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Summary 

Sound data-based anomaly detection is getting attraction. This is due to the recent development of a 
deep neural network applicable for representing complex-structured data, which has propelled its 
application in a real-world problem. However, the real-world sound data are usually contaminated 
with background noise, which hinders a model training process for anomaly detection. This report 
proposed applying various adaptive digital filters for the pre-processing of the sound data and studied 
the optimization of an autoencoder architecture to improve the anomaly detection performance when 
noisy data is applied. This study demonstrated the proposed approach with an open-source sound 
dataset of industrial machinery and discussed the relationship between the adaptive digital filters and 
the autoencoder architecture.    
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Santrauka 

Garso duomenimis pagrįstas anomalijų aptikimas tampa vis patrauklesnis. Taip yra dėl to, kad 
neseniai buvo sukurtas gilus neuroninis tinklas, pritaikytas vaizduoti sudėtingos struktūros duomenis, 
ir tai paskatino jį pritaikyti realaus pasaulio problemoje. Tačiau tikrojo pasaulio garso duomenys 
paprastai yra užteršti fono triukšmu, o tai trukdo modelio mokymui nustatyti anomalijas. Šioje 
ataskaitoje buvo pasiūlyta pritaikyti įvairius adaptyvius skaitmeninius filtrus išankstiniam garso 
duomenų apdorojimui ir ištirtas automatinio kodavimo įrenginio optimizavimas, siekiant pagerinti 
anomalijų aptikimo našumą, kai naudojami triukšmingi duomenys. Šis tyrimas pademonstravo 
siūlomą požiūrį naudojant pramoninių mašinų atviro kodo garso duomenų rinkinį ir aptarė adaptyvių 
skaitmeninių filtrų ir autokoderio architektūros ryšį. 
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1. INTRODUCTION 

1.1. Relevance of the problem 

Anomaly detection is a significant problem that has been researched within diverse research areas 
and application domains. Many anomaly detection techniques have been specifically developed for 
specific application domains, while others are more generic [1]. It has recently gotten further attention 
today’s drastic improvement of machine learning techniques, thanks to the development of an 
efficient algorithm and computer performance in the last decade.  

Anomaly detection is not just an academic research topic.  The development in the Internet of Things 
causing the explosive growth of big data has encouraged anomaly detection in the actual business 
field. Anomaly detection is recognized as an essential technique in an application for preventive 
maintenance of the industrial machine. In the IoT era, industrial machinery are connected to a central 
control system, and this provides enormous and various diagonal data to the centre from the equipped 
sensors such as temperature, pressure, electric current, vibration, and sound. Among these various 
kinds of available data, sound data is easy to sample in a real factory due to its relatively low 
installation cost of microphones to existing facilities. This potential motivated various approaches for 
sound-based anomaly detection studies [2;3;4;5]. However, noise is known to exacerbate anomaly 
detection performance. In most business application scene, sound data is generally contaminated by 
environmental sound. Isolating the machine sound from the environmental sound is not an easy task. 
Hence, extracting meaningful sound from the contaminated sound relies on the performance of the 
anomaly detection device. Therefore, developing a noise-tolerant machine learning methodology is 
crucial for propelling sound data-based anomaly detection in a real factory. 

Based on this demand from a business application, we launched the master thesis final project of 
“Experimental evaluation of a relationship between Digital Filter and Autoencoder Structures in 
Audio Signal-Based Anomaly Detection” (“Project”). In this Project, we challenge noisy sound data 
and aim to enhance its anomaly detection by understanding the theoretical backdrop of signal 
processing and machine learning.  

1.2. Objectives of the Project 

The Project's central objective is to improve the accuracy in classifying normal and anomalous 
conditions of industrial machine based on noisy sound data. The performance enhancement is 
evaluated using the Area Under the Curve (“AUC”) value in anomaly detection for noisy data from 
baseline results published elsewhere.  

1.3. The scientific novelty of this Project 

In this Project, we proposed optimising the autoencoder architecture in line with the property of 
adaptive signal processing. To our knowledge, few studies are focusing on the relationship between 
data pre-processing and autoencoder architecture. Therefore, we demonstrated novel insights into 
anomaly detection.  

1.4. Document Structure 

The paper is structured as follows. Chapter 2 depicts the analysis, which consists of a literature survey 
related to this Project. Chapter 3 describes the projections, which gives the theoretical backdrops of 
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the learning algorithms of an autoencoder and the statistical signal processing including state 
estimation problems, accompanying our proposal for improvement. Chapter 4 is the central part of 
this report, which presents our experimental protocols and reports the numerical results with 
discussion. Chapter 5 wraps up the result and suggests future works.  

1.5. Acknowledgements 

We give warm thanks to prof. Chin-ya Huang at National Taiwan University of Science and 
Technology for stimulating discussions on adaptive filtering theories during the visit as an exchanging 
student. The funding support for the exchange programme from the Kaunas University of Technology 
committee is gratefully acknowledged. 
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2. ANALYSIS 

2.1. Development of deep learning  

Deep learning is a part of a family of machine learning. Deep learning method rooted in an artificial 
neural network model. The concept was to discover rich, hierarchical models over the kinds of data 
encountered in artificial intelligence applications. So far, the most striking successes in deep learning 
have involved discriminative models, usually those that map a high-dimensional input to a class label 
for pattern recognition [2].  

The concept of neural network itself existed in the early days of the computer. Rosenblatt advocated 
the idea of “perceptron” in the 1950s. It developed a probabilistic model emulating the information 
process in a brain [6]. Later, in the 1980s, the neural network model for a mechanism of visual pattern 
recognition nicknamed “neocognitron” was posed to emulate a brain pattern recognition mechanism 
[7]. The model had a function of self-organization, which continues by employing ‘learning without 
a teacher”, which is today called “unsupervised learning.”  

However, such models did not get attention at the timing and faced the stagnation of research 
activities, so-called the AI winter. This stagnation was due to the expensive computation cost, which 
exceeded the performance of then-available computers. Improvement of representation performance 
requires to increase in the number of nodes. Such a neural network with multi nodes, generally greater 
than three nodes, requires expensive computation and yields problems such as vanishing gradient 
problem and trapping in local optimization. An overlearning is part of the local optimization problem. 
The overlearning happens if a model is fitted to a training data strictly and cannot evaluate novel data 
correctly, meaning to say, it loses generalization performance.  

The recent development in both hardware and neural models has overcome the challenges of artificial 
intelligence as a thriving field with many practical applications and active research topics. Many 
studies proposed learning techniques to overcome the constraints mentioned above inherent in a deep 
neural network. A deep neural network had a difficulty in way of updating the parameters, because it 
requires the chain of deferential. The backpropagation solved this problem [8;9]. The optimization 
algorithms for updating bias and weight parameter in a backpropagation process are also essential in 
training a model. Many optimization algorithms were advocated and applied. In terms of vanishing 
of gradient, the introduction of a rectified linear function (“ReLU”) as an activation function 
suppresses the problem [10;11]. Stochastic gradient descent (“SDG”) algorithm samples randomly at 
every update. Momentum SDG is an algorithm modified from SDG by adding momentum terms to 
realize smooth updating [12]. AdaGrad algorithm can adjust the extent of updating automatically. For 
instance, these optimization algorithms had drawbacks; for instance, SDG updates all the parameters 
equally, therefore, cannot focus on meaningful parameters in networks. AdaGrad is known to tend to 
stop updating parameters while learning. Adaptive moment estimation (“Adam”) was proposed to 
overcome these issues and realize that each parameter is updated as per the appropriate scale [13]. 
The details of these learning algorithms are discussed in section 3.1.2.  

The aforementioned concept of the neocognitron later became the basis for the convolutional neural 
network (“CNN”)  [14;15]. The CNN contributed to the meteoric rise of deep learning and was 
recognized as a breakthrough where the error rate for object recognition was halved and triggered the 
rapid adoption of deep learning by the computer vision community. The modern CNN is a version of 
multi-node perceptron architectures. And consists of convolution node, pooling nodes and fully 
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connected nodes. The convolution operation is a kind of linear operation. The operation is a prevalent 
computation technique used in image processing. At the convolution nodes, input information is 
processed by using much of the data's locality and converting it to several images with emphasizing 
characteristics in the image, which is called sparse interactions or sparse connectivity. Therefore, the 
node is sometimes called the detector stage. The pooling node is located just after the convolution 
nodes. The Pooling nodes consists of a pooling function. A pooling function divides an image into 
several regions and picks up representative information from each region, for instance, the maximum 
value in a max-pooling method, to deliver a new image. The pooling function provides a reduced size 
of an image, which is robust for a location change and contributes to reducing computation cost. Fully 
connected nodes are the same as a node used in conventional neural network architectures. CNN 
utilizes padding locates pixels with a particular value, typically zero, around an input image to 
maintain an image size same after convolution and capture characteristics at the edge of the image. 
Training of CNN model is done by backpropagation same as conventional neural network 
architectures. In contrast, pooling nodes have no parameter to be updated in n training.  

Another epoch progress of deep neural network architecture is the generative adversarial network  
(“GAN”) [16]. GAN is categorized as a generative model and a framework for estimating generative 
models via an adversarial process in which two models, a discriminator and a generator, are trained 
simultaneously. A generator generates counterfeit images based on an input noise, and a discriminator 
judges an input image to an original or the counterfeit one. The learning process in the original GAN 
framework is recognized as a min-max game where a generator and a discriminator are optimized 
with value function V(D, G)  formulated as, 

Min
!
max
"

𝑉(𝐷, 𝐺) = 	𝔼𝒙∼%&'('(𝒙)[log𝐷(𝒙)] 	+		𝔼𝒛∼%,(𝒛) .log /1 − 	𝐷2𝐺(𝑧)456 (1) 

where pz(x) is the input noise variable, and the mapping to data space is represented as G(z; θg). D(x) 
represents the probability that x came from the data rather than pg. A GAN with built-in convolution 
nodes is called a deep convolutional generative adversarial network (“DCGAN”) [17]. A CNN in a 
GAN and this combination is reported to generate images with higher resolution than a simple GAN. 

The Recurrent Neural Network (“RNN”) is a variation of a neural network that is intended for time-
serial data [18]. RNN has intermediate nodes which have a loop structure from its output to its input. 
RNN is, as a nature of the recursive structure, good at possessing a short-term memory. Instead, it is 
not good at possessing long-term memory. A long short-term memory (“LSTM”) was invented in 
order to conquer this drawback by adding a gate that judge discard past information or not and carry 
only necessary information [19]. The unique circuit is called an LSTM block. An LSTM block 
consists of a memory cell, input gates, output gates, and forget gates. 

2.2. Anomaly detection with machine learning 

Anomaly detection refers to finding patterns in data that do not conform to expected behaviour [1]. 
These atypical patterns are referred to as various terminology of anomalies, outliers and exceptions. 
No matter how it is called, the common principles measure the difference between normal and 
anomalous data in a numerical fashion. There have been many techniques, and models posed that 
should be selected,  taking into account characteristics of data, the behaviour of anomalous data, and 
application purpose. We categorize anomaly detection techniques into traditional machine learning 
methods and deep learning methods to explain the existing literature.  
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The classification-based methods are generally supervised anomaly detection. In this approach, a 
model or classifier is trained from a labelled data instance, and the trained model classifies instance 
[3]. Both multi-class and one class anomaly detection techniques are available. Multi-class anomaly 
detection is a technique that assumes training data contains what belongs to multiple normal classes. 
The model has to learn to be a binary classifier. It distinguish between normal class against the rest 
of the classes, which can be considered as anomalous or outliers. If a test data is not classified as 
normal, then it is considered an outlier. This technique gives its prediction as a confidence score. 
Therefore, this technique is applicable for data whose normal classes are known.  

The Support Vector Machine (“SVM”) is the widely used binary classification-based methodology 
to discover novelties in an unsupervised way [20;21]. The SVM is a particular case of a support vector 
machine that learns a hyperplane to separate all the data points from the origin in a feature space 
corresponding to the kernel and maximizes the margin from this hyperplane the origin. The 
expectation is that anomalous test data will have the SVM fits for outlier detection. The model is first 
trained by normal condition data. The model learns to keep these training data away from the origin 
in the coordination. Thus, a hyperplane is established to separate normal condition area. With the 
trained model, test data of anomalous condition data is supposed to be plotted near the origin in the 
coordination. If the plotted data is inside of the constructed hyperplane, the data is detected as an 
anomaly.  

The distribution-based method is to model the distribution of normal data. Methods differ in the 
features used to describe the data and the probabilistic model used to estimate the normal distribution.  
As the data spaces are high dimension, the distance cannot be measured in Euclid fashion, and 
therefore various measurement methodologies were proposed, such as Local Outlier Factor (“LOF”) 
as a density-based method [22], and Nearest-Neighborhood as a distance-based method [23].  

These classical approaches are already recognized as proven techniques. If input data is simple, these 
techniques are still the first choice for the application. However, complex data such as image 
recognition community and audio processing may exceed the modelling assumptions of these 
machine learning techniques.  

The advent of deep learning techniques for anomaly detection has improved the results of traditional 
methods. Deep learning outperforms traditional machine learning as the scale of data increases [2]. 
The traditional machine learning approaches can be trapped in the curse of dimensionality. This 
restriction makes them inadequate tools for the analysis of high-dimensional data. Deep neural 
networks have been studied to overcome that arise in this context. One of the successful methods 
using deep learnings is a reconstruction-based method [4;5;24]. The fundamental idea behind the 
methods is that the normal condition can be reconstructed accurately from a hidden layer with smaller 
units than the input node. In contrast, the anomalous condition cannot be reconstructed, that is to say, 
embracing more considerable reconstruction losses. This fashion is suitable for anomaly detection, 
where anomalous condition data volume is generally far smaller than normal condition data because 
a model for detection can be trained only by normal condition data.   

In the reconstruction context, GAN is also applied for anomaly detection (“AnoGAN”) [25]. The 
central idea is that a generator trained with normal data poses high reconstruction loss when 
generating an anomalous image.  
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Deep learning can be used as a feature extractor. Deep one-class (“DOC”) is an approach inspired by 
kernel-based one-class classification and minimum volume estimation and to trains a neural network 
while minimizing the volume of a hypersphere that encloses the network representations of the data 
[26]. Minimizing the volume of the hypersphere forces the network to extract the common factors of 
variation, and anomaly can be detected if the test instance is plotted out of the boundary of the 
hypersphere. For sound-based anomaly detection, MARCHI proposed the LSTM approach [27]. It is 
unsupervised approach based on a denoising autoencoder with bidirectional LSTM.  

Anomaly detection using deep learning-based methods emerged recently but already shown 
promising performances, especially for big and complicated data. We think these approaches are 
applicable for anomaly detection with audio data, as our concern is to measure the difference between 
normal and anomalous.  

2.3. Adaptive digital filters for denoising 

Getting meaningful information from noisy data is a traditional subject in the field of signal 
processing. The filtering theory, the solution to the problem, was proposed by Kolmogorov and 
Wiener for stationary time series data during the late 1930s and early 1940s [28]. Kolmogorov 
developed a comprehensive treatment of the linear prediction problem for discrete-time stochastic 
processes. Independently, Wiener formulated the continuous-time linear prediction problem and 
derived an explicit formula, known as the Wiener-Hopf equation, for the optimum predictor. Wiener 
also considered the filtering problem of estimating a process corrupted by additive noise.  

Both Kolmogorov and Wiener assumed an infinite amount of data and assumed the stochastic process 
to be stationary. Despite the successful applications of their formulations in line with generalization 
by various researchers, the difficulties of updating with increases in the observation interval and 
modifying the formulations for vector cases. In the early age of space exploration, these problems 
were fundamental challenges for determining satellite orbits.  

In order to overcome the challenges aforementioned, Kalman introduced state-space representation 
into the filtering problem and proposed a Kalman filter (“KF”) [29].The idea is to express a dynamic 
system in a particular form called the state-space representation. The KF is an algorithm for 
sequentially updating a linear projection for the system. A system is expressed by using a system 
equation and measurement equation. The essential assumptions in formulating the KF are that the 
time series is linear, and the noise has the property of normality. Using these assumptions, KF can 
describe the dynamics of time series with the first-order moment and the second-order moment of the 
normal distributions. The theoretical detail and the algorithm of KF are discussed in section 3.2.3.  

In contrast to a linear system, normality is not maintained by a nonlinear transformation in a nonlinear 
system, making the state estimation problem difficult. The central problem in the nonlinear Kalman 
filter is how to estimate state space from the nonlinearly transformed distribution. There have been 
proposed various approximation approaches for the solution. The main approximation methods are 
linearization and statistical sampling. The linearization method is acquiring linearized approximation 
of the nonlinear function using Taylor expression and applying the traditional linear Kalman filter. 
The widely used filtering strategy based on this idea is the Extended Kalman filter (“EKF”) [30].   

The deterministic sampling approach is the way to approximate a probability distribution instead of 
approximating the nonlinear function. This approach is more computationally expensive than EKF. 
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The breakthrough was the unscented Kalman filter (“UKF”) by Julier and Uhlmann [31]. The UKF 
selects the finite number of sigma points to represent the nonlinearly transformed distributes, and 
accordingly, it can be computed to the same extent of complexity as the EKF. The theoretical detail 
and the algorithm of UKF are discussed in section 3.2.4. 

2.4. Sparsity and robust estimation 

From a practical perspective, the environmental presence of disturbances is unavoidable. In the 
sound-based anomaly detection problem, noise is present in sound data used for training and testing. 
For a system to be robust, small disturbances should only result in small estimation errors. How to 
estimate meaningful information can be broken down to two folds. The one utilizing the sparsity and 
another applies robust estimation.  

The application of the Lasso norm to separate signal and noise for sparse estimation was originated 
in Donoho and Stark’s work [32]. They proved the uncertainty principles and said signal and its 
Fourier transform could not both be highly concentrated. In the 1990’s, such sparsity induced 
representation was systematized and various application, including neuro-science field was studied 
[33].  

As we discuss later in section 3.1.5, the autoencoder with appropriate architecture and activate 
functions  can learn sparse representation. There are various variants of the autoencoder proposed for 
reinforcing its sparse representation. Sparse Auto-Encoders are given by introducing the Kullback-
Leibler divergence as the regularization term [34;35]. The regularization term contributes to suppress 
the mean activity of the hidden units [36]. Vincent proposed the De-noising AutoEncoder (“DAE”) 
[37]. The DAE aims at minimizing the reconstruction error between a sample and the reconstructed 
vector using its corrupted version. Rifai proposed the Contractive Auto-Encoder (“CAE”) [38]. The 
CAE incorporates the squared Frobenius norm of the Jacobian matrix as a regularization term. This 
term aims at minimizing the sensitivity of the hidden representation to slight changes in input. 

If we recognize noise as outlier, the robust estimation problem can be applied. Many methods of 
robust parameter estimation have been proposed to reduce the bias induced by outlier presence [39]. 
There is various substitution of the ordinary least square for robust estimation. The mean absolute 
error can be used for the purpose, since the estimation represents a sample median. Maximum 
likelihood estimation is a typical form of parameter estimation, but it is also well known that it is not 
robust against outliers. To develop robust estimation, the modifications of divergence functions were 
proposed. Fujisawa and Eguchi discussed extending a cross entropy and proposed the 𝛾-dibergence 
[40]. It contains the logarithmic function and therefore it is more robust against outliers than other 
conventional divergence functions.   

2.5. Dataset of industrial machinery sounds  

One of the most critical tasks in machine learning research work is to utilize a well-defined large-
scale dataset. Thanks to the numerous researchers and practitioners' efforts, there have been many 
open sound datasets. These open datasets have contributed to the recent remarkable advancement in 
data mining technique using sound data. For instance, Google researchers created audio event 
recognition of various sound segments extracted from YouTube [41]. Dekkers published the dataset 
of sound recorded daily activities in a building with annotations [42]. 
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Regarding anomaly detection of machinery sound, Koizumi et al. introduced the dataset called 
“ToyADMOS”, designed for anomaly detection [5]. The dataset collected from miniature machines 
(toys) operated in the controlled laboratory environment, not only normal condition sound but also 
abnormal condition sound, which is generally regarded challenging to sample. In some cases, such as 
research by Dong et al., they prepare suitable sound data from a surface-mounted device machine 
themselves for their model and opened it for other scholar’s review [43]. These datasets have 
answered the growing attention on sound data-based industrial machinery anomaly detection and the 
emerging demand for appropriate sound datasets. However, these datasets are not enough when 
studying anomaly detection comes to various types of machine sounds in real factory environments, 
where the sound is inherently contaminated with background noise.  

In September 2019, researchers at a Japanese manufacturing enterprise, Hitachi Co., Ltd., published 
a new dataset “Malfunctioning Industrial Machine Investigation and Inspection (MIMII)”(“MIMII 
Dataset”), which is publicly available under Creative Commons Attribution-Share Alike 4.0 
International (CC BY-SA 4.0) license [44]. The MIMII Dataset contains the sound of four different 
types of machines. The valves, pumps, fans, and slide rails sound are recoded. The pumps, which we 
utilized mainly for our experimental study, are water pumps that drain water from a pool and 
discharge water to the pool continuously. In this Project, we tested our proposed approaches on the 
MIMII Dataset to detail the property in section 4.3.  

2.6. Conclusion of the analysis  

We had the literature review related to the Project in advance to discuss potential improvement of 
anomaly detection in noisy data. The statistical signal processing approaches and machine learning 
approaches have been intensively studied to extract desirable information from contaminated data. 
Interestingly, we found that these efforts have been studied independently. Signal processing and 
machine learning can be derived from multivariate analysis techniques such as the ordinary least 
square.  

However, to our knowledge, few pieces of literature refer to the relationship between these 
approaches. Hence, we explored the relationship and developed a system incorporating signal 
processing and machine learning to improve the anomaly detection performance in noisy sound data. 
We selected the Kalman filter and the unscented Kalman filter as the adaptive digital filters. In terms 
of machine learning techniques, we chose to use an autoencoder, because a baseline study we adopted 
utilized an autoencoder, and also it is relatively succinct to apply modifications to the architecture. 
The modification should be encouraged by the insights of robust and sparsity induced estimation 
given in the literature.  
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3. PROJECTIONS 

In this section, we introduce the theoretical backdrop of learning algorithms in an autoencoder. Since 
there are various kinds of architectures, optimization techniques and model training hacks, this 
chapter mainly describes the theories relevant to the model used in our research.  

3.1. LEARNING ALGORITHMS OF AUTOENCODER 

3.1.1. Feedforward neural network 

The feedforward process is the process to evaluate output information deriving from the input 
information based on neural network architecture. We describe this process based on a simple 
instance, following the literature [36]. Figure 1 describes the network diagram for a diagram for an 
autoencoder which has a double-layer architecture consisting of the input units (l=1), the hidden units 
(l=2) and the output units (l=3). 

Each unit receives the inputs from the preceding units. The inputs are weighted and added a bias, and 
turns to its total input. For the example shown in Figure 1, each unit in the hidden units (l=2) receives 
four inputs from the layer (l=1) and returns its total inputs𝑢! , (𝑖 = 1,2,3,4) as,  
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Then computes its outputs 𝑧! , (𝑖 = 1,2,3,4) by operating an activation function as,  
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This operation can be generally expressed by vectors and matrixes indicating its layer with l as,  

𝒖(&'!) = 𝑾(&'!)𝒛(&) + 𝒃&'! (4) 

𝒛(&'!) = 𝒇G𝒖(&'!)H. (5) 

 

Figure 1 Network diagram for an autoencoder which has a double-layer architecture consisting of the input 
units (l=1), the hidden units (l=2) and the output units (l=3). 
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A variety of activation functions have been proposed and used. One of the most widely used and 
known by its Rectified linear function (ReLU) is used. The ReLU is written,   

𝑓(𝑢) = max(𝑢, 0) . (6) 

The ReLU and its derivative are simple as shown below, and therefore, its computation complexity 
is relatively inexpensive.  

𝜕𝑓
𝜕𝑢

= N1	𝑓𝑜𝑟	𝑢 ≥ 0
0	𝑓𝑜𝑟	𝑢 < 0	 (7) 

3.1.2. Learning algorithms  

The parameters 𝑾  are required to be optimized through the training. The optimization can be 
formulated as acquiring the estimation of parameters 𝑾6  when the data of the training data 𝒟 
consisting of observation 𝒙" and target 𝒅" ,  

𝒟 = {(𝑥!, 𝑑!),⋯ , (𝑥) , 𝑑))} (8) 

by defining 𝑾6 to minimize a loss function 𝐸(𝒘). For instance, in case that the error is evaluated as 
ordinal squared error, then this is formulated as,  

𝑾\ = argmin
𝒘

𝐸(𝒘), 				𝐸(𝒘) =
1
2
`‖𝒅+ − 𝑦(𝒙+; 𝒘)‖"
)

+,!

(9) 

Generally, 𝐸(𝒘) is not convex function, and therefore, the global minimum is almost impossible. 
Instead, the local minimum is acquired. The widely used approach to acquire a local minimum starts 
from an initial position and recursively updates its position. The gradient descent method is one of 
the simplest methods for recursive computation. The gradient is defined in vector form as, 

∇𝐸 ≡
𝜕𝐸
𝜕𝒘

= =
𝜕𝐸
𝜕𝑤#

⋯	
𝜕𝐸
𝜕𝑤$

@
⊤

(10) 

By using this gradient, the gradient descent method updates the current weights as follows,  

𝒘(&'#) = 𝒘(&) − 𝜖∇𝐸 (11) 

where 𝜖 denotes a learning rate, set as a hyperparameter. Despite various optimization techniques in 
nonlinear programming, the gradient descent method is the dominant method in machine learning 
tasks, especially when using the deep learning approach. A deep neural network architecture has a 
massive set of parameters, and it is not feasible to compute the second-order derivatives of the loss 
function. Since the derivative needs to be calculated, the method is only applicable to differentiable 
functions and can get stuck in a local minimum. 

Stochastic gradient descent (“SGD”) is the extension of the gradient descent method. In SGD, training 
data is randomly sampled from a dataset for each training iteration. This randomness can mitigate the 
possibility of trapping to a local minimum.  

We mentioned that the learning rate is a hyperparameter. The learning rate is a significant factor in 
the training process. It swings the speed of convergence and that stability. Therefore, the methods to 
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determine and optimizing the learning rate have been studied, and various improvements have been 
proposed.   

Momentum is one of the methods to improve the convergence performance of gradient descent. In 
momentum, updating of weight parameters 𝜖∇𝐸& is calibrated the precedent updating, in other words, 
the average movement expressed as 

𝒘(.'!) = 𝒘(.) − 𝜖∇𝐸. + 𝜇∆𝒘(./!), 
										∆𝒘(./!) = 𝒘(.) −𝒘(./!) (12) 

where 𝜇  is a hyperparameter, generally determined in 0.5 ~ 0.9. The effect of momentum is 
illustratively shown in Figure 2 [35]. The shown case represents that the loss function has a flat 
bottom floor, which makes stochastic descent fluctuate. Meanwhile, momentum term can calibrate 
the process and stably converges as a result.   

The RMSProp is another approach to suppress the fluctuation of the convergence process in SGD. In 
the RMSProp, the learning rate is calibrated by the significance of the gradient,  

𝒗. = 𝜌𝑣./! + (1 − 𝜌) o∇𝐸G𝒘(.)Hp
"
, (13) 

∆𝒘(.) = −
𝜂

r𝒗. + 𝜀
∇𝐸G𝒘(.)H, (14) 

𝒘(.'!) = 𝒘(.) + ∆𝒘(.), (15) 

where 𝜀 is the machine epsilon. A significant fluctuation results in the considerable value of 𝑣 and 
consequently results in the small value of 𝑤. This feedback mechanism can suppress the fluctuation. 
The Adam, the name stands for the adaptive moment estimation, combines the Momentum and the 
RMSProp [13]. The Adam is widely used in recent research works, and we also use the algorithm in 
our network training.  

3.1.3. Backpropagation 

In order to update all the parameters in the neural network, the loss function needs to be derived with 
respect to all the parameters. This computation is complicated in the case of a multi-layered network. 
A backpropagation can simplify the computation by updating the units from the output layer to the 
input layer backwards. We describe the algorithm referring to the illustration in Figure 3. 

 

Figure 2 Illustration of a) stochastic descent process and b) stochastic optimization process with momentum 
term [35]. 

Minimum error Minimum error

a) Stochastic Optimization b) Stochastic Optimization with Momentum Term
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Let derive the loss function 𝐸+ with respect to the parameter 𝑤01
(&) in the l-th layer. By applying the 

chain rule of differentiation, the derivative can be factorized as, 

𝜕𝐸+
𝜕𝑤01

(&) =
𝜕𝐸+
𝜕𝑢0

(&)

𝜕𝑢0
(&)

𝜕𝑤01
(&) (16) 

where 𝑢)
(*) is the input to the l-th layer’s j-th unit. The first term in the right-hand can be expressed 

as, 

𝜕𝐸+
𝜕𝑢0

(&) =`
𝜕𝐸+

𝜕𝑢2
(&'!)

𝜕𝑢2
(&'!)

𝜕𝑢0
(&)

2

(17) 

This expression represents that the 𝑢0
(&) effects on the loss function via the accompanied layer units 

𝑢2
(&'!)  as described in Figure 3. For simplification we introduce 𝛿0

(&) as, 

𝛿0
(&) =

𝜕𝐸+
𝜕𝑢0

(&) (18) 

Then the (18) can be described as,  

𝛿0
(&) =`𝛿2

(&'!) u𝑢20
(&'!)𝑓3 o𝑢0

(&)pv
2

(19) 

This equation indicates that the 𝛿)
(*) can be calculated by using the 𝛿)

(*'#). In an iterative manner, the 
computation can be started from the output layer toward the input layer. The second term in the right 
hand of the (16) is obviously,  

𝜕𝑢0
(&)

𝜕𝑤01
(&) = 𝑧1

(&/!) (20) 

 

Figure 3 Illustration of a feedforward neural network. (Left) describes the differential of the total inputs on 
the unit impact on the loss function via the following layer’s units. (Right) describes the backpropagation of 

the delta from l+1th to lth layer and computation of 𝜕𝐸/𝜕𝑤01
(&)[36].   

! − 1 ! ! + 1

!

!!(#)

" !%
(#&')
⋮

"!(#)

! #%
(#&')

" $%!
(#&')

⋮#!(#)$!(
(#)

#%&'(#&')

#'(#&')

! − 1 ! ! + 1



23 

To the conclusion of the backpropagation, the derivative of the loss function with respect to the weight 
parameter is the product of the delta and output at the unit as, 

𝜕𝐸+
𝜕𝑤01

(&) = 𝛿0
(&)𝑧1

(&/!) (21) 

The right fold of Figure 3 highlights the factors to compute this differentiation over the l-th layer’s 
j-th unit.   

3.1.4. Loss functions in a neural network 

The principal of anomaly detection with an autoencoder is that anomalous condition sound cannot be 
accurately encoded to the hidden layer and reconstructed from the hidden layer if the model is trained 
only with normal condition sound data. The accuracy of such decoding and reconstructing operation 
is evaluated with a loss function which measures the discrepancy between the input information and 
the reconstructed information.  

𝐿45(𝜽6 , 𝜽7) = z𝒙 − 𝐷G(𝒙|𝜽6)}𝜽7Hz"
"
, (22) 

The loss function in a neural network architecture dictates the objective of the optimization. The 
solution acquired in MSE is 𝜇̂ = argmin

8
𝐿45(𝜽6 , 𝜽7) and the sample mean #

"
∑ 𝑦!"
!+# . The loss function 

should be selected in accordance with the statistical assumption of the data to analyse. For instance, 
if noise is Gaussian, we can acquire the Best Linear Unbiased Estimator (“BLUE”) as a solution the 
ordinary squared error.  

3.1.5. Sparsity and robustness  

It is a general problem to avoid overfitting in the training step. Overfitting to the training data could 
lower its generalization performance since the model may be optimized to the training data very 
rigidly. The other overfitting problem  Various penalization is introduced to suppress the overfitting. 
There are two types of widely used regularization terms in a machine learning problem. One is the 
Ridge regularization, and another is the Lasso (Least Absolute Shrinkage and Selection Operator) 
regularization. The Ridge regularization was proposed in order to suppress multicollinearity. The 
Ridge regularisation is the addiction of 𝑙, norm of the parameters to the MSE as,   

Ridge	regularization			𝐿45!"#$%(𝜽6 , 𝜽7) = z𝒙 − 𝐷G(𝒙|𝜽6)}𝜽7Hz"
"
+ 𝜆‖𝜽‖" (23) 

Where 𝜆 denotes the regularization parameter and ‖𝜽‖- for the set of parameters 𝜽 = �𝜃!, ⋯ , 𝜃9� is 
the 𝑙. norm calculated as, 

‖𝜽‖: = 𝑙𝑝	norm = �`𝜃1:
9

1,!

�

!
:

(24) 

On the other hand, the MSE with Lasso regularization is expressed as [31],  

Lasso	regularization		𝐿45&'(()(𝜽6 , 𝜽7) = z𝒙 − 𝐷G(𝒙|𝜽6)}𝜽7Hz"
"
+ 𝜆‖𝜽‖! (25) 
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Figure 4 illustrates the effects of these regularizations [45]. The weight parameters approach zero, 
and this removes features unnecessary for representing the data structure. The L2 regularization 
makes the solution apart from the minimum error and the weights approach to zero but almost always 
never reaches. So, using the L2 regularization term enables sparsity induced representation. 

Figure 4 Illustration of a) Lasso regularization and b) Ridge regularization in the space spanned by two 
parameters [45]. 

The methods mentioned above can give us an estimator for sparse modelling. It works to keep only 
significant parameters among the possible set of parameters. Thus, L1 regularization enables sparse 
coding. As a fact, MSE with Lasso regularization term is known to be the dual problem of minimizing 
the problem, 

minimize
𝜽∈ℝ#

‖𝜽‖! 	subject	to	𝒚 = 𝑿𝒘 (26) 

Kullback-Leibler divergence (“KLD”) is also widely used as a regularization term for inducing 
sparsity [36;34].  It evaluates the dissimilarity between two densities of 𝑔 and 𝑓, and it is defined as 

D>?(𝑔, 𝑓) = E@ �log
𝑔(𝑋)
𝑓(𝑋)

� = �𝑔(𝑥) log
𝑔(𝑥)
𝑓(𝑥)

𝑑𝑥 (27) 

KLD satisfies the following properties,  

D>?(𝑔, 𝑓) ≥ 0 (28) 

D>?(𝑔, 𝑓) = 0 ⟺ 𝑔(𝑥) = 𝑓(𝑥)	almost	everywhere. (29) 

Implementation can be applied a binomial distribution for the density functions above, and thus the 
KLD can be written as,  

D>?(𝑔, 𝑓) =`�𝜌 log
𝜌
𝜌�0
+ (1 − 𝜌) log

1 − 𝜌
1 − 𝜌�0

 
A*

0,!

, (30) 

where 𝑠, is the number of neurons in the hidden layers. The index 𝑗 is summing over the hidden units 
in our network. The overall loss function is now written, 
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𝐿45(+'!(%(𝜽6 , 𝜽7) = z𝒙 − 𝐷G(𝒙|𝜽6)}𝜽7Hz"
" +`KLG𝜌z𝜌�0H

A*

0,!

. (31) 

Another approach to extract meaningful information from noisy data is the Least Absolute Deviance 
(“LAD”) approach. The LAD considers the Mean Absolute Error (“MAE”) as a loss function. The  
estimator acquired by the MAE can be expressed as,  

𝜇̂3 = argmin
8

`|𝑦1 − 𝜇|
+

1,!

(32) 

To analyze the property of 𝜇̂3 , we sub-differentiate the summation and assume it is equal to zero,  

` 1
1:C"D8E,

+ ` 𝛿1
1:C",8E,

− ` 1
1:C"F8E,

= 0 (33) 

It shows that 𝜇̂/ is equivalent to the sample median. Median is known as the robust statistics against 
outliers [46]. Hence the estimator acquired by MAE can weaken the effect of the outliers compared 
to the MSE. The MAE, however, may discard too much information during the estimator computation. 
Therefore, in a robust estimation problem, Huber loss, or called Smooth L1 loss, is widely used. The 
Huber loss is the modification of MAE to incorporate the information in a central region as a quadratic 
form, same as the MSE [39]. Mathematically, the Huber loss provided in pytorch is expressed as 

HuberLoss(𝑥, 𝑦) =
1
𝑛`

𝑧1
1

(34) 

where 𝑧! is given by 

𝑧1 = ¤
0.5 × (𝑥1 − 𝑦1)"

𝛽
, 𝑖𝑓|𝑥1 − 𝑦1| < 𝛽

|𝑥1 − 𝑦1| − 0.5 × 𝛽, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
(35) 

Both of the estimators are known to be a class of M-estimator. This estimator has a solution which 
satisfies ∑ 𝜓(𝑥1; 𝜃)+

1,! = 0. 

3.1.6. Autoencoder and principal component analysis 

If the dimension of the hidden layer in an autoencoder is smaller than that of an input layer, its 
decoding operation can be understood as the extraction of embedded information from the input 
information. We describe the extraction mechanism by using an analogy of the principal component 
analysis (“PCA”). In PCA, the dispersion of data in 𝑝 -dimension space is described with the 
covariance matrix 𝚽 of the training sample dataset 𝒙 = {𝑥!, ⋯ , 𝑥+} can be expressed using the sample 
mean 𝑥̅, 

𝚽 =
1
𝑁
`(𝑥+ − 𝑥̅)
)

+,!

(𝑥+ − 𝑥̅)G. (36) 

If the data is embedded into a subspace, the subspace is spanned with the eigenvector of 𝚽. Let 
𝐷H1776+  denote the dimension of the hidden layer and 𝐔I-"##%.  be a matrix containing the 𝐷H1776+ 
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eigenvectors in descending order. Then the matrix G𝐔I-"##%. , 𝒙²H are the solution of the following 
optimization problem [46;47],  

G𝐔I-"##%. , 𝒙²H = (𝚪, 𝝃) = min
𝝃,𝚪

`z(𝑥+ − 𝝃) − 𝚪M𝚪(𝑥+ − 𝝃)z
"

)

+,!

(37) 

The equation implies that the eigenvector of 𝚽  spans the 𝐷H1776+ -dimension subspace, which 
minimizes the Euclid norm. Therefore, the autoencoder embeds the input information into the  
𝐷H1776+-dimension subspace in the encoding process. The decoding process of the autoencoder means 
reconstructing the data from the embedded subspace.  
 
3.2. STATISTICAL SIGNAL PROCESSING AND STATE ESTIMATION 

In this chapter, we introduce the theoretical fundamentals of statistical signal processing. The linear 
and non-linear system to be discussed. Then state-space model both for the linear system and the non-
linear system is introduced. This estimation is made without precise knowledge of the underlying 
dynamic system. The Kalman filter algorithm computes the following two steps recursively. The one 
is the prediction step, where the 𝒙 (state) and the 𝑷 (state error covariance) are estimated using the 
previous state. The other is the correction step, where the state and error covariance are corrected 
using the current measurement.  

3.2.1. Effects of noise presence on the ordinary least square solution 

First, we discuss how noise effect the solution acquired by the MSE. The discussion in this section 
refers to the literature [48]. In the linear state-space model, let state-space be 𝒙, and observation be 𝒚 
then the linear equation is written as,   

𝒚 = 𝑯𝒙, (38) 

where 𝑯 is a linear operator of the M×N matrix, which maps 𝒙 to 𝒚. We consider the singular 
decomposition of 𝑯 with the singular vector 𝒖) and 𝒗), then 𝑯 can be decomposed, 

𝑯 = (𝒖., 𝒖/, ⋯ , 𝒖0)

⎝

⎜
⎜
⎜
⎛

𝛾. 0 ⋯ 0
0 𝛾/ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝛾1
0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 ⎠

⎟
⎟
⎟
⎞

⎝

⎛
𝒗.2

𝒗/2
⋮
𝒗12⎠

⎞	

=`𝛾0𝒖0𝒗0G
)

0,!

. (39) 

By using 𝑯, the optimal solution of the equation can be computed as,  

𝒙· = {(𝑯G𝑯)/!𝑯G}𝒚 = ¤`
1
𝛾0
𝒖0𝒗0G

)

0,!

¸𝒚. (40) 

 



27 

If the observation is contaminated with noise, the equation is extended to include the noise vector 𝜺 =
(𝜀!, 𝜀", ⋯ , 𝜀))G, where 𝜀0 	iid	~	𝑁(0, 𝜎"), then the equation is written as,  

𝒚 = 𝑯𝒙 + 𝜺. (41) 

In this case, the least square solution is modified as,  

𝒙· =`
1
𝛾0
𝒖0𝒗0G

)

0,!

𝒚 =`
1
𝛾0
𝒖0𝒗0G

)

0,!

(𝑯𝒙 + 𝜺)	

= ¤`
1
𝛾0
𝒖0𝒗0G

)

0,!

¸𝑯𝒙 +`
𝒖0G𝜺
𝛾0

𝒗0

)

0,!

	

= ¤`
1
𝛾0
𝒖0𝒗0G

)

0,!

¸¤`𝛾0𝒖0𝒗0G
)

0,!

¸𝒙 +`
𝒖0G𝜺
𝛾0

𝒗0

)

0,!

	

= 	𝒙 + `
𝒖0G𝜺
𝛾0

𝒗0

)

0,N'!

. (42) 

This result indicates that the estimator 𝒙· is biased from the true value 𝒙 by the noise vector 𝜺 and the 
extent of the bias is amplified by !

O/
. Therefore, if some of the singular value elements (for instance, 

𝑗 = 𝑟 + 1,⋯ ,𝑁) in 𝑯 is nearly zero, the second term may be much larger than the true value,  

𝒙 ≪ `
𝒖0G𝜺
𝛾0

𝒗0

)

0,N'!

. (43) 

Such degeneracy of the singular value elements can happen if the observations have similar value to 
each other. Therefore, noise is encouraged to be removed for appropriate estimation with the least 
square approach, or we should seek other loss function as we discussed in section 3.1.5. Henceforth, 
we discuss the adaptive filters of the KF and the UKF, starting from a fundamental information theory. 

3.2.2. Bayes estimation and Cramer–Rao inequality in an optimized filter 

The foundation of estimating unknown parameters based on a posteriori probability distribution is 
the problem of Bayes estimation. This section states how parameter estimation is formalized and the 
differences between linear and nonlinear systems [49]. An estimated error  is computed with unknown 
parameter 𝑥 and its estimate 𝑥S = 𝑓(𝑦), 

𝑒 = 𝑥 − 𝑓(𝑦). (44) 

Let 𝑙(𝑒) be an error function, then the Bayes risk 𝑅[𝑓] is defined as the expectation of 𝑙(𝑒), 

𝑅[𝑓] = 𝐸�𝑙G𝑥 − 𝑓(𝑦)H�	

= 	� � 𝑙G𝑥 − 𝑓(𝑦)H𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦
P

/P

P

/P
	

= � � 𝑙G𝑥 − 𝑓(𝑦)H𝑝(𝑥|𝑦)𝑝(𝑦)𝑑𝑦
P

/P

P

/P
. (45) 
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Bayes estimate is the estimated value of 𝑓(𝑦) which minimize the Bayes risk. In addition, we define 
the conditional Bayes risk as follows,  

𝑅Q[𝑓] = 𝐸�𝑙G𝑥 − 𝑓(𝑦)H}𝑦� = 	� 𝑙G𝑥 − 𝑓(𝑦)H𝑝(𝑥|𝑦)𝑑𝑥
P

/P
. (46) 

Then, the Bayes risk is the expectation of the conditional Bayes risk. It is known that the 𝑥S = 𝑓(𝑦) =
argmin

0
𝑅1[𝑓]  concurrently minimizes the Bayes risk, that is to say, the Bayes estimate can be 

acquired by minimizing the conditional Bayes risk. By using an information matrix and its inverse 
matrix, an estimated error covariance matrix can be bounded. Let 𝑥 ∈ ℝ"be an unknown parameter 
vector,  𝑦 ∈ ℝ.be an observation vector, and 𝑓(𝑦) be an estimate of 𝑥 based on 𝑦. Bayes information 
matrix is defined as, 

𝐽 = −E �
𝜕" log 𝑝(𝑥, 𝑦)

𝜕𝑥"   , (47) 

where the elements are expressed as, 

𝐽1,0 = −E�
𝜕" log 𝑝(𝑥, 𝑦)

𝜕𝑥1𝜕𝑥0
  ,				𝑖, 𝑗 = 1,… , 𝑛. (48) 

For any nonlinear system, the posteriori Cramer-Rao inequality is  

E{[𝑥Å./ − 𝑥.][𝑥Å./ − 𝑥.]G} ≥ 𝐽.//!(𝑥.), (49) 

E{[𝑥Å. − 𝑥.][𝑥Å. − 𝑥.]G} ≥ 𝐽./!(𝑥.) (50) 

where 𝑥Å./  and 𝑥Å. denote the one-step prediction estimation and the one-step filtered estimation. The 
(49) and (50) indicate that these estimation for any nonlinear filter can be bounded by the inverse of 
Bayes information matrix.  

3.2.3. Linear system estimation and Kalman filter 

Kalman filter can be derived based on the following assumptions, which is collectively called Linear-
Quadratic-Gaussian control problem; linearity, white, Gaussian, and quadratic error criteria. The KF 
considers a normal distribution and describes a state estimate as the mean value of normal distribution, 
and evaluate its uncertainty by the covariance matrix. The Kalman filtering is a recursive process. It 
recursively updates the mean value and covariance matrix. Figure 5 describes the process [30]. As 
the data acquired stepwise in the order 𝑘 − 4, 𝑘 − 3,… , 𝑘, the covariance matrix is updated, and the 
uncertainty decreases.    
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In the mathematical context, the Kalman filtering assumes that the linear discrete-time state-space 
model can express a scalar time series data as,  

𝒙(𝑘 + 1) = 𝑨𝒙(𝑘) + 𝒃𝑣(𝑘), (51) 

𝑦(𝑘) = 𝒄G𝒙(𝑘) + 𝑤(𝑘). (52) 

The linear predictor model is written using the priori estimate 𝒙·/(𝑘) and the latest observation 𝑦(𝑘), 

𝒙·(k) = 𝑮(𝑘)𝒙·/(𝑘) + 𝒈(𝑘)𝑦(𝑘). (53) 

𝒙·/(𝑘) = 𝒙(𝑘) − 𝒙·(𝑘) (54) 

Then MSE can be defined as, 

𝒙�(𝑘) = 	 argmin
𝒙(2)

𝐽(𝑘) , 𝐽(𝑘) = EÌ𝒙Í"(𝑘)Î. (55) 

The Kalman filtering is the process to acquire the optimal estimate which satisfies the minimum mean 
square error. For its computation, the Kalman filtering is based on the assumption that the noise 
follows the normal distribution. This assumption derives two essential characteristics of the normality 
of random variables and of that the normal distribution can be defined by only first-order moment 
(mean) and second-order moment (variance).  

The characteristics that normality is conserved through linear transformation is the fundamental 
characteristics of designing the KF. A probabilistic density function of multivariate 𝒙 with mean 
vector 𝒙² and covariance matrix 𝑷S is expressed as  

𝑝(𝑥) =
1

r(2𝜋)+|𝑷S|
exp Ò−

1
2
(𝒙 − 𝒙²)G𝑃S/!(𝒙 − 𝒙²)Ô . (56) 

The affine transformation over the multivariate produces a multivariate 𝒚,  

𝒚 = 𝑨𝒙 + 𝒃, (57) 

where 𝒚 follows Gaussian distribution and its mean and covariance can be expressed, 

 

Figure 5 Illustrative concept of Kalman filtering and its state estimation process [30].  
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𝒚² = 𝑨𝒙² + 𝒃, 𝑷𝒚 = 𝑨𝑷𝒙𝑨U . (58) 

The affine transformation modifies the mean and covariance matrix, but the probability density 
function (“PDF”) of 𝒚 can be expressed in a Gaussian distribution manner, using this mean and 
covariance matrix.  

𝑝(𝒚) =
1

Õ(2𝜋)+}𝑷C}
exp Ò−

1
2
(𝒚 − 𝒚²)G𝑷C/!(𝒚 − 𝒚²)Ô . (59) 

If the system noise and observation noise are normal, the first-order moment and second-order 
moment can determine the characteristics of the distribution. The following equation expresses  
posteriori state estimation and the orthogonal principal,  

E[𝒙Ö/(𝑘)𝑦(𝑖)] = EÌG𝒙(𝑘) − 𝒙·(𝑘)H𝑦(𝑖)Î = 𝟎,			𝑖 = 1,2, … , 𝑘. (60) 

A posteriori covariance matrix 𝑷/(𝑘) is defined as,  

𝑷/(𝑘) = E Ø𝒙Ö/(𝑘)G𝒙Ö/(𝑘)H
G
Ù = E[{𝒙(𝑘) − 𝒙·/(𝑘)}{𝒙(𝑘) − 𝒙·/(𝑘)}G]. (61) 

Then we obtain the Kalman gain 

𝒈(𝑘) = 	
𝑷/(𝑘)𝒄

𝐶⊺𝑷/(𝑘)𝒄 + 𝜎W"
. (62) 

We henceforth describe the KF algorithm. The initialization step is, 

𝒙·(0) = E[𝒙(0)] = 𝒙X, (63) 

𝑷(0) = E[(𝒙(0) − E[𝒙(0)])(𝒙(0) − E[𝒙(0)])G] = 𝚺X. (64) 

It is being updated sequentially for 𝑘 = 1,2,⋯ ,𝑁. The prediction step is,  

														Priori	estimate ∶ 	 𝒙·/(𝑘) = 𝑨𝒙·(𝑘 − 1), (65) 

Priori	covariance	matrix ∶ 	𝑷/(𝑘) = 𝑨𝑷(𝑘 − 1)𝐴G + 𝜎Y"𝒃𝒃⊺. (66) 

Once obtain the actual observation 𝑦(𝑘), it proceeds to the filtering step,  

Kalman	Gain ∶ 	𝒈(𝑘) = 	
𝑷/(𝑘)𝒄

𝐶⊺𝑷/(𝑘)𝒄 + 𝜎W"
, (67) 

Posteriori	estimation ∶ 	 𝒙·(𝑘) = 𝒙·/(𝑘) + 𝒈(𝑘)G𝑦(𝑘) − 𝒄G𝒙·/(𝑘)H, (68) 

Posteriori	covariance	matrix ∶ 𝑷(𝑘) = (𝐼 − 𝒈(𝑘)𝒄G)𝑷/(𝑘). (69) 

The essence of the Kalman filter is this iterative update process of the covariance matrix.  

The KF can be extended to a nonstationary process. Let consider the linear discrete-time state-space 
model with varying coefficients {𝑨(𝑘), 𝒃(𝑘), 𝒄(𝑘)}, which satisfies the following state-space model, 

𝒙(𝑘 + 1) = 𝑨(𝑘)𝒙(𝑘) + 𝒃(𝑘)𝑣(𝑘), (70) 

𝑦(𝑘) = 𝒄⊺(𝑘)𝒙(𝑘) + 𝑤(𝑘). (71) 
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Kalman filtering over the nonstationary time-series data 𝑦(𝑘)  can be developed by substituting 
invariants set {𝑨, 𝒃, 𝒄} in the updating process to the varying coefficients set {𝑨(𝑘), 𝒃(𝑘), 𝒄(𝑘)}. In this 
case, system noise and observation noise can be time-varying.  

3.2.4. Nonlinear system estimation and the unscented Kalman filter 

Considering that the data we use for anomaly detection experiments is the real-world sound data with 
the background noise recorded in real factories, it is natural to assume the data is a nonlinear system. 
In contrast to the linear system, it is difficult to estimate the distribution in the nonlinear system by 
using the first and second-order moments because third and higher-order moments are not negligible 
and hinder state estimation. In non-linear filtering, it is essential to consider an approximation filter. 
An approximation value of the error covariance matrix is required. Posterior Cramer–Rao inequality 
is used to evaluate the estimated error covariance matrix [49]. A non-linear discrete system is 
expressed as,  

𝒙(𝑘 + 1) = 𝒇G𝒙(𝑘)H + 𝒃𝑣(𝑘), (72) 

𝑦(𝑘) = ℎG𝒙(𝑘)H + 𝑤(𝑘). (73) 

where 𝒙 ∈ ℝ"  is a state vector, 𝑦 is an observation value, 𝑣 is a system noise value, and 𝑤 is an 
observation noise vector. The function 𝒇(∙) is a non-linear vector function and ℎ(∙) is a scalar value 
non-linear function. Likewise, the formulation we discussed on Kalman filtering, the state estimation 
program is defined as finding the optimized estimator 𝒙c&'2/& Which minimize the Bayes risk,  

𝐽 = E �â𝒙.'Z − 𝒙·.'Z.
â
"
  , 𝑚 = 0,1. (74) 

Linearization is the process deriving Jacobian from a nonlinear function use only first-order series. 
Using the linearization in approximating a nonlinear system is the extended Kalman filter (“EFK”). 
This can introduce large errors in the mean vector and covariance matrix, which may lead to lower 
performance of the filter. The UKF addresses this problem by using a deterministic sampling 
approach [31;50]. Instead of using a linear approximation of the nonlinear function, approximating 
the probability density function is the central concept. In the deterministic approach, the posterior 
state distribution is again approximated as a normal distribution, but is now represented with a set of 
sample points. This approach is more expensive than the linearization approach but the UKF has the 
computational complexity similar extent to that of EKF [30]. Figure 6 illustrates a linear system and 
approximation approaches used in the linear transformation, the EKF and the UKF [30]. 

 

!(#)!(#)

#(%) #(%)#(%)

#(% + 1)

!(#)

#(% + 1) #(% + 1)

a) Linear transformation b) EKF: Acquire a tangent line for linear 
transformation

c) UKF: Approximate a distribution with 
samples
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Figure 6 a) Illustrative concept of a linear transfer from x(k) to x(k+1), b) illustration of EKF which utilizes 
a tangent line of the nonlinear mapping function, c) illustration of UKF, which represents approximated 

distribute with sample points [30].   

The central concept of the UKF is an approximation of posterior probabilistic density function (PDF) 
with normal distribution, instead of acquiring a tangent line of a nonlinear system, which is the central 
concept of the EKF. In order to approximate a posterior PDF, the UKF introduces the unscented 
transformation (“UT”). We describe the UT for the preparation of the UKF algorithm discussed later. 
We consider a non-linear mapping function 𝑓:ℜ" → ℜ"  which transform n-dimensional random 
variables 𝑥 to n-dimensional random variables 𝑦,  

𝒚 = 𝒇(𝒙). (75) 

Let 𝒙g be the mean of x, and 𝑃0 be covariance matrix of x. The problem can be defined as computing 
the first and second-order moments of y. The sigma points {𝓧1 , 𝑖 = 0,1,2, … ,2𝑛} are selected according 
to the following rules,  

𝓧X = 𝑥̅, (76) 

𝓧1 = 𝑥̅ + √𝑛 + 𝜅Gr𝑃SH1 , (77) 

𝓧+'1 = 𝑥̅ − √𝑛 + 𝜅Gr𝑃SH1 , (78) 

where 𝜅 is a scaling parameter and jk𝑃0l!is the i-th column of the square root of matrix 𝑃0. 𝑃0 is 
positive determinant, and the matrix square root is computed by Cholesky factorization or singular 
value decomposition. Then weights on each sigma point are given as, 

𝑤X =
𝜅

𝑛 + 𝜅
, (79) 

𝑤1 =
1

2(𝑛 + 𝜅)
,							𝑖 = 1, 2, … , 2𝑛. (80) 

where the weights are normalized to suffice ∑ 𝑤! = 1,"
!+4 . 

𝓨1 = 𝒇(𝓧𝑖), 𝑖 = 0, 1, … , 2𝑛. (81) 

By using 𝓨1, the first order and second-order moments of the transformed 𝑦, mean 𝑦m	and covariance matrix 
𝑷5, respectively, can be computed as,  

𝑦è =`𝑤1

"+

1,X

𝓨1 (82)	

𝑷C =`𝑤1

"+

1,X

(𝓨1 − 𝑦è)(𝓨1 − 𝑦è)G (83) 

The estimates of the first-order moment and the second-order moment are equivalent to the second-
order Taylor expression of any nonlinear function. Figure 7 illustrates how the sampled sigma points 
are mapped by a nonlinear function [30].  
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Figure 7 Illustrative of sigma points on bivariate normal distribution probability density function and its U-
transformation mapping of the points onto the 𝑦! − 𝑦" plane [30].   

Assumption that the conditional probabilistic density function follows gaussian distribution,  

𝑝(𝑥.|𝑌./!) = 𝑁 u𝑥.ê𝑥�.
./!

, 𝑃.
./!

v . (84) 

Likewise, as the KF, we describe the UKF algorithm. First, we have the initialization step, 

𝒙·(0) = E[𝒙(0)] = 𝒙X, (85) 

𝑷(0) = E[(𝒙(0) − E[𝒙(0)])(𝒙(0) − E[𝒙(0)])G] = 𝚺X. (86) 

It is being updated sequentially for 𝑘 = 1,2,⋯ ,𝑁. The UKF has to compute sigma points to prepare 
for approximation,  

𝓧X(𝑘 − 1) = 𝒙·(𝑘 − 1), (87) 

𝓧1(𝑘 − 1) = 𝒙·(𝑘 − 1) + √𝑛 + 𝜅 or𝑷(𝑘 − 1)p
1
, (88) 

𝓧+'1(𝑘 − 1) = 𝒙·(𝑘 − 1) − √𝑛 + 𝜅 or𝑷(𝑘 − 1)p
1
. (89) 

where the weights are computed as follows, 

𝑤X =
𝜅

𝑛 + 𝜅
, 𝑤1 =

1
2(𝑛 + 𝜅)

,							𝑖 = 0, 1, … , 2𝑛. (90) 

Then, the prediction step updates the sigma points using the mapping function	𝒇, acquiring  

𝓧1
/(𝑘) = 𝒇G𝓧𝑖(𝑘 − 1)H, 𝑖 = 0, 1, … , 2𝑛. (91) 

A priori estimation is weighted summation of the mapped values,  

𝒙·/(𝑘) =`𝑤1

"+

1,X

𝓧1
/(𝑘). (92) 

Using the (92), A priori covariance matrix is written as, 

𝑷/(𝑘) =`𝑤1

"+

1,X

{𝓧1
/(𝑘) − 𝒙·/(𝑘)}{𝓧1

/(𝑘) − 𝒙·/(𝑘)}G + 𝜎Y"𝒃𝒃⊺. (93) 
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Then, we re-calculate sigma points as, 

𝓧X(𝑘) = 𝒙·(𝑘), (94) 

𝓧1(𝑘) = 𝒙·(𝑘) + √𝑛 + 𝜅 or𝑷/(𝑘)p
1
, (95) 

𝓧+'1(𝑘 − 1) = 𝒙·(𝑘) − √𝑛 + 𝜅 or𝑷/(𝑘)p
1
. (96) 

Update the observation using the sigma points and compute a priori observation estimate, 

𝒴1/ = ℎG𝓧1
/(𝑘)H. (97) 

𝑦�/(𝑘) =`𝑤1

"+

1,X

𝒴1/. (98) 

A priori observation error covariance matrix can be computed as, 

𝑷CC/ (𝑘) =`𝑤1

"+

1,X

{𝒴1/(𝑘) − 𝑦�/(𝑘)}". (99) 

Similarly, A priori state and observation error covariance matrix can be computed as, 

𝑷SC/ (𝑘) =`𝑤1

"+

1,X

{𝓧1
/(𝑘) − 𝒙·/(𝑘)}{𝒴1/(𝑘) − 𝑦�/(𝑘)}. (100) 

Thus, we acquire the Kalman gain in the UKF algorithm,  

𝒈(𝑘) = 	
𝑷SC/ (𝑘)

𝑷CC/ (𝑘) + 𝜎W"
. (101) 

For the filtering step, the estimation and the error covariance matrix are updated using the Kalman 
gain as,  

a	posteriori	estimation	𝒙·(𝑘) = 𝒙·/(𝑘) + 𝒈(𝑘){𝑦(𝑘) − 𝑦�/(𝑘)}. (102) 

a	posteriori	error	covariance	matrix	𝑷(𝑘) = 𝑷/(𝑘) − 𝒈(𝑘)𝑷SC/ (𝑘)G. (103) 

 

3.3. PROPOSED APPROACH 

In this section, we formalize the settings for the system design proposed to improve the anomaly 
detection performance with noisy sound data. From the motivation of developing a noise-tolerable 
detection system, we propose to combine two approaches; denoising the noisy sound data with a 
digital adaptive filter and optimizing an autoencoder structure for sparse coding. As we mentioned in 
section 2, few preceding studies treat the digital filters and neural network as a single system. In 
contrast, our proposed approach explores the relationship between the digital filter and the 
autoencoder structure and improve the anomaly detection performance.  
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The real-world sound data is generally contaminated with noise, and therefore it is natural to 
conjecture that denoising and sparse coding are essential to improve anomaly detection performance. 
We propose to use the KF and the UKF as adaptive digital filters for the data pre-processing. As 
aforementioned, the KF is derived from a linear system, and the UKF is from a non-linear system. 
Both digital filters are also derived from Gaussian noise. For the autoencoder system, we propose to 
use the finer input vector, finer hidden units, and various loss functions, in addition to the baseline 
autoencoder model used in the literature by the real-world dataset provider. The combination of the 
pre-processing and the autoencoder variants conducted experimental evaluations is summarized in 
Table 1. 

Table 1 The list of the pre-processing and the autoencoder variants conducted the experimental evaluation in 
this study. The “Baseline” denotes the property of the baseline autoencoder model mentioned above. 

Pre-processing Input unit / hidden unit dimension Loss function 

Unprocessed - Baseline 320 dim / 8 dim - Baseline Mean Squared Error (MSE) - Baseline 

Kalman Filter 2565 dim / 8 dim MSE with Lasso regularization (L1) 

Unscented Kalman Filter 2565 dim / 2565 dim MSE with Ridge regularization (L2) 

  MSE with Kullback-Leibler 
divergence (KLD) regularization 

  Mean Absolute Error (MAE) 

  Huber Loss 

 

When applying the digital filters of the KF and UKF for the sound data, we acquire the state 
estimation results as pre-processed sound data. Although we have little mechanical and operational 
details about the machine we analyse, it is natural to address that the UKF has better state estimation 
performance.  

In its simplest form, an autoencoder is composed of two parts, an encoder and a decoder. It was 
introduced as a technique for dimensionality reduction, and it is known as very similar to the PCA if 
the loss function is the MSE as mentioned in section 3.1.6. We address that using the other loss 
functions listed above could encourage robustness of the representation in noisy data. MSE with 
Lasso is supposed to encourage sparseness of the parameters in autoencoder, thus it can avoid 
overfitting the model to incorporate noise. MSE with Ridge is tested for reference purpose in our 
study. We expect it prevent overfitting, but the trained model may incorporate noise. The MSE with 
KLD is supposed to play a similar role to the MSE with Lasso. The MAE is for robust estimation 
purpose. Huber loss is also for robust estimation but designed to incorporate more information than 
the MAE. It is our interest to experimentally obtain an insight that the noise in the pre-processed data 
should be treated as an outlier or just noise. 
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4. EXPERIMENTS 

4.1. Experiment protocols  

The performance of anomaly detection is measured in the index of AUC values [51]. It is a proven 
methodology to evaluate binary classifier output quality used in communication engineering. In the 
evaluation process, a Receiver Operating Characteristic (“ROC”) is a graphical plot that illustrates 
the performance of a binary classifier system as its discrimination threshold changes. An AUC value 
is defined by the area under the ROC curve. AUC has a range of 0 to 1. The higher AUC means the 
higher performance of binary classification, and 0.5 means the discriminator judges the result 
randomly. By plotting true positive rate (TPR) against the false positive rate (FPR) at various 
threshold settings, these fractions create the curve. Compared to metrics such as the subset accuracy, 
the Hamming loss, or the F1 score, ROC does not require explicitly optimizing a threshold for each 
label. 

 

Figure 8 Example of the area under the curve and receiver operating characteristic [52].  

Figure 9 illustrates the overall experiment procedures of the proposed architecture. For the proposed 
architecture examination, the dataset was pre-processed Unscented Kalman Filter. Meanwhile, we 
use the dataset (raw) to verify our implementation and environment for the reproductive work. The 
UKF filtered dataset and the raw dataset are converted to time-frequency space by Short Time Fourier 
Transformation (“STFT”). For the reproductive work, a log-Mel spectrogram was generated from 
the raw dataset. Both of the input features are tested for the proposed architecture, and AUC results 
were evaluated and discussed.    



37 

Figure 9 Overall workflow in this experiment.  

 

4.2. Analysis tools 

4.2.1. Implementation environment  

We used a conventional laptop of MacBook Pro (ver. later 2019) for the main machine of analysis. 
The machine specification is as follows; Processor – 8 Core Intel Core i9, Processor Clock – 2.4 GHz 
(1 processor), No of Processor – 1, and RAM – 32GB.  

4.2.2. Software  

Python (version 3.7.3) is the primary programming language for our research. The widely-used and 
proven libraries such as PyTorch, scikit-learn, and Keras are used. The purpose of usage of 
these libraries are expedition of model development and reduce coding error which might mislead 
results and discussion. A novelty portion in a proposed algorithm in this research will be developed 
from scratch if the proposed algorithm cannot be developed by modifying the existing library’s 
application programming interface.   

MATLAB (version R2020b Update 5, 64-bit) is used for pre-processing the dataset and the data 
visualization. MATLAB is recognized as one of the most reputable software for signal processing, 
especially for state estimation. The KF and the UKF methods are provided as the add-ons of “Control 
System Toolbox”, “DSP System Toolbox”, and “Signal Processing Toolbox” [53].  

4.3. Dataset and feature engineering 

Our proposed approach was tested on the real-world sound dataset, the MIMII Dataset, 
aforementioned in section 2.5 [44]. The dataset was collected using a microphone. It consists of eight 
separate microphones which enables us to evaluate multi-channel approaches. The microphone array 
was kept at a distance of 50 cm from the and 10-second sound segments were recorded. The dataset 
accordingly contains eight separate channels for each segment. The sound was recorded as 16-bit 
audio signals sampled at 16 kHz. The file of one channel in one segment consists of 160000 samples 
(=160000 × 10) of time frames. Apart from the target machine sound, background noise in real 
factories was recorded and mixed with the target machine sound for simulating real environments at 
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the three-level of Signal-Noise-Ratio (“SNR”); 6dB, 0dB and -6dB. These levels can be considered 
as clean, moderate and noisy sound data respectively. The SNR is defined to be 10 log#4(𝑎/𝑏))	, 
where 𝑎  is the average power over all segments of the machine models, and 𝑏)  is a power of a 
background-noise segment is randomly selected and denoted as 𝑗. The dataset is provided in the 
format of Waveform Audio File (.wav extension).  

The MIMII dataset contains the sound of four different types of machines as we introduced in the 
section 2.5. Among the four kinds of machines, pumps and fans are stationary, and others are non-
stationary. Since non-stationary types of machinery require relevant domain knowledge in actual 
operation, we decided to focus on the pump dataset to implement proposed architectures. The pump's 
sounds were recorded for both normal condition and abnormal condition. An example of the 
anomalous conditions of pumps was leakage, contamination and clogging. The anomalous sound data 
was labelled only as anomalous condition, and no further description was provided for each wav data 
file. The list of sound data files of pumps is summarized in Table 2. The pump sound dataset consists 
of four different pumps, labelled Model ID00, 02, 04 and 06. The number of segments for the normal 
condition of each machine is seven to ten times larger than that of anomalous condition.  

Table 2. MIMII Dataset pump content detail [44]. 

Model ID Segments for 
normal condition 

Segments for 
anomalous condition 

ID00 1006 143 

ID02 1005 111 

ID04 702 100 

ID06 1036 102 

 

The dataset provider conducted the baseline experiment. In their experiment, anomaly detection was 
performed for each segment by thresholding the reconstruction error averaged over 10 sec. The detail 
of the autoencoder neural network they used is described in section 4.5. The network is trained by the 
Adam optimization technique for 50 epochs to minimize the loss function of the least square as 
formulated in the (22).  

For each model ID, all the segments were split into a training dataset and a test dataset. All the 
anomalous segments were used as the test dataset. And the same number of normal segments dataset 
was randomly selected and used as the test dataset. All the rest of the normal segments were  used as 
the training dataset. Anomaly detection was performed for each segment by thresholding the 
reconstruction error averaged over ten seconds in accordance with the Dataset provider’s 
experimental protocols [44]. Table 3 shows the baseline results of the AUC for the pumps. Based on 
the intense relationship between the input SNR and the resulting AUC, we mainly used the model ID 
06 to experiment with our proposed approach. This relationship was reproduced and confirmed in our 
initial data analysis shown in subsection 4.6.3.   

Table 3. The baseline AUCs of pumps with ID: 00, 02, 04 and 06 at input SNR of 6 dB, 0 dB and -6 dB presented by 
the Dataset provider [44]. 
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Model ID Input SNR 

6 dB 0 dB -6 dB 

ID00 0.84 0.65 0.58 

ID02 0.45 0.46 0.52 

ID04 0.99 0.95 0.93 

ID06 0.94 0.76 0.61 

 
The feature engineering in the experiment follows the dataset provider’s procedure. Each segment of 
waveform sound data is mapped into frequency-intensity space with the STFT. The Fast Fourier 
Transformation (“FFT”) window size was 1024, and the hop size was 512. The Hanning window 
was applied. Among the one segment of 160000 samples, the beginning and ending 128 samples are 
trimmed and acquired 1159744 (=160000-256) samples for one segment. With the above set window 
size and hop size, we obtained 311 time-frames for one segment, and each time frame of the snapshot 
has frequency bins of 513 (=1024/2+1). The log-Mel spectrogram was generated with Mel 64 filter 
bank from the frequency-intensity space. The input feature of the 320-dimensional feature vector was 
generated by combining the adjacent five timeframes. In addition to the input feature vectors in line 
with the baseline mentioned above work for reproductive work purpose, we developed feature inputs 
with finer frequency resolution (“Finer Input Feature Vector”). Instead of applying Mel filter bank, 
we used the features acquired by the STFT directory. Accordingly, this finer resolution feature input 
vector has 513 bins in frequency and generates a 2565-dimensional input feature vector by combining 
adjacent five timeframes.  These processes are illustratively shown in Figure 10. 

Figure 10 (Top) Schematics of audio data process from time-frequency to log-Mel spectrogram and the 
input feature vector. (Bottom) Schematics of audio data process from time-frequency to spectrogram and the 

finer input feature vector of 2565 dimension.    
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4.4. Adaptive signal processing for the sound data 

This study applies the KF and the UKF for state-space estimation for denoising purpose. The dataset 
provided by the Dataset Provider is processed with MATLAB as stipulated in subsection 4.2.2. The 
applied filters are hereunder described.  

4.4.1. Kalman filtering for the sound data 

The wav files were directly processed, and return the filtered wav files. The “dsp.KalmanFilter 
System“ object provided in MATLAB is an estimator used to obtain a solution for optimal linear 
filtering recursively. Model of state transition is set two (2), which specify the dimension of a square 
matrix. The model of the relationship between states and measurement output is set two (2), which 
dictates a dimension of a row vector with many columns equal to the number of measurements. The 
covariance of process noise is set at 0.001, which specify a square matrix with the covariance of the 
white Gaussian process noise and each dimension equal to the number of states. The covariance of 
measurement noise is 0.1, which specify a square matrix with each dimension equal to the number of 
states having the covariance of the white Gaussian process noise. The initial value for states is 0, 
which specify an initial estimate of the states of the model as a column vector with a length equal to 
the number of states. The initial value for state error covariance is 0.1, which specifies an initial 
estimate for the state error covariance as a square matrix with each dimension equal to the number of 
states. The initial system equation with state vector 𝑥6  and measurement 𝑧6  (scalar) based on the 
previously-defined properties is expressed as follows, 

Initial	state	transition				𝑥2 = o1 0
0 1p o

0
0p + o

0.001
0.001p ,

(104) 

Initial	measurement							𝑧2 = (1 1)𝑥2 + (0.1), (105) 

The script is attached as Appendix 1 to this report. 

4.4.2. Unscented Kalman filtering for the sound data 

The wav files were directly processed, and return the filtered wav files. The “unscentedKalmanFilter” 
class in MATLAB creates an object for online state estimation of a discrete-time nonlinear system 
using the discrete-time unscented Kalman filter algorithm. Since we cannot assume a system function 
which describes the Pump sound emission, we decided to apply the default state function mounted in 
the class. The function is the van del Pol oscillator, which is the widely used nonlinear spring-mass-
damper system function written as 𝑥̈ + 𝜇(𝑥, − 1),𝑥̇ + 𝑥 = 0 . Because the Pump is a rotating 
machine, it could be reasonable to emulate the Pump’s physics with such oscillator model if the model 
considers only very short duration (msec order).  

The hyperparameters defined in this study were empirical. The computation of filtering was 
converged successfully but it should be noted that it did not guarantee this is the best parameter setting 
for the filter design. The parameter	𝛼 is set 0.1, which determines the spread of the sigma points 
around the mean state value. The spread of sigma points is proportional to 𝛼, which set to 0.001. 
Smaller values correspond to sigma points closer to the mean state. The parameter κ, a second scaling 
parameter, is set zero, which specify the spread of sigma points around the mean state value. The 
parameter 𝛽  is set two, which incorporates prior knowledge of the distribution of the state. The 
configuration of 𝛽 = 2 is optimal for Gaussian distribution. The “initialStateGuess” property column 
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vector was set (0.1 0.1)G. The measurement noise was set 0.1, and the process noise matrix was set 
diag(0.001	0.1). The “HasAdditiveMeasurementNoise” property was set false, which means the 
measurement noise is nonadditive, and the measurement function also specifies how the output 
measurement evolves as a function of the measurement noise. The script is attached as Appendix 2 
to this report. 

4.5. Autoencoder architecture 

In this Project, we developed three kinds of autoencoder-decoder neural networks. One is the 
reproducing model for benchmark, and the other two kinds are for finer dimensions. We conducted 
our experiment using the autoencoder model by using the PyTorch library. The Dataset provider 
presented the benchmark results with the model developed using the Keras library. Accordingly, 
there is a slight difference between the dataset provider’s benchmark and our reproduced benchmarks.  

The neural network for the reproducing work follows the dataset provider’s model, and it is 
illustratively shown in Figure 11. Hereafter it is called “Baseline AE”. The encoder network (E(·)) 
comprises 𝐹𝐶(𝐼𝑛𝑝𝑢𝑡, 64, 𝑅𝑒𝐿𝑈); 𝐹𝐶(64, 64, 𝑅𝑒𝐿𝑈) and 𝐹𝐶(64, 8, 𝑅𝑒𝐿𝑈), and the decoder network 
(D(·)) incorporates  𝐹𝐶(8, 64, 𝑅𝑒𝐿𝑈) ; 𝐹𝐶(64, 64, 𝑅𝑒𝐿𝑈)  and 𝐹𝐶(64, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑛𝑜𝑛𝑒)  and where 
𝐹𝐶(𝑎, 𝑏, 𝑓)  mean a fully-connected node with input neurons, b output neurons, and activation 
function f. No drop-out was applied through this Project. The ReLU denotes the Rectified Linear 
Units activation function. In this case, the input vector is 320 dimensions. The network is trained with 
the Adams optimization techniques for 50 epochs.  

One of the proposed methods equipping finer input dimension is illustratively shown in Figure 12. 
Hereafter it is called “Finer-Input AE”. The encoder network (E(·)) comprises 
𝐹𝐶(𝐼𝑛𝑝𝑢𝑡, 128, 𝑅𝑒𝐿𝑈); 𝐹𝐶(128, 64, 𝑅𝑒𝐿𝑈) and 𝐹𝐶(64, 8, 𝑅𝑒𝐿𝑈), and the decoder network (D(·)) 
incorporates  𝐹𝐶(8, 64, 𝑅𝑒𝐿𝑈); 𝐹𝐶(64, 128, 𝑅𝑒𝐿𝑈) and 𝐹𝐶(128, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑛𝑜𝑛𝑒). No drop-out was 
applied. In this case, the input vector is 2565 dimensions. The network is trained with Adams 
optimization techniques for ten epochs.  

 

Figure 11 Illustration of the model architecture of autoencoder-and-decoder-based deep neural network for 
the reproductive experiment as the benchmark (Baseline AE).  
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Another type of the proposed methods equipping finer input dimension is illustratively shown in 
Figure 13. Hereafter it is called “Finer-Hidden AE”. This architecture has a larger latent node 
compared to the Finer AE. The encoder network (E(·)) comprises 𝐹𝐶(𝐼𝑛𝑝𝑢𝑡, 128, 𝑅𝑒𝐿𝑈) ; 
𝐹𝐶(128, 64, 𝑅𝑒𝐿𝑈)  and 𝐹𝐶(64, 2565, 𝑅𝑒𝐿𝑈) , and the decoder network (D(·)) incorporates  
𝐹𝐶(2565, 64, 𝑅𝑒𝐿𝑈); 𝐹𝐶(64, 128, 𝑅𝑒𝐿𝑈) and 𝐹𝐶(128, 𝑂𝑢𝑡𝑝𝑢𝑡, 𝑛𝑜𝑛𝑒). No drop-out was applied. 
The input vector was 2565 dimensions. The network is trained with the Adams optimization 
techniques for ten epochs.   

Figure 13 Illustration of the model architecture of autoencoder-and-decoder-based deep neural network with 
higher dimensions in the hidden layer for sparse modelling (Finer-Hidden AE).  

In this report, we conducted various initial data analysis to understand the characteristics of the sound 
dataset and explore potential improvement approach. Neural networks other than autoencoder-
decoder neural networks, such as convolutional neural networks and generative adversary neural 
networks, and other anomaly detection methods are described in 4.6 in line with its results. 

The six types of loss functions mentioned in section 3.1.4 were implemented and tested; The Mean 
Squared Error (“MSE“), MSE with L2 regularization term (“MSE + Ridge”), MSE with L1 

 

Figure 12 Illustration of the model architecture of autoencoder-and-decoder-based deep neural network with 
the finer input dimension (Finer-Input AE).  
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regularization term (“MSE + Lasso”), the loss function with Kullback-Leibler Divergence (“MSE + 
KLD”). The Mean Absolute Error  (“MAE”), and the Huber loss (“Huber”). These loss functions 
were implemented with the libraries provided in PyTorch.  

4.6. Initial data analysis 

In order to understand the data characteristics and seek practical approaches for enhancing its 
anomaly detection, we firstly conducted exploratory research for the Dataset with existing machine 
learning approaches.  

Table 4 Tasks and purpose of the initial data analysis. 

Corresponding 
Section in this report 

Task Purpose 

6.6.1 Data Visualization and statistics 
description 

Exploratory studies to understand the 
characteristics of the sound data  

6.6.2 Dimension reduction with 
PCA and t-SNE 

Embed and visualize the data in low dimension to 
check if classic statistical approaches are applicable 

6.6.3 Autoencoder-decoder neural 
network  (reproductive work) 

Conduct a reproductive work following the data 
provider’s condition and acquire baseline result for 
our research  

 

4.6.1. Data visualization and statistics description  

Figure 14 shows frequency and log-Mel spectrogram in the time domain figures of one of the wav 
files of 6 dB SNR in the Dataset. A pump in normal condition operation contains high-intensity 
components at the frequency band of 50 Hz to 1 kHz. At high-frequency band, there are observed 
randomly scattered components supposed to be environment noise. In contrast, a pump in anomalous 
condition showed the sudden change of sound, which implies pump trip trouble. 

Figure 14 Examples of the normalized amplitude of the pump ID: 06 at SNR 6dB, waveform frequency in 
the time domain (top row) and corresponding power spectrogram (bottom row) on normal condition (left 

column) and anomalous condition (right column).  

 
1 2 3 4 5 6 7 8 9

Time (s)

0.0555

0.589

1.68

3.68

7.36

Fr
eq

ue
nc

y 
(k

H
z)

-80

-70

-60

-50

-40

-30

Po
w

er
 (d

B)

1 2 3 4 5 6 7 8 9
Time (s)

0.0555

0.589

1.68

3.68

7.36

Fr
eq

ue
nc

y 
(k

H
z)

-70

-60

-50

-40

Po
w

er
 (d

B)

Normal Anomalous



44 

Likewise, Figure 15 shows frequency and power spectrogram in the time domain figures of one of 
the wav files of -6 dB SNR in the Dataset. In normal condition, the frequency band in the range of 50 
Hz to 1 kHz corrupted, and its boundaries become unclear compare to that of the sound data at the 
SNR of 6 dB. The component in the broad domain of high frequency is highlighted due to its low 
SNR. The anomalous condition data, in this case, shows hunching every two seconds. The anomalous 
condition visualized in the time-frequency waveform figure is ambiguous, but the log-Mel 
spectrogram seems successfully highlighted the transition of sound components, which obviously 
different from the corresponding normal condition.   

It should be noted that in the Dataset, the data is labelled only normal and anomaly. No further 
description of these anomalous conditions was annotated to the data. Hence the anomalous condition 
needs to be detected as outlier data from the normal condition.  

4.6.2. Dimension reduction with PCA and t-SNE 

Our initial data analysis utilizes the features obtained by the log-Mel spectrogram transformation and 
reduces the high-dimensional data to two-dimensional space for visualization. The PCA was tested 
using the library scikit-Learn (version 0.22.1). Figure 16 shows plots of normal condition and 
anomalous condition data in two-dimensional space reduced using PCA from the 320-dimension 
features obtained by log-Mel spectrogram. The Pump sound file was 00000000.wav and the first 100 
samples out of 306 samples for 10 [sec] are projected. The Pump at normal conditions and anomalous 
conditions at 6 dB SNR are apparently projected to different clusters in two-dimensional space. In 
contrast, both normal and anomalous condition sound data are distributed onto similar regions, despite 
some clustering. The result implies that es the data of high SNR can be conducted its anomaly 
detection by conventional clustering methods such as the k-mean clustering, but low SNR data needs 
to be scrutinized by other methods which can embrace non-linearity and reflects high-dimension 
information for detection.   

 

Figure 15 Examples of the normalized amplitude of the pump ID: 06 at -6 dB SNR, waveform frequency in 
the time domain (top row) and corresponding power spectrogram (bottom row) on normal condition (left 

column) and anomalous condition (right column).  

1 2 3 4 5 6 7 8 9
Time (s)

0.0555

0.589

1.68

3.68

7.36

Fr
eq

ue
nc

y 
(k

H
z)

-65

-60

-55

-50

-45

-40

-35

Po
w

er
 (d

B)

1 2 3 4 5 6 7 8 9
Time (s)

0.0555

0.589

1.68

3.68

7.36

Fr
eq

ue
nc

y 
(k

H
z)

-80

-70

-60

-50

-40

-30
Po

w
er

 (d
B)

Normal Anomalous



45 

Figure 16 The Pump ID06 operation sound data at SNR of 6dB (left) and at SNR of -6 dB (right). Embedded 
the 320-dimension log-Mel spectrogram features into the estimated two-dimensional space by PCA. The 

symbols of blue and red represent the normal condition and anomalous condition, respectively.  

We also applied t-distribution Stochastic Neighbourhood Embedding (“t-SNE”) to reduce the 
dimension [54]. It converts similarities between data points to joint probabilities and tries to minimize 
the Kullback-Leibler divergence between the joint probabilities of the low-dimensional embedding 
and the high-dimensional data. Figure 17 shows the plots of normal condition and anomalous 
condition data in two-dimensional space embedded by t-SNE from the 320-dimension features 
obtained by log-Mel spectrogram. t-SNE was implemented with the library in scikit-Learn 
(version 0.22.1). The data at SNR of 6 dB showed the clearer cluster than the plot of the data at SNR 
of -6 dB. Also, the embedded by t-SNE showed the clearer than the PCA shown in Figure 16. The 
data at SNR of -6 dB showed that some of anomalous condition can be demarcated, but most of the 
data had ambiguous boundaries against normal condition. t-SNE shows good performance of anomaly 
detection for data with high-SNR, but noisy data requires other approaches to represent the complex 
data structure. 

 

 

 

Figure 17 The Pump ID06 operation sound data at SNR of 6dB (left) and at SNR of -6 dB (right). Embedded 
320-dimension log-Mel spectrogram features into the estimated two-dimensional space by t-SNE. The 

symbols of blue and red represent the normal condition and anomalous condition, respectively. 



46 

Figure 18 The Pump ID06 operation sound data at SNR of 6dB (left) and at SNR of -6 dB (right). Embedded 
the 2565-dimension log-Mel spectrogram features into the estimated two-dimensional space by PCA. The 

symbols of blue and red represent the normal condition and anomalous condition, respectively. 

For the finer input of 2565 dimension vector, Figure 18 and Figure 19 show the embedded plot using 
PCA and t-SNE, respectively. Likewise, the Pump sound file was 00000000.wav and the first 100 
samples out of 306 samples for 10 [sec] are projected.  In this resolution, we can observe in both PCA 
and t-SNE that the sound data at SNR of -6dB can be segregated into two clusters. These plots indicate 
that the finer resolution, before combining to the 64-dimension log-Mel bin, possesses the sufficient 
information to separate the difference between normal and anomalous conditions. In spite of the 
affirmative results, it should be noted that this successful embedding was observed for the portion of 
the dataset. Not all of the sound data show such a clear difference and therefore we still have demand 
of applying the autoencoder for anomaly detection, rather than clustering methods.  

 

4.6.3. Autoencoder-decoder architecture for reproductivity check 

The results of the reproduce experiment and the dataset provider’s baseline AUC are summarized in 
Table 5 and Figure 20. In this Project, we replicated the pump dataset work for all machine IDs and 
SNRs in the architecture of the Baseline AE. The AUCs averaged over ten training runs with 
independent initializations, and the sample standard deviation was computed based on the ten results. 
The deviation was mainly derived from the random sampling of normal sound data to develop the 
test datasets. In each independent experiment, the sampling was conducted, and the extent of an 
anomaly in normal sound data was heterogeneous. Thus, the combination of normal data in the test 
dataset can vary the difficulty of anomaly detection, resulting in performance variation.  

We confirmed that the noisy data tend to the worse AUC. In other words, our result supported the 
benchmark result and the trend that noisy data exacerbates the detection performance. The pump ID06 
shows a sharp drop off of the AUC value as the sound contaminated more severely. It performed the 
AUC of 0.9281 at SNR of 6dB and performed the AUC of 0.6518 at SNR of -6dB. We mainly use 
the pump model ID06 for our experiments because evaluating the proposed method effect could be 
easier than other model IDs.  

 

Figure 19 The Pump ID06 operation sound data at SNR of 6dB (left) and at SNR of -6 dB (right). Embedded 
2565-dimension log-Mel spectrogram features into the estimated two-dimensional space by t-SNE. The 

symbols of blue and red represent the normal condition and anomalous condition, respectively. 
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Table 5 Comparison of AUC shown in Figure 20 and the baseline AUC values presented by the Dataset 
provider. 

Model ID Input SNR 
Reproduced Results Baseline [44]. 

AUC [-] STD DEV [-] AUC [-] 

ID00 6dB 0.8212 0.0181 0.84 

 0dB 0.6792 0.0199 0.65 

 -6dB 0.6741 0.0328 0.58 

ID02 6dB 0.5938 0.0226 0.45 

 0dB 0.5576 0.0513 0.46 

 -6dB 0.5293 0.0304 0.52 

ID04 6dB 0.9979 0.0028 0.99 

 0dB 0.9753 0.0185 0.95 

 -6dB 0.9226 0.0302 0.93 

ID06 6dB 0.9281 0.0168 0.94 

 0dB 0.7854 0.0235 0.76 

 -6dB 0.6518 0.0257 0.61 

 
4.7. Results and discussion in our proposed approach 

In this section, we summarize the result of our proposed methods and discussion. 

4.7.1. The Finer-Input AE with various loss functions  

Firstly, the Finer AE has applied for the pump ID06 dataset in order to check if such finer resolution 
shows a similar performance tendency. The dataset was not processed, and the loss function was MSE. 
The AUCs averaged over ten training runs with independent initializations, and the sample standard 
deviation was computed based on the ten results. The result is shown in Figure 21 and Table 6. It 
was confirmed that the noisier sound data showed lower AUC values. 

 

Figure 20 The results of AUC values in the reproductive work using the Baseline AE for each pump model 
IDs and SNRs. 
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Interestingly, the sound at SNR of -6dB performed better than the Benchmark AE, AUC 0.6518, as 
reported in 4.6.3. Meanwhile, the sound at SNR of 6dB performed 0.9008, which was slightly worse 
than the Benchmark AE of AUC 0.9281. Transforming to log-Mel spectrogram from a time-
frequency domain acquired by STFT is supposed to have pertinent information for pump sound 
anomaly detection, but the information may lose when contaminated with noise.  

Table 6 The results of AUC shown in Figure 21. 

SNR AUC [-] STD DEV [-] 

6dB 0.9008 0.0161 

0dB 0.8526 0.0180 

-6dB 0.7630 0.0210 

 

Figure 22 shows AUC results for the various pre-processing methods and loss functions in the Finer 
AE neural network on the sound data of the pump ID: 06 at SNR of -6dB. The values in Table 7 
represent the mean and sample standard deviation confidence intervals based on ten independent test 
iterations to show a calibrated performance of the results. The hyperparameters as a coefficient for 
the penalized term in MSE+Lasso, MSE+Ridge and MSE+KLD were 0.01.  

The proposed schematics using UKF for data preprocessing and Huber loss function showed 
improvement of AUC from 0.7630 to 0.8145. The data preprocessed by KF also showed an improved 
AUC of 0.8114. Although both the UKF-processed and KF-processed sound dataset showed better 
AUC when used the Huber loss function, these pre-processing showed different performance when 
applied MSE. The KF-processed data with MSE showed better improvement than the UKF-processed 
data with MSE.  

Another implication was that the preprocessing affected its variance when MAE and Huber were used 
as a loss function. The unprocessed data with MAE and Huber loss functions showed the AUC’s 
standard deviation of 0.0146 and 0.0279, respectively. On the other hand, the KF-processed and UKF-
processed data showed the larger AUC’s standard deviation of 0.0552, 0.0365, 0.0362 and 0.0366, 
respectively. The results implied that the data pre-processing by the adaptive filters impact anomaly 

 

Figure 21 The results of AUC values for pump ID06 at SNR of 6dB, 0dB and -6dB tested with the Finer-
Input AE. The sound data was unprocessed, and the loss function was MSE.  
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detection performance using a neural network. In our experiment, the robust estimation using the 
MAE and Huber loss function performed superior to these of sparsity. Hence the loss function should 
be designed in line with the property of the applied adaptive filters.  

The result that the UKF-processed data showed better performance when used robust estimators of 
the MAE and the Huber loss function than using other loss functions implies that the UKF algorithm 
can weight the outlier data. If the outlier is weighted, the MSE can by nature perform worse compared 
to the unprocessed data and the KF-processed data. Instead, the MAE and the Huber loss, known as 
robust estimators, can work better. 

Table 7 The AUCs are shown in Figure 22. 

Pre-processing Loss Function AUC [-] STD DEV [-] 

Unprocessed 
  
  
  
  
  

MSE 0.7630 0.0210 

MSE+Lasso 0.7556 0.0287 

MSE+Ridge 0.7547 0.0145 

MSE+KLD 0.7663 0.0191 

MAE 0.8014 0.0146 

Huber 0.7968 0.0279 

KF 
  
  
  
  
  

MSE 0.7923 0.0188 

MSE+Lasso 0.7933 0.0187 

MSE+Ridge 0.7908 0.0171 

MSE+KLD 0.7919 0.0199 

MAE 0.7964 0.0552 

Huber 0.8114 0.0365 

UKF 
  
  
  

MSE 0.7741 0.0180 

MSE+Lasso 0.7776 0.0143 

MSE+Ridge 0.7775 0.0177 

MSE+KLD 0.7750 0.0218 

 

Figure 22 The summary of AUC values for the various sound data pre-processing methods and loss 
functions in the Finer-Input AE on the sound data of the pump ID06  at SNR of -6 dB.  
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MAE 0.7929 0.0362 

Huber 0.8145 0.0366 

 
In order to examine the impact of input feature vector resolution, these pre-processing and loss 
functions of MSE and Huber were implemented by using the Baseline AE architecture. The input 
feature vector was 320 dimensions as stated in the reproduction experiment, based on the log-Mel 
spectrogram.  

In contrast to the results acquired with the Finer AE architecture, it was observed that both KF-
processed and the UKF-processed data with the loss function of Huber performed worse AUC 
compared to the unprocessed data with MSE loss function. The log-Mel spectrogram lost information 
necessary for anomaly detection, but the tendency was different for the pre-processing data type.   

Table 8 AUCs shown in Figure 23. 

Pre-processing Loss Function AUC [-] STD DEV [-] 

Unprocessed 
 

MSE (L2) 0.6518 0.0257 

Huber 0.6199 0.0356 

KF 
   

MSE (L2) 0.6475 0.0359 

Huber 0.6206 0.0226 

UKF 
   

MSE (L2) 0.6370 0.0302 

Huber 0.5918 0.0414 

 
The learning curve in the training step of the Finer-AE architecture with the Huber loss function is 
shown in Figure 24. The UKF-processed data always showed a lower reconstruction error of the 
training error than the unprocessed and KF-processed dataset.  

  

Figure 23 The results of AUCs with the Baseline AE for unprocessed, KF-processed and UKF-processed 
dataset. The loss functions of MSE and Huber were applied. Pump ID06  at SNR of -6 dB. 
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The UKF-processed data with the Huber loss as the autoencoder loss function was tested for training 
epochs of 10, 50 and 100. The more training epoch showed the smaller variance and the lower AUC. 
This result implies that the larger epochs decreased the training loss but increased generalization error 
due to overfitting.  

Table 9 The results of AUC shown in Figure 25. 

Epochs AUC [-] STD DEV [-] 

10 0.8145 0.0366 

50 0.7951 0.0269 

100 0.8030 0.0247  

 

4.7.2. Finer-Hidden AE  

In the previous section, we acquired the implication that sparse modelling is the key to this anomaly 
detection. Hence, we extended the Finer-AE architecture to represent sparse information, employing 

 

Figure 24 The learning curve of Huber loss function for unprocessed data, KF-processed and UKF-
processed data.  

 

Figure 25 The results of AUC evaluated by various epochs with the Finer-Input AE. The sound data was 
processed with UKF, and the loss function was Huber.  
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a higher dimension in its latent node. The Finer-Hidden AE, as introduced in section 4.5, has the same 
size of the latent node as the input node, 2565 dimensions. The Finer-Hidden AE was tested on the 
unprocessed data, the KF-processed data and the UKF-processed data. MSE and Huber loss function 
was used for comparative experiments.  

Figure 26 shows the AUCs of the experiments. Compared to the Finer AE architecture results shown 
in Figure 22, the AUC of the KF and UKF processing with the Huber loss function showed better 
performance. This result also indicated that the pre-processing method can effect on the appropriate 
network architecture.  

Table 10 The results of AUC in Figure 26. 

Pre-processing Loss Function AUC [-] STD DEV [-] 

Unprocessed 
 

MSE 0.7542 0.0233 

Huber 0.7827 0.0294  

KF 
 

MSE 0.7868 0.0177  

Huber 0.8153 0.0197  

UKF 
 

MSE 0.7903 0.0129  

Huber 0.8241 0.0300 

 

4.7.3. Example of good and bad images 

A test sample set of 102 normal-condition .wav files and the same number of anomalous-
condition .wav files at SNR of -6dB was examined by the autoencoder neural network Huber loss 
function. The data was unprocessed. The reconstruction errors for the test sample set are shown in 
Figure 27. The horizontal axis shows normal-condition files numbered from 1 to 102 and anomalous-
condition files numbered from 103 to 204. Since the architecture was trained with normal-condition 
sound data, anomalous-condition data cannot be reconstructed preciously and results in a relatively 
higher reconstruction error score.  

One way to define an appropriate threshold for anomaly detection is to use an F-score, which 
maximizes a harmonic average of detection ratio 𝑟# and coverage 𝑟,, 

 

Figure 26 The results of AUC with the Finer-Hidden AE.  
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F-Score =
2𝑟#𝑟,
𝑟# + 𝑟,

. (107) 

Based on the criteria, we can define the threshold of F-Score as 3650 for the dataset.  

Among the normal-condition dataset, successfully detected normal-condition with the minimum 
reconstruction error of 2848 is 00000659.wav. On the other hand, wrongly detected as an anomalous 
condition with the highest reconstruction error of 6214 was 00000038.wav. These sound data were 
visually shown in Figure 28. The data of 00000659.wav showed momentary loud sound at 4 seconds 
elapsed and. 

Likewise, among the anomalous-condition dataset, successfully detected anomalous-condition with 
the highest reconstruction error of 6736 is 00000077.wav. The wrongly detected as an anomalous 
condition with the lowest reconstruction error of 2738 was 00000005.wav. In the case of 
00000077.wav, somewhat periodical peaks every two seconds can be observed. This anomalous 

 

Figure 27 The results of Reconstruction Error.  

 

Figure 28 Examples of waveforms and power spectrum images of the normal condition data for pump ID 06 
at SNR -6dB, (left) successfully detected and (right) wrongly detected.  

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

Normal Anomaly

Re
co

ns
tr

uc
tio

n 
Er

ro
r [

-]

0000659.wav: Successfully detected as normal condition 0000038.wav: Wrongly detected as anomalous condition



54 

periodical information enabled the autoencoder to detect an anomaly. In contrast, the case of 
00000005.wav shows that signal information is covered with background noise.    

 

4.7.4. Computation costs 

Table 11 summarizes the computation time tested in our experiment environment. The model was 
the Finer-Input AE. The time was measured using the Python time module. The performance time 
returns the value (in fractional seconds) of a performance counter. It does include time elapsed during 
sleep and is system-wide. The processing time returns the value (in fractional seconds) of the sum of 
the system and user CPU time of the current process. It does not include time elapsed during sleep. 
The thread time returns the value (in fractional seconds) of the sum of the system and user CPU time 
of the current thread. It does not include time elapsed during sleep. 

We executed five independent runs for all the patterns of loss functions and pre-processing and took 
the median of the results. We observed that the MSE and the robust estimation of the MAE and the 
Huber had a similar extent of computation complexity, so that we found no trade-off in the robustness 
and the computational efficiency.   

Table 11 Computation costs. 

Loss Function Pre-Processing Performance [sec] Process [sec] Thread [sec] 

MSE 
 

Unprocessed 573 539 745 

KF 560 526 735 

UKF 576 539 745 

MSE+Ridge Unprocessed 1122 1077 1322 

KF 799 757 971 

UKF 1038 1000 1207 

MSE+Lasso Unprocessed 560 518 745 

KF 586 548 756 

 

Figure 29 Examples of waveforms and power spectrum images of the anomalous condition data for pump 
ID 06 at SNR -6dB, (left) successfully detected and (right) wrongly detected. 

0000077.wav: Successfully detected as anomalous condition 0000005.wav : Wrongly detected as normal condition
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UKF 579 541 756 

MSE+KLD 
 

Unprocessed 759    713 1006 

KF 748 702 1004 

UKF 766 718 1033 

MAE 
 

Unprocessed 546 507 733 

KF 553 517 743 

UKF 572 537 746 

Huber 

Unprocessed 545 508 727 

KF 558 523 735 

UKF 568 536 737 

 

4.7.5. Comparison experiment with ToyADMOS dataset  

This section demonstrated a comparative experiment by applying our proposed methods to other 
sound datasets designated for anomaly detection testing. We applied our proposed approaches of the 
Finer-Input AE for another dataset of industrial machines [5]. We used the ToyCAR datasets in this 
experiment. Table 12 summarizes the results of AUC values of our approach and the dataset 
provider’s baseline results. For this dataset, the best combination found in our proposed approaches 
(UKF+Huber loss) did not perform as we demonstrated with the MIMII dataset. Instead, the 
combination of UKF+MSE worked better than that of Unprocessed+MSE. These results indicated 
that the property of the sound dataset impacts the performance. Hence, further study of the sound 
source and noise property is required for the actual application.  

Table 12 AUC evaluated for ToyADMOS dataset by using the proposed methods. 

Pre-processing Loss Function AUC [-] AUC [-] in the 
literature [5] 

Unprocessed 
 

MSE 0.6810 0.874 

Huber 0.6736 N/A 

KF 
 

MSE 0.6858 N/A 

Huber 0.6657 N/A 

UKF 
 

MSE 0.7176 N/A 

Huber 0.6861 N/A 
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5. CONCLUSIONS 

In this Project, we set the main objective to improve the accuracy in classifying normal and anomalous 
conditions of industrial machine based on noisy sound data. We proposed to utilize the adaptive 
digital filters for sound data pre-processing and to design an autoencoder architecture. The proposed 
approaches were demonstrated by using the real-world industrial machinery sound dataset. To our 
knowledge, few studies are focusing on the relationship between the data pre-processing and 
autoencoder architecture, and therefore we demonstrate novel insights into anomaly detection. As a 
result, we had the achievement of improving the anomaly detection performance. The key takeaways 
are summarized as follows: 

1. The proposed combination of the UKF as the sound data pre-processing and the Huber loss 
function as the loss function of the autoencoder with the finer input vector proved the 
improvement of the AUC value for the noisy data of the pump (ID: 06 at SNR -6dB) to 0.8241 
(±0.0300), which is by 0.0699 improvements from the baseline result; 

2. Our results indicated that the robust estimation is suitable for extracting meaningful 
information from the noisy sound data we used in this Project. Indeed, the MAE and the Huber 
loss function outperformed compared to other tested loss functions; and 

3. We observed that the optimal type of the autoencoder architecture, such as the input vector’s 
dimension and the loss function, is affected by adaptive digital filters for the data pre-
processing. The results experimentally implied that the architecture of the autoencoder should 
be designed and optimized as a single system in conjunction with the design of the adaptive 
digital filters for anomaly detection in noisy sound data.  

It could be interesting to explore other adaptive digital filters such as particle filter in future work. It 
accommodates non-gaussian noise, and therefore it may help understand details in the mechanism of 
how the filtering effect the training process of an autoencoder.   
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