.4753 0.3682 0.3706 0.2918 

18px; 0.7366 0.5424 0.5386 0.3862 

font-weight: 1.0000 1 0.9945 0.9955 

500; 1.0000 1 1 0.9958 

</h4> 0.4232 0.2952 0.3411 0.2366 

<span 1.0000 1 1 0.9954 

</span> 0.3113 0.2277 0.2036 0.2033 

<div 0.9372 0.9295 0.9123 0.8569 

grid; 1.0000 0.7893 0.4375 0 

grid-template-columns: 1.0000 1 1 1 

repeat(4,1fr); 1.0000 1 1 1 

gap: 1.0000 1 0.9754 1 

grid-template-rows: 0.7306 0 0 0 

repeat(3,140px); 1.0000 1 1 1 

</div> 1.0000 0.9726 0.9728 0.9606 

background-color: 0.4561 0.0878 0.1954 0.0513 

#f5f5f5; 1.0000 1 0.9981 0.9918 

grid-row: 1.0000 1 1 0.999 

1; 0.6340 0.5828 0.6618 0.3294 

column; 1.0000 1 1 0.9964 

justify-content: 1.0000 1 1 0.999 

space-around; 1.0000 1 1 1 



82 

grid-column: 0.7711 0.6819 0.6061 0.286 

1/3; 0.4093 0.377 0.2201 0.0766 

2; 0.6748 0.4779 0.4658 0.3246 

3/5; 0.6042 0.4246 0 0.1613 

3; 0.0769 0 0 0 

 


