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Summary 

Traumatic brain injury (TBI) is a major global health concern that generates a significant burden on 

society through mortality, disability, socioeconomic losses, and reduced quality of life. In an acute 

medical setting, timely maintenance of patient-specific optimal cerebral perfusion pressure (CPPopt) 

is critical for a positive outcome in patients with severe TBI. However, the wide clinical application 

of CPPopt-based therapy is limited by the nature of slow arterial blood pressure (ABP) and 

intracranial pressure (ICP) waves. These waves are transient and intermittent, and therefore directly 

affect the result of calculated CPPopt values. In current practice, ABP and ICP waves must be 

monitored for at least 4 hours to obtain sufficient data to determine the CPPopt value. This results in 

delayed CPPopt management therapy, which can adversely affect a patient’s treatment when an alarm 

for critical brain injury events is delayed or missed. The clinical applicability of the method is also 

limited by artifacts in patient monitoring signals, which deteriorate usable data by 40–50%. The goal 

of this research was to develop a machine learning (ML) algorithm that classifies patient ICP and 

ABP data segments as ‘informative’ or ‘non-informative’, using only the informative data to 

subsequently calculate individualized CPPopt values. The study contained a retrospective analysis of 

multi-modal physiological monitoring data from 84 severe TBI patients between 2013 and 2018. A 

unique software tool was designed to create a database of distinct informative and non-informative 

monitoring episodes. Two supervised machine learning models, Support Vector Machine with a 

Radial Basis Function kernel and Artificial Neural Network, were developed that each learned to 

classify patient data segments as informative or non-informative. The algorithm’s performance was 

evaluated for accuracy, sensitivity, and specificity using SPSS Statistical Software. The association 

of CPPopt-related parameters after applying ML algorithms with the patient outcome was determined 

through regression analysis. The results indicate that the ML algorithm increased classification 

accuracy by approximately 4.5% in distinguishing informative and non-informative events (77.58% 

to 82.1%). However, the most distinguished finding from this research is that when informative 

physiological ABP/ICP changes are present it is possible to detect individualized CPPopt values in a 

10 times shorter time window (20–30 minutes) compared to the clinical standard of 4 hours. Further 

prospective clinical studies are required to add strength and to determine the benefits of the developed 

ML method.
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Santrauka 

Galvos smegenų trauma (GST) yra globali sveikatos problema, susijusi su padidėjusiu visuomenėje 

mirtingumu, neįgalumu, socialiniais-ekonominiais nuostoliais ir suprastėjusia potrauminio gyvenimo 

kokybe. Intensyviojoje terapijoje, savalaikis ir individualizuotas GST gydymas paremtas optimalaus 

smegenų perfuzijos slėgio (OptSPS) palaikymo terapijos taikymu yra svarbus siekiant pagerinti GST 

pacientų klinikines baigtis. Tačiau šios terapijos klinikinį taikymą riboja tai, kad OptSPS vertės 

nustatymui yra naudojamos lėtosios arterinio kraujospūdžio (AKS) ir intrakranijinio slėgio (IKS) 

bangos, kurios yra nepastovios amplitudės, atsitiktinai atsirandančios ir išnykstančios. Nepakankama 

ir nepastovi šių bangų amplitudė yra pagrindinis veiksnys reikalaujantys ilgo mažiausiai 4 valandų 

AKS/IKS stebėsenos duomenų kaupimo reikalingo OptSPS vertės nustatymui. Toks vėlavimas 

neigiamai įtakoja paciento gydymą, kai kritinių smegenų pažeidimų įvykių aliarmas yra uždelsiamas 

arba praleidžiamas. Šio darbo tikslas yra sukurti mašininio mokymo (MM) algoritmą, kuris leistų 

GST pacientų AKS ir IKS stebėsenos duomenyse aptikti informatyvius duomenų epizodus iš kurių 

būtų galima patikimai nustatyti OptSPS vertę bei parinkti paciento gydymui tinkamą gydymo 

terapiją.  Šiai užduočiai spręsti buvo panaudoti 84 sunkią GST patyrusių pacientų multimodalinės 

stebėsenos duomenų surinkti Lietuvoje klinikinių tyrimų metu 2013-2018 metais. Šių duomenų 

analizei buvo sukurtas unikali programinė priemonė leidžianti klasifikuoti informacinius ir 

neinformacinius multimodalinės stebėsenos epizodus bei sudaryti šių duomenų bazę. Informacinių ir 

neinformacinių multimodalinės stebėsenos duomenų klasifikavimo modelių sukūrimui ir apmokymui 

buvo panaudotas atraminių vektorių klasifikatorius su radialine bazės funkcijos branduoliu ir dirbtinis 

neuroninis tinklas. Rezultatai parodė, kad sukurtas MM algoritmas leido 4,5 % 

pagerinti informatyvių ir neinformatyvių epizodų identifikavimo tikslumą (nuo 77,58% iki 

84.35%).  Tačiau svarbiausia išvada yra ta, kad esant informatyviems fiziologiniam AKS ir IKS 

pokyčiams, galima automatiškai  identifikuoti optSPS(t) vertes per 10 kartų trumpesnį laiką (per 20-

30 min.) lyginant su šiandien klinikinėje praktikoje naudojamomis technologijomis.  Tolimesni 

perspektyviniai klinikinių tyrimai yra būtini siekiant labiau ištirti sukurtų MM algoritmų taikymo 

galimybes klinikinėje praktikoje. 
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Introduction 

Traumatic brain injury (TBI) is a major global health concern that generates a significant burden on 

society through mortality, disability, socioeconomic losses, and reduced quality of life [1, 2]. In an 

acute medical setting, survival after TBI primarily depends on maintaining stable cerebral perfusion 

pressure (CPP) by ensuring patients receive adequate cerebral blood flow (CBF) [3, 4]. The Brain 

Trauma Foundation guidelines recommend a target CPP range of 60-70 mmHg to prevent secondary 

injuries caused by cerebral ischemia or edema [2]. However, this universal target range for CPP may 

not be the optimal value for the diverse scope of patients affected by TBI. Many factors can influence 

individual optimal CPP range including age, intracranial pressure (ICP), brain injury severity, glucose 

levels, and the duration of cerebrovascular autoregulation impairment events [5].  

One method for CPP-targeted treatment is based on both determination of the cerebral pressure 

reactivity index (PRx), as well as identification and maintenance of the patient’s optimized CPP value 

[6, 7]. PRx defines the correlation between slow moving ICP and arterial blood pressure (ABP) waves 

over a defined moving time window [8, 9]. ICP is most often measured invasively through surgical 

implantation of a micro transducer into intraparenchymal tissue or a catheter into one of the brain’s 

ventricles [9, 10]. ABP can either be measured invasively through a sensor inserted into the radial 

artery or non-invasively through photoplethysmography [9, 10]. In clinical practice, PRx is the most 

commonly used assessment method for cerebrovascular autoregulatory status [2, 6].  

Plotting PRx against CPP generates a U-shaped curve, with the minimum of this curve known as 

‘CPPopt’, representing the value at which cerebral autoregulation is functioning optimally [8, 9]. 

CPPopt is a dynamic and patient-specific value [6]. Numerous retrospective studies provide support 

that maintaining CPP close to individual CPPopt values results in improved TBI patient outcomes [3, 

11, 12]. However, considerable limitations challenge the practical application of CPPopt-informed 

treatment strategies [6, 9]. Artifacts caused by patient movement, the disappearance and/or low 

amplitude of slow waves, the influence of general anesthetics [13, 14], patient status dynamics [13], 

and other physiological factors can distort the monitoring data [9]. This reduces usable data by 40–

50% [8, 15], making it unreliable and sometimes impossible to identify CPPopt values for all patients 

when confounding factors are present [6, 9]. The identification of CPPopt can also be interrupted by 

different physiological processes accruing within an ICP and ABP monitoring window, as this 

requires a more complex analysis. In turn, accurate human recognition and interpretation of this 

intricate data requires extensive education and training of TBI physiology, which can be difficult to 

acquire. Due to these challenges, typical CPPopt calculations require at least 4 hours of continuous 

patient monitoring data [2]. This extended length of time prior to medical treatment can be critical as 

evidence suggests cerebrovascular impairment lasting longer than 30 minutes significantly reduces 

positive outcomes [6, 16, 17].  

Machine learning (ML) approaches such as support vector machines, artificial neural networks, and 

decision trees have already shown promising results in clinical decision making [18–21]. Most 

existing models in TBI research have used inputs from various brain imaging techniques and 

physiological parameters to look for associations between variables and long-term outcomes with 

success [22–24]. There are a growing number of studies showing strong evidence that ML algorithms 

outperform common predictive models of TBI patient outcomes [21, 25, 26]. Yet, the impact of ML 

algorithms used to identify individualized CPPopt targets has not been explored.  
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The aim of this research is to develop and validate an ML algorithm to identify individual CPPopt 

values for TBI patients using only informative data.  

The objectives are:  

1. To develop a database of retrospectively analyzed patient physiological monitoring episodes that 

clearly distinguishes ‘informative’ data from ‘non-informative’ based on the presentation of 

critical events in ABP and ICP slow-wave forms. 

 

2. To develop a machine learning algorithm which learns to identify individual patient CPPopt 

values from selected ‘informative’ episodes classified based on data presented in ABP and ICP 

slow-wave forms. 

 

3. To test the possibility of identifying individual patient CPPopt values in monitoring time windows 

under 30 minutes. 

 



13 

1. Background 

1.1. Physiology of Traumatic Brain Injury 

This chapter presents background information about traumatic brain injury, current monitoring 

methods, and the relevance of treatment challenges in a clinical setting. 

1.1.1. Cerebrovascular Autoregulation 

Cerebrovascular autoregulation (CA) is the brain’s ability to regulate and maintain cerebral blood 

flow (CBF) despite changes in cerebral perfusion pressure (CPP) [9, 27], defined as: 

𝐶𝑃𝑃 = 𝑀𝑒𝑎𝑛 𝐴𝑟𝑡𝑒𝑟𝑖𝑎𝑙 𝐵𝑙𝑜𝑜𝑑 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝑀𝐴𝑃) − 𝐼𝑛𝑡𝑟𝑎𝑐𝑟𝑎𝑛𝑖𝑎𝑙 𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (𝐼𝐶𝑃)      (1) 

Upon assessment, CA can be further characterized into static and dynamic autoregulation [27, 28]. 

Static CA quantifies only steady state relationships between CBF and MAP without considering the 

time it takes for these changes to occur [28, 29]. Dynamic CA represents the rate at which these 

dynamic changes take place between CBF and MAP [9, 27, 28]. The assessment of dynamic CA is 

based on the premise that after a change in MAP, CBF will react to the change before returning to its 

original value [28, 29]. The faster CBF returns to normal, the healthier CA is functioning. The concept 

of CA was first proposed by Lassen [30] in 1959 as a triphasic curve, illustrated in Fig. 1. The curve 

consists of the lower limit, plateau, and upper limit of autoregulation [9, 27]. Since its development, 

this triphasic curve has been adopted into modern CA modelling. In a healthy adult, functioning CA 

limits are between 50 and 150 mmHg CPP or 60 to 160 mmHg [9] 

 

Fig. 1. Lassen’s triphasic curve of cerebrovascular autoregulation 

Steady ICP requires a balance of fluid components in the intracranial cavity, consisting of blood and 

cerebral spinal fluid (CSF) [10]. This requires coordination between the inflow of arterial blood and 

the outflow of venous blood, balanced with the rate of CSF production and drainage. The fluid 

exchange in the intracranial cavity is illustrated in Fig. 2. CA ensures that as MAP or CPP increases, 

vasoconstriction of the cerebral arteries reduces blood flow to the brain to prevent cerebral edema by 

hypo-perfusion [9, 27, 31]. Conversely, this process maintains steady ICP through vasodilation of the 

cerebral arteries when MAP or CPP decreases to increase blood flow and prevent ischemia [31]. 
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Fig. 2. Fluid balance in the intracranial cavity affecting intracranial pressure 

1.1.2. Traumatic Brain Injury and Cerebrovascular Autoregulation Dysfunction 

A traumatic brain injury (TBI) is defined by the Brain Trauma Foundation as “a sudden trauma, often 

a blow or jolt to the head, which causes damage to the brain” [32]. Receiving a TBI can impair CA 

function, meaning the brain is unable to maintain CBF within the upper and lower limits of 

autoregulation. With a lack of mechanisms to prevent it from dipping, CPP can easily decrease below 

the lower limit, rapidly leading to cerebral ischemia [27, 31]. In a state of ischemia, the brain lacks 

adequate oxygen and nutrients, drastically increasing the possibility of secondary injuries in the 

cerebral tissue and compromising the likelihood of functional recovery [9, 27].  

 

Conversely, when CA is impaired and there is no regulatory mechanism preventing it from rising, 

CPP can swiftly increase above the upper limit, resulting in swelling of the brain known as cerebral 

edema [27, 31]. The combination of CSF and blood begins to pool inside the cranial cavity; with the 

brain encased in the skull, it has no room to expand and ICP can increase to dangerously high 

pressures. Left untreated, cerebral edema can cause disruption of the blood brain barrier, neurological 

complications, and eventually death [9, 27, 33].  

 

The potential consequences of CA impairment following TBI are illustrated in Fig. 3. The green line 

represents healthy functioning CA, which remains relatively constant within the lower and upper 

bounds of CA, as CPP and MAP fluctuate [33]. The red line illustrates impaired CA function, which 

can lead to ischemia and edema, along with their corresponding secondary injuries [33]. 
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Fig. 3. Autoregulatory curve with CA dysfunction caused by TBI [33] 

1.2. Technology of TBI Patient Monitoring and Treatment 

This section describes current technologies used in clinical practice to monitor and assess 

cerebrovascular autoregulation in TBI patients. 

1.2.1. Cerebrovascular Autoregulation Monitoring  

Over the last 20 years, a wide variety of techniques have been developed and applied for CA 

monitoring and assessment [34]. To name a few: Transcranial Doppler (TCD) ultrasound, functional 

Near Infrared Spectroscopy (fNIRS), brain tissue oxygenation, parenchymal ICP monitors, and extra 

ventricular catheters [34]. Along with each of these monitoring methods, indices to assess CA have 

been created, such as the mean flow index (Mx), volumetric reactivity index (VRx) [35], and pressure 

reactivity index (PRx) [5, 34]. Today, using PRx for CA assessment is the clinical standard [2, 5, 34].  

 

PRx describes the ability of cerebral vessels to change their diameter in response to fluctuations in 

ABP, while maintaining a stable CBF [12]. This index is calculated as the Pearson correlation 

coefficient between ABP and ICP slow waves [5]. Slow waves are oscillations in ABP and ICP that 

are longer than those stimulated by physiological respiratory responses [36]. Waves can be classified 

as slow waves when all components have a spectral representation within the frequency limits of 

0.05–0.0055 Hz [36, 37]. Rhythmical changes in CBF are directly translated into ICP slow waveform, 

where increased slow wave amplitude indicates an exhausted CA response [37].  

 

ICP is continuously measured most accurately through invasive surgical implantation of either a 

micro transducer into intraparenchymal tissue, or a catheter into one of the brain ventricles [34]. ABP 

is measured by a sensor inserted into the radial artery or non-invasive photoplethysmography [9, 34]. 

To establish PRx estimates, mean ICP and MAP values are calculated every 10 seconds to 3 minutes 

[38], followed by a correlation of 30–40 consecutive values [9]. PRx values range from -1 to 1. A 

negative value of PRx reflects normal cerebrovascular reactivity, while a positive value indicates 
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dysfunction [3, 9, 38]. Fig. 4 illustrates the relationship between ABP and ICP slow wave forms and 

their reflected values in PRx. It is important to bear in mind that the reliable estimation of PRx values 

requires the presence of spontaneous fluctuations in ABP wave forms [16]. While such fluctuations 

are present in most patients following TBI, the magnitude of these fluctuations may be insufficient to 

produce significant ICP changes. In these cases, it is either not possible to calculate PRx or the 

determined value will be unreliable [38]. 

 

Fig. 4. The relationship between ABP and ICP slow waves and PRx value [57] 

The black line in both A) and B) illustrate the slice of ABP and ICP data reflected on associated PRx 

graphs. A) illustrates a positive correlation between slow waves in ICP and ABP, resulting in a 

positive PRx value. This indicates loss of cerebrovascular reserve and impaired CA [38, 57]. B) 

illustrates a negative correlation between slow waves in ABP and ICP, resulting in a negative PRx 

value. This indicates healthy cerebrovascular reserve and functioning CA [57].  

 

PRx values represent the average of all intracranial vascular regions and can be described as a global 

CA-related index [38, 39]. As the brain is complex and all regions do not work in unison, it requires 

varying CPP values depending on individual demands [39]. For example, an area of the brain that is 

uninjured will likely require a normal CPP, while areas that surround a hemorrhage will require 

varying CPP values. In addition, it is assumed that slow wave ICP oscillations are vasogenic in nature, 

when this is not always true. In this way, the PRx is an oversimplification of the myogenic 

mechanisms that work to maintain adequate cerebral blood flow and does not include the metabolic 

and neurogenic contributions [39, 40]. 
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1.2.2. Optimal Cerebral Perfusion Pressure  

The abundance of cerebrovascular autoregulation monitoring and assessment techniques available 

can increase complexity for clinical decision making, with considerable variation in research 

methodology [5, 34]. There is evidence that maintaining a TBI patient’s CPP within the range of 60–

70 mmHg leads to improved patient outcomes [2, 6, 7, 9, 11]. However, knowing which CPP is ideal 

for a specific patient can be difficult — too low and too high risk falling outside the patient’s 

individual lower and upper limits of CA [39].  

 

One proposed method is to find an individualized ‘optimal’ CPP, known as ‘CPPopt’, which 

combines continuous monitoring of CPP and PRx values [6, 9]. This value is identified as the 

minimum CPP value of the U-shaped relationship between PRx and CPP, illustrated in Fig. 5. 

CPPopt-targeted treatment is based on the premise that CA stability can be preserved if CPP is kept 

away from the dynamic lower and upper limits of autoregulation [2, 9]; this value represents an 

individual target for clinicians to achieve optimally functioning CA [9]. CPPopt is dynamic, differs 

between patients, and ranges within an individual’s triphasic CA curve over time [3, 6]. There is a 

growing number of retrospective observational studies showing evidence of the effectiveness of 

CPPopt-targeted treatments through association between poor outcome and deviation from calculated 

CPPopt [6, 9, 41, 42] but there lacks prospective clinical evidence [2, 11]. 

 

 

Fig. 5. Graph of CPP vs PRx used to identify CPPopt 

Two prospective pilot studies have been performed to date, both providing support for the 

effectiveness of CPPopt-targeted treatment. The first, completed in 2010 by Jaeger et al. [12], 

attempted to evaluate PRx-guided CPPopt values following TBI by analyzing the relationship 

between CPPopt and brain tissue oxygen for 38 brain injury patients. The results of the study 

presented a significant correlation between CPPopt and CPP values, where brain tissue oxygen 

reached its plateau (r = .79, p < .01). Accordingly, the study supported the use of PRx in CPPopt-

targeted treatment for TBI patients, warning of the risk of secondary injuries above or below this 

calculated value. The second study, performed in 2015 by Dias and associates [11], assessed the 

outcome of CPPopt-based treatment using PRx over a 4-hour time window. The study demonstrated 

that patients with a difference of more than 10 mmHg between real CPP and CPPopt were more likely 
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to have poor outcomes (p = 0.04). Thus, the authors concluded that CPPopt-targeted treatment for 

TBI patients seemed feasible. 

 

In addition, the feasibility and safety of CPPopt-targeted treatment is currently being evaluated in the 

first prospective, multi-centre, randomized, controlled trial underway by Beqiri et al. [43], titled 

“CPPopt Guided Therapy: Assessment of Target Effectiveness (COGiTATE)”.  

1.2.3. Challenges in Patient Monitoring and Treatment 

There are numerous challenges for current CPPopt-targeted methods, culminating in a 40–50% 

reduction in usable and informative data [6, 9]. Factors that can render monitoring windows non-

informative include a range of artifacts that can degrade the signal-to-noise ratio of the data collected. 

Artifacts can be the result of a multitude of reasons including the influence of general anesthetics [14, 

44, 45], patient status dynamics [44], changes in monitoring equipment setup [9], along with the 

malfunctioning of these technologies [9]. Even routine patient manoeuvring by the nurse [9] and 

simple patient movements such as coughing, sneezing, and using the bathroom can reduce the 

usability of collected data signals [3]. Another important factor to consider is the patient risk 

associated with the invasive nature of ICP monitoring. Additionally, the disappearance of ICP slow 

waves or insufficient amplitude of ICP slow waves [35] makes it impossible to calculate PRx or CPP 

values. Some of these challenges can be mitigated by halting PRx calculations during manoeuvres 

and equipment changes, but there is no way to prevent all artifacts from happening. Due to the 

overwhelming number of factors that negatively affect the data quality, the typical monitoring time 

window must be at least 4 hours in length to gather enough data to estimate CPPopt and PRx values 

[9]. Few studies have investigated the use of a shortened time window [8, 46] in these calculations, 

as this subsequently reduces the percentage of usable data [4, 11]. 

 

In 2014, Depeitrere et al. [8] led a retrospective study to investigate how the processing of patient 

data to calculate PRx values could be obtained from minute-by-minute ICP and MAP low frequency 

data, rather than the standard high frequency data. To accomplish this, the team created a low 

frequency index called LAx and calculated the associated CPPopt values. These values were 

compared in a multivariate logistic regression (n = 180) against the corresponding CPPopt values, 

calculated using PRx. The results showed that when using the LAx, CPPopt values could be identified 

in 95% of the monitoring time and that achieving a patient’s actual CPP close to LAx-based CPPopt 

was associated with increased long-term survival rates. The study concluded that it was possible to 

assess CA status and identify CPPopt values based on minute-by-minute ICP/MAP data, which 

contained relevant information for calculations.  

 

1.3. Machine Learning  

Supervised machine learning (ML) models such as artificial neural network (ANN), support vector 

machine (SVM), and decision trees are already being implemented in TBI research with the goal of 

improving patient outcomes.  

1.3.1. Artificial Neural Networks 

ANNs are universally applied supervised ML methods that excel in classification and pattern 

identification [18, 24, 47]. When used for classification models, an ANN can be thought of as a set 
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of interconnected inputs and outputs, each connection uniquely weighted to represent the strength of 

the connection [47, 48]. Data for ANN optimization is separated into training and testing data sets, 

with the training data being used iteratively until errors are minimized [21, 49]. A trained ANN can 

be used effectively to predict future outcomes [20, 21, 24, 47].  

1.3.2. Support Vector Machines 

SVM is a type of supervised ML that works to classify both linear and non-linear data sets [21, 47]. 

These models are based on the idea of finding a hyperplane which best separates and classifies two 

data sets. The key when using SVM for classification models is to determine which kernel function 

(linear, nonlinear, polynomial, radial basis function, or sigmoid) will best achieve the most distinct 

hyperplane or decision boundary to separate the two discriminative groups [21, 47]. SVM can be 

trained and the hyperparameters optimized to successfully predict TBI patient outcomes based on 

feature identification [48]. 

1.3.3. Applications in TBI Research 

Studies applying ML to TBI research to date have primarily focused on implementing ML models 

for feature identification from radiological images and using this information to predict long-term 

patient outcomes [22, 24, 25, 50]. Many studies investigating the use of ML models in TBI research 

have concluded that SVM is the best classifier and produces a higher prediction accuracy than other 

models [21]. Other studies suggest that ANN is the best predictor of TBI patient mortality [24]. It is 

important to note that all to my knowledge, no previous studies have investigated the use of ML to 

identify individual CPPopt and limited studies have used a shortened continuous monitoring time 

window under 4-hours for these calculations. The lack of research in the use of ML in bedside TBI 

patient management emphasizes the need for further investigation and the construction of data 

repositories, including continuous patient physiological signals. Modeling strategies must constantly 

be improved to include external validation. Prediction models based on the wide range of supervised 

ML models need continuous validation to ensure their effectiveness [24, 25, 50, 51] 

To summarize, TBI is a global health concern that needs to be addressed immediately to reduce stress 

on societal systems and resources. Treatment methodologies based on optimizing CPP values are 

proven to be effective, yet this still contain limitations which prevent patients from receiving 

personalized medical intervention within their critical time frame.  This research aims to apply 

modernized machine learning tools to address this problem by more reliably identifying 

individualized treatment targets for TBI patients. 
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2. Methodology 

This chapter presents the methodology of the work, including patient data, a description of the 

physiological data signals collected, the implementation of the proposed algorithm, and methods for 

performance evaluation. The methodology is presented in Fig. 6 as a flow diagram. 

 

Fig. 6. Project methodology overview 

2.1. Patient Data and Physiological Parameters 

All studies were approved by the Vilnius and Kaunas Regional Biomedical Research Ethics 

Committees (protocols No. 158200-06-498-145, 158200-16-854-364, 2016- 07-12, 158200-15-801-

323, 2015- 10-06 and BE-2-6, 2015-01-06). 

 

This research contained a retrospective analysis of multimodal physiological monitoring data of 84 

severe TBI patients. The data were collected in the Republican Vilnius University Hospital ICU and 

Lithuanian University of Health Science Kaunas Clinic from clinical studies throughout 2013 to 2018. 

High-resolution continuous monitoring data of ICP(t), ABP(t), CPP(t), and PRx(t) were registered 

and calculated using ICM+ Cambridge Software. ICP data signals were collected using Codman 

monitors with ventricular or parenchymal sensors. ABP signals were collected using Datex Ohmeda 

monitor with pressure sensor in the radial artery.  

Patient outcome was evaluated six months following hospital discharge by the Glascow Outcome 

Scale (GOS) [19], defined as: 

Table 1. Glasgow Outcome Scale 

Score Functional Status Description 

5 Good recovery Resumption of normal life despite minor deficits 

4 Moderate disability Disabled but independent; can work in a supported environment 

3 Severe disability Conscious but disabled; dependant on others for daily support 

2 Persistent vegetative state Minimal responsiveness 

1 Death Self-explanatory 
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2.1.1. Signal Preprocessing 

ICM+ software collects patient data signals and performs real-time calculations. PRx was calculated 

as the moving correlation coefficient between the patient’s ABP and ICP slow waves. This is the 

averaged value over the monitoring window when CPPopt has a minimum PRx value. A 10-second 

moving average filter was implemented on all acquired signals to filter out pulse and respiratory 

waves, which can cause interference. The initial sampling frequency of raw APB and ICP data was 

300 Hz, as defined by ICM+ software standards [51]. To reduce the computational complexity of the 

system and decrease the time required for signal processing, these signals were decimated to a 

sampling frequency of 0.1 Hz. 

 

For dynamic CA analysis, transfer function analysis (TFA) was performed. Fast Fourier Transform 

was first applied to compute the spectral analysis in the frequency domain. Then, both auto- and 

cross-spectrum analysis were applied to obtain estimates of coherence and gain frequency responses 

in the specific low range of 0.005–0.02 Hz. 

 

2.2. Database Construction  

The first objective of this research was to create a database of patient monitoring episodes that could 

be later used to train the proposed ML model. To do so, a unique software tool was developed using 

MathWorks MATLAB [53] running on Microsoft Windows 10. The primary purpose of this tool was 

to illustrate, analyze and annotate patient physiological data from ICM+ Software [52] over 2-hour 

monitoring windows. The monitoring data from 84 patients created 2,165 2-hour time windows. Each 

window was further divided into 5 episodes of roughly 24 minutes in length, which created 11,230 

episodes for the training database. The selection of 24 minutes time for episode deconstruction was 

determined due to the agreement that CA impairment lasting longer than 30 minutes can be critical 

to a TBI patient [6, 16, 17]. The data base created from the CPPopt software tool contained 8,398 

episodes which were annotated as ‘informative’ and 2,427 as ‘non-informative’. Of these episodes, 

70% were used in the development of the MATLAB CPPopt Software Tool and the training of the 

proposed ML algorithm. The remaining 30% of episodes were reserved for testing data after the 

proposed ML model was created.  

2.2.1. CPPopt Analysis Software Tool 

The developed CPPopt analysis software tool required one input: physiological patient monitoring 

data from ICM+ software. This tool illustrated the input data over 6 graphs on the user monitoring 

screen. The 3 graphs on the left side of the user screen are the variables ABP, ICP and PRx as a 

function of time over the 2-hour monitoring window shown on Fig. 7. The 3 graphs on the right side 

of the user screen as the PRx values calculated from the variables CPP, ICP and ABP shown on Fig. 

8. These functions are defined by equations (2), (3) and (4).  

𝑃𝑅𝑥 =  𝑓(𝐶𝑃𝑃) (2)    

𝑃𝑅𝑥 = 𝑓(𝐼𝐶𝑃)  (3) 

𝑃𝑅𝑥 = 𝑓(𝐴𝐵𝑃) (4)                                                      

To identify CPPopt values, second-degree polynomial approximations were applied and the minimum 

point on the U-shape curve was recorded. The addition of equations (3) and (4) were included under 
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the assumption that they would enable a deeper analysis of how ABP and ICP were limiting in the 

identification of CPPopt. Optimal values of ABP and ICP were calculated under the same assumption. 

CPPopt, ABPopt and ICPopt represented the targeted CPP, ABP and ICP treatment values for each 

individual patient episode. Additionally, the lower and upper limits of CA (LLCA and ULCA, 

respectively) were calculated for CPP, ABP and ICP at the PRx threshold of +0.25.  

2.2.2. Classification 

To distinguish each 24-minuite episode from the 2-hour monitoring window, colours were assigned 

to each episode along the timeline in green, cyan, blue, pink, and red. Comprehensively trained 

medical physicists from the Vilnius and Kaunas clinics performed a thorough analysis of all patient 

data monitoring episodes. The annotation of ‘informative’ and ‘non-informative’ data segments was 

indicated by either selecting or deselecting each episode colour. Episodes were classified as 

‘informative’ if they contained slow-wave oscillations in ICP and ABP signals within the frequency 

range of 0.05-0.0055 Hz or when an identifiable U-shaped curve was presented in the CPP vs PRx 

graph. Episodes were classified as ‘non-informative’ if they contained missing data, a sudden drop in 

the difference between systolic and diastolic ABP data, or rapid changes in ICP/ABP data. If there 

was any unclarity is classification, the episode was annotated as ‘non-informative’. Additionally, one 

of five clinical situations was selected as defined as: 

Table 2. Five clinical situations and recommended treatment  

Number Label Reason Recommended treatment  

1 CPP TH U-shape or lower and upper limits 

of CA are identified in CPP data 

CPP- based therapy is recommended  

2 ABP TH U-shape or lower and upper limits 

of CA are identified in ABP data 

ABP-based therapy is recommended 

3 ICP TH U-shape or lower and upper limits 

of CA are identified in CPP data 

ICP-based therapy is recommended 

4 CA Crit PRx is above 0.25 for all values of 

CPP 

CA is critical and requires immediate treatment 

intervention 

5 CA OK PRx is below 0.25 for all values of 

CPP 

CA is stable and no specific treatment or 

management is necessary 

 

The CPPopt software tool produced one main output: a data set of patient monitoring episodes, each 

annotated as either ‘informative’ or ‘non-informative’ and marked as one of the predefined clinical 

situations. The input and outputs of this tool are summarized in Table 3. 

In Fig. 7, the pink data section is marked as informative because the waveform presented during this 

episode is enough to identify a U shape in the CPP vs PRx graph. The remaining data section colours 

remain unmarked as they are ‘non-informative’. The result is that CPPopt and both the lower and 

upper limits of CA have been identified. Therefore, CPPopt-targeted treatment is necessary for this 

patient episode and is annotated on Fig. 8. Each colour is associated with the associated sections 

marked. Buttons were included to select or deselect each colour for inclusion in the graphs and 

calculations. In this example, all colours are selected on the graph represent data from the full 2-hour 

monitoring window.  
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Fig. 7. CPPopt Software Tool: Patient 63, Episode 1 (left side of screen) 

Graphs A, B, and C illustrate variables ABP, ICP, and PRx as a function of time (min) over 2 hours. Graph A) 

illustrates ABP (mmHg) and CPP (mmHg). In this episode, the informative section is highlighted in pink 

around the 90-minute mark. B) illustrates ICP (mmHg) over the monitoring window. Here, the cerebrovascular 

autoregulatory response is seen in the highlighted pink section around 90 minutes and C) illustrates the PRx 

values calculated with association ABP and ICP values. Around 90 minutes, the PRx value decreases to -0.5. 

This value is indicative of a healthy autoregulatory response and further supports the highlighted pink episode. 
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Fig. 8. CPPopt Software Tool: Patient 63, Episode 1 (right side of screen) 

A) illustrates the PRx values calculated from CPP values over the monitoring window. Highlighting solely the 

pink episode, it is easy to visually identify a U-shaped curve, indicating that it is possible to identify the 

individual CPPopt value for this patient’s particular episode using only the pink data episode. Graph B) 

illustrates the PRx calculations based on ABP values and C) illustrates the PRx values calculated based on 

ICP. From this analysis, pink was annotated as an ‘informative’ episode, and the remaining 4 episodes were 

marked ‘non-informative’. 

 

Table 3. CPPopt software tool input and outputs 

Input  

1 Raw ABP, ICP, CPP and PRx data signals from ICM+ software 

Output  

1 Each 24-minute episode annotated as ‘informative’ or ‘non-informative’ (1,0) 

2 Each 24-minute episode annotated as specific clinical scenario defined in Table 3 

 

2.3. Proposed Machine Learning Algorithm 

Two supervised ML models were utilized to develop the proposed algorithm using R: A Language 

and Environment for Statistical Computing [53, 54]. Dr. Mindaugas Kavaliaskas, a fellow from the 
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mathematics department of Kaunas University of Technology, significantly contributed to the 

designing and building process of the proposed ML algorithm. ANN and SVM models were selected 

to provide a baseline comparative performance; both models were trained using the same training 

data. All data stored in the database was separated into 70% training data (n = 8984) and 30% testing 

data (n = 2246).  

Throughout the preliminary stages of the ML algorithm development, when comparing cross 

validation accuracy been the two models, the SVM method yielded better results (Acc = 66.8%) 

compared to the ANN method (Acc = 60.8%) in the prediction of informative and non-informative 

episodes. Therefore, the methodology will focus on the development of the SVM method. The steps 

taken to design the proposed ML algorithm are illustrated in Fig. 9 and are further explained 

throughout this chapter. 

 

Fig. 9. Flow chart of the developed ML algorithm 

2.3.1. Design 

The proposed ML algorithm was created using R Programming Language’s SVM function as a part 

of the e1071 package. The training dataset used to build the SVM model was extracted from the 

previously created patient episode database. The goal of the SVM model was to optimize the 

hyperplane, also known as decision boundary, between ‘informative’ and ‘non-informative’ 

classifications. To accomplish this, a radial basis function kernel was used to transform the training 

data to a hyperplane on a high dimensional feature space. Data points falling on either side of 

the hyperplane were attributed to the two different categories. Episodes that were more challenging 

to distinguish between ‘informative’ and ‘non-informative’ were penalized as their classification 
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would directly affect the optimal decision boundary. The SVM optimization problem can also be 

called the convex quadratic optimization problem. 

2.3.2. Parameter Optimization 

The next step was to optimize the hyperparameters using the training data: Cost (C)- the slack variable 

cost; and gamma (𝛾)- the width of the radial basis function. The hyperparameter C indicates to the 

SVM how much to avoid misclassification by adding a penalty for each misclassified data point. 

When C is small, the penalty is low, so the SVM will choose a large decision boundary margin with 

the expense of more misclassifications. On the other hand, if C is large, the penalty is large so the 

SVM tries to reduce the number of misclassified points. This results in a smaller margin on the decision 

boundary. The penalty is different for each data point and is directly proportionate to the distance to 

the decision boundary.  

 

The hyperparameter 𝛾 determines how much complexity or curvature is included in the decision 

boundary by controlling the distance of influence of a single training point. Larger values result in the 

decision boundary radius being too large and include all data points as highly penalized support 

vectors. Conversely, if 𝛾 is too small, the decision boundary in constrained and unable to capture the 

complexity of the data spread, meaning that the data points need to be particularly close together to 

be classified in the same group.  

 

C and 𝛾 were initialized by their default values recommended in R documentation for the SVM 

defined by:  

𝐶 = 1 (5) 

 

 𝛾 =  
1

∥ 𝑥 ∥2
 (6) 

 

The optimal combination of C and γ were selected through iterative grid search with exponentially 

growing factors (0.001, 0.01, 0.1, 1, 10, 100, and 1000). The grid search trained the SVM model with 

each hyperparameter pair (C, γ) as the Cartesian product of these two sets, and evaluated their 

performance using cross-validation to determine the highest accuracy. A set of different ordered 

values were compared with the optimal set of parameters because the scale of these parameters is 

difficult to guess in advance. During testing, default parameters were close to optimal, indicating that 

a different grid for selecting optimal C and γ values was required. The selected optimal parameters 

defined in equations (7) and (8) were up to 16 times larger and smaller than the default values and 

were used to train the entire training set and generate the final ML algorithm. 

 

𝐶 =  2(−4:4) (7) 

 

γ =  2(−4:4) (8) 

 

2.3.3. Inputs and Outputs 

After final design, the proposed ML algorithm required 3 inputs. First and primarily was patient 

physiological monitoring data from ICM+ software. This included ABP, ICP, PRx and CPP values 
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over the defined time window. Two additional inputs were created with the goal of improving 

classification accuracy of the proposed ML algorithm. 

 

The second input was the inclusion of STD values for ICP and ABP data using 5 different moving 

average filters. This is based on the concept that data segments containing rapidly changing data are 

typically ‘non-informative’, as fast changes often signify an artifact. The STD is measure of how 

much the data varies from the mean and therefore, a data segment with a large STD is likely to have 

an artifact in it and can be assumed to be ‘non-informative’. After applying a moving average filter 

to these high amplitude episodes, the STD decreases as the time window of the filter increases. In 

result, STD values remained unchanged or decreased slowly for informative data episodes which 

contain low amplitude slow waves when applying a larger moving average filter. Normalizing these 

values then produced a comparable metric ranging between 0 and 1. A normalized STD is defined 

by: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑆𝑇𝐷 =
𝑆𝑇𝐷(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑑𝑎𝑡𝑎)

𝑆𝑇𝐷(𝑟𝑎𝑤 𝑑𝑎𝑡𝑎)
 (8) 

‘Informative’ data episodes are indicated by values close to 1 while ‘non-informative’ data episodes 

are close to 0. Identifying the largest normalized STD value was a key input factor that assisted the 

ML algorithm in discriminating between the two groups (0 = ‘non-informative’, 1 = ‘informative’). 

Different time windows were used for moving average filters of 0 (no filter), 1, 2, 3, and 4 minutes 

to investigate which time window produced the largest differentiation between groups. 

 

The third input was gain and coherence gathered from the TFA data. The gain represents the damping 

effect of CA on the magnitude of ABP oscillations [55], marking the efficiency of the autoregulatory 

response. A low gain signifies a healthy and stable CA, while an increase in gain signifies a 

diminished CA efficiency meaning the autoregulatory response in unstable and/or impaired. 

Coherence represents the linearity between the waveform before and after TFA. Coherence values 

close to 0 represent no relation, while values within a specific range suggest linear relation. However, 

low coherence values can also be indicative of extensive noise and artifacts in the signal. Therefore, 

patient episodes which contained a low coherence value were classified as ‘non-informative’. For 

these reasons, TFA gain and coherence were included as inputs of the ML algorithm within a specific 

slow wave frequency range of 0.005–0.02 Hz. 

 

There were three defined outputs from the CPPopt software tool which created the patient database. 

The first output contained patient episodes classified as ‘informative’ or ‘non-informative’. The 

second consisted of patient episodes classified as one of five specific clinical situations. The third 

output included patients CPPopt, LLCA, and ULCA values calculated with ‘informative’ data 

episodes. Inputs and outputs are summarized in Table 4. 

Table 4. Proposed ML algorithm inputs and outputs 

Input 

1 Patient physiological monitoring data from ICM+ Software 

2 Calculated standard deviation ratios of ICP and ABP signals for each patient window 

3 Calculated transfer function analysis gain and coherence of ICP and ABP signals for each patient window 

Output 

1 Patient 24-minute episodes classified as ‘informative’ or ‘non-informative’ 
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2 Patient 24-minute episodes classified as specific clinical scenario 

3 CPPopt, lower limit of CA and upper limit of CA for each episode based on only ‘informative’ data 

 

2.4. Evaluation Methods 

The calculations and evaluation of performance parameters were completed using R: A Language 

and Environment for Statistical Computing (e1071 package). The performance parameters used in 

the evaluation were prediction accuracy (Acc), sensitivity (Se), and specificity (Sp), calculated with 

2x2 confusion matrices. The true positive (TP) rate is the number of correctly predicted ‘informative’ 

episodes, while the true negative (TN) rate is the number of correctly predicted ‘non-informative’ 

episodes. The false positive (FP) rate is the number of incorrectly predicted ‘informative’ episodes, 

while the false negative (FN) rate is the number of incorrectly predicted ‘non-informative’ episodes. 

Sensitivity and specificity are defined in equations (9) and (10), respectively.  

𝑆𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
 (9) 

𝑆𝑝 =  
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
 (10) 

Accuracy was calculated as the proportion of correct predictions for informative and non-informative 

over the total number of patient episodes, given by:  

𝐴𝑐𝑐 =  
𝑇𝑃 + 𝐹𝑃

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (11) 

 

The model was accessed further with linear regression analysis and calculated Pearson correlation 

coefficients (r) using IBM SPSS Statistics. The dependent continuous variables in our study were 

CPP, ABP, and ICP, all of which were not normally distributed. Therefore, the Mann-Whitney U test 

was used to compare differences between these variables and long-term patient outcome. The 

significance threshold was set at (p < .05). This analysis measured the observed association between 

the patient outcome and continuous deviation of CPP from calculated CPPopt, known as ∆CPPopt(t) 

defined in equation (12). CPPopt(t) and PRx(t) values were also recalculated and analyzed for 

associations with patient outcomes. The difference between the real-time CPP and the optimal CPP 

is defined as: 

Δ𝐶𝑃𝑃𝑜𝑝𝑡(𝑡) = 𝐶𝑃𝑃(𝑡) − 𝐶𝑃𝑃𝑜𝑝𝑡(𝑡) (12) 

Full 2-hour episodes containing the most negative value of min(∆CPPopt(t)) were selected along with 

the corresponding PRx(t) value for each patient. PRx values were calculated between both the 

minimum of ∆CPPopt(t) and GOS, and PRx(t) at the minimum of ∆CPPopt(t) and GOS. A critical 

event was defined as any period of time in which the PRx value was greater than 0.25 for all CPP 

values within the time window. It was assumed that critical event windows, where PRx > 0.25 for the 

entire window, are positively associated with fatal outcomes. This assumption was based off several 

studies which have demonstrated that TBI outcomes are more positively associated with critical 

events of CA impairments than the averaged PRx or CPPopt value [6, 16, 17]. Therefore, as outcome-

related factors, the most critical 2-hour windows were selected. This enabled the use of these two 

variables to be used as additional parameters to indirectly test the model’s efficiency. The set of 

∆CPP(t) minimum values and corresponding PRx(t) values were calculated when all monitoring 
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episodes were included for calculation (without ML model), when episodes were selected by a 

physician (training data for ML model), and when informative episodes were predicted by ML. 
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3. Results 

The main aim of this research was to develop and validate a ML algorithm to identify individual 

CPPopt values for TBI patients using only informative data. This chapter presents the results of the 

proposed algorithm, as well as analysis of performance parameters, linear regression, and the impact 

of adding STD values as an input. The results will focus on the accuracy of the ML algorithm to 

correctly classify patient episodes as ‘informative’ or ‘non-informative’ and its ability to detect 

individual CPPopt values in a shortened time window of 20-30 minutes. 

 

3.1. Machine Learning Model Comparison 

The SVM method (Acc = 68.8%) yielded significantly better results compared to the ANN method 

(Acc = 60.8%) in classification of ‘informative’ and ‘non-informative’ episodes. Therefore, the 

results of the ANN method have not been included and this chapter will focus instead on the SVM 

method. 

3.2. Statistical Results 

The application of the developed ML algorithm provided an increase in classification accuracy by 

4.5% in detecting ‘informative’ and ‘non-informative’ patient episodes (from 77.58% to 82.1%). 

Further accuracy improvements were observed in detecting the LLCA and ULCA in CPP (21% 

increase), ABP (20% increase), ICP (6% increase), Critical CA (17.41% increase), and Intact CA 

(16.78%). The change in classification accuracy before and after the application of the developed ML 

algorithm are illustrated in Fig. 10.  

 

Fig. 10. Change in performance accuracy with the application of ML algorithm 

The sensitivity and specificity of the developed ML algorithm in classifying ‘informative’ from ‘non-

informative’ episodes are 0.364 and 0.954, respectively. In the detection of LLCA and ULCA, the 

highest sensitivity and specificity was identified in classifying patient episodes as ‘Critical, requiring 
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immediate treatment intervention’ (Se = 0.978, Sp = 0.911). The full results of the statistical analysis 

are presented in Table 5. 

Table 5. Statistical analysis results 

Predicted class or clinical situation Acc  Acc (ML)  Se Sp 

Informative/Non-informative episode 

prediction 

0.7558 0.821 0.3640 0.9540 

1. CPP-based therapy is necessary 0.5254 0.7359 0.7721 0.6966 

2. ABP-based therapy is necessary 0.5570 0.7507 0.8479 0.6189 

3. ICP-based therapy is necessary 0.7427 0.8042 0.9742 0.3041 

4. Critical CA 0.7814 0.9555 0.9717 0.9106 

5. Intact CA 0.7654 0.9332 0.9562 0.8333 

 

3.3. Correlation Results 

Linear regression analysis was performed to determine associations between the dependent variable 

(patient outcome using GOS) and independent variables (the minimum of ∆CPPopt(t) and associated 

PRx(t) over the 2-hour monitoring window). The set of minimum values of ΔCPPopt(t) and the 

corresponding PRx(t) values were calculated in the cases when ML was not used, when the ML 

training data was used, and when the developed ML algorithm was used to classify informative 

episodes. No difference in associations were found using the developed ML algorithm and using the 

ML training data in comparison to without the use of any ML. When using the set of minimum 

∆CPPopt values over the monitoring window as the outcome predicting factor, correlation 

coefficients were determined as r = .44 (without the use of ML) compared to r = .44 (using the ML 

training data) and r = .47 (using the developed ML algorithm). When using the set of PRx values over 

the monitoring as the outcome predicting factor, correlation coefficients were calculated as r = -.37 

(without the use of ML) to r = -.46 (using the ML training data) and r = -44 (using the developed ML 

algorithm). Correlation coefficients when using the developed ML algorithm (∆CPPopt r = .47, PRx 

r = -.44) have no significant difference from those calculated using the ML training data (∆CPPopt r 

= .48, PRx r = -.46, p < 0.05). Plotted linear regression lines are presented in Fig. 11 and Fig. 12 

showing positive and negative associations, respectively. All methods for calculating linear 

regression associations between ∆CPPopt to patient outcome refer to an averaged ∆CPPopt value.  
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Fig. 11. Regression Analysis- Outcome vs CPPopt 

Associations of patient outcome to the minimum ∆CPPopt values over the 2-hour monitoring window. 

Correlation coefficients were calculated as: A) when no ML was used (r = .44), B) when using the ML training 

data (r = .48), and C) through using the developed ML algorithm (r = .47). 



33 

                  

 

Fig. 12. Regression Analysis- Outcome vs PRx 

Associations of patient outcome to the PRx values calculated from the set of minimum ∆CPPopt values over 

the entire 2-hour monitoring window.  Correlation coefficients were calculated as: A) when ML is not used (r 

= -.38), B) when using the ML training data (r = -.46), and C) when using the developed ML algorithm (r = -

.44). 

 

3.4. Standard Deviation Results 

Standard deviation ratios of ABP and ICP filtered with 1, 2, 3 and 4 minute moving average filters to 

non-filtered STD all showed significant different between groups with p <<< 0.5. The determined 

normalized STD ratios between ABP ‘informative’ and ‘non-informative’ episodes using the 

different moving average filter window times are illustrated in Fig. 13. The STD ratios between ICP 
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‘informative’ and ‘non-informative’ episodes using the different moving average filter window times 

are illustrated in Fig. 14. ‘Non-informative’ episodes are group 0, ‘informative’ episodes as group 1.  

 
Fig. 13. Statistically significant differences of normalized STD ratios between ‘informative’ and ‘non-

informative’ patient ICP monitoring episodes using 1-, 2-, 3- and 4-minute moving average filters. (0 = non-

informative, 1 = informative). 
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Fig. 14. Statistically significant differences of normalized STD ratios between ‘informative’ and ‘non-

informative’ patient ICP monitoring episodes using 1-, 2-, 3- and 4-minute moving average filters. (0 = non-

informative, 1 = informative). 

 

3.5. CPPopt Identification 

The developed ML algorithm was able to successfully identify individual patient CPPopt values in 

‘informative’ episodes under 30-minutes where CPPopt was previously unidentifiable. Examples of 

the developed ML algorithm’s CPPopt range values of different patient monitoring episodes are 

presented in Fig. 15 and Fig. 16. Additional examples of patient episodes and comparisons of 

approximations before and after application of the developed ML are presented in Appendix 1. These 

examples illustrate that patient episodes containing informative ABP(t) and ICP(t) data under 30 

minutes are sufficient to identify individual patient CPPopt values. In the graph, n.d. denotes not 

determined. 
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Fig. 15. Patient 23, Episode 3 

Patient 23’s episode 3 of 2-hour monitoring data after the application of the developed ML algorithm. A) and 

B) illustrate which episode out of the 2-hour monitoring window was selected as informative data by the 

developed ML algorithm, graphed in ABP and ICP, respectively. C) presents the calculated PRx value at each 

time using the associated values from the ABP and ICP graphs over the entire 2-hour time window. D) presents 

the graph of CPP vs PRx. The patient’s individual CPPopt range approximations according to ML are 

illustrated by the red line (CPPopt = 82 mmHg, LLCA = 69 mmHg, and ULCA = n.d.) while values without 

ML are illustrated by the black line (CPPopt = n.d., LLCA = 75 mmHg, and ULCA = n.d.). In this example, 

the developed ML algorithm was able to identify the patient’s individual CPPopt value (82 mmHg) when it 

could not be determined prior. Additionally, the ML-identified values for LLCA were decreased (from 75 

mmHg to 69 mmHg). 
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Fig. 16. Patient 55, Episode 13 

Patient 55’s episode 13 of 2-hour monitoring data after the application of the developed ML algorithm. A) and 

B) illustrate which episode out of the 2-hour monitoring window was selected as informative data by the 

developed ML algorithm, graphed in ABP and ICP, respectively. C) presents the calculated PRx value at each 

time using the associated values from the ABP and ICP graphs over the entire 2-hour time window. D) presents 

the graph of CPP vs PRx. The patient’s individual CPPopt range approximations according to ML are 

illustrated by the red line (CPPopt = 90 mmHg, LLCA = 80 mmHg, and ULCA = n.d.), while values without 

ML are illustrated by the black line (CPPopt = n.d., LLCA = 77 mmHg, and ULCA = 99 mmHg). In this 

example, the application of our developed ML algorithm successfully identified the patient’s individual 

CPPopt value (90 mmHg) when it was otherwise unidentifiable.  

 

In summary of the presented results, preliminary comparisons of ML models illustrated that the SVM 

provided a 6% increase in identification of individual CPPopt values. The statistical analysis showed 

that the developed ML algorithm was able to identify individual CPPopt with 4.5% improved 

accuracy than without the use of ML. The regression analysis identified no difference in associations 

between patient outcome and calculated CPPopt values with without the ML algorithm. The STD 

results identify that the addition of their values was a key input for the developed ML algorithm to 

correctly classify informative and non-informative patient data segments. The developed ML 

algorithm illustrated several monitoring windows where the patient’s induvial CPPopt was identified 

through recognition of ‘informative’ data. 
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4. Discussion 

Keeping in mind that the aim of this research was to create a ML algorithm that could identify 

individual CPPopt values in TBI patients, there are five primary points of discussion for this study. 

First, the application of the developed ML algorithm provided a 4.5% improvement in the correct 

classification of ‘informative’ and ‘non-informative’ episodes (from 77.58% to 82.1%). In a clinical 

setting where patient stability is sensitive to minute changes in pressure and blood flow, this small 

improvement in detection accuracy and CPPopt identification can make a critical difference in 

improving outcomes for TBI patients. Yet, establishing the best treatment strategy for these patients 

based on optimal CPP, ABP, or ICP ranges can be difficult to determine when there are unknown 

influences distorting usable data. The largest improvement in performance accuracy upon application 

of the algorithm was observed in detecting the upper and lower limits of CA in CPP (21% increase) 

and ABP (20% increase) and thereby providing supplementary information to clinicians to aid 

decision-making.  

Second, assessing the developed ML algorithm based solely on accuracy is not sufficient to evaluate 

performance. Sensitivity and specificity are measures that must be considered when determining 

whether a model has true applicability for medical treatment strategies. These parameters are 

prevalence-independent test characteristics, as their values are intrinsic to the ML model’s 

performance. A higher sensitivity is fitting when the treatment strategy bears low risk. In these cases, 

doctors could take earlier treatment measures to potentially reduce mortality in TBI patients. In 

contrast, higher-risk treatment plans require increased specificity, as some patients may experience 

detrimental effects when specificity is not considered. Therefore, the applied ML algorithm must 

consider the trade-off between these two analysis parameters. The sensitivity and specificity of our 

ML model in predicting ‘informative’ from ‘non-informative’ episodes are 0.954 and 0.364, 

respectively. In this study, the high sensitivity value indicates that the developed ML model has done 

a successful job of predicting ‘informative’ episodes. The low specificity indicates that the model 

will incorrectly predict episodes as ‘informative’ when they are indeed ‘non-informative’. The 

application of this research to medical treatments could be critical for patient mortality, so it is 

reasonable to be on the cautious side and allow more false positive predictions over false negative 

predictions. However, the developed ML algorithm’s low specificity is noteworthy in isolating best 

performance, the study observed the highest sensitivity and specificity values for predicting clinical 

scenarios in the class ‘Critical CA: requiring immediate treatment intervention’, which indicates that 

the developed ML algorithm is most easily able to identify the lower and upper bounds of CA when 

the patient is in a critical state.  

Third, linear regression analysis indicated a minimal change in association using the developed ML 

algorithm when comparing values of ∆CPPopt(t) and PRx(t) to long-term patient outcomes. This is 

further illustrated by the calculated correlation coefficients with model parameters to TBI patient 

outcomes from r = .44 (without ML) to r = .47 (with ML) when using min(∆CPPopt), and from r = -

.37 (without ML) to r = -.46 (with ML) when using PRx as an outcome predicting factor. The 

estimated corrected temporal ∆CPPopt values did not change drastically compared to averaged 

∆CPPopt value and therefore, the results presented from the regression analysis approximation cannot 

directly prove added value of the ML algorithm. As the PRx is a global index providing an averaged 

index of all areas of the brain, it does not identify regions that might require adjusted CPPopt values. 

Therefore, while the regression analysis illustrates that the application of the developed ML algorithm 
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does not disturb identified CPPopt values, it does not directly support the application of ML in 

improving long-term patient outcomes.  

The inclusion of the normalized STD ratios of ABP and ICP using moving average time filter 

windows were identified as key inputs that improved detection accuracy for ‘informative’ and ‘non-

informative’ episodes. Specifically, using the 2-minute moving average time window filter resulted 

in the most statistically significant difference between groups in both ABP (p = 5.33e− ) and ICP (p 

= 6.64e− ) data. However, we expected that the inclusion of the calculated TFA gain and coherence 

would also increase the accuracy of the ML algorithm’s ’informative’ episode detection; yet the 

results indicate that this expectation was incorrect.  

Finally, the most distinguished finding from this research is that individual CPPopt values were able 

to be identified within a time window shorter than 30 minutes, in contrast to the typical 4-hour 

window used in most PRx and CPP identification algorithms [11, 43]. Providing treatment within the 

first hour of patient admission to the ICU is critical for long-term patient outcomes [17], therefore 

this finding could drastically accelerate TBI patient treatment leading to improved outcomes. 

Examples of this are illustrated in Fig. 15 and Fig. 16, where the patient ICP and ABP monitoring 

data contains enough informative information to identify individual CPPopt values within a 24-

minute episode. 

4.1. Limitations 

This study was based on a series of assumptions and had a few noteworthy limitations. The key 

assumption in this study was that CPP-targeted management and treatment could be limited by 

numerous factors including anesthesia, changes in ICP and ABP, noisy signals, patient movement 

and artifacts. The second assumption was that an ML-based tool could assist physicians in deciding 

patient treatment pathways in these more complex scenarios with multiple influential factors such 

ICP and ABP data signal disturbances. The final assumption was that the accuracy of individual 

CPPopt value identification could be improved by eliminating artifacts and other non-informative 

data from the calculations.  

The first limitation to highlight is that both PRx and CPPopt have never been subjected to prospective 

clinical trials. Therefore, their strength is only supported by retrospective analysis and a small number 

of pilot studies with low sample sizes. Retrospective studies can only determine association and not 

causation; and are subject to other risk factors that have not yet been identified. These limitations 

emphasize the need for further prospective studies to validate the use of machine learning algorithms 

in the identification of CPPopt values for TBI patients and related clinical applications. 

Different forms of bias are important to identify as their influences can distort research results, lead 

to unnecessary costs, lower both the validity and reliability of research, and, given the critical nature 

of this study, risk a patient’s life. The second notable limitation in this study is in the classification 

methodology for ‘informative’ and ‘non-informative’ episodes. This task was performed by medical 

physicists from the Lithuania University of Health Science and Vilnius University Hospital Clinic 

who are experienced in individual CPPopt-targeted treatments. However, the classification was made 

from their subjective opinion of what was deemed a critical informative feature, and a small number 

of episodes provided no clear distinguishable features. In some cases, the assignment of episodes as 

either ‘informative’ or ‘non-informative’ did not change individual CPPopt value identification. In 

other cases, when CA was either completely intact or impaired, the assignment of episodes to a 



40 

specific class was unclear and they were therefore annotated as ‘non-informative’ by default. These 

variations in the classification of episodes could influence the identified CPPopt values. For future 

research, designing a more consistent and unbiased method of episode classification would add 

reliability and validity to the study. 

Third, a significant limitation that was not alleviated by the application of the developed ML 

algorithm is the requirement of informative ABP and ICP slow waves to calculate PRx and CPPopt 

values. When ABP and ICP signals are absent, slow waves must be artificially generated. There are 

several commonly used methods to generate slow waves in a clinical setting, but to calculate CPPopt 

and PRx values, the method must be performed repetitively every 1–2 minutes over a continuous 

monitoring window. The identified best method to accomplish this in a fragile clinical setting is called 

the Head-Up Tilt, which requires the subject to lie on a bed as the examiner adjusts the bed’s position 

for a set period [56]. Adjusting the head above or below the heart at specific degrees can cause a 

cerebrovascular response as the body adjusts to changing ICP. All hospitals have the capability to 

adjust a patient’s head tilt using electronic adjusters on the bed, making Head-Up tilt ideal to generate 

artificial slow waves when they are not readily present [50].  

Finally, this study uses a relatively small sample size for ML validation (n = 84 patients, accounting 

for 11,230 patient episodes). This small size increases the likelihood of a Type II error, failing to 

observe a difference when there is one, potentially skewing the results, as well as introducing different 

forms of ML bias. Biases in ML algorithms are quite common when the amount of training data is 

insufficient and does not accurately represent the whole population. This can lead to poor 

performance of the algorithm on groups that were underrepresented in the initial training data. Given 

the consequences of an incorrect treatment for a TBI patient, this further emphasizes the need for 

research using larger sample sizes to better represent the diverse range of TBI patients and create 

more substantial databases that can be used to build improved ML algorithms. Taken together, these 

points emphasize the need for further research in this area to help mitigate assumptions, limitations, 

and challenges in the application of ML to identify individual CPPopt values. 

4.2. Future Research 

Further prospective clinical research with larger sample sizes and more reliable classification methods 

are needed to improve performance and reliability of the use ML-based algorithms in the 

determination of individual CPPopt values. This would contribute to the availability of larger 

databases that could be used to improve other ML classification models used in TBI research. Future 

research should explore integrating ML algorithms into current real-time bedside CA monitoring 

methods such as ICM+ Cambridge Software [52] with a goal to accelerate patient diagnosis and 

treatment. 
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Conclusions 

 

1. The analysis software tool developed to create a database for this research can be used effectively 

for illustration, analysis, and annotation of continuous multimodal physiological patient data into 

‘informative’ and ‘non-informative’ groups. This classification is based on the identification of 

specific informative features from patient ABP(t) and ICP(t) slow-wave forms. The resulting 

dataset from this tool comprised a database containing 20–30 minute annotated patient episodes, 

which can be utilized to train future machine learning algorithms. An additional feature of the 

developed analysis software tool is the ability to classify certain clinical situations and 

recommend treatments, such as CPP-based, ABP-based, and ICP-based management. 

 

2. The developed machine learning algorithm can classify ‘informative’ and ‘non-informative’ 

patient monitoring data episodes with a 4.5% increase in accuracy based on feature recognition 

of critical events and the comparison of standard deviation values in patient ABP(t) and ICP(t) 

slow-wave forms. With the selected ‘informative’ episodes, the developed algorithm can identify 

individual patient CPPopt values and/or the lower and upper limits of CA. Additionally, the 

developed algorithm can identify certain clinical situations and associated recommended 

treatments with increased accuracy compared to traditional methods. It was 21% more accurate 

when using CPP, 20% for ABP, and 6% for ICP-based managements. 

 

3.  Individualized patient CPPopt values can be identified in continuous monitoring episodes that 

are 20–30 minutes in length when these episodes contain informative ABP(t) and ICP(t) slow-

wave data. This finding suggests that CPPopt values can be identified 10 times faster than the 

typical technologies used in the ICU at the time of the study, which require a 4-hour continuous 

data monitoring window. This advancement has the potential to expedite TBI patient treatment, 

improve patient outcomes and indirectly reduce mortality rates. 
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Appendices 

Appendix 1. Machine Learning CPPopt Identification Examples 

 

Fig. 17. Patient 63, Episode 1 

Patient 63’s episode 1 of 2-hour monitoring data. A) and B) illustrate which episode out of the 2-hour 

monitoring window was selected as informative data by the developed ML algorithm, graphed in ABP and 

ICP, respectively. C) presents the calculated PRx value at each time using the associated values from the ABP 

and ICP graphs over the entire 2-hour time window. D) presents the graph of CPP vs PRx. The patient’s 

individual CPPopt range approximations according to ML are illustrated by the red line (CPPopt = 83 mmHg, 

LLCA = 75 mmHg, and ULCA = 91 mmHg), while values without ML are illustrated by the black line (CPPopt 

= 82 mmHg, LLCA = n.d. and ULCA = 100 mmHg). In this example, the developed ML algorithm was able 

to identify the patient’s range of stable CA when it was otherwise unidentifiable. It also calculated CPPopt 

within these new bounds, which increased CPPopt from 82 mmHg to 83 mmHg. 
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Fig. 18. Patient 55, Episode 11 

Patient 55’s episode 11 of 2-hour monitoring data. A) and B) illustrate which episode out of the 2-hour 

monitoring window was selected as informative data by the developed ML algorithm, graphed in ABP and 

ICP, respectively. C) presents the calculated PRx value at each time using the associated values from the ABP 

and ICP graphs over the entire 2-hour time window. D) presents the graph of CPP vs PRx. The patient’s 

individual CPPopt range approximations according to ML are illustrated by the red line (CPPopt = 90 mmHg, 

LLCA = 80 mmHg, and ULCA = n.d.), while values without ML are illustrated by the black line (CPPopt = 

n.d., LLCA = 77 mmHg, and ULCA = 99 mmHg).  
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Fig. 19. Patient 63, Episode 21 

Patient 63’s episode1 1 of 2-hour monitoring data. A) and B) illustrate which episode out of the 2-hour 

monitoring window was selected as informative data by the developed ML algorithm, graphed in ABP and 

ICP, respectively. C) presents the calculated PRx value at each time using the associated values from the ABP 

and ICP graphs over the entire 2-hour time window. D) presents the graph of CPP vs PRx. The patient’s 

individual CPPopt range approximations according to ML are illustrated by the red line (CPPopt = 100 mmHg, 

LLCA = 89 mmHg, and ULCA = 112 mmHg) while values without ML are illustrated by the black line 

(CPPopt =100 mmHg, LLCA = 94 mmHg, and ULCA = 107 mmHg). In this example, the defined lower and 

upper limits of CA have been expanded with the use of ML, but the individual’s identified CPPopt value did 

not change. 
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Fig. 20. Patient 26, Episode 8 

Patient 26’s episode 8 of monitoring window after the application of the ML algorithm. A) and B) illustrate 

which episode out of the 2-hour monitoring window was selected as informative data by the developed ML 

algorithm, graphed in ABP and ICP, respectively. C) presents the calculated PRx value at each time using the 

associated values from the ABP and ICP graphs over the entire 2-hour time window. D) presents the graph of 

CPP vs PRx. The patient’s individual CPPopt range approximations according to ML are illustrated by the red 

line (CPPopt = 84 mmHg, LLCA = n.d., and ULCA = 89 mmHg), while values without ML are illustrated by 

the black line (CPPopt = 85 mmHg, LLCA = n.d., and ULCA = 92 mmHg). In this example, the application 

of ML has reduced the CPPopt value (from 84 mmHg to 83 mmHg) and lowered the ULCA value (from 92 

mmHg to 89 mmHg). 
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Fig. 21. Patient 24, Episode 13 

Patient 24’s episode 13 of the 2-hour monitoring window after the application of the developed ML algorithm. 

A) and B) illustrate which episode out of the 2-hour monitoring window was selected as informative data by 

the developed ML algorithm, graphed in ABP and ICP, respectively. C) presents the calculated PRx value at 

each time using the associated values from the ABP and ICP graphs over the entire 2-hour time window. D) 

presents the graph of CPP vs PRx. The patient’s individual CPPopt range approximations according to ML are 

illustrated by the red line (CPPopt = 78 mmHg, LLCA = 70 mmHg, and ULCA = 86 mmHg) while values 

without ML are illustrated by the black line (CPPopt = 79 mmHg, LLCA = 72 mmHg, and ULCA = 86 mmHg). 

In this example, the application of ML has reduced the CPPopt value (from 79 mmHg to 78 mmHg) and 

lowered the LLCA value (from 72 mmHg to 70 mmHg). 
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Fig. 22. Patient 50, Episode 7 

Patient 50’s episode 7 of 2-hour monitoring window after the application of the developed ML algorithm. A) 

and B) illustrate which episode out of the 2-hour monitoring window was selected as informative data by the 

developed ML algorithm, graphed in ABP and ICP, respectively. C) presents the calculated PRx value at each 

time using the associated values from ABP and ICP graphs over the entire 2-hour time window. D) presents 

the graph of CPP vs PRx. The patient’s individual CPPopt range approximations according to ML are 

illustrated by the red line (CPPopt = 78 mmHg, LLCA = n.d., and ULCA = 93 mmHg), while values without 

ML are illustrated by the black line (CPPopt = 84 mmHg, LLCA = n.d., and ULCA = 100 mmHg). In this 

example, the application of ML has reduced the CPPopt value (from 84 mmHg to 78 mmHg) and lowered the 

ULCA value (from 100 mmHg to 93 mmHg). 
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Fig. 23. Patient 10, Episode 31 

Patient 10’s episode 31 of the 2-hour monitoring window after the application of the developed ML algorithm. 

A) and B) illustrate which episode out of the 2-hour monitoring window was selected as informative data by 

the developed ML algorithm, graphed in ABP and ICP, respectively. C) presents the calculated PRx value at 

each time using the associated values from the ABP and ICP graphs over the entire 2-hour time window. D) 

presents the graph of CPP vs PRx. The patient’s individual CPPopt range approximations according to ML are 

illustrated by the red line (CPPopt = 83 mmHg, LLCA = 75 mmHg, and ULCA = 88 mmHg), while values 

without ML are illustrated by the black line (CPPopt = 81 mmHg, LLCA = n.d., and ULCA = 90 mmHg). In 

this example, the application of ML has identified the individual’s LLCA (75 mmHg), where it was 

unidentifiable prior to the use of ML. 
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Fig. 24. Patient 10, Episode 29 

Patient 10’s episode 2  of the 2-hour monitoring window after the application of the developed ML algorithm. 

A) and B) illustrate which episode out of the 2-hour monitoring window was selected as informative data by 

the developed ML algorithm, graphed in ABP and ICP, respectively. C) presents the calculated PRx value at 

each time using the associated values from the ABP and ICP graphs over the entire 2-hour time window. D) 

presents the graph of CPP vs PRx. The patient’s individual CPPopt range approximations according to ML are 

illustrated by the red line (CPPopt = 77 mmHg, LLCA = 71 mmHg, and ULCA = 82 mmHg), while values 

without ML are illustrated by the black line (CPPopt = 76 mmHg, LLCA = 68 mmHg, and ULCA = n.d.). In 

this example, the application of ML has identified the individual’s ULCA (82 mmHg), where it was 

unidentifiable without ML. 

 

 


