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Summary 

In this research, the retinal vessel segmentation by a fully convolutional neural network is studied in 

detail. Retinal vessel segmentation is helpful in the diagnosis of diabetic retinopathy, hypertension 

and arteriosclerosis. This research aims to improve convolutional neural networks to provide efficient 

retinal vessel segmentation results. The UNET was introduced in 2015, which provided better 

efficient segmentation for biomedical images with a fewer dataset. In this research, the UNET and 

possible modified and improved networks based on UNET was built and tested for efficient 

segmentation of retinal vessels. A fully convolution network UNET G UCDA is proposed in this 

project which was found during the research to provide efficient retinal vessel segmentation compared 

to all other UNET based networks that were trained and evaluated in this research. 
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Santrauka 

Šiame tyrime išsamiai tiriamas akies tinklainės kraujagyslių segmentavimas taikant konvolucinį 

neuroninį tinklą. Tinklainės kraujagyslių segmentavimas yra naudingas diagnozuojant diabetinę 

retinopatiją, hipertenziją ir arteriosklerozę. Šis tyrimas rodo kaip pagerinti konvoliucinius 

neuroninius tinklus, kad būtų gauti kuo geresni tinklainės kraujagyslių segmentavimo rezultatai. 

UNET buvo pristatytas 2015 m., Kuris užtikrino efektyvesnį biomedicinos vaizdų segmentavimą 

apmokinus jį su mažu duomenų rinkiniu. Atliekant šį tyrimą, UNET ir galimi modifikuoti bei 

patobulinti tinklai, pagrįsti UNET, buvo sukurti ir išbandyti efektyviam tinklainės kraujagyslių 

segmentavimui. Šiame projekte siūlomas visiškai konvoliucinis tinklas UNET G UCDA, kuris buvo 

nustatytas tyrimo metu, siekiant užtikrinti efektyvų tinklainės kraujagyslių segmentavimą, palyginti 

su visais kitais UNET pagrįstais tinklais, kurie buvo apmokyti ir įvertinti šiame tyrime.
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Introduction 

The task of image segmentation consists of partitioning an input picture into non-overlapping regions. 

It aims to highlight some regions of interest (ROIs) for a more in-depth study/analysis on medical 

images. The segmentation result can then be used to extract various morphological parameters of the 

ROIs, which can help with disease diagnosis and control. The blood vessels and the optic disc are 

included in the ROIs on a retinal image, as shown in Figure 1. Diabetic retinopathy, hypertension, 

and arteriosclerosis can all be diagnosed, treated, and monitored using retinal blood vessel 

segmentation (RBVS).[1][2]. Optic disc segmentation (ODS) can bring relevant insights into 

glaucoma disease [2]. In present days, these diseases are the leading factors of blindness [3]. In this 

research, we will be mainly concentrating on RBVS. 

Fig. 1. Retinal Image 

Annotation of the blood vessels manually is a time-consuming and challenging task that necessitates 

expertise. Expert segmentations are often subject to inter-and intra-operator variability, making them 

inefficient for large-scale and real-time applications. As a result, a significant amount of effort has 

gone into developing automated processes. [4][5]. 

For retinal image segmentation, we will be using UNET based architecture. UNET architecture is 

developed to yield more precise segmentation with fewer training images. 

UNET, which developed from the conventional convolutional neural network, was designed and used 

to process biomedical images for the first time in 2015 [16]. A general convolutional neural network 

focuses on image recognition, with an image as input and a single label as output. In biomedical cases, 

however, we must not only determine if there is a disease but also pinpoint the location of the 

abnormality. UNET is committed to resolving this problem. It can localise and distinguish borders 

by classifying every pixel, so the input and output share the same size. The network is based on a 
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FCN , and the network architecture was modified and extended to work with fewer training 

images/data and yield more precise segmentation.  

The aim of this project is to improve and modify UNET for efficient segmentation of Retinal Blood 

Vessels Segmentation (RBVS). 

Steps followed to achieve the aim: 

1. Research on CNN‘s. 

2. Study of UNET structure. 

3. Study of UNET with basic modifications like depth and filter sizes. 

4. Modification and improvisation of the best performing UNET model. Here the modifications 

were done based on CNN structural research and other possible modifications suggested by 

other research papers. 

1. Background : 

There have been many research activities in implementing efficient retinal image segmentation. From 

the retinal image, diabetic retinopathy can be easily diagnosed. Diabetic retinopathy is widely 

researched and implemented. Many algorithms based on DCNN and FCNN are used in retinal image 

segmentation and diagnosis of diabetic retinopathy. Since the data the models are trained on is 

significantly less, these results are not efficient. There is also more research in retinal image 

segmentation to diagnose hypertension, arteriosclerosis and other diseases. Medical images cannot 

be easily trained on DCNN and FCNN since every image is unique. The neural network models have 

to be modified for specific cases in order to get good results. Because of these problems, it has not 

yet been implemented for real-time and large scale uses.  There is more improvement and 

modification necessary for implementing neural networks for real-time and large scale uses.  

1.1. Retinal imaging and Analysis : 

The retina tissue forms the inside of the eye. It helps to convert the light reflected on it into a neural 

signal that is then sent to the brains visual cortex to be further processed. As a result, it acts as a brain 

extension. Researchers are intrigued by the ability to photograph the retina and develop techniques 

for analysing the pictures. Since the retina in the human body functions as a tool to see the outside 

world, the methods involved in the image creation of the retinal must be optically transparent. As a 

result, the retina can be seen from the outside with appropriate techniques, allowing noninvasive 

visualisation of retinal tissue and thus brain tissue (Figure. 2). The retina also has a double blood 

supply that allows for noninvasive bloodstream monitoring [1]. 
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Fig. 2. First image of the human retina[1] 

With the invention of the Ophthalmoscope in the 1850s, the evaluation of the retinal structure by 

Ophthalmologist became a familiar and routine task. The first images of the retina (Figure. 2) was 

published in 1853 by van Trigt [1]. 

Over the last 160 years, retinal imaging has progressed slowly, and it is now an important part of the 

treatment and management of patients with retinal and systemic diseases. In vast populations, fundus 

imaging is widely used to diagnose diabetic retinopathy, glaucoma, and age-related macular 

degeneration [1]. 

Glaucoma and Diabetic retinopathy are among the leading causes of blindness in the modern world. 

The number of people affected by these diseases is gradually increasing. Hence the demand for 

experts is also is increasing for proper diagnoses.  

1.2. Retinal Image Segmentation : 

Diabetic retinopathy, hypertension, and arteriosclerosis can all be diagnosed, treated, and monitored 

using retinal blood vessel segmentation (RBVS). [2][3] To achieve the task of segmentation, 

researchers and scientist have developed numerous methods over the years.  

The RBVS of the eye has been a trending research topic in recent years. The research field aims to 

develop automated computer-aided technologies to extract retinal blood vessels for the screening and 

diagnosis of diseases. Despite the development of many promising techniques and algorithms, blood 

vessel segmentation methodologies can still be improved [4]. Few of the computer-aided retinal 

segmentation methods are proposed, like the use of texture parameters and gaussian mixture model 

with support vector machine (SVM) by authors of [6] [13] and multilayer thresholding by authors of 

the paper [14].  

Despite the fact that several papers have been published in recent years on automated RBVS, there is 

still more improvement needed. The majority of previous approaches dealt with fewer, often healthier 
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images, usually segmenting the larger retinal blood vessel and much lower quality input images. 

Segmentation in the presence of anomalies, segmentation in non-uniform illumination, and correct 

segmentation of thin retinal blood vessel are some of the problems that remain open to the research 

community [5]. 

1.3. Artificial Neural Network (ANN): 

ANN‘s are inspired by biological neurons or neural networks. The mathematical model that was built 

based on biological neural networks is called ANN. A neural network is a set of artificial neurons that 

work together to process data using a autoassociative approach to computation.  

ANN‘s are massively parallel computing systems. They are made up of very large number of simple 

processors connected by a large number of interconnections [24]. Each neuron in the network has the 

ability to receive, process, and transmit input signals. ANN models try to mimic some of the 

organisational principles found in humans. A theoretical model based on natural neurons is known as 

an artificial neuron. A simple example of ANN is a simple Feed Forward Network as shown in figure 

3 [25]. 

Fig. 3. Simple Feed Forward Network[24]. 

An input layer of source nodes, one or more hidden layers, and a layer of neurons comprise the 

feedforward network. The network’s hidden layers cannot be seen directly from the network’s input 

or output layers. The neural network uses these hidden layers to derive higher-order statistical features 

from its data. Hidden neurons are neurons that are found in hidden layers. These hidden neurons have 

the ability to intervene in any way between external input and network output[24].  

ANNs are used to model real neural networks and to study animal and computer behavior and control. 

Pattern detection, forecasting, and data compression are among the computing applications for which 

they are used. The ANN‘s have become popular in recent years in research and real world problem 

solving applications. ANN‘s posses capabilities that surpasses other technologies in similar 

applications. 
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1.4. Convolutional Neural Network (CNN): 

The CNN‘s are a form of ANN that is frequently used to analyse images. In the same way as 

traditional ANN‘s are made up of neurons, CNN‘s are made up of neurons that learn to optimise 

themselves. The basis of countless artificial neural networks is that each neuron will always perform 

an activity after it receives feedback. From the input to the final output, the entire CNN will express 

a single observant score function (weight). The loss functions associated with the groups will be 

included in the final layer, and all of the usual ANN operations will still apply [26].  

The difference between CNN and ANN is that CNN‘s are mostly used in image recognition, allowing 

image-specific features to be encoded into the network, making it ideally suited for tasks focused on 

image. 

Fig. 4. Simple Convolutional Neural Network [26] 

Figure 4 shows a simplified CNN architecture. The convolutional layer consists of four essential 

parts: Input layer, Convolutional layer, Pooling layer and Fully connected layer [26]. 

The input layer stores the pixel values of the images. The convolutional layer determines the output 

of neurons connected to input. The pooling layer will simply downsample the data, taking into 

account its spatial dimensionality. The completely linked layers will then attempt to generate class 

scores from the activations that will be used for classification. 

The convolution networks are used in image segmentation applications like document recognition [9] 

and biomedical image segmentations like retinal vessel segmentation, cell segmentation, and many 

others. 

1.5. Dens Convolution Network : 

When CNN’s become more complex and have more layers, a new issue arises: when data about the 

input moves through several layers of the network, it can be lost by the time it reaches the output of 

the network. To solve this problem and ensure maximum information flows through all the layers of 

the network authors of the paper [19] proposed a Dense Network.  
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To ensure efficient knowledge flow, all layers in the network are connected directly to one another. 

To retain the feedforward nature of the network, each layer contains additional inputs from all the 

other preceding layers and passes on its own feature to all the other subsequent layers. The schematic 

representation is shown in figure 5. In this scheme, the features are concatenated in order to combine 

them. As a consequence, the lth layer in the network has l inputs, each of which is a feature from the 

preceding convolutional blocks. Both L-l subsequent layers receive their own feature maps. L(L+1)/2 

connections are introduced in an L-layer network, instead of just L, as in typical architectures. This 

dense network pattern is referred to as Dense Convolutional Network. 

Fig. 5. 5 layer Dens Block [19]. 

1.6. Atrous Convolution : 

The use of CNN‘s for image segmentation and other prediction tasks has been demonstrated to be 

simple and effective when CNNs are deployed. The combination of maxpooling and striding 

operations at successive layers of CNNs greatly reduces the spatial resolution of the features. The use 

of ‘deconvolutional’ layers is a partial solution, but it takes more memory and time. This problem is 

solved by using atrous convolution. This technique was initially developed for the efficient wavelet 

transform computation [22]. It was used in the CNN by authors of [30], [31]. This algorithm allows 

for the computation of any layer’s responses at any resolution. It can be used while training or after 

training the network. Figure 6 shows feature extraction on a high-resolution feature-map using one-

dimensional Atrous convolution with rate of two.[23]. 
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Fig. 6. 1D Atrous Convolution [23]. 

A variant of atrous convolution is proposed by authors of paper [23], inspired by spatial pyramid 

pooling by paper [32]. Atrous Spatial Pyramid Pooling (ASPP) is the result of combination of Atrous 

Convolution and spatial pyramid pooling. Figure 7 shows how ASPP uses multiple parallel filters 

with different rates to identify the center pixel, which is shown in orange color. The Field-of-views 

are shown in various colours. Atrous spatial pooling was also used for other images segmentation 

applications by authors of the paper [20] and [21].  

 

Fig. 7. Atrous Spatial Pyramid pooling [23]. 

1.7. Convolutional Neural Networks in Retinal Segmentation : 

With the introduction of Machine learning, there has been significant improvement in retinal vessel 

segmentation. Various CNN and FCN networks have been applied to generate retinal segmentation.  

A multiscale FCN model with Stationary Wavelet Transform (SWT) was proposed by authors of the 

paper [18]. The proposed method consists of four stages: input building by SWT, retinal patch 

extraction, FCN classification, and predictions. The SWT was used to enrich the input to the FCN. 

The proposed FCN model is shown in figure 8. For training the FCN model, 2750 patches were used 

from each image of DRIVE. The output retinal vessel segmentation is shown in figure 9. The model 

evaluation on test images produced an accuracy of 0.9576. 
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Fig. 8. FCN Model [18] 

 

Fig. 9. Output Retinal Segmentations of SWT with FCN [18] 

A few other FCN models used for obtaining better retinal vessel segmentation are also proposed by 

authors of papers [29] and [33], suggesting that data augmentation and introduction of skip 

connections in FCN can produce better segmentation results. Implementation of ADELTA learning 

algorithm [15] while training FCN model also improves segmentation [27]. 

However, the problem with Retinal Image segmentation and other biomedical segmentation is that 

there are only very few datasets available for training Neural Networks. For CNN and FCN, a large 

dataset is usually considered for training purpose to get optimal results. Nevertheless, that is not the 

case when it comes to image segmentation applications in Retinal Image segmentation. Very few 

images and datasets are available from sources like DRIVE and STARE.  

A general convolutional neural network focuses on image recognition, with an image as input and a 

single label as output. However, in biomedical image segmentation, it is necessary not only to 

determine whether disease exists but also to pinpoint the location of the abnormality. To solve this 

problem, UNET was introduced by authors of the paper [16] in 2015. UNET is a type of Fast 
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Convolutional Neural network used to segment biomedical images[16]. The authors of the paper [27] 

have compared various CNN and FCN models for the application of retinal vessel segmentation. It is 

suggested that UNET and Dense networks provide better results than other networks. 

1.8. UNET : 

UNET is based on a more sophisticated architecture known as a “completely convolutional network.” 

This has been updated and modified to function with very few training images and produce more 

accurate segmentation. The key concept is to add successive layers to a traditional contracting 

network, replacing pooling operators with upsampling operators. As a result, these layers improve 

resolution of the output. High resolution features from the contracting path are combined with the 

upsampling of expanding path to localise [16].  

The key concept is to add successive layers to a traditional contracting network, replacing pooling 

operators with upsampling operators. As a result, the output resolution is improved. 

 

Fig. 10. UNET Architecture[16] 

Figure 10 represents the architecture of UNET. The UNET consist of a contracting path to the left 

referred to as encoder, and an expanding path on the right referred to as decoder, as represented in 

Figure 10. The proposed UNET is of depth 5. The initial convolutional layer starts with 64 filters and 

gradually increases the number of filters to 1024 down the contracting path and decreases down to 
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64 up the expanding path. The output from each layer of downsampling is merged or concatenated 

with the corresponding upsampling layer. [16] 

The proposed UNET was used to segment HeLa cells on glass recorded by DIC. The segmentation 

results of UNET are shown in figure 11. 

Fig. 21. UNET segmentation of HeLa cells. a) Original cells image, b) Ground Truth of cells, c)UNET 

Segmentation. 

The proposed UNET was tested and compared with other networks at ISIBI cell tracking challenge 

2015. The segmentation results (IOU) is shown in Table 1 below.[16] 

Table 1. UNET‘s IOU Segmentation results on the ISBI [16]. 

Name PhC-U373 DIC-HeLa 

IMCB - SG  0.2669 0.2935 

KTH - SE 0.7953 0.4607 

HOUS - US 0.5323 - 

Second - best 0.83 0.46 

UNET 0.9203 0.7756 

1.9. Convolutional Networks Based on UNET : 

After the introduction of UNET, many researchers have proposed different architectures based on 

UNET for multiple biomedical image segmentation applications like UNET++ for cell segmentation 

[28], where the skip connections in UNET is redesigned. Few of the UNET based architectures were 

developed for the sole purpose of retinal vessel segmentation, which is proposed by authors of papers 

[7][10][11][12][8] and [34]. Few of these unique UNET based approaches id discussed in the section 

below. 

1.9.1. AD-UNET : 

The Attention-Dense-UNET (AD-UNET) for micro-vessel Image Segmentation was proposed by the 

authors of the paper [10]. In preprocessing, the image enhancements highlight the retinal blood 

vessels. The original retinal images are converted to CLACHE images (Figure 12), which is then 

given as input to AD-UNET. The AD-UNET algorithm adds an attention block and a dense network 

to the original UNET network. The architecture of AD-UNET is represented in figure 13. 
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The accuracy of the algorithm is 0.9663  according to test results on the DRIVE images. The 

sensitivity is 0.8075, the specificity is 0.9814, the AUC is 0.9846, and the F-measures is 0.820 

respectively. 

 

 

Fig. 12. a)Raw Image b)CLACHE Image 

Fig. 13. The architecture of AD-UNET [10]. 

1.9.2. S-UNET : 

In 2019, the authors of the paper [11] suggested S-UNET, a bridge-style Cascade UNET. A Salient 

UNET (S-UNET) is a bridge UNET architecture with a saliency system, is proposed based on the 

minimal UNET (Mi-UNET) model, which is a UNET with significantly reduced parameter count. S-

UNET implements a cascading strategy in which one net block‘s foreground features are used as the 

foreground attention for the next UNET block. This cascading S-UNET results in improved input and 
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the inheritance of previous netblock‘s learning experience. Figure 14 depicts the architecture of the 

S-UNET. 

 

Fig. 14. S-UNET Architecture [11]. 

1.9.3. GNET : 

A FCN model named Gaussian net (GNET) was proposed in 2019 for retinal vessel segmentation by 

authors of the paper [12]. This model is combined with a saliency model. The proposed FCN Model 

resembles Gaussian distribution curve hence the name GNET. A saliency detection is used in 

preprocessing along with greyscale conversion of retinal images that helps to highlight the blood 

vessels. The saliency image (figure 15) is given as the GNET model’s input. The GNET model has a 

symmetrical arrangement on both sides. The first layer in the left structure is upsampling, while the 

other layers are downsampling. The GNET architecture is represented in figure 16. The arrow 

pointing up represents upsampling; the arrow pointing down represents downsampling; the dotted 

line represents concatenation. The final layer in the correct system is downsampling, while the other 

layers are upsampling. 

Fig. 15. Saliency Image [12]. 
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Fig. 16. GNET Architecture [12]. 
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2. Methodology  

2.1. Process Methodology : 

The project process methodology is represented in figure 17 below.  

Fig. 17. Methodology 

The methodology consist of the following process : 

1. Prepare dataset : 

The dataset is in the form of an image, and it should be converted to a suitable format for the 

program to read the images. In this case, the original image and corresponding ground truth 

are converted to hdf5 format. HDF stands for Hierarchical Data Format and refers to a group 

of file formats (HDF4, HDF5) that are used to store and organise large volumes of data. 

2. Pre-Processing 

The image dataset is in RGB colour format. It is in best practice to convert the RGB to 

Greyscale format. It is common practice for RGB image to be converted to greyscale image 

in image processing because, in a grayscale image, the only colours used are grayscale shades. 

The explanation for the distinction between such images and every other type of colour image 

is that each pixel requires only fewer details. The original RGB image and Greyscale 

converted image from DRIVE database is shown in figure 18. 

 

Prepare 
Dataset

Pre 
Processing

Extract 
Patches

Train Model
Evaluate 
Model

Output 
Segmentation
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Fig. 18. (a) Original RGB retinal Image. (b) Greyscale retinal Image 

3. Extract Patches 

For the model to train, a sample set of patches are extracted from the preprocessed data and 

corresponding ground truth data. In this case, a sample set of 20000 patches with patch sizes 

48/64px are extracted randomly from the data for training the model. 

4. Train Model 

The extracted patches are used to train the UNET model.  

5. Evaluate Model 

The trained model is then evaluated on the test images to produce segmentations and evaluate 

segmentation results. 

6. Output Segmentation 

The Segmented images are then visualised in image format as shown in figure 19 for 

interpretation. 

 

Fig. 19. Segmentation generated by UNET. 
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2.2. Methodology for Model Optimisation : 

The UNET optimisation methodology followed in this project is represented in figure 20 below. 

Fig. 20. Methodology for UNET optimisation. 

The Model Optimisation process is as follows : 

1. We train basic UNET models with varying depth from 3 – 5 with a data patch size of 48. 

2. We train basic UNET models with varying depth from 3 – 5 with a data patch size of 64. 

3. The evaluation results of all the basic UNET networks are compared, and the best UNET 

model is chosen. 

4. Then the chosen UNET model‘s architecture is optimised based on techniques and ideas 

inspired by other research papers. 

5. The best optimised UNET is proposed at the end of the research. 

 

 

Final Optimized Model

Optimization of UNET

Select The Best UNET Model 

Train Basic UNET models with Diffrent Depth Size for Patch size 64

Train Basic UNET models with Diffrent Depth Size for Patch size 48
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3. Experimental Setup : 

3.1. Computer Specifications : 

Processor: Intel i7 eighth generation. 

RAM: 16 GB DDR4 

GPU: Nvidia GEFORCE GTX  1050 - 6 GB 

OS: Windows 10 Home. 

3.2. Software : 

Language: Python 

Libraries: Tensorflow, Keras 

IDE: Visual Studio 

3.3. Dataset : 

The research is based on retinal vessel segmentation. Hence DRIVE( Digita Retinal Images for Vessel 

Extraction) dataset was chosen because it is specifically prepared for vessel extraction. The DRIVE 

consist of the following data : 

Table 2. DRIVE dataset. 

DRIVE Training Data Testing Data 

Images 20 20 

Ground Truth 1 20 20 

Ground Truth 2 - 20 

Mask 20 20 

 

3.4. Training : 

The training dataset is prepared by extracting 20000 patches of size 48/64px from the greyscale 

converted retinal images. The training dataset is then divided into two parts: training data and 

validation data. Two per cent of the training data is used for validation purpose. The dataset 

reserved for validation is not used in training the model. All the UNET models in this research 

were trained for 16 EPOCH with a batch size of 8.  



29 

4. Evaluation Parameters : 

All the evaluation parameters, such as Accuracy, Sensitivity, Specificity, Precision, are all based on 

algorithm prediction of the positive and the negative cases compared to the actual positive and 

negative cases. These are classified into four possible cases : 

1. True Positive (TP): These are cases in which the algorithm predicted ‘Positive‘. 

2. True Negative (TN): These are cases in which the algorithm predicted ‚‘Negative‘. 

3. False Positive (FP): These are the cases in which the algorithm predicted ‚‘Positive‘, but they 

are actually ‚‘Negative‘. 

4. False Negative (FN): These are the cases in which the algorithm predicted ‚‘Negative‘, but 

they are actually ‚‘Positive‘. 

 

The following evaluating parameters are used to evaluate the UNET models trained in this research. 

Sensitivity/Recall:  

Sensitiviti or Recall is defined as the proportion of correctly identified positive cases to all the actual 

positive cases. 

Sensitivity/Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
              (1) 

 

Specificity: 

Specificity is defined as the propotion of correctly identified negative cases to all the actual negative 

cases.  

Specificity = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
                (2) 

 

Precision : 

Precision shows the propotion of positive identification cases, which was actually positive. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                (3) 

 

Accuracy:  

Accuracy is the total number of positive and negative cases correctly detected.  

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
              (4) 

 

F1 Score:  
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F-measure or F1-score is the harmonic mean of precision and recall. But this measure might not be 

very helpful when the cases of actual positive and actual negative are imbalanced. 

F1 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
              (5) 

 

Matthews correlation coefficient (MCC) :  

The MCC considers TP, TN, FP, and FN, hence MCC coefficient is a balanced metric that can be 

used even though the number of classes are of very different sizes or imbalanced. The MCC is a 

correlation coefficient that returns a value between -1 and +1 for binary classifications that are 

observed and predicted. A coefficient of  +1 denotes that a models prediction is perfect, a coefficient 

of 0 denotes that a models prediction is random, and a coefficient of 1 denotes complete disagreement 

between the model’s prediction and the model’s observation. 

MCC = 
𝑇𝑃∗𝑇𝑁−𝐹𝑃∗𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
         (6) 

 

AUC ROC: 

The Receiver Operator Characteristic curve or simply called as ROC curve is a metric for evaluating 

binary classification problems. It‘s a probability curve that compares the True Positive Rate (TPR) to 

the False Positive Rate (FPR) at various threshold values, essentially distinguishing the signal from 

the noise. The ROC curve that tests a classifier’s ability to distinguish between classes is known as 

the Area Under the Curve (AUC). The AUC_ROC shows the ability of the model to distinguish 

between positive and negative cases. The higher the AUC means that the model is very well able to 

distinguish between the positives and the negatives.. 

 

 

 



31 

5. UNET Model Blocks Overview : 

The UNET models developed and tested in this project consist of mainly five functional blocks, 

namely: Convolution, MaxPooling, Skip connections, Cross Skip Connection and,  Up-Sampling. 

5.1. Convolution : 

In this project, a 3x3 convolution layer is used with rectified linear activation function (relu). If the 

input is positive, the ‘relu‘ is a piecewise linear function that outputs it directly. Otherwise, it would 

return a value of zero. The convolution layer with window size is 3x3 is used in this project. The 

convolution layer generates a tensor of outputs by convolving the layer input with a convolution 

kernel. The convolution block and its keras implementation used to develop UNET models is 

illustrated in Figure 21. In the keras implementation, the input and output variables are highlighted 

in green and red colour boxes. The convolutional layer and its relu activation are highlighted in blue 

and orange colour boxes. These blocks are used in encoder and decoder parts of the UNET model. 

Fig. 21. Convolution Block and its Implementation in keras. 

5.2. Pooling : 

Pooling is a technique used in UNET for downsampling. The downsampling is done based on the 

specified pool size or window. In this project, 2 x 2 MaxPooling is used for downsampling in the 

encoder path to pass data from the output of the higher convolution block down to the input of the 

lower convolution block. The pooling block and its keras implementation are illustrated in Figure 22. 

Here 2 x 2 is the pool size for downsampling. In the keras implementation, the convolution output 

given as input to the pooling block is hilighted in green colour box and the output variable used as 
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the input for another convolutional block is highlighted in red colour box. The max pooling operation 

is highlighted in orange colour box. 

Fig. 22. Pooling Block and its Implementation in keras. 

5.3. Up Sampling : 

Upsampling is used in the decoder path of UNET for passing data from lower convolution block to 

higher convolution blocks for concatenation with skip connection. A 2 x 2 Convolution Transpose is 

used for upsampling in this project, where 2 x 2 is the window size of the transposed convolution. 

Transposed convolutions are commonly used when a transformation in the reverse direction of a 

regular convolution is desired. The Up Sampling and its keras implementation illustrated in Figure 

23. In the keras implementation, the output from convolutional block, which acts as the input to the 

upsampling, is highlighted in green colour box, and the output of upsampling which is given as input 

to another convolutional block, is highlighted in red colour box. The convolution transpose operation 

in keras is highlighted in orange colour box. 
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Fig. 23. Up Sampling and its Implementation in keras. 

5.4. Skip Connection : 

Since the skip connection in UNET is from convolution block of encoder path to a convolution block 

of decoder path with exact filter sizes, it can be directly achieved by concatenation operation by 

simply calling the output of the desired convolution block from the encoder and concatenating it with 

the output of the upsampling convolution. This is then given as input to the desired convolution block 

of the decoder path. This operation and its keras implementation are illustrated in Figure 24. In the 

keras implementation, the upsampling and the convolution output variables are highlighted in green 

and red colour boxes. The concatenation operation in keras is highlighted in orange colour box. 
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Fig. 24. Concatenation Operation and its Implementation in keras. 

5.5. Cross skip Connection: 

The cross skip connection is proposed in this project for passing data for concatenation with decoder 

path convolution block from encoder path convolution block. This cross skip connection is used to 

connect convolution block with different filter sizes. In this project, a simple 3 x 3 Convolution with 

activated relu is used for cross skip connections. The Cross Skip Connection and its keras 

implementation are illustrated in figure 25, where X denotes the filter size of the convolution output, 

and Y denotes the filter size of the concatenation. In the keras implementation, the input and the 

output variables are highlighted in green and red colour boxes. The convolutional layer in keras in 

highlighted in orange colour box. 
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Fig. 25. Cross Skip Connection and its Implementation in keras. 
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6. Experiment: 

In this chapter basic structure of UNET with varied depths is built and tested for RBVS. Then the 

best performing basic UNET is selected for further improvisation and modifications. 

6.1. UNET with Depth 3 : 

The UNET with depth 3 with initial filters 64 and 32 was built. The architecture of the model is 

represented in figure 26. 

Fig. 26. UNET Depth 3 Architecture 

The UNET depth 3 consists of an encoder or contracting path on the right side and a decoder or 

expanding path on the left side. Two variants of UNET is designed for experimental purposes. Variant 

1 consist of filters 64, 128, 256 at encoder and 256, 128, 64 at the decoder. Variant 2 consists of filters 

32, 64, 128 at encoder and 128, 64, 32 at the decoder.  

The two variants of UNET with depth three were trained with a data patch size of 48 and 64. The 

evaluated results are shown in Table 3 below. 

Table 3. Evaluation results of UNET 3 variants. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

PATCH SIZE 48 
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UNET 3 F 

32 
0.7930 

 

0.8189 

 

0.7767 

 

0.98051 

 

0.8659 

 

0.9522 

 

0.9760 

 

UNET 3 F 

64 
0.7946 

 

0.8212 

 

0.7879 

 

0.9788 

 

0.8574 

 

0.9522 

 

0.9760 

 

PATCH SIZE 64 

UNET 3 F 

32 
0.7952 

 

0.8201 

 

0.7710 

 

0.9823 

 

0.8758 

 

0.9529 

 

0.9774 

 

UNET 3 F 

64 
0.7943 

 

0.8201 

 

0.7793 

 

0.9804 

 

0.8655 

 

0.9524 

 

0.9771 

 

6.2. UNET with Depth 4 : 

The UNET with depth 4 with initial filters 64 and 32 was built and the architecture of is as shown in 

figure 27. 

Fig. 27. UNET Depth 4 Architecture 

The UNET depth 4 consists of an encoder or contracting path and a decoder or expanding path. Two 

variants of UNET is designed for experimental purposes. Variant 1 consist of filters 64, 128, 256, 
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512 at encoder and 512, 256, 128, 64 at decoder. Variant 2 consist of filters 32, 64, 128, 256 at encoder 

and 256, 128, 64, 32 at decoder.  

The two variants of UNET with depth four were trained with a data patch size of 48 and 64. The 

evaluated results are shown in Table 4 below. 

Table 4. Evaluation results of UNET 4 variants. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

PATCH SIZE 48 

UNET 4 F 

32 
0.7890 

 

0.8152 

 

0.7712 

 

0.9804 

 

0.8646 

 

0.9513 

 

0.9750 

 

UNET 4 F 

64 
0.7893 

 

0.8148 

 

0.7652 

 

0.9817 

 

0.8712 

 

0.9516 

 

0.9753 

 

PATCH SIZE 64 

UNET 4 F 

32 
0.7806 

 

0.8040 

 

0.7332 

 

0.9853 

 

0.8899 

 

0.9502 

 

0.9743 

UNET 4 F 

64 
0.7905 

 

0.8158 

 

0.7651 

 

0.9821 

 

0.8736 

 

0.9519 

 

0.9752 

 

6.3. UNET with Depth 5 : 

The UNET with depth 5 with initial filters 64 and 32 was built and the architecture is as shown in 

figure 28. 
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Fig. 28. UNET Depth 5 Architecture. 

The UNET Depth 5 consists of an encoder or contracting path and a decoder or expanding path. Two 

variants of UNET is designed for experimental purposes. Variant 1 consist of filters 64, 128, 256, 

512, 1024 at encoder and 1024, 512, 256, 128, 64 at decoder. Variant 2 consist of filters 32, 64, 128, 

256, 512 at encoder and 512, 256, 128, 64, 32 at decoder.  

The two variants of UNET with depth five were trained with a data patch size of 48 and 64. The 

evaluated results are shown in Table 5 below. 

Table 5. Evaluation results of UNET 5 variants. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

PATCH SIZE 48 

UNET 5 F 

32 
0.7939 

 

0.8218 

 

0.8051 

 

0.9750 

 

0.8391 

 

0.9514 0.9760 
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UNET 5 F 

64 
0.7967 

 

0.8243 

 

0.8094 

 

0.9750 

 

0.8397 

 

0.9520 

 

0.9773 

 

PATCH SIZE 64 

UNET 5 F 

32 
0.7900 

 

0.8152 

 

0.7636 

 

0.9822 

 

0.8742 

 

0.9518 

 

0.9760 

 

UNET 5 F 

64 
0.8005 

 

0.8272 

 

0.8073 

 

0.9766 

 

0.8482 

 

0.9531 

 

0.9784 

 

6.4. Discussion : 

6.4.1. Comparison : 

The best of the basic networks with different depth, initial filters and patch size is compared in this 

section.  

Legend : 

N(3,4,5) – Depth of UNET model. 

F – Initial Filters. 

PS – Patch Size. 

Table 6. Evaluation results of best of UNET 3, 4 & 5 variants. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

UNET 3 F 

32 PS 64 
0.7952 

 

0.8201 

 

0.7710 

 

0.9823 

 

0.8758 

 

0.9529 

 

0.9774 

 

UNET 4 F 

64 PS 64 
0.7905 

 

0.8158 

 

0.7651 

 

0.9821 

 

0.8736 

 

0.9519 

 

0.9752 

 

UNET 5 F 

64 PS 64 
0.8005 

 

0.8272 

 

0.8073 

 

0.9766 

 

0.8482 

 

0.9531 

 

0.9784 

 

From table 6 above, we see that the UNET with depth 5, initial filters 64 and data with a patch size 

of 64 for training and evaluation (UNET 5 F 64 PS 64) has the best MCC score. This model also 

shows that it has better accuracy and AUC-ROC compared to other models. From these evaluation 

results, the UNET with depth 5 and initial filters 64 which is trained on data with patch size of 64 

(UNET 5 F 64 PS 64), is efficient in retinal vessel segmentation. This model is used as a base 

reference for further improvisation of the UNET algorithm. 

Figures 29, 30 and 31 illustrate the AUC-ROC of UNET 3 F 32 PS 64, UNET 4 F 64 PS 64 and 

UNET 5 F 64 PS 64. 
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Fig. 29. AUC – ROC of UNET 3 F 32 PS 64. 

Fig. 30. AUC – ROC of UNET 4 F 64 PS 64. 
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Fig. 31. AUC – ROC of UNET 5 F 64 PS 64. 
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6.4.2. UNET 5 F 64 PS 64 Code : 

Fig. 32. UNET 5 F 64 PS 64 code. 

 

The code used for UNET 5 F 64 PS 64 is shown in figure 32. The contracting path of the UNET is 

highlighted by orange colour box, and the expanding path of the UNET is highlighted by green colour 

box. The contracting path consists of five convolutional blocks, including the base convolutional 

block represented as conv1, conv2, conv3, conv4 and conv5. The expanding path consists of four 
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convolutional blocks represented as conv6, conv7, conv8, conv9. Each convolutional block holds the 

parameters of its own, which is used to process the information it receives. In this code every 

convolutional layer in a block is given filter size, kernel size, activation, padding and kernel initialiser 

as represented in figure 33.  

Fig. 33. Convolutional block code. 

 

The filter size represents the number of filters in the convolutional layer output. The kernel size 

represents the height and width of the convolutional window. The activation used in this code is relu, 

this activation function provides a positive output for positive values or outputs zero otherwise. The 

padding used is “same“; this keeps the output of the convolutional layer same size as the input. The 

kernel initialiser “he_normal“ initialises weights based on the inputs. A dropout function is used after 

each convolutional block in the contracting path, this dropout function sets random input values to 

zero during training which helps to prevent overfitting. 

Max pooling with window size 2x2 is used for downsampling data from one convolutional block to 

another in the contracting path. A convolutional transpose function that performs reverse convolution 

is used for upsampling data from one convolutional block to another in the expanding path. At the 

end of the network, the output is passed through one last convolutional layer with filter size and kernel 

size of one and with “sigmoid“ activation, this activation returns a value close to zero for values less 

than -5 and returns a value close to 1 for values greater than 5. 

 

6.4.3. UNET 5 F 64 PS 64 Training Visualisation: 

The training accuracy of the UNET 5 F 64 PS 64 is visualised in figure 34. The orange colour line 

denotes the training accuracy and the blue colour line represents the validation accuracy. From figure 

34, we can see that the training accuracy gradually increases as the number of epochs increases and 

the validation accuracy increases in the first few epochs and gradually reduces in the later epochs; it 

suggests that the model is losing data during overfitting. 
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Fig. 34. Training Epoch Accuracy of UNET 5 F 64 PS 64. 

6.4.4. Segmentation Results: 

The segmentation results of the UNET 5 F 64 PS 64 is shown in figure 35. Figure 35(a) shows the 

greyscale image, and the ground truth is shown in figure 35(b). The RBVS generated by UNET 5 F 

64 PS 64 is shown in figure 35(c). The difference between the ground truth and the segmentation is 

shown in figure 35(d). In the difference image, the difference is marked in red colour. Few of the 

difference is due to the human error in ground truth failing to mark very thin blood vessels, few of 

the difference is due to failure of the UNET to segment thin blood vessels correctly and a majority of 

the difference is due to the very small difference in the size and of the line used in the ground truth 

and size of the line in the segmentations generated by UNET. As UNET segmentations are computer-

generated, their segmentation lines are exactly the size of the retinal blood vessels. However, the 

ground truth is human traced segmentation of retinal blood vessels, and the size may differ compared 

to the actual size. 
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Fig. 35. Segmentation results of UNET 5 F 64 PS 64. (a) Greyscale image, (b) Ground Truth, (c) UNET 5 F 

64 PS 64 Segmentation, (d)Difference image. 

6.5. Optimisation of UNET : 

From the previous chapter on basic UNET models, UNET with depth 5, initial filters 64 and training 

dataset with patch size 64(UNET 5 F 64 PS 64) showed efficient retinal vessel segmentation results 

compared to other basic UNET models. In this section, a few modifications and improvements are 

tested to obtain more efficient retinal vessel segmentation.  

The process represented in figure 36 was followed for testing improvements and modifications : 
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Fig. 36. UNET modification and improvement process. 

The following models were built and tested during the process : 

1. UNET with Cross skip connections from the lower level to the higher level  (UNET C). 

2. UNET with Cross skip connection from the upper level to the lower level (UNET UC). 

3. UNET with Cross skip connections from the higher level to the lower level with Dense 

network and Autrous spatial pooling at the base (UNET UCDA). 

4. Gradient UNET with Cross skip connections from the higher level to the lower level with 

Dense network and Autrous spatial pooling at the base (UNET G UCDA). 

6.6. UNET C : 

The architecture of UNET C is represented in figure 37. The UNET C consists of a structure of basic 

UNET 5 F 64. However, the difference is that UNET C consists of extra skip connections from the 

convolution block of the encoder to the convolution block of the decoder. An extra skip connection 

is from the lower level convolution block of the encoder to the higher level convolutional block of 

the decoder, as shown in figure 37. The skip connection from the convolution block of the encoder 

that is parallel to the convolution block of the decoder and immediate lower level convolutional block 

of the encoder is concatenated first and then concatenated with the corresponding convolutional block 

of the decoder.  
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Fig. 37. UNET C architecture. 

The UNET C model was trained for 16 epoch and the following results shown in table 7 was obtained 

during evaluation. 

Table 7. Evaluation results of UNET C. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

UNET C 0.7929 

 

0.8174 

 

0.7634 

 

0.9831 

 

0.87952 

 

0.9525 

 

0.9776 

 

6.7. UNET UC : 

The architecture of UNET UC is represented in figure 38. The UNET UC consists of a structure of 

basic UNET 5 F 64. However, the difference is that UNET UC consists of extra skip connections 

from the convolution block of the encoder to the convolution block of the decoder. An extra skip 

connection is from the higher level convolution block of the encoder to the lower level convolutional 

block of the decoder, as shown in figure 38. The skip connection from the convolution block of the 

encoder that is parallel to the convolution block of the decoder and immediate higher level 

convolutional block of the encoder is concatenated first and then concatenated with the corresponding 

convolutional block of the decoder.  
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Fig. 38. UNET UC architecture. 

The UNET UC model was trained for 16 epoch and the following results shown in table 8 was 

obtained during evaluation. 

Table 8. Evaluation results of UNET UC. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISSION ACCURACY AUC-

ROC 

UNET UC 0.7970 

 

0.8232 

 

0.7904 

 

0.9790 

 

0.8589 

 

0.9527 

 

0.9774 

 

6.8. Discussion : 

6.8.1. Comparison : 

Two variants of UNET with cross skip connections were built and evaluated, namely UNET C and 

UNET UC. The UNET C had skip connections from the lower level convolution block of the encoder 

to the higher level convolution block of the decoder, and the UNET UC had Cross skip connections 

from the upper-level convolution block of the encoder to the lower level convolution block of the 

decoder. The evaluated results of the two models are shown in table 9 below for comparison. 
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Table 9. Evaluation results of UNET C and UNET UC. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

UNET C 0.7929 

 

0.8174 

 

0.7634 

 

0.9831 

 

0.8795 

 

0.9525 

 

0.9776 

 

UNET UC 0.7970 

 

0.8232 

 

0.7904 

 

0.9790 

 

0.8589 

 

0.9527 

 

0.9774 

 

From table 9 above, we can see that the UNET UC has the best MCC score and accuracy compared 

to UNET C. Figures 39 and 40 illustrate the AUC-ROC of UNET C and UNET UC. It is seen that 

the UNET UC has good potential for further improvisation and modifications. 

Fig. 39. AUC – ROC of UNET C. 
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Fig. 40. AUC – ROC of UNET UC. 
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6.8.2. UNET UC Code : 

Fig. 41. UNET UC code. 

The code used for UNET UC is shown in figure 32. The contracting path of the UNET UC is 

highlighted by orange colour box, and the expanding path of the UNET UC is highlighted by green 

colour box. The contracting path consists of five convolutional blocks, including the base 
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convolutional block represented as conv1, conv2, conv3, conv4 and conv5. The expanding path 

consists of four convolutional blocks represented as conv6, conv7, conv8, conv9. These convolutional 

blocks are the same as UNET 5 F 64 PS 64. However, in UNET UC, we have an extra skip connection 

known as cross skip connection. In this project, a simple convolutional layer is used to achieve this 

cross skip connection. This cross skip connection is first merged with the skip connection and then it 

is merged with the upsampled data. This process in the code is as shown in figure 42 below. 

Fig. 42. Cross skip connection and merging process code. 

The “up“ variable defines the process of upsampling and “c“ variable defines the cross skip 

connection. As we can see that a simple convolutional layer is used the achieve this cross skip 

connection. The cross skip connection is merged with the skip connection and then with the 

upsampling using the help of the concatenation function, as seen in figure 42. 

6.8.3. UNET UC Training Visualisation: 

The training accuracy of the UNET UC is visualised in figure 43. The pink colour line denotes the 

training accuracy, and the green colour line represents the validation accuracy. From figure 43, we 

can see that the training accuracy gradually increases as the number of epochs increases and the 

validation accuracy increases in the first few epochs and gradually reduces and becomes constant in 

the later epochs; this shows that the model is not losing data and learning much better compared to 

basic UNET. 

Fig. 43. Training Epoch Accuracy of UNET UC. 
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6.8.4. Segmentation Results : 

The RBVS results of the UNET UC is shown in figure 44. Figure 44(a) shows the greyscale image, 

and the ground truth is shown in figure 44(b). The RBVS generated by UNET UC is shown in figure 

44(c). The difference between the ground truth and the segmentation is shown in figure 44(d). In the 

difference image, the difference is marked in red colour. Few of the difference is due to the human 

error in ground truth failing to mark very thin blood vessels, few of the difference is due to failure of 

the UNET UC to segment thin blood vessels correctly and a majority of the difference is due to the 

very small difference in the size and of the line used in the ground truth and size of the line in the 

segmentations generated by UNET UC. As UNET UC segmentations are computer-generated, its 

segmentation lines are exactly the size of the retinal blood vessels. However, the ground truth is 

human traced segmentation of retinal blood vessels, and the size may differ compared to the actual 

size. 

Fig. 44. Segmentation results of UNET UC.(a) Greyscale image, (b) Ground Truth, (c) UNET UC 

Segmentation, (d)Difference image. 
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6.9. UNET UCDA : 

The architecture of UNET UCDA is represented in figure 45. The UNET UCDA consist of 

architecture similar to UNET UC. However, the difference is that UNET UCAD consists of a Dense 

convolutional network (figure 46) and Autrous Spatial pooling (figure 47) at the base of the network, 

as shown in figure 43.  

Fig. 45. UNET UCDA architecture. 
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Fig. 46. Dense Network. 

Fig. 47. Atrous Spatial Pyramid pooling. 

The Atrous spatial pyramid pooling (ASPP) structure used in this experiment is as shown in figure 

47. The input given to the ASPP is passed through three different convolutional layers with dilation 

rates 1, 2, 4 and an averaging pooling layer. The outputs of the convolutional layers are then given to 

batch normalisation, which keeps the mean close to zero and standard deviation close to 1. The output 

of average pooling is upsampled and then merged with the batch normalised outputs. After merging, 

the output is then passed through another final layer of convolution and batch normalisation. 

The UNET UCDA model was trained for 16 epoch, and the following results shown in table 10 was 

obtained during evaluation. 
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Table 10. Evaluation results of UNET UCDA. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

UNET 

UCDA 
0.7968 

 

0.8216 

 

0.7744 

 

0.9821 

 

0.8751 

 

0.9532 

 

0.9774 

 

With the introduction of dense block and atrous spatial pooling accuracy of the model has slightly 

increased. However, there are no improvements in MCC and F1 compared to UNET with cross skip 

connections. 

6.10. UNET G UCDA : 

The architecture of UNET G UCDA is represented in figure 48. The UNET G UCDA was inspired 

by the Gradient UNET (GNET)[12]. In the encoder part, the UNET G UCDA starts with 

convolutional layers with 64 filters and instead of downsampling like seen in traditional UNET, it is 

upsampled first. Then from the convolutional layers with 32 filters, downsampling is followed to the 

next lower layer as in traditional UNET. The UNET G UCDA consists of a dense network (figure 

46) followed by Autrous spatial pyramid pooling (figure 47) before the data is upsampled to the 

decoder. In the decoder, the data from the adjacent encoder is concatenated, as seen in UNET UC. At 

the last convolutional layer with 64 filters the data is downsampled from the convolutional layers 

with 32 filters and concatenated with  parallel convolutiol layer from the encoder.  

Fig. 48. UNET G UCDA architecture. 
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The UNET G UCDA model was trained for 16 epoch, and the following results were obtained during 

evaluation. 

Table 11. Evaluation results of UNET G UCDA. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISION ACCURACY AUC-

ROC 

UNET G 

UCDA 
0.8030 

 

0.8296 

 

0.8115 

 

0.9765 

 

0.8485 

 

0.9536 

 

0.9788 

 

The UNET G UCDA has the best MCC score, Accuracy, and AUC-ROC compared to UNET UCDA, 

UNET C and UNET UC. 

6.11. Discussion : 

The UNET G UCDA produced efficient results thus far compared to other modified networks based 

on UNET. These results are compared and verified in the section below.  

6.11.1. Comparison : 

This section compares the evaluation results obtained by UNET G UCDA with a few of the best 

results obtained by other UNET models in this experiment. Table 12 below shows the tabulated 

results of the best UNET based models. 

Table 12. Evaluation results of best UNET based models. 

NETWORK MCC F1 SENSITIVITY SPECIFICITY PRECISSION ACCURACY AUC-

ROC 

UNET 5 F 

64 PS 64 
0.8005 

 

0.8272 

 

0.8073 

 

0.9766 

 

0.8482 

 

0.9531 

 

0.9784 

 

UNET UC 0.7970 

 

0.8232 

 

0.7904 

 

0.9790 

 

0.8589 

 

0.9527 

 

0.9774 

 

UNET G 

UCDA 
0.8030 

 

0.8296 

 

0.8115 

 

0.9765 

 

0.8485 

 

0.9536 

 

0.9788 

 

Comparing the evaluation results from the above table shows that UNET G UCDA has the best MCC 

score. The UNET G UCDA also has greater Accuracy and AUC-ROC compared to other networks. 

Figure 49 illustrates the AUC-ROC of UNET G UCDA. From the above results, the UNET G UCDA 

provides better segmentation than any other type of UNET models. 
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Fig. 49. AUC – ROC of UNET G UCDA. 

Table 13.Network Parameters and Evaluation time. 

NETWORK Total 

Parameters 

Trainable 

Parameters 

Non-

Trainable 

parameters 

Evaluation 

Time 

UNET 5 F 

64 PS 64 
31,03,593 31,03,593 

 

0 

 

3 minutes 29 
seconds 

 

UNET UC 35,676,353 35,676,353 

 

0 

 

3 minutes 8 
seconds 

 

UNET G 

UCDA 
11,023,073 11,021,025 

 

2,048 

 

4 minutes 15 
seconds 

 

Table 13 shows the network parameters and evaluation time taken by each network to segment five 

retinal images. From the table, we can see that the UNET 5 F 64 PS 64 has the lowest number of 

parameters, and UNET UC has the highest number of parameters. In UNET G UCDA few paramters 

are non trainable. The evaluation time taken by each network to segment retinal images is subjected 

to the instance of GPU and memory available while processing. These evaluation time were achieved 

under the proposed experimental setup. 
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6.11.2. UNET G UCDA Code : 

Fig. 50. UNET G UCDA Code. 
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The code used for UNET G UCDA is shown in figure 50. The data from first convolutional block 

highlighted in blue colour is upsampled using max pooling and then passed to the next block.  The 

contracting path of the UNET G UCDA is highlighted by orange colour box. The contracting path 

consists of four convolutional blocks including the dense convolutional block represented as  conv2, 

conv3, conv4 and conv5. The convolutional block five is a dense network highlighted in yellow 

colour box, as shown in figure 50. The dense network consists of three convolutional blocks 

represented as conv5, conv51 and conv52. Each block input receives the output of all the previous 

blocks in the dense network; this is achieved by concatenation. The data output of the dense network 

is then sent to Atrous spatial pyramid pooling and then passed to the expanding path. The expanding 

path of the UNET G UCDA is highlighted by green colour box. The expanding path consists of three 

convolutional blocks represented as conv6, conv7, conv8. The output of convolutional block eight is 

downsampled and then given to the last convolutional block represented as conv9. The conv9 block 

is highlighted in red colour box in figure 50. The convolutional blocks, cross skip connections and 

skip connections are the same as UNET UC.  

6.11.3. UNET G UCDA Training Visualisation: 

The training accuracy and training loss of the UNET G UCDA is visualised in figure 51. The orange 

colour line denotes the training accuracy, and the blue colour line represents the validation accuracy. 

From figure 51, it can be seen that the training accuracy increases gradually as the number of epochs 

increases and the validation accuracy increases in the first few epochs and becomes constant in the 

later epochs. This shows that there is very less loss during overfitting, and the model learns much 

better compared to other models. 

Fig. 51. Training epoch Accuracy of UNET G UCDA. 

6.11.4. Segmentation results of UNET G UCDA: 

The RBVS results of the UNET G UCDA is shown in figure 52. Figure 52(a) shows greyscale image, 

and the ground truth is shown in figure 52(b). The RBVS generated by UNET G UCDA is shown in 

figure 52(c). The difference between the ground truth and the segmentation is shown in figure 52(d). 
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In the difference image the difference is marked in red colour. Few of the difference is due to the 

human error in ground truth failing to mark very thin blood vessels, few of the difference is due to 

failure of the UNET G UCDA to segment thin blood vessels correctly and a majority of the difference 

is due to the very small difference in the size and of the line used in the ground truth and size of the 

line in the segmentations generated by UNET G UCDA. As UNET G UCDA segmentations are 

computer-generated, their segmentation lines are exactly the size of the retinal blood vessels. 

However, the ground truth is human traced segmentation of retinal blood vessels, and the size may 

differ compared to the actual size. 

 

Fig. 52. Segmentation results by UNET G UCDA. (a) Greyscale image, (b) Ground truth, (c) UNET G 

UCDA Segmentation, (d)Difference in segmentation. 
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Conclusions 

1. The research on RBVS by fully convolutional network was carried out. Different Convolutional 

networks were built based on the UNET to study the retinal vessel segmentation by convolutional 

networks. 

2. By comparing all the different fully convolutional network models built based on UNET, we 

found that the UNET G UCDA provides better segmentation results. 

3. .Compared to the basic UNET, the UNET G UCDA has improved results in terms of MCC, F1 

Score, Sensitivity and Accuracy. The UNET G UCDA has an MCC score of 0.8030, F1 score of 

0.8296, Sensitivity of 0.8115, Accuracy of 0.9536, and AUC-ROC of 0.9788, which are the best 

results provided by any UNET model under the proposed experimental setup. 

4. By analysing the training data, UNET G UCDA generalises better than all the other UNET based 

models and provides the best retinal vessel segmentation based on MCC, F1 and Accuracy. 

5. There is a scope for improvement in the performance of the proposed UNET G UCDA model by 

training it on larger datasets for retinal vessel segmentation. 
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