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Summary 

Images in computed tomography are generated by using rotatory gantry and detector array movement 

around the patient. This fundimentally poses a problem whenever the scanned projection intercepts a 

dense object or a patient implant in its path. Due to the density of these implants, x-rays scattering 

effects may occur, creating shadow-stripe type artifacts. In many cases of radiotherapy, these artifacts 

are either overlooked or ignored. Only rarely they are reduced using the commercial metal artifact 

reduction algorithms. The re-distribution of the doses when comparing original CT images to MAR 

reduced images can be significant enough to sometimes reduce unwanted potential after-treatment 

radiation induced side effects 

The aim of this paper was to evaluate the difference and re-distribution of doses to the target organs of 

the patients, as well as organs at risk surrounding them, according to the organ dose constraint guidelines. 

A metallic artifact reduction (MAR) algorithm was constructed, using different types of filtering 

methods traditionally used in photography and other image editing fields, for edge (detail) enhancement 

as well as overall image noise and blur reduction. CT data sets of 7 patients in total were evaluated for 

potential edge drifting and dose reduction in radiotherapy planning system. For further data evaluation, 

patients were split in to two groups. One group consisted of 4 patients of prostate cancer patients, while 

the other group consisted of 3 patients of cervix-uterus cancer patients.  

It was found that the application of the MAR algorithm has resulted in a high dose reduction to the 

organs of interest. On average a 14.03% dose reduction to the target organ was determined for the 

cervix-uterus cancer patients as compared to the 2.26% dose reduction of the prostate cancer group. 

Dose reduction for organs at risk has also been significantly higher in the cervix-uterus cancer group of 

patients. Rectum organ dose on average was reduced by 8.59% among all patients of the second group, 

while dose reduction to the rectum in the first group was 2.26% only. Bladder in the second group of 

patients received a 8.53% dose reduction, contrary to the increased average dose of 4.45% for the first 

group of patients. It was shown that, the application of metal artifact reduction algorithm before 

radiotherapy treatment planning, which is based on the patients CT images, is of high importance, since 

these algorithms provide a significant reduction of dose to all organs surrounding target and substantial 

dose re-distribution. 

Images in computed tomography are generated by using rotatory gantry and detector array movement 

around the patient. This fundimentally poses a problem whenever the scanned projection intercepts a 

dense object or a patient implant in its path.  
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Santrauka 

Kompiuterinės tomografijos vaizdų gavimo procesas yra procesas, kurio metu KT vaizdai yra atkuriami 

2D būdu, nors pats generavimo metodas yra gantrio (KT stovo) detektorių sukimasis aplink pacientą, 

kuomet rentgeno spinduliai “perveria” pacientą, ir šis jų pradinis ir galutinis energijų skirtumas yra 

atkuriamas kaip KT vaizdai. Pats šis vaizdų generavimo metodas savaime tampa problema, kuomet į 

skenavimo projekciją patenka įvairūs dirbtiniai protezai. Dėl šių implantų tankio, daugybė rentgeno 

spindulių retkarčiais yra išsklaidomi visomis kryptimis, taip sugadindami vaizdus bei sukuriant šešėlio 

tipo juostinius artefaktus. Dažniausiai radioterapijoje šie artefaktai yra paliekami, o tik retkarčiais būna 

redukuojami komercinės paskirties metalinių artefaktų redukavimo algoritmų pagalba. Pakitusi vaizdų 

doze radioterapijos planavimo sistemose, lyginant originalius vaizdus su MAR vaizdais, gali būti 

pakankamai didelė jog pacientas galėtų išvengti nenorimų atsitiktinių post-gydimo radiacinių šalutinių 

reišknių. 

Šio baigiamojo projekto tikslas – įvertinti dozės pokytį į pacientų organus “taikinius”, taip pat į šalia 

esančius jautrius organus, remiantis dozių ribų kriterijais. Šiam tikslui buvo sukonstruotas metalinių 

artefaktų redukavimo algoritmas (MAR), naudojant įvairius filtravimo metodus, kurie tradicičkai yra 

naudojami fotografijų ir kitų vaizdų korekcijoms, norint paryškinti vaizdų detales, ribas, taip pat 

sumažinti vaizdų “triukšmą” bei blukimą. Iš viso buvo ištirti 7 pacientų KT vaizdų serijos, potencialiam 

organų ribų kitimui bei dozes pokyčiui radioterapijos planavimo sistemose. Tolesniam duomenų 

apdorojimui, pacientai buvo suskirstyti į dvi grupes. Pirmąją grupę sudarė 4 prostatos vėžio pacientai, 

o antrąją 3 gimdos kaklelio vėžio pacientės. 

Buvo nustatyta jog, MAR algoritmo pritaikymas sumažino tiriamų  organų dozę. Antroje grupėje dozių 

pokytis taikinyje buvo vidutiniškai 14,03%, lyginant jį su pirmosios grupės 2.26% pokyčiu. Šalutinių 

organų dozes redukcijos procentas antroje grupėje taip pat buvo didesnis. Tiesiosios žarnos vidutinis 

dozes sumažėjimas antroje grupėje buvo 8.59%, lyginant jį su pirmosios grupės 2.26% sumažėjimu. 

Šlapimo pūslės dozes sumažėjimas antroje grupėje siekė 8.53% lyginant jį su 4.45% dozes padidėjimu 

pirmoje grupėje. Nustatyta, jog metalinių artefaktų slopinimo algoritmų pritaikymas pacientų KT 

vaizdams yra labai svarbus prieš planuojant spindulinės terapijos dozes. nes  ženkliai sumažina dozę 

taikiniui ir periferiniams organams.  
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Introduction 

In today’s clinical practice, CT images are one of the most crucial methods of patient diagnosis. This 

patient evaluation method has seen rapid development in the last two decades. The usefulness and fast 

image acquisition of CT scanners have also seen an increasing number of implementations in all fields 

of medicine. What started, as a way of diagnosing patients fast, became an essential tool in other field 

of medicine, as well, such as, radiotherapy and nuclear medicine. In today’s medical practice, CT images 

are used as ways to create treatment plans as well as to measure radiation treatment progresses in 

radiotherapy and nuclear medicine radioisotope treatments. For the purpose of internal treatment, CT 

images are used as a roadmap to guide wanted radiopharmaceuticals or external radiation beams to the 

desired targets. This is a very precise and cost-efficient method of patient treatment. However, despite 

this success, the image reconstruction processed used in CT imaging poses a significant problem due to 

its fundamental design. When dense objects, such as artificial prosthesis protrude in to the field of scan, 

a lot of times, reduction or elimination of these “artifacts” can become a challenging task. That’s why 

this problem is sometimes ignored when working with patient CT data. Due to the rotatory nature of the 

image, acquisition process artifacts of all sizes can be cast in various directions, sometimes deleting or 

obstructing organs in the final CT image data set. In recent years however, new-post CT acquisition 

algorithms and filtering methods have been proposed as a way to reduce these unwanted shadow-line 

effects. These algorithms in the past were used as methods to edit photography data, as well as enhance 

or reduce unwanted noise and blurs, and in recent years have been proposed as a tool to further optimize 

CT images. Fundamentally, any types of data inconsistencies can lead to excessive radiation doses, 

especially in the previously named medical fields.  

The radiotherapy process is a precise method where organs are evaluated in radiotherapy planning 

system software, and treatment plans are created on top of the patients CT images. Due to this, it is 

important to have as precise data as possible, as any errors lead to patients being over exposed to the 

radiation dose. This is where the proposed MAR algorithms come in to play. Many articles and papers 

suggest that implementing various types of filters as pre-RT technique can reduce the RT plans overall 

dose distribution to the target organ as well as organs at risk that are surrounding it. As the technical 

computational capabilities of processors is increasing so is the commercial application of the CT image 

editing, as most of the new CT scanners these days have their own original MAR algorithms available 

in the editing software provided by the supplier. To optimize patient radiotherapy plans even further, it 

is of great importance to investigate these potential filtering methods and their influence on the CT 

images. 

The aim of the Master’s final degree project is to identify and evaluate dose reduction capability to the 

target organs and organs at risk when MAR algorithms for the improvement of CT imaging data are 

applied prior to plan the treatment doses in radiotherapy effect.  

Objectives of the Master’s final degree project: 

1. To investigate possible computed tomography filtering methods; 

2. To assess the suitability of metallic artifact reduction algorithm application on the 

edges in computed tomography images; 

3. To evaluate the impact of the metallic artifact reduction algorithm on the quality of the 

computed tomography images aimed for dose planning in radiotherapy. 
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1. Literature review  

1.1 CT artifacts 

Image filtering is a useful process that results in removing potential unwanted artifacts and other 

corruptions of the data, that CT images tend to be affected by when the images are affected by external 

unwanted processes during data acquisition. Due to X-Ray and CT-images being one of the most 

popular tools for patient diagnosis in the medical field, these artifacts pose an important issue, which 

has been addressed more and more in the recent decade. The field of CT filtering is important for further 

diagnosis optimization and image salvaging. According to authors like (VASPVT and European 

statistics department), the CT image acquisition has grown substantially, with the annual acquisition 

averaging around 30-40 CT acquisitions/1 mil. of population, and a growth from 1.6 to around 2 CT 

machines for 100000 population from the year 2013 to year 2018. This growth suggest that this trend is 

going to continue further with an even higher emphasis on CT and X-Ray image acquisition for better 

patient evaluations. Due to this, it is important to understand images affected by artifacts better. Such 

images sometimes suffer from errors that manifest as undesirable visual quality reduction, intense X-

ray attenuations (stripe patterns) and excessive noise that hinders image evaluations, fig. 1., [1, 2]. 

 
Fig.  1. Patient artifacts in pelvis region, patient No. 1., Kaunas Clinics, Hospital Of Oncology 

The image series slices portrays heavy attenuation in pelvic region, making evaluation and any kind of 

treatment planning in case of cancer patients nearly impossible or heavily inaccurate, therefore an 

insight in to secondary radiation effects and artifact manifestation is beneficial for better comprehension 

of the possible ways to reduce such digital errors. 

1.2 Secondary radiation effects and physics 

Despite there being multiple artifact types that can arise due to various causes, such as detector faults, 

rotational gantry issues, and even higher than usual anatomical density in some particular areas of the 

body. The heaviest influence on the image these days remains artificial prosthesis and metallic object 

perturbations in to the field of scan. These perturbations result in beam hardening and scatter radiation 

(secondary radiation). According to (P. Sprawls), two of the main processes in CT data corruption are 

beam hardening along with scatter radiation. These two types of effects are the most probable and 

common secondary radiation effects, which happen when the beam intercepts an object in its path 
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causing x-ray scattering. The higher the density of the structure in the body, the more scattered radiation 

is produced as a result. Radiation scattering is the main phenomenon that reduces image quality when 

a metal foreign object falls in to the field of scan, [3]. 

One of the previously mentioned causes, beam hardening, occurs when x-ray beam consisting of 

polychromatic energies (energies that cannot be filtered using meshes and scattering filters) pass 

through an object, which is very high in density. The resulting attenuation of the x-rays is mostly 

comprised of low-end energy spectrum photons. The effect heavily resembles a high pass filter, in a 

way that only high-energy photons pass through and contribute to the beneficial x-ray energy beam. 

This results in the average beam energy being higher than the initial beam that left the x-ray tube, thus 

resulting in “beam  hardening“. The result of this – streaking artifact appears as a multiple streaks along 

the axis of the initial high-density object, just like fig. 1. Due to CT unit gantry (tube and detectors) 

rotation during the procedure the polychromatic x-rays are hardened at different rates resulting in 

multiple dark streaks. Beam hardening is mostly present with polychromatic X-ray sources. In 

polychromatic beams, transmission does not follow the simple exponential decay law seen with a 

monochromatic X-rays. This is a huge problem with high atomic number materials such like metallic 

implants. Compared to low atomic number materials such as water and fat (to some degree), these high 

atomic number materials dramatically increase attenuation at lower energy x-ray beams. Due to low 

energy X-ray attenuation being primarily consisted of the photoelectric effect, it is proportional to 

𝑍3/𝐸3 , Z is the atomic number of the incident object, and E is the energy of the beam. At high energies 

however, attenuation is primarily due to Compton scatter, and is proportional to 1/E, [7]. 

The second cause for metallic object artifact manifestation is that when beam hardening occurs, a large 

amount of photons engages in Compton interactions along projection lines and additionally produces 

scattered radiation. Only some of this radiation leaves the body in the same direction as the primary 

beam and reaches the image X-ray detector array module. This scattered radiation contributes to 

reducing image contrast, and heavily enhances image noise. The degree of contrast loss depends on the 

scattering degree of the radiation emerging from the patient's body, in other words it mostly depends on 

the amount of scattering that occurs during the beam is trans-versing the patient, due to metallic 

interference in the beams path. When these secondary photons are produced, they are high in energy 

and change direction, that in itself further add to the photon attenuation problem. The previous two 

cause are main notable culprits for images containing streaking artifacts [3, 4].  
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Fig.  2 A principle of Compton effect 

The Compton scattering in further detail can be explained by the photon deflected through a scattering 

angle θ after a collision occurs. The recoil electron receives partial energy. In the process of this, photon 

loses energy. The scattered photon’s energy in Compton principle is related to the scattering angle θ by 

momentum and energy conservation law: 

Esc=E0/[1 + (
E0

0.511
) ∙ (1 − Cosθ)]

  (1) 

where E0 – incident photon, and Esc – scattered photon energies in MeV. According to the same the 

energy and momentum conservation law of the recoil electron, Ere, becomes: 

 ERe=E0 − ESc    (2) 

Typically the amount of energy transferred to the recoil electron in Compton scattering ranges from 

nearly zero MeV, for angles θ that are close to 0 degrees (referred to as “grazing” collision), up to a 

maximum of  Ere
max that occurs in the maximum 180 - degree backscattering events.  In these events, 

recoil electrons are able to maintain energies high enough for further potential interactions in their path. 

Due to Compton scattering, further interactions of these recoil electrons and shifted photons not only 

increase the surrounding organ irradiation, but also contributes to the overall image quality degradation 

in certain areas of the image, [5].  

https://www.sciencedirect.com/topics/medicine-and-dentistry/backscattering
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1.3 Image reconstruction 

CT image reconstruction is a crucial step in CT image generation. It has been attracting more and more 

attention in the recent decades, with the released number of articles yearly growing almost exponentially 

in the last decade. This can be represented by authors like (M. J. Willemink, P. B. Noel) in fig. 3. 

 
Fig.  3. Iterative algorithm article growth 2008-2017, “PubMed” database, [6] 

In general, for the images to be represented in correct manner visually as it is know, the attenuation 

coefficients of different x-ray absorption paths (ray sum) have to be calculated. They are obtained as a 

set of data (projection). To understand this process in further detail it is important to understand the way 

filtered back projection works in today’s commercially available CT scanners. 

Authors like (M.T. Al Hussani, M.H. Ali Al Hayani) state that, image reconstruction process aims to 

estimate object’s image slice f(x, y) from a set number of projections p(t, θ). To achieve this image 

reconstruction algorithms are used. The “Filtered back projection” algorithm is often called as a 

convolution method. Such methods are used as a one-dimensional integral equation for the 

reconstruction of a two dimensional image. This algorithm has gained wide spread success, and is the 

most popular reconstruction method used today in CT applications. It utilizes a convolution filter, 

sometimes known as “ramp filter” to reduce the blurring associated with back projection (first iteration 

reconstruction algorithm used in the past), and is faster than its predecessor. Despite being a fast 

reconstruction method and having great advantages over its predecessor, it also has limitations regarding 

metallic object secondary radiation (effects mentioned previously) and artifact creation (mostly organ 

edge loss) during reconstructions, [8,  9]. 

 As CT scanner takes images of the body part at projections around the body. For any given angle 

of the projection, the line contains brighter and darker pixels, who depend on how much the beam has 

been attenuated during the exposure (how much of the polychromatic energy is high-pass filtered during 

the beams travel). 

 
Fig.  4. Patient No. 1, slice 54, 68 deg. projection 

Fig.  4 represents a visual slice, however the CT scanners process data using the typical signal domain. 

Additionally, it is common to believe that the detector fan in CT machines rotate and expose the patient 
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to 360 degrees of irradiation, however, in reality image reconstruction requires only 180 degrees of data 

(180 + fan beam angle width). It does not matter which way the beam transverse the patient, therefore 

the rest of the 180 degree of the projections are a mirror image of the first projections. In addition, extra 

fan beam angle width projections are required for proper projection overlapping. 

A better representation of this concept is the “sinogram method”. The mirrored slices can be seen using 

a sinogram to display all of the different projections for a given slice stacked together. As the CT tube 

rotates around the patient, the parts, which are attenuated more heavily, can be clearly seen using 

sinograms for better representation. 

 
Fig.  5. Patient No. 1, slice 54 sinogram 

1.3.1 Back projection and ART method 

The first set of data that the CT processor acquires during the exposure are the projection beam intensity 

(photon intensity) data, however the real voxel data values first have to be found in order for the data to 

be converted in to attenuation values, that are later used in image generation. The back projection 

process for voxel attenuation value finding is called „Linear interpolation“, [8, 11, 12, 13]. 

The amount of photons (photon intensity) in an X-ray beam linear voxel matrix is calculated by:  

I = 𝐼0𝑒
−(μ1μ1+μ2μ2+μ𝑛μ𝑛)   (3) 

Where I is the intensity, and 𝐼0 denotes initial beam energy, μ1 is attenuation coefficient. 

For polychromatic x-ray beams however, this intensity equation has to be altered, it becomes: 

I =  ∫ 𝐼0(E)  𝑒−∑ μ𝑖(𝐸)𝑥𝑖
𝑛
𝑖 dE

𝐸𝑚𝑎𝑥

0
  (4) 

The logarithm of the ratio of the initial photons divided by the measured photons ln(I0/I) is known as 

ray sums. A set of ray sums, at a particular angle can be described as an angular projection, and can be 

found by the following equation (5), and is later used by back projection to figure out individual voxel 

attenuation coefficients.  
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ln =  
𝐼0(E)

𝐼
= ∫ μ(E)x dx

𝑥

0
   (5) 

When the beam intensities and angular projection ray sums are processed, the next stage that CT 

processor initiates is the back projection algorithm. Many different kernels have been proposed for this 

next step. For the purpose of attenuation calculations such kernels that fall under ,,iterative 

reconstruction group” like: ,,Line kernel“, ,,Joseph‘s kernel“ or ,,Strip kernel“ have been implicated,  

however, each and every one of them comes with their own advantages and disadvantages, mostly - 

processing speed that is crucial for patient investigations, [11, 12, 13].  

 
Fig.  6. Back projection schematics 

The basic idea of iterative algorithms are to calculate individual voxel values after the converted beam 

photon intensity values are estimated according to equations (4, 5). The most widely used iterative 

algorithm is called „ART algorithm“. In fig. 5. blocks 𝑎𝑛
𝑇𝑛 are called “weight matrix“, they are necessary 

to be processed by computer for voxel approximation. These blocks are found using the previously 

explained beam linear attenuation values. The matrixes are marked by 𝐴𝑛 operator, and are proportional 

to the number of N cells amount in the initial image matrix and beam angular projection numbers. 
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∈ ℝ𝑀 𝑥 𝑁  (6) 

For the purpose of final equation calculations for individual voxels, 3 parameters explained in equation 

(3) and fig. 5. are necessary. The initial cell values are x(0) = 0 , for the first image sequence. 

Additionally,  λ𝑛 relaxation parameter is specified by the CT scanner manufacturers depending on the 

cycle index, typically ranging from 1.6 – 1.8, [8, 11, 14]. 
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The final ART iterative algorithm back-projection equation that updates voxel values row by row: 

𝑥(𝑘+1) = 𝑥𝑘 + λ𝑛
1

𝑎𝑖
~𝑇𝑎𝑖

~ (𝑏𝑖 − 𝑎𝑖
~𝑇𝑥𝑘)𝑎𝑖

~  (7) 

Back projection reproduces the f(x, y) coordinates by averaging all projections running through a 

singular point called the convolution point. The average of the radon transform along the degree θ is 

found by: 

1

π
∫ ℎ𝑅𝑓(𝑥𝑐𝑜𝑠θ + ysinθ)dθ

π

0
     (8) 

This leads to back projection formula for a function ℎ = ℎ(𝑡, θ) in polar coordinates [15]. 

𝐵ℎ(𝑥, 𝑦) =
1

𝜋
∫ ℎ(𝑥𝑐𝑜𝑠θ + ysinθ)dθ

𝜋

0
   (9) 

1.3.2 Filtered back projection 

Radon and Fourier transform generated images blur and smear the final image, so in order to fix this, a 

second iteration algorithm was developed that uses the previously mentioned ramp filter to fix the these 

problems. The filtering alters the initial projection data – attenuation beam values in a signal domain. 

The filter type is sometimes also referred to as high-pass filter, or sharpening filter. These types of filters 

in CT algorithms pick up and enhance sharp edges, but ignores flat areas. Because the filter in reality 

create negative pixel values at the edges, it subtracts out the extra smearing – blurring caused by the 

traditional back projection.  

 
Fig.  7. Back projection – left, and Filtered back projection – right comparison, [9]. 

Back projection acquisition is typically a lot slower than the FBP method, therefore it is necessary to 

delve deeper to understand the more popular method of image reconstruction FBP, and its processes 

like Radon and Fourier transform projecting. When the individual voxel values for f(x, y) projection are 

found using ART back projection method previously, the next step is to discuss the advanced image 

generation sequence. Back projection creates additional excessive noise, therefore a second iteration 

projecting called FBP is used in today’s clinical CT scanners. The basic FBP equation is: 

𝑓(𝑥, 𝑦) =  
1

2
𝐵{𝐹−1[|𝑟|𝐹(𝑅𝑓(𝑟, 𝜃))]}(𝑥, 𝑦)  (10) 

where F and 𝐹−1, Fourier and the inverse Fourier transforms accordingly, B is represented by back-

projection voxel values used in eq. (8) for each slice, and Rf(r, θ) is the Radon transform of f(r, θ) [8, 

15]. The |r| in the filtered back projection formula is very important factor. In case the equation is 

missing this factor the inverse Fourier transform and the Fourier transform cancels out and leaves the 
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back projection formula of [f], which will not allow to recover the original function f(x, y), but rather 

its smoothed version of this equation, [15, 16].  

The |𝑟| factor in the eq. (10) can be further simplified introducing a function φ(t). By introducing this 

function in to the previous equation, it becomes possible to further build on top of it, to represent band-

limit function for image de-noising. In that case, the eq. (10), due to Fourier transform convolution 

becomes: 

𝑓(𝑥, 𝑦) =  
1

2
𝐵(φ ∗ Rf)(𝑥, 𝑦)   (11) 

This equation denotation is very important, because it allows for additional filtering iterating, [8, 15].  

1.3.3 Noise and filtering in Computed Tomography  

Due to real CT data containing a lot of noise, the filtered back projection accentuates such noise, 

therefore in reality the ramp filters are designed to be “softer“ or “harder“, according to the image itself. 

The amount of noise reduced depends on “softness“ of the filter itself, which is sometimes referred to 

as “reconstruction kernel“. Different types of kernels are typically assigned for different scan protocols 

– scanned areas of the body. For instance, lung or bone scans focus on sharp edges and require a lot of 

detail, therefore a hard filter is preferred. Abdomen area on the other hand contains lots of large features, 

which have very gradual differences in attenuation, therefore a softer kernel is preferred for this region. 

Generally, the used kernels heavily depend on the area of the scan, post image processing, different 

view windows, as well as additional reconstructions of the areas of interest, [10, 16]. 

By taking a closer look at eq. (10) again, in signal domain, for signals 𝑟 where they are close to zero the 

low-pass filter function becomes nearly |𝑟|, hovewer for large values of 𝑟 it nearly vanishes. The band-

limiter value that represents the filter is further denoted by 𝐴 = 𝐹φ, in the eq. (11), therefore the 

equation can be re-written as: [15]. 

𝑓(𝑥, 𝑦) =  
1

2
𝐵(𝐹−1A ∗ Rf)(𝑥, 𝑦)  (12) 

The function A(r) of low pass filter in digital processing usually has the form 𝐴(𝑟) = |𝑟|𝐺(𝑟)𝑥(−𝐿;𝐿)(𝑟). 

G(r) is an even function of r, and G(0) = 1, 𝑥(−𝐿;𝐿) are the filters characteristic function interval, this 

variable A allows for filter insertion in to the FBP equation, [15, 16].  

One of the most widely used previously mentioned filters in CT is the “Ram-Lak“ filter, denoted by 

previous equation A, as: 

𝐴(𝑟) = |𝑟|𝑥(−𝐿;𝐿)(𝑟)    (13) 
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Fig.  8. Ram-Lak filter, visible 𝑥(−𝐿;𝐿) band-limit, in frequency domain 

 
Fig.  9. Comparison of different filters used in CT FBP, different weight-frequency edges [16] 

1.4 Post-Acquisition filtering 

Noise in computed tomography is described as an unwanted change in pixel values in an otherwise 

homogenous image or organ boundaries. Often noise is defined loosely as the grainy appearance on 

cross-sectional imaging, but when dealing with metallic artifacts this noise can be further enhanced 

deleting the organ boundaries completely [17]. To counter this CT image processing does not 

necessarily have to be defined by the conventional image acquisition – method, but can also be built 

upon. There are many proposed methods that can be implemented for the purpose of image structure 

enhancement and editing. Many filters that have been used in digital processing and photo editing are 

being applied as post-processing tools in today’s CT image processing. Another reason for such editing 

tools is that the acquisition of projection data in a Computed Tomography scanner, is usually carried 

out once in the typical commercial CT scanners. The projection data acquired during the intensity to 

attenuation domain transfer in the CT scanners is often not stored in the process, making further 

reconstruction with different reconstruction algorithms impossible, thus creating the need for post-

process editing. Authors like (M. Ohkubo, S. Wada and others) further add to this idea claiming that, 

the reconstruction kernel is one of the most important parameters in CT image editing. To have access 

to all the reconstructions data, either reconstruction kernels must be implemented, or the projection data 

must be stored after the initial data acquisition. This is difficult, because all of these requirements would 

create a heavy burden on data archiving if all of the process data was attempted to be stored. The 
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proposed method by these authors essentially the same as common image filtering, which performs 

processing in the spatial-frequency domain with a filter function, [17, 18].  

Multi-filter method also known as MAR (metallic artifact reduction) algorithm is an application of 

multiple filters for edge enhancement in CT processing. Some of the few filters that can be used for this 

purpose are: „edge – Sobel filter with edge – Prewitt operator“, „edge - Roberts with threshold“, „LOG 

filter with zero-crossing threshold“, „edge – Canny“, „motion blur – Wiener filter“ and „Gaussian 

filters“. All of these filters are essential and provide edge-detection for different areas and pixilated 

value inconsistencies for potential metallic attenuation effected slices. Working together, these filters 

provide a reasonable noise reduction, contrast and soft tissue enhancement in the peritoneal areas, organ 

areas, and metallic object attenuation reduction around prosthesis topography, [19, 20].  

 
Fig.  10. Convolution edge detection image for 4 filters in “Matlab” environment, patient No. 1, Slice 20 

1.4.1 Edge-Sobel filter 

The Sobel method utilizes a „Prewitt operator“. This operator calculates the gradient (directional 

intensity change) of the image at each point of the kernel, giving the direction of the largest possible 

increase from light to dark and the approximation of the rate of change in that direction. The result of 

this is approximation of how “smoothly” the image changes at each individual point, and how likely 

this point is probable to be referred to as “edge”, as well as the orientation of this edge. Two mask-

kernels, Sx and Sy, which are shown in fig. 11, performs convolution on the gray image and then obtains 

the edge intensities (gray level shifts in both directions), Gx and Gy in the vertical and horizontal 

directions. The edge intensity of the mask center is defined as |Gx|+|Gy |. If the edge intensity of each 

pixel is larger than an appropriate threshold T, set before using the kernel-mask, then the pixel in the 

mask is going to be regarded as an edge. Edge detection operators like “Prewitt“ reduces noise by 

smoothing the image, but sometimes in the process slightly enhances the bounds, by creating additional 

uncertainty in high-frequency variation images. The derivatives in these Sx and Sy kernels are shifted 

horizontally and vertically, used for the detection of horizontal and vertical shifts in edges, [21, 22, 23].  
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[
−1 0 1
−2 0 2
−1 0 1

]  and [
−1 −2 −1
0 0 0
1 2 1

] 

Fig.  11. Sobel Sx – Left, And Sy – Right Masks, Shifted At 90 Degrees Used In Filtering Edge Detection, [21] 

1.4.2 Edge-Roberts filter (Roberts cross) 

The Roberts edge filter similar to Sobel filter, is used in image processing to detect edges based on the 

application of similar, horizontal and vertical kernels in a sequence. The kernel matrix is 2x2 instead of 

3x3. Roberts filter is faster than the previous filter due to the size of the kernel matrix, but is typically 

subject to more interference by noise. If the edges are “blunt”, there is high probability that the edge is 

not going to be detected, whereas Sobel and Prewitt filters are typically less interfered by noise. A 

combination of these filters provide a relatively great edge detection for CT images, [24, 25]. The 

equation for Roberts filter can be defined by: 

z𝑖,𝑗=√(𝑦𝑖,𝑗 − 𝑦𝑖+1,𝑗+1)
2 + (𝑦𝑖+1,𝑗 − 𝑦𝑖,𝑗+1)

2  (14) 

where z is the computed derivative and i, j represent the location coordinates in the image. 

[
+1 0
0 −1

]  and [
0 +1

−1 0
] 

Fig.  12. Roberts Cross Operator Mask Sx – Left, And Sy – Right, [24, 25] 

In fig. 12., it is visible that these kernels are identical, except one of them is rotated by 90°. This is very 

similar to the Sobel operator explained previously, except varies in size. In this detector, the parameters 

are fixed which cannot be changed, thus sometimes missing or misinterpreted the edges. Convolution 

is performed when the kernel is dragged across the initial image matrix one pixel at a time. At each 

pixel, its neighbours are weighted by the corresponding value in the kernel and summed to produce a 

new value [26]. 

1.4.3 LOG (Laplacian and Gaussian) filter with zero crossing 

In research papers like (S. V. Fotin, D. F. Yankelevitz, C. I. Henschke, A. P. Reeves), a LOG filter 

(Laplacian of Gaussian filter) is suggested as a post CT processing tool for lung nodule detection for 

whole lung CT scans. The typical nodule detection in todays practice is carried out using CAD 

(computer-aided detection) systems, however a lot of times some of these nodules are missed. For this 

purpose, authors propose using a LOG filter for further sensitivity increase and edge enhancement, [27]. 

Other authors like (B. Ganeshan, K. A. Miles, R. C. D. Young, C. R. Chatwin), in addition to the 

previous research paper, suggest the algorithm as a potential tool for malignant tumor (in liver) 

evaluation in the pelvic-thoracic areas of the body. This further proves that LOG filtering method is a 

wide and a very potent tool for filtering in most areas of the body. Contrary to the lung topography, the 

pelvic area-thoracic area is notorious for very slight attenuation, except for some occasional vertebrae 

perturbations to kidneys and liver organ’s in some cases. The organ and bone edges in this area are a lot 

thicker, thus proving that the potential edge outlining is accurate enough to provide insight before 

surgery or radiotherapy planning. In this paper, researches have evaluated 40 patients CT images, with 

no contrast enhancement, and have concluded that, “… Although the findings are comparable to those 

previously described using CT perfusion imaging, texture analysis can be readily applied to images 

acquired in routine practice, thereby reducing cost, complexity and radiation burden. Abnormal texture 

in the absence of visible metastases on non-contrast enhanced CT could potentially be used as an 

indication for further investigation with hepatic MRI.” [28]. Notably there has been an increasing 

amount of articles that suggest filtering as a cheaper alternative to sometimes performed PET procedure, 

for early cancer indication in non-contrast CT images and other sensitive areas. In general, LOG filter 

finds itself at the center of many new filter iterations proposed today. 
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It is important to discuss this filter method from a more technical perspective and address both of the 

components present in this filter. A Laplacian filter is a component used to compute second derivatives 

of an image, measuring the rate of change in the process. This in itself plays a crucial role in determining 

if the adjacent pixel values are due to edging of an organ. The Laplacian filter kernel is most commonly 

recognized by its negative values in a cross pattern, with corners being positive values centered in a 3x3 

array, but there are other existing array types as well [26]. 

[
0 −1 0

−1 4 −1
0 −1 0

] or [
−1 −1 −1
−1 8 −1
−1 −1 −1

] 

Fig.  13. Laplacian Kernel Array 

Gaussian blur (Gaussian smoothing) filter, is a filter that is used in combination with the previously 

mentioned Laplacian filter before the edge detection to reduce noise in the image to some degree. This 

image filter is a type of filter that uses a Gaussian function which in statistics is used to express a normal 

distribution of variables. The two dimensional function for image processing can be express by eq. (15), 

[29]. 

G(x, y) =
1

2𝜋𝜎2

𝑥2+𝑦2

2𝜎2
    (15) 

Where X can be denoted as the distance from the origin in the horizontal axis of the filters center, while 

Y denotes the distance in the vertical axis, σ is the standard deviation of the Gaussian distribution of the 

pixelated values. The shape of this filter manifests as a concentric circle with the distribution center 

being at the central point. Gaussian filter are described as a low-pass filter attenuating high frequency 

signals, reducing overall image noise [29]. 

 

Fig.  14. Gaussian bell filter shape according to Gaussian distribution law, with a mean (0.0) and deviation = 1, 

[30] 

LOG = −
1

𝜋𝜎4 [1 −
𝑥2+𝑦2

2𝜎2 ] 𝑒
−

𝑥2+𝑦2

2𝜎2   (16) 

LOG kernel introduced for image processing is a combination of the two filters mentioned before. The 

basic idea is for a grayscale input image to detect using the „zero crossing“ method, for the second 

derivative of the initial CT image signal. This means that in areas of the image that have constant signal 

intensity gradient (gradient = o), the log response is also zero. When the kernel is in the vicinity of a 

gradient change, then the LOG response will be more positive on the darker side of the pixel values, 

and negative value on the lighter side of the homogenous area. The kernel recognizes this as a reasonably 

sharp edge between two regions and detects it as an edge, fig. 15. The thresholds-edge detection 

sensitivity is set for these zero crossings individually and only those pixels which exceed the threshold 
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are retained, resulting in edge detection-enhancement. Our previous Gaussian distribution kernel can be 

seen inverted due to the inverse secondary derivation in LOG filters, and it takes a shape of an inversed 

bell shape, [31].  

 
Fig.  15. Zero-Crossing edge detection signal domain - left, LOG filter shape – right, [31] 

The two notable advantages for a LOG filter, compared to other filtering methods are: 

 Gaussian and the Laplacian kernels are typically a lot smaller than the input image, thus this 

method requires far fewer arithmetic calculations and processing time; 

 The LOG kernel can be pre-made in advance so only one type of convolution needs to be 

performed at real run-time of the filtering of the image [31]; 

1.4.4 Edge-Canny filter 

The “Canny edge” detector filtering is a method unlike the previous ones, used for detecting a wide 

variety of edges in the image. It uses a multi-stage technique to achieve this. This type of filtering is 

very widely used in image editing, and is one of the most used type of filtering outside the medical field. 

Along with exceptional sensitivity of this method, three additional advantages can be pointed out in 

regards to this filter [32]. 

 The edge detection method has a low error rate, the detection catches nearly all of the edges in 

a typical method; 

 The edge point detected from the operator, accurately localizes the centre of the edge, thus not 

enhancing or making the edge wider than it actually is; 

 The existing edge is typically marked only once compared to other filtering methods. By doing 

this the noise occurring after processing is relatively low; 

The process of the Canny edge detection is typically broken down and explained in to five steps: 

 Application of the Gaussian filter for removing additional noise. This is a pre-filtering condition. 

The previously mentioned Gaussian kernel is applied in this step. The selection of the Gaussian 

kernel is an important variable as it determines the effectives of the Canny filter. Typically, the 

larger the kernel, the lower the sensitivity is to filtering noise in the image. Additionally, edge 

detection errors can occur if the Gaussian kernel selected in this step is too big, resulting in 

missed edges [32, 33]. 
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Fig.  16. Gaussian kernel 5x5 matrix, most typically used kernel in Canny edge detection 

 Locating, and finding the intensity gradients using a kernel; 

 Applying gradient magnitude thresholding for thinning the edges. In this step, the current pixel 

gradient is compared to other pixel values in the positive and negative gradient directions. To 

achieve this, a Sobel kernel is implemented, fig. 11. This allocates the derivatives of both 

horizontal and vertical directions 𝐺𝑥 and 𝐺𝑦 for the purpose of finding out the gradient of the 

pixel: 

G = √𝐺𝑥 + 𝐺𝑦   (17) 

After the allocation of the pixel gradient, edge detection can be carried out using an angle 

calculation of the pixel gradient found by (eq. 12). Because the gradient angle is always 

perpendicular to the edges in an image, [33]; 

Angle(90°, 270°) = 𝑡𝑎𝑛−1 (
𝐺𝑦

𝐺𝑥
) (18) 

 Implementation of double thresholding, for exceptionally sharp edges. After the third step in the 

processing, the remaining pixels provide a more clear representation of the actual edges. This 

step focuses more to preserve edges with big gradient values. It does this by implicating 

additional threshold. Same values are exposed to this threshold, and if the gradient values are 

higher than the threshold they are kept. In case they are lower than the selected threshold, they 

are filtered out. The threshold values are typically selected by the content of the grayscale image 

in CT, [32, 33]; 

 Edge tracking method. This method finalizes the fifth step, which focuses on deleting weak-

unconnected edges in the intensity domain. To achieve this a “blob method“ is introduced. By 

taking a look at a weak edge pixel and its 8-connected neighbouring pixels, as long as there is 

one strong edge pixel that is situated in one of the surrounded blob kernel pixels locations, that 

weak edge point is identified and preserved, [32, 33]; 

Despite the Canny edge detection filtering method finding its success in the conventional image editing, 

the field of filter application for CT imaging is still a relatively new field. Authors like (E. Punarselvam, 

P. Suresh) have used this filtering algorithm in practice, for the examination the soft tissue and vertebrae 

meniscus in total 29 patients that have vertebrae fixation bolts and heavy attenuation cast in lumbar 

thoracic vertebrae areas. They have concluded that, the object boundaries recovered in noisy images are 

very close to the boundaries given my doctors. They were capable of successfully applying edge 

detection technique to enhance boundaries of spine disc in spinal images, [34]. 

Another research paper has investigated the potential uses of different filters in the pelvic area of the 

patients with hip prosthesis in conventional X-ray imaging. Authors (A. Castro, C. Dafonte, B. Arcay) 

have evaluated 40 patients’ images with medical professionals and they have concluded that: the best 

results were achieved when using Canny and Heitger edge detectors filters. They have also concluded 

that Canny algorithm obtains its best results with a low sigma value selected as a threshold. In their 

paper they suggest that, high values cause considerable loss of information because of the low 

signal/noise relationship (mainly in the area where the bone and the iron coincide), and that lower sigma 

values are preferred [35]. 
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The edge canny filter cannot only be used for robust morphological region boundary detection, but also 

other more delicate areas of the body, such as lungs. Authors (R. Noviana, I. Rasal, E. U. Cintamurni 

Lubris) have investigated the potential use of canny edge detection for the lungs region as a pre-surgical 

tool surgery planning for nodule detection. In their paper, they have segmented lung areas that require 

surgery, and then edge Canny filter was introduced to further outline the edges and measure the 

distances before the surgical procedure. They have concluded that, ‘‘the segmentation methodology 

shows an honest result. It obtains an awfully smooth edge. Moreover, the image background can also 

be removed in order to get the main focus, the lungs‘‘ (p.8, [36]). This suggests a potential 

implementation in the pre-surgical planning field in patients whose CT images suffer from heavy 

attenuation or require precise measuring. The lung region filtering is a relatively new technique, but a 

crucial one. In the past few years many new iterations for the Canny edge detector were proposed that 

focus on detecting different pathologies in the lung areas, due to very gradual drift in pixelated values 

when abnormalities are present in this area. Lung cancer and nodule detection are a relatively new areas 

of filtering investigation. In the last few years even Covid-19 patient identification edge detecting has 

been proposed as methods based on the Canny filtering. The second iteration Canny filtering is 

becoming more and more accepted in the medical field and have found different medical areas to focus 

in manifesting as subgroups of this algorithm, namely, ,,Enhanced Caddy 

filtering“ ,,CAD‘‘ and ,,Automata‘‘ filtering, [37, 38]. 

1.4.5 Motion blur (Wiener filter) 

Wiener filter is typically used as a tool to reduce the motion blur in images affected by sudden movement, 

or in some cases excessive noise. It uses a different approach than the previously mentioned filters by 

filtering in the power spectrum domain. A statistical estimate is carried out in an input signal that’s been 

corrupted by noise, to estimate the real signal values lying underneath. The statistical estimating of the 

real signal values is based on the minimum mean square error theory. Wiener filter is typically 

characterized by: [39]. 

 Signal and noise are stationary linear stochastic processes with known spectral characteristics 

or known autocorrelation and cross-correlation; 

 The filter is causal; 

Wiener filter in Fourier domain can be expressed as follows: 

W(𝑓1, 𝑓2) =
𝐻∙(𝑓1,𝑓2)𝑆𝑥𝑥(𝑓1,𝑓2)

|𝐻(𝑓1,𝑓2)|2𝑆𝑥𝑥(𝑓1,𝑓2)+𝑆ηη(𝑓1,𝑓2)
  (19) 

where 𝑆𝑥𝑥(𝑓1, 𝑓2) is the power spectra of an image and 𝑆ηη(𝑓1, 𝑓2) expresses additive noise. 𝐻(𝑓1, 𝑓2) is 

the blurring filter. The equation expresses two basic principles of the Wiener filter named previously - 

inverse filtering (deconvolution), and noise smoothing.  This is achieved by deconvolution when using 

the inverse filtering (high-pass filtering). After this, the removal of the noise is carried out by the 

compression operation (low-pass filtering) contrary to the step before, [40]. 

Power spectra generation and additive noise estimation is a complex process.  The typical power 

spectrum is equal to the variance of the noise. To estimate the power spectrum of the original image 

many methods can be used, however in reality, due to fast processing in today’s processors a 

“periodogram” is used to estimate of the power spectrum, [40]. 

𝑆𝑥𝑥(𝑓1, 𝑓2) =
1

𝑁2
[𝑌(𝑘, 𝑙)𝑌(𝑘, 𝑙)]   (20) 

where 𝑌(𝑘, 𝑙) is the discrete Fourier transform (DFT) of the observation, N is the variance of the noise. 

Noise estimate is determined by: 
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∆𝑆ηη(𝑓1, 𝑓2) =
𝑆𝑥𝑥−𝑆ηη

|𝐻|2
   (21) 

where H is in the eq. (21), can be a simple kernel. Typically, a smaller kernel is used for the 

reconstruction. 

H =
1

16
= [

1 1 1 1
1
1

1
1

1
1

1
1

1 1 1 1

] 

Fig.  17. Wiener 4x4 kernel 

Wiener filter in combination the other filters mentioned previously provides a great possibility for noise 

reduction. Authors like (C. Anam, F. Haryanto, R. Widita, I. Arif) have conducted an investigation, 

where Prewitt operator with Sobel filter, along with other edge detecting algorithms were combined. 

They have concluded that, “From the measurements, the new method can reduce the noise to an average 

64.85%“, [41]. 

Other authors further add to this idea of applying Wiener filter in coordination with other edge detectors 

for substantial noise reduction. (C. Anam, T. Fujibuchi, T. Toyoda and others) in their research 

concluded that: when using the modified Wiener filter-edge detection, the spatial resolution of the image  

remained relatively as good as the original image, in other words, the edges of the temporal bones 

investigated were still very sharp and detailed enough to perform evaluations.  It is correct to assume 

that, the filter in combination with edge preservation has the potential to keep the edges of organs and 

bones relatively sharp. In accordance to this, it also reduces the noise in the image substantially [42].  

1.5 CT radiotherapy planning 

CT imaging is the most often used medical imaging procedure for radiotherapy planning in the RT field 

because of its fast acquisition and availability. CT images used in RT have to serve two purposes: to 

provide high geometric fidelity and the position of the tumour with surrounding tissues, and OAR‘s 

(organs at risk) to be accurately identified. This is where previously explained filtering algorithms have 

the potential to come in to play. They provide better boundaries (edges) for organs and significant noise 

reduction for the RT planning. This is very important because RT planning systems are very sensitive 

to heavy attenuation noise (specifically metallic prosthesis) and excessive noise. The most important 

steps in every RT planning is the target and OAR identification, organ contouring and plan selection. 

To better understand this, focusing on the pelvis and sacrum-lumbar areas of the CT scans is helpful, as 

organ identification is relatively easier for non-medical professionals when comparing to other areas. 

According to worldwide cancer data, the most common cancer types in the mentioned areas in male 

patients today are prostate (14.5% of all cancer cases) and colorectal (11.4%). For women, cancers 

frequently occurring in these areas today are colorectal (9.7%), cervix-uterus (6.9%). This paper is 

consisting of both men and women CT scans, for that reason, for greater organ recognition and 

identification, prostate and cervix-uterus cancers were selected as an investigation target. To do this, a 

great topographical knowledge of CT images, target organ and OAR boundaries and locations is 

necessary, [43]. 

1.5.1 Prostate RT 

The contouring of the CT images according to the guidelines for prostate cancer cases involve 

scrupulous planning around the lover and upper pelvic areas of the body. Target organ is close proximity 

to bones of the lower pelvis, as well as very sensitive structures of the reproductive system. When 

creating a prostate RT plan, these structures are typically outlined, [44, 45]: 

 Femoral heads; 
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 Bladder; 

 Penile bulb (in male anatomical topography, just slightly below prostate, at the base of prostate); 

 Rectum (dorsal side, situated closely to the lower side of the bladder); 

 Small and large bowels (typically hard to distinguish, and in most cases with artifact streaking 

nearly impossible); 

 Seminal vesicles; 

 OAR space (an intraperitoneal space sometimes created in between rectum and prostate or 

bladder). This space is created through an interventional large bowel wall puncture-injection. 

This results in reducing OAR irradiation, [44, 45]; 

 
Fig.  18. Patient No. 1, pelvis prostate target and OAR outlining, visible attenuation from prosthesis, Kaunas 

Clinics, Hospital Of Oncology 

Fig. 18 displays the target and surrounding important structure topographical locations in in the small 

and greater pelvic areas. Due to metal attenuation, bladder boundaries in some of the slices in the 

original image are hardly recognizable. Other OAR’s that are difficult to distinguish in images like these 

are rectum and seminal vesicles. When RT plans are created, one of the most important structures to 

outline are the femoral heads, because osteocytes and bone marrow are very sensitive to radiation and 

potential complications that may arise from over-exposition of the radiation [44, 45]. 

According to most prostate planning guidelines in RT planning, despite occasional papers suggesting 

lower and individualistic doses to patients with additional investigation, the recommended treatment 

dose is 74 Gy. / 2Gy. per fraction. Additional rules have to be implied. Typically: 

 95% of the prescribed dose covers at least 95% of the PTV volume; 

 At least 99% of the GTV volume should receive at least 100% of the prescribed dose; 

 Each femoral head cannot receive higher than 10% of the prescribed dose; 

 Penile bulb should not exceed 60 Gy. dose, and mean dose must remain below 52.5 Gy; 

These rules are strictly follower, however, sometimes due to the difficulty or unusual anatomical 

topography, some of the constraint values can be increased in accordance with medical oncologist 

reference. 

Table 1. OAR constraint for prostate cancer patients, [46, 47, 48] 

Rectum  Bladder  Small bowel  
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50% volume < 60 Gy. 

35% volume < 65 Gy. 

10% volume < 70 Gy. 

 

50% volume < 65 Gy. 

35% volume < 70 Gy. 

25% volume < 75 Gy. 

15% volume < 80 Gy. 

35 Gy. receiving volume < 180 cm3 

40 Gy. receiving volume < 100  cm3 

45 Gy. receiving volume < 65 -150  cm3 

1.5.2 Cervix-Uterus RT 

 Due to very sensitive nature of the soft tissue in the lower pelvic area for cervix-uterus cancer patients, 

the RT planning has to be very precise. Typically, 3D conformal radiation therapy is done with 

accordance with brachytherapy after the fractioned RT treatment is carried out in 5 weeks’ time. Just 

like the prostate cancer plan, there are some OAR’s that have to be particularly cared for when creating 

a cervix-uterus RT plan.  Structures typically outlined are, [44, 45]: 

 Femoral heads; 

 Bladder (dorsal proximity to the uterus and fallopian walls); 

 Rectum (also in close proximity to the uterus); 

 Small and large bowels; 

 Liver and kidneys (outlined in some of the cases); 

 Spinal cord (in the sacral area), [44, 45]; 

 
Fig.  19. Patient No. 6, cervix-uterus and OAR outlining in lower pelvis, visible attenuation from femoral head 

prosthesis, Kaunas Clinics, Hospital Of Oncology 

The typical doses prescribed for Cervix-uterus RT plan are in the range 45-50 Gy. / 2Gy./fr. Similarly 

to prostate RT planning rules, additional restraints have to be implied, [49]: 

 95% of the prescribed dose covers at least 95% of the PTV volume; 

 At least 99% of the GTV volume should receive at least 100% of the prescribed dose; 

 Each femoral head cannot receive higher than 10% of the prescribed dose; 
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Table 2. OAR constraint for cervix-uterus cancer patients, [49] 

Rectum  Bladder  Liver Kidneys Small bowel  Spinal 

cord 

50% volume < 

37 Gy. 

35% volume < 

40 Gy. 

10% volume < 

43.5 Gy. 

 

50% volume < 

40 Gy. 

35% volume < 

43.5 Gy. 

25% volume < 

47 Gy.  

15% volume < 

50 Gy. 

30% volume < 

20 Gy. 

Each kidneys < 18 Gy, or 20 % 

volume < 17.5 Gy. 

40% volume < 

35 Gy. 

< 50 Gy. 

Both prostate and cervix-uterus cancer RT planning systems can provide us with great information in 

regards to filtering. By measuring the reduced noise and attenuation as well as increased contouring of 

the organs in filtered images, a change in the RT doses to the targeted organs in the RT plans and the 

organs around them becomes apparent.  
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2. Materials and methods 

2.1 Software and tools 

Matlab software; in this work Matlab environment was used for coding and metallic object x-ray 

attenuation for CT reduction. Algorithm was built using Matlab program. This environment allowed for 

great algorithm building, because there are many original functions built to specifically focus on 

DICOM format files, as well as edit various parameters of the images. The build algorithm consists of 

three parts. Anonymization of the patient, filter application, and original data-parameter saving. 

RadiAnt; is another software tool used to view DICOM format files. This software was crucial for 

understanding patients slice compositions and the variables contained in their data. The usefulness of 

this this software has allowed for a quick to look in to some of the crucial parameters of each slice. 

Parameters like ‘’InstanceNumber’’ and ‘’SeriesNumber’’ are crucial for any filter or algorithm 

application in CT image editing. RadiAnt allows for viewing of this important data. 

PlanUNC; radiotherapy planning software used for original and filtered CT images to create 

radiotherapy plans. Three-dimensional (3D) treatment planning is one of the most important steps in 

the treatment of various cancers when radiation treatment is prescribed. Typically, RT treatments are 

prescribed when the gross tumour volume lies in a difficult to reach area, or is proximal to critical bodily 

structures such as bladder, prostate, cervix-uterus etc. PlanUNC toolset provides a possibility for an 

extensive RT planning. Tools like energy selection, beam manipulation, as well as beam isocenter 

alteration and wedge selection are used for optimizing the initial CT and MAR filtered CT image sets 

to being as close as reasonably possible to the required guideline values. Due to metallic artifact image 

corruption, this sometimes is difficult to achieve. Despite this, PlanUNC toolset is extensive, and this 

makes it relatively achievable under these difficult conditions. 

2.2 Algorithms and filtering 

The applied MAR algorithm used for the image processing consisted of: “edge – Sobel, with Prewitt 

operator”, “edge – Robert” with thresholding (Roberts cross operator), “LOG” (Laplacian and 

Gaussian) with zero crossing, “edge – Canny”, and “motion – blur” (Weiner) filters. All of these filters 

acting together and detecting different edges make the MAR algorithm. The MAR algorithm focuses 

on contrast – soft tissue enhancement in the peritoneal and pelvic areas, as well as metallic object 

attenuation, and image noise reduction around hip prosthesis areas. For desired edge enhancement, 

“Sobel filter” threshold was selected to be 0.0003, while “Prewitt operator” was set to 0.0001. For 

“Roberts cross operator” a threshold of 0.0002 was selected. LOG filter threshold value was set to be 

0.000002, while “zero-cross” operator was set to 0.00001. For “Canny filter” threshold of 0.0001 was 

selected. “Motion blur” filter values of “len – linear motion camera”: 200 and theta of 45 were 

introduced. These filters acting together “caught” most of the edges present in the CT images, fig. 10 

and appendix 1. 

2.3 DICOM parameters and anonymization 

The first step in the image processing involved anonymization of the CT sets, appendix 1. In (Fig. 20), 

portrays the basic DICOM image parameters. The format of the image is holding not only the pixelated 

values of the matrix of the image, but also personalized information of the provider, physician as well 

as patients ID themselves and many other attributes. Some of these parameters are crucial to the DICOM 

images for file editing. If corrupted or altered, the image may be unreconstructable. In this case, the 

highlighted parameters are the crucial values of the image. As a rule, “StudyInstanceUID’’ and 

‘’SeriesInstanceUID’’ variables have to be separate from one another and from the original DICOM 

image (slice), however, have to be maintained throughout the whole series – slices as the same code. 

Only then, the anonymized images are considered belonging to a singular instance study, as without 

this, the images are scattered. In built Matlab environment commands help with this, as they allow these 
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parameters to be opened in the editing tool and saved, exported and copied. Additionally, 

“InstanceNumber” variable has to be maintained and be identical to the original slice’s instance number. 

This variable represents an order of slices in the CT series, therefore the instance number and the name 

of the file have to be identical, so that any RT and DICOM viewing software could display the image 

in the correct sequence. Lastly and most importantly, part of the DICOM file editing involved 

“SOPClassUID” variable editing, due to the fact that original matrix pixel values and information of the 

image are stored in this variable as a 2D matrix kernel. The newly acquired matrix data (after filtering) 

has to over-ride the previous values. For this purpose, special Matlab commands are implemented and 

the matrix of the new processed images are copied and written in the new DICOM info file. To achieve 

this, DOI and ROI – crucial data preservation DICOM variable functions were used as means of 

countering unwanted data tampering and data corruption. 

 

Fig.  20. DICOM file variable list in the file parameters, using Matlab “Dicominfo” function 

After this, post-processed CT images were then evaluated using the previously mentioned CT DICOM 

viewing software “RadiAnt”. To achieve this, a universal organ bladder was selected, as edge detection 

is most visible in this area throughout all of the patients. And measurements were done across the 

bladder and compared to the new values of the filtered CT images for every slice containing bladder, 

Fig. 21 
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Fig.  21. Edge measurement in patient No. 1, slice 44, bladder organ, Kaunas Clinics, Hospital Of Oncology 

After the anonymization process and image filtered matrix over-riding was complete, the images were 

ready to be implemented in to “PlanUNC” RT environment where the difference in volumetric data can 

be explored for the original and altered CT data sets. This was done in accordance to the “PlanUNC” 

user manual, and involved “command prompt” coding and binding of individual slices to a singular 

study, [50]. Root directory creation and image name-root sharing - “root name” is essential for this step. 

All of the slices had to start with the same symbol. For instance, “001”, “002”… for the images to be 

opened and RT plan to be executed. 

2.4 Patient information 

2.4.1 Patient No. 1 

Patient No. 1 consisted of 72 slices in the original CT data set. In fig. 22 and fig. 23, heavy attenuation 

of the left hip prosthesis is present. Left bladder organ bound deletion is present in this patient, as well 

as fat tissue deletion around the left hip area. This additionally resulted in unwanted noise increase 

throughout most of the pelvic slices. After the MAR algorithm implementation, a substantial bladder 

edge enhancement is seen, as well as attenuation reduction in all of the slices.  

After the MAR algorithm implementation, RT plans for the original and filtered data sets were created 

identically. 4-beam technique was selected for this patient. Beams were placed at 0°, 45°, 180° and 

315°. A beam energy of 15MeV Primus2 was selected with no additional wedges required for this 

patient. Autofocus-prostate, 1 mm. margin was also used for this patient. The 3D dose of the patient 

displayed value of 102% for the selected guideline dose of 74 Gy, 2 Gy per fraction. 
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Fig.  22. Patient No. 1, original CT, slice No. 41, Kaunas Clinics, Hospital Of Oncology 

 

Fig.  23. Patient No. 1, MAR algorithm CT, slice No. 41, Kaunas Clinics, Hospital Of Oncology 
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Fig.  24. Patient No. 1, RT planning, prostate projection 

2.4.2 Patient No. 2 

Patient No. 2 CT data set consisted for 65 slices of the pelvic region, in the original RT plan of the 

patient. In the provided slice No. 44 of the initial CT data set, some calcification is present in the prostate 

– bladder area, additionally heavy attenuation protruding from the right hip prosthesis in to the 

peritoneal area is visible for this patient, appendix No. 2. This heavily affected the prostate edges and 

surrounding organs bounds throughout most of the slices. From the newly acquired MAR images, it is 

seen that the previous perturbations of the right hip joint x-rays have been reduced. More anatomical 

structures, such as intraperitoneal muscle are visible around the metallic prosthesis. The areas around 

the metallic joint in the image become much clearer, and easier to evaluate and organ draw in RT 

software.  

After this, identical RT plans were created for both of the CT data sets using the “PlanUNC” in-built 

coordinate system for orientation of organ drawing. According to the guideline dose values, 4 beams 

were selected at 0°, 45°, 180° and 315° with wedges placed on the last 3 beams, 30 deg./rt, 30deg./lt 

and 30deg./out accordingly. The dose selected was according to the recommendations 74 Gy, 2 Gy per 

fraction with beam energy being Primus 2. 15 MeV. Autofocus function was selected, for proper 

prostate organ targeting with a 1 mm. margin. Radiation treatment plan displayed an overall 3D dose of 

107%, not exceeding the maximum allowed value of 107%, in addition not being below the minimum 

threshold of 95%  

2.4.3 Patient No. 3 

Patient No. 3 consisted of 117 slices. In this patient, heavy attenuation of the right hip prosthesis is 

present in the lower pelvic area. Heavy X-ray perturbation and noise is present to the prostate, bladder 

and rectum organs. After the filtering, noise has been reduced, with image bounds being more visible 

for all of the patient slices, appendix 3. This patient RT plan consisted of 4-beam technique, placed at 

the previously named degrees. A wedge 30deg/out was placed at 180°. This has helped to reduce dose 

as reasonably as possible to the rectum OAR, while providing enough energy to make the plans 3D dose 

105%. 

https://www.degreesymbol.net/
https://www.degreesymbol.net/
https://www.degreesymbol.net/
https://www.degreesymbol.net/
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2.4.4 Patient No. 4 

The last prostate patient No. 4 was built up of 120 slices in the CT data set. Excessive heavy attenuation 

is visible in this patient clearly, due to both artificial hip present in this patient data, appendix No. 4. 

Just like previous patients, 0°, 45°, 180° and 315° beams were used. Due to heavy noise and organ 

corruption, last 3 beams contain 45 deg./rt, 45deg./lt and 60deg./out wedges accordingly. For this patient 

the 3D dose was slightly above the recommended values, 109.2%. This is due to huge corruption by the 

x-ray attenuation to the pelvic area. 

2.4.5 Patient No. 5 

The cervix-uterus case consisted of 74 slices. Right hip prosthesis was present in this patient. Excessive 

attenuation was cast from the prosthesis-hip towards the cervix-uterus. Intraperitoneal muscle, as well 

as right side fallopian tubes (visible calcification area), received significant edge deletion. Post filtering 

images display significant reduction in noise, as well as edge enhancement around the bladder and 

cervix-uterus areas, appendix 5. The RT plan was made according to the guidelines, using the in-verse 

prostate type technique, where total radiation dose of 46 Gy, 2 Gy per fraction, with beams distributed 

over 6 angles. Beams for all of the Cervix-uterus patients were placed at: 0°, 45°, 135°, 180°, 225°, 315° 

angles. For this patient, wedges of 15°/rt, 15°/lt and 30°/out were placed at the last 3 angles, to reduce 

irradiation to the rectum and sensitive OAR’s as much as possible. The overall achieved 3D dose to the 

patient was 94.7%, slightly lower than the recommended guidelines due excessive shadow cast to the 

cervix-uterus organ, as well as patient topographical anatomical OAR locations in close proximity to 

the uterus-cervix. 

 

Fig.  25. Patient No. 5, RT planning, cervix-uterus projection 

2.4.6 Patient No. 6 

Patient No 6. Consisted of 108 slices in the whole data set. In this patient right hip-prosthesis was present. 

Just like the previous patients, x-ray attenuation cast has protruded in to the right side of the uterus, and 

noise is elevated heavily in this patient’s data. This was possible to reduce slightly using the MAR 

algorithm. Like previously, same planning technique was used for this patient. The achieved 3D dose 

was 107.8%, slightly above desired threshold. Beams were placed at the same exact angles as the 

previous patient No. 5. Wedges were placed at beam angles of 0° 135°, 180°, 225°. The wedges in this 

case were selected: 15 deg./in, 30 deg./lt, 30 deg./out, and 30 deg./lt.  

https://www.degreesymbol.net/
https://www.degreesymbol.net/
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2.4.7 Patient No. 7 

In this patient, heavy attenuation is present in both replaced artificial hips. Similar to patient No. 4, 

shadow is cast for both cervix-uterus and bladder organs. This patient has resulted in the highest levels 

of noise and image corruption out of all of the patients, appendix No. 7. The image edges to some organs 

are corrupted to the point of irreversible proportion. This however, using the MAR algorithm was 

possible to reverse to some extent, as the edges post-filtering become clearer. Without MAR application, 

original image RT planning would be almost in-conclusive, because organ bounds are difficult to make 

out. Using the filtered images RT plans were made for both of the data sets. Due to this corruption, the 

guidelines values for any of the organs were non-possible to achieve, using the previously used 6 beam 

angle technique. The overall 3D dose for this patient was 111.2%, a lot higher than desired. Additionally 

wedges for all of the posterior beams at 60 deg. were used to reduce OAR irradiation. 
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3.  Results 

3.1 Edge enhancement 

To determine edge drift in filtered CT images, slices containing bladder bounds were investigated. 

Measurements were done across the patient’s pelvis in the horizontal projection, due to most of the hip 

prosthesis artifacts casting shadows towards the center of the lower pelvis. In most cases, this results in 

deletion around the edges in the original images. For most of the original CT image data sets, bladder 

edges had to be approximated, as edge measurements tend to be highly inaccurate in error-affected 

slices. For patient No. 1, the average approximated bladder diameter was measured to be 5.62 cm. The 

filtered CT data set has enhanced the deleted bladder bounds, and measurements that are more accurate 

were possible because of this. The real bladder bounds were measured to be approximately 6.05 cm., a 

change in bladder diameter of 7.65% was determined for this patient. For patient No. 2, right hip 

prosthesis was present, therefore the right side of the bladder, side closest to the prosthesis “shadow-

cast side”, had to be approximated. The original patient data set has displayed a bladder diameter of 

7.32 cm. while the filtered images have shown a more accurate value of 8.01 cm. This patient has 

resulted in a 9.42% edge drift. Patient No. 3 consisted of right hip prosthesis artifact, with only a very 

slight bladder’s right edge corruption. The original data set wall diameter was measured to be 6.4 cm., 

while the more accurate enhanced image diameter was determined to be 6.65 cm. A change of 3.9% 

was determined for this patient. In patient No. 4, right hip prosthesis induced heavy attenuation was 

heavily present. This has resulted in edge deletion in both right and left sides of the bladder. Both sides’ 

edges had to be approximated for most slices in the pelvic region. The original data set has shown a 

diameter of 7.03 cm., while the filtered data set edges were slightly drifted, enhancing additional edges. 

This measured edge drift diameter was around 7.87 cm., a substantial 11.94% difference in the diameters 

was concluded for this patient. In patient No. 5 data, right hip prosthesis presented with left bladder wall 

deletion around the edges. Original diameter was measured to be 8.64 cm., while filtered diameter – 

8.88 cm. Only a very slight edge drift of 2.77% was determined for this patient. For the next patient, the 

data contained both hip prosthesis with heavy attenuation in the pelvic region. Despite this, a relatively 

accurate approximation was possible for the original patient No. 6 data set. The resulting edge shift was 

estimated to be in a relatively high accuracy compared to the original edges, a 2.11% difference was 

determined. The edge diameters for this patients were 6.16 cm., and 6.29 cm., for original and filtered 

CT data set edges accordingly. In the last patient No. 7, both hip prosthesis were also present with heavy 

bladder edge-approximation necessity in this case. The original CT bladder diameter was measured to 

be 10.53 cm., while the filtered diameter – 10.31 cm., a difference of 2.08% was determined when 

comparing both CT plan edges. In general, it is safe to assume that edge enhancement provides us with 

more accurate values of the edges than they were approximated initially. On average, edge drifting 

MAR filtering algorithm can provide us with a change of approximately 5.1% across all patients.  
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Table 3. Patient CT post filtering edge shift 

Patient No. Original image diameter (cm) Filtered image diameter (cm) Change (±%) 

1. 5.62 6.05 7.65 

2. 7.32 8.01 9.42 

3. 6.4 6.65 3.9 

4. 7.03 7.87 11.94 

5. 8.64 8.88 2.77 

6. 6.16 6.29 2.11 

7. 10.53 10.5 2.08 

 Average: 5.1 

3.2 RT doses 

The pre-RT filtering algorithm (MAR algorithm) in general can provide us with a great possibility for 

dose optimization to the original RT plan. When creating an RT plan for the patient, errors become more 

apparent. This is expressed more easily with the MAR application, when comparing the original images 

with the filtered ones. Lots of information is typically misinterpreted or lost in RT plan creation, when 

plans are being built on x-ray attenuated images. In all 7 of the patient data, anatomical structure 

enhancement and heavy noise reduction is visible. Despite x-ray attenuation, RT plans as close as 

possible according to the reference guidelines had to be created, in order to investigate dose reduction 

in MAR filtered CT plans. 

3.2.1 Patient No. 1 

For this patient, comparing the original CT RT plan with filtered CT RT plan, it is clear that, all of the 

values are in the required threshold bounds. The target – prostate received at least 95% of the dose as 

required by the guidelines, in our case 78.16 Gy. The OAR (organ’s at risk) values were also in the 

desired thresholds. For rectum, 50% of the volume received 35.16 Gy, 35% volume was receiving 44.2 

Gy of the dose, and 10% volume received around 65.55 Gy dose. When taking a closer look at another 

important OAR – bladder, once again, values are in the desired thresholds. 50% of the volume received 

15.13 Gy of dose, additionally 35% and 25% volumes are receiving 44.79 Gy and 59.09 Gy accordingly. 

15% bladder volume received 59.09 Gy of dose. In this and all of the following CT RT plans, femoral 

heads that are present receive a lot less dose than the required 10% of the prescribed treatment dose. 

Additionally, artificial hip replacement deprives us of a possibility of proper femoral head evaluations, 

therefore evaluations of this OAR can be ignored. 
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Fig.  26. Patient No. 1 original CT scan DVH values 

The filtered CT image DVH (dose volume histogram) values can be seen reduced through out all of the 

organs. The steep prostate dose curve drift expresses a new 95% volume value of 73.92 Gy. The OAR 

rectum 50%, 35%, 10% volumes doses are receiving 22.37 Gy, 37.42 Gy and 62.91 Gy. Bladder 50%, 

35%, 25% and 15% volumes in the filtered CT data set receive 16.05 Gy, 29.89 Gy, 42.27 Gy, and 

58.78 Gy accordingly. From the new DVH values it is seen that, the RT plan was optimized when MAR 

algorithm was applied reducing the organ received doses.  

 

 

Fig.  27. Patient No. 1 filtered CT scan DVH values 
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Fig.  28. Patient No. 1 dose-volume reduction chart 

For patient No. 1 a reduction of 5.42% to the target organ was determined after the MAR algorithm. 

Additionally, rectum average dose reduction for all the mentioned volumes is 4.69%, while average 

bladder volume dose on the contrary is seeing a slight 0.37% increase. 

3.2.2 Patient No. 2 

For the original image CT RT plan, all of the dose values are in the required threshold bounds, except 

for a slight 95% dose misalignment of 0,4% - 67.89 Gy dose, due to RT plan optimization caused by 

heavy artifact presence. The other OAR values however are in the desired threshold bounds. For rectum, 

50% of the volume receives 42,5 Gy, 35% is receiving 44,3 Gy of the dose and 10% receives around 

62,3 Gy of the dose. In this patient case, bladder, once again displays threshold values, with 50% of the 

volume receiving 7,7 Gy of the dose, additionally 35% and 25% volumes receiving 22,1 Gy and 43,1 

Gy, and 15% volume dose being 46.32 Gy. 

 

Fig.  29. Patient No. 2 original CT scan DVH values 

The MAR algorithm displays a new 95% dose decrease. The new value is 66.52 Gy. When comparing 

OAR values of the original DVH with filtered DVH values, this time, rectum volumes of 50%, 35% 
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and 10% are receiving 47,4 Gy, 49,6 Gy and 65,8 Gy accordingly. These values show a slight 1-4 Gy 

increase in all of the doses, due to re-distribution of the edges and attenuation values. Despite this, the 

values are still in the desired threshold bounds. For Bladder OAR 50%, 35%, 25% and 15% volumes 

display 9 Gy, 26,5 Gy, 44,6 Gy and 52.3 Gy values accordingly. This patient again results with an 

approximate 4 Gy increase to this organ. The main reduction is visible in the target organ, as the curve 

of the DVH is a lot steeper in the original DVH. This indicates that the filtered RT plan has the potential 

to be optimized further, with potential OAR dose re-distribution.  

 

Fig.  30. Patient No. 2 filtered CT scan DVH values 

 

Fig.  31. Patient No. 2 dose-volume reduction chart 

For patient No. 2 a reduction of 2.02% to the target organ is present after the MAR algorithm. A dose 

increase of 9.7% for the rectum and 13.3% to the bladder on average are present in this CT case. This 

can be explained by very heavy attenuation to the pelvic area, and that the MAR filtering algorithm 

redistributes the organ edges along with reducing the noise heavily. These results indicate further 

nessesity of the RT plan optimization under MAR filtering application. 
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3.2.3 Patient No. 3 

In patient No. 3 CT images, the initial target dose at 95% volume was measured to be 72.86 Gy, which 

is in the desired threshold for the prostate target. For rectum organ, the measured 50%, 35% and 10% 

volume doses were measured to be 66.9 Gy, 70.65 Gy and 72 Gy. These values are slightly above the 

threshold-desired values due to CT image heavy attenuation in the pelvic region approximate to this 

organ. Values as close as reasonably possible were achieved when creating the RT plan to counter this 

percentage error. Bladder in the original CT data at 50%, 35%, 25% and 15% volumes display 10.71 

Gy, 21,6 Gy, 36.93 Gy and 55.14 Gy doses. All of these values are in the desired threshold bounds 

according to the guidelines. 

 

Fig.  32. Patient No. 3 original CT scan DVH values 

The filtered MAR algorith values for this patient show very slight reduction in the target dose, 72.72 

Gy. The rectum OAR for the previously mentioned volumes show new doses: 65.8 Gy, 61.1 Gy and 

71.9 Gy. News bladder volume dose values are 9.99 Gy, 22.12 Gy, 37.18 Gy and 54.8 Gy. 

 

Fig.  33. Patient No. 3 filtered CT scan DVH values 
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Fig.  34. Patient No. 3 dose-volume reduction chart 

For this patient only very slight reduction was visible post MAR filtering. The biggest diference is 

visible in the rectum OAR, with the average volume reduction being 1.33%. The Bladder organ dose 

has seen less reduction, only 1.06%. The target RT dose reduction for this patient was calculated to be 

0.19%. This patients data suggests that not many edges of interest around bladder and prostate were 

enhanced when the MAR algorithm was applied, additionally less than usual ammount of noise could 

have been present in the area of interest. This resulted in this Patient’s MAR application manifesting in 

the lowest % dose change in all of the patients. 

3.2.4 Patient No. 4 

The last prostate patient original CT data set displayed 72.91 Gy dose to the target. The rectum organ 

at risk doses for the previously mentioned volumes in this case were: 66.24 Gy, 71.12 Gy and 73.5 Gy. 

The bladder values in our case are in the desired threshold, and are as follows: 8.94 Gy, 22.14 Gy, 36.87 

Gy and 56.14 Gy. All of these values are slightly above the threshold due to quite heavy attenuation to 

the pelvic region in this particular prostate case. 
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Fig.  35. Patient No. 4 original CT scan DVH values 

The new filtered dose curves are shifted only very slightly towards the left side in the DVH. A new 95% 

volume target dose of 72.1 Gy is registered. The new OAR values for rectum and bladder are: 66.03 Gy, 

68.25 Gy and 73.01 for rectum, and 8.74 Gy, 28.06 Gy, 36.25 Gy and 59.85 Gy for bladder.  

 

Fig.  36. Patient No. 4 filtered CT scan DVH values 

 

Fig.  37. Patient No. 4 dose-volume reduction chart 

For this patient a target dose redution of 1.11% and rectum reduction of 1.67% are present, while bladder 

average dose seems to have seen a 7.35% increase. 

3.2.5 Patient No. 5 

Patient No. 5 was investigated as cervix-uterus case. Due to the topography of this area of interest, 

heavy attenuation is typically present around the uterus area. Bones of the small-pelvis, close to the 

uterus typically cast heavy shadowing, resulting in deleted uterus edges in CT images. The CT images 
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affected by hip prosthesis artifacts typically corrupt cervix-uterus cases even more. Due to this, original 

image optimisation is very challenging, with threshold dose achieval being very difficult. For this 

patient the original CT data set target dose for the 95% volume was measured to be 37.5 Gy. The OAR 

rectum values for this patient for 50%, 35% and 10% were measured as: 20.02 Gy, 34.5 Gy and 40.6 

Gy. Bladder doses for 50%, 35%, 25% and 15% volumes are: 37.3 Gy, 37.9 Gy, 38.7 Gy and 39.8 Gy. 

 

Fig.  38. Patient No. 5 original CT scan DVH values 

The filtered RT plan 95% target dose as seen in the new histogram is 31.62 Gy. The previously 

mentioned volumes contain 18.4 Gy, 29.8 Gy and 36.17 Gy doses for the rectum. Bladder volumes-

doses in the new DVH are: 30.82 Gy, 31.8 Gy, 32.2 Gy and 33.1 Gy accordingly. Both of the OARS 

are in the desired constraints post MAR application 

 

Fig.  39. Patient No. 5 filtered CT scan DVH values 
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Fig.  40. Patient No. 5 dose-volume reduction chart 

For patient No. 5, reduction in almost all volumes is visible. The initial 95% target volume dose after 

applying the MAR algorithm was reduced by 15.68%, while the average rectum and bladder dose 

changes for all volumes are: 10.88% and 16.35% accordingly. This could be explained by extreme x-

ray attenuation in the original images, as the MAR filtering has re-distributed the edges a lot more closer 

to the presumed edge values. This has resulted in the biggest % dose reduction in all of the patient data 

sets. 

3.2.6 Patient No. 6 

Patient No. 6 consisted of another cervix-uterus dose investigation. In this patient, heavy edge 

missinformation and artifacts were present. This manifested itself in a substantial bladder edge deletion 

and heavy noise in the lower pelvis region. For the original CT data set 95% target, cervix-uterus, 

received a dose of 43.9 Gy. The OAR values for this patient were out of threshold by a small margin. 

The rectum doses for 50%, 35% and 10% volumes were: 48.67 Gy, 49.11 Gy and 49.8 Gy. A very steep 

bladder dose-volume curve is present in this case. The bladder OAR doses for volumes 50%, 35%, 25% 

and 15% are: 45.3 Gy, 45.4 Gy, 46 Gy and 46.02 Gy. 
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Fig.  41. Patient No. 6 original CT scan DVH values 

After MAR algorithm was applied, the DVH values shifted indicating a RT plan optimisation. The new 

95% target dose is 40.2 Gy. The previously listed doses for OAR‘s became 43.82 Gy, 46.01 Gy, 48.7 

Gy for rectum, and 44,8 Gy, 44.9 Gy, 45.8 Gy and 46 Gy for the bladder. 

 

Fig.  42. Patient No. 6 filtered CT scan DVH values 

 

Fig.  43. Patient No. 6 dose-volume reduction chart 

In this case a dose reduction of the target by 8.43%, along with rectum and bladder reductions of 6.16% 

and 0.67% are visible. This was possible to MAR algorithm reducing image noise significantly and 

enhancing the deleted bladder edges significantly in this particular case. 

3.2.7 Patient No. 7 

This patient suffered greatly from x-ray attenuation around the peritoneal and lower pelvic areas through 

out most of the slices. Both hips were replaced with artificial ones for this patient. Due to very heavy 

corruption of the CT data most of the values measured are above the desired thresholds. In this patient 
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the target 95% volume received dose is 38.5 Gy. Organs at risk like rectum at their according volumes 

and doses are: 50% 30.02 Gy, 35% 33.4 Gy, 10% 38.02 Gy. Bladder in this instance received doses for 

the according volumes: 50% 3.9 Gy, 35% 4.6 Gy, 25% 14.8 Gy, 15% 35.9 Gy. 

 

Fig.  44. Patient No. 7 original CT scan DVH values 

From the filtered CT scan a new 95% DVH value can be seen, 31.25 Gy. A substantial reduction to the 

target. For rectum volume 50%, a reduced dose of 27.8 Gy is present. 35% volume contains 29.01 Gy 

dose, and 10% volume has 33.8 Gy dose to these volumes. All volumes of the rectume resulted in 

reduced dose for this OAR. For bladder the volume-dose values re-distributed are: 50% volume 3.63 

Gy, 35% volume 4.48 Gy, 25% volume 11.4 Gy, and 15% 32.2 Gy. 

 

Fig.  45. Patient No. 7 filtered CT scan DVH values 
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Fig.  46. Patient No. 7 dose-volume reduction chart 

In the end, for this patient a reduction to the target 95% volume of 18.83 % reduction is present. Rectum 

dose reduction of 10.54%, and bladder dose reduction of 10.7% is present. 

3.3 General doses 

As a better way of data representation, all of the previous patients have been grouped in to two groups. 

Prostate group and Cervix-uterus group. For the first group, data volume-dose investigation displays an 

average reduction of 2.6% to the target organ-prostate. In the data it is apparent that, on average, through 

out all of the prostate patients, for rectum OAR, the reduced dose by the MAR application for all of the 

volumes is approximately 2.21%. Contrary to this, a slight increase by an average of 4.45% to the 

bladder is visible through out this group. Originally the prostate patient group suffered from slightly 

less x-ray attenuation, as a result of this, average dose shifts are relatively smaller when comparing them 

to the other group of patients. The average increase in bladder re-distributed dose could suggest that 

further RT plan optimisation is indicative for proper-real prostate plan evaluation, as the doses re-

distribute according to the organ edge shift significantly, according to the cavity theory used by the RT 

planning systems.  
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Fig.  47. Prostate group dose-volume reduction chart 

The second group of patients seem to have received a higher ammount of dose re-distribution. For all 

of the organs the registered doses seem to have been reduced. The main target Cervix-uterus reduction 

on average for the whole group is around 14.03%. The rectum and bladder have also seen significant 

reduction, 8.94% and 6.59% accordingly. This substantial reduction in doses for these patients could be 

explained by originally higher volumes of the target organ, as well as the whole group containing 

heavier x-ray attenuation in the original CT images. MAR algorithm suggests higher dose reduction, 

the higher the % error is in the CT scan slices. These reduction numbers are promissing and are also 

indicitive to further dose optimization possibility for these patients. 

 

Fig.  48. Cervix-uterus group dose-volume reduction chart 
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Conclusions 

1. The investigation of the possible CT filtering methods showed that, the different filter applications 

working together can make up algorithms, which are capable of detecting large range of deleted 

edges in CT images affected by noise or x-ray attenuations. A significant soft tissue and organ-edge 

enhancement has been indicated after filter applications in all investigated patients, providing 

unique possibility of radiation treatment plans optimization.  

2. It was found that there is a significant change in organ edges after computed tomography data was 

subjected to metallic artifact reduction algorithm application. Going through all patients computed 

tomography slices, recording the bladder image, the edge change resulted in 5.1% of the edge drift 

as compared to the original organ diameter in the original non-filtered CT studies. 

3. Performed investigation has shown that application of filtering algorithm resulted in significant 

dose reduction for both patients groups: female patients with cervix- uterus cancer and for male 

patients with prostate cancer. 2.6% reduction of dose to the target organ was indicated for prostate 

cancer patients. In addition to this, the dose changes to organs at risks like bladder and rectum were 

observed as well. Rectum irradiation dose was reduced by 2.21% while the dose to bladder was 

increased by 4.45%.  For the cervix-uterus cancer group a substantial dose reduction to the target 

organ of 14.03% was achieved. Irradiation dose to rectum and bladder was reduced by  8.94% and 

6.59% correspondingly. Estimated dose changes are indicative to further radiotherapy treatment 

plan optimization.  
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Appendices 

Appendix 1. MAR filtering algorithm in Matlab 

%AUTOMATIC ANONIMIZER 

clc, close all, clear all 

 

% disp('Perskaitomasdicomfailas') 

% I=dicomread(‘X.dcm'); 

%  

% dicomanon('X.dcm' 

%     'anonymized.dcm') 

% % [m n]=size(I) 

 

values.StudyInstance.UID=dicomuid; 

values.SeriesInstance.UID=dicomuid; 

 

d=dir('*.dcm') 

for p=1:numel(d) 

dicomanon(d(p).name, sprintf('anon%d.dcm',p),'update', values) 

end 

 

%MAR ALGORITHM 

clc, close all, clear all 

 

disp('Perskaitomasdicomfailas') 

I=dicomread('X.dcm'); 

 

disp('Pavaizduojamasdicomfailas') 

%figure 

imshow(I, 'DisplayRange',[]); 

% imtool(I, 'DisplayRange',[]) 

 

%figure 

BW1=edge(I) 

imshow(BW1), title('Edge filtras') 

 

%figure 

BW2=edge(I,'Sobel') 

imshow(BW2),  title('Edge-Sobel filtras') 

 

%figure 

BW3=edge(I,'Sobel',0.0003) 

imshow(BW3), title('Edge-Sobel filtrasir thresh') 

 

%figure 

BW4=edge(I,'prewitt') 

imshow(BW4), title('Edge-Prewitt filtras') 

 

%figure 
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BW5=edge(I,'prewitt',0.0001) 

imshow(BW5), title('Edge-Prewitt filtrasir thresh') 

 

%figure 

BW6=edge(I,'roberts') 

imshow(BW6), title('Edge-Roberts filtras') 

 

%figure 

BW7=edge(I,'roberts',0.0002) 

imshow(BW7), title('Edge-Roberts filtrasir thresh') 

 

%figure 

BW8=edge(I,'log') 

imshow(BW8), title('log filtras')   

 

%figure 

BW9=edge(I,'log',0.000002) 

imshow(BW9), title('log filtrasir thresh')   

 

%figure 

BW10=edge(I,'log',0.000002,4) 

imshow(BW10), title('Edge-log filtras, thresh, sigma')   

 

%figure 

BW11=edge(I,'zerocross') 

imshow(BW11), title('Edge-zerocrossfiltras')   

 

%figure 

BW12=edge(I,'zerocross',0.00001) 

imshow(BW12), title('Edge-zerocrossfiltras, thresh')   

 

%figure 

BW13=edge(I,'zerocross',0.0000) 

imshow(BW13), title('Edge-zerocrossfiltras, threshold=0')   

 

%figure 

BW14=edge(I,'zerocross',0.00001) 

imshow(BW14), title('Edge-zerocrossfiltras, threshold')   

 

%figure 

BW15=edge(I,'canny') 

imshow(BW15), title('Edge-Canny filtras') %, threshold')   

 

%figure 

BW16=edge(I,'canny', 0.0001) 

imshow(BW16), title('Edge-Canny filtrasir threshold')   

 

disp('**********’) 
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%figure 

subplot(2,2,1) 

imshow(I, 'DisplayRange',[]), title('Originalinuotrauka') 

 

BW17=fspecial('motion',200,45); 

MotionBlur=imfilter(I,BW17,'replicate') 

subplot(2,2,2) 

imshow(MotionBlur), title('fspecialfiltrasirMotionBlur - replicate nuotrauka')  

 

BW18=fspecial('disk',20); 

Blurred=imfilter(I,BW18,'replicate') 

subplot(2,2,3) 

imshow(Blurred), title('Blurred - replicate nuotrauka')  

 

BW19=fspecial('average'); 

Blurred=imfilter(I,BW19,'replicate') 

subplot(2,2,4) 

imshow(Blurred), title('Blurred average - replicate nuotrauka')  

 

figure 

BW20=fspecial('gaussian'); 

Blurred=imfilter(I,BW20,'replicate') 

imshow(Blurred), title('Blurred Gaussian - replicate nuotrauka')  

 

disp('Irasomasmodifikuotaspaveikslasinaujadicomfaila:') 

dicomwrite(Blurred,'aaa.dcm'); 

%pause 

%figure 

%BW21=fspecial('laplacian'); 

%Blurred=imfilter(I,BW21,'replicate') 

%imshow(Blurred), title('Blurred Laplacian- replicate nuotrauka')  

 

%figure 

%BW22=fspecial('log'); 

%Blurred=imfilter(I,BW22,'replicate') 

%imshow(Blurred), title('Blurred log- replicate nuotrauka')  

 

%InstanceUID altering 

clc, close all, clear all 

I=dicomread('X.dcm');  

info = dicominfo('X.dcm');  

 

%dicomwrite(I,'60.dcm',info);  

%instancnumber altering 

 

clc, close all, clear all 

I=dicomread('72.dcm');  
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%uid = dicomuid;  

info.SeriesInstanceUID = uid;  

info.StudyInstanceUID = uid; 

dicomwrite(I,'72.dcm',info); % 

 

%dicomwrite(Blurred,'nuotrauka_su_Gausofiltru.dcm'); 

% info = dicominfo('1.dcm');  

%info2 = dicominfo('new2.dcm');  

%info3 = dicominfo('new1.dcm'); 

 

clc, close all, clear all 

I=dicomread('001.dcm'); 

 

%info = dicominfo('001.dcm') %nereik 

info2 = dicominfo('CT.1.2.840.113619.2.278.3.2831185940.922.1586841586.402.1.dcm')  

%dicomwrite(I,'1.dcm',info);  

%uid = dicomuid; 

%uid2 = dicomuid; 

uid = '1.3.6.1.4.1.9590.100.1.2.61452333712083600514471056902110686074' 

uid2 = '1.3.6.1.4.1.9590.100.1.2.183343010611444776000781595261999547223' 

 

info.SeriesInstanceUID = info2.SeriesInstanceUID;  

info.StudyInstanceUID = info2.StudyInstanceUID; 

info.RotationDirection = info2.RotationDirection; 

info.PatientPosition = info2.PatientPosition; 

info.AcquisitionNumber = info2.AcquisitionNumber 

info.FocalSpot = info2.FocalSpot; 

info.ImagePositionPatient = info2.ImagePositionPatient; 

info.ImageOrientationPatient = info2.ImageOrientationPatient; 

info.FrameOfReferenceUID = info2.FrameOfReferenceUID; 

info.PositionReferenceIndicator = info2.PositionReferenceIndicator; 

info.SliceLocation = info2.SliceLocation; 

info.Modality = info2.Modality; 

info.ImageType = info2.ImageType; 

info.SpecificCharacterSet = info2.SpecificCharacterSet; 

info.StudyDescription = info2.StudyDescription; 

info.SeriesDescription = info2.SeriesDescription; 

info.ScanOptions = info2.ScanOptions; 

info.SliceThickness = info2.SliceThickness; 

info.DataCollectionDiameter = info2.DataCollectionDiameter; 

info.SoftwareVersion = info2.SoftwareVersion; 

info.ReconstructionDiameter = info2.ReconstructionDiameter; 

info.DistanceSourceToDetector = info2.DistanceSourceToDetector; 

info.DistanceSourceToPatient = info2.DistanceSourceToPatient; 

info.GantryDetectorTilt = info2.GantryDetectorTilt; 

info.TableHeight = info2.TableHeight; 

info.ExposureTime = info2.ExposureTime; 

info.XrayTubeCurrent = info2.XrayTubeCurrent; 
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info.Exposure = info2.Exposure; 

info.FilterType = info2.FilterType; 

info.GeneratorPower = info2.GeneratorPower; 

info.PatientPosition = info2.PatientPosition; 

info.FrameOfReferenceUID = info2.FrameOfReferenceUID; 

info.SamplesPerPixel = info2.SamplesPerPixel; 

info.PositionReferenceIndicator = info2.PositionReferenceIndicator; 

info.WindowCenter = info2.WindowCenter; 

info.WindowWidth = info2.WindowWidth; 

info.RescaleIntercept = info2.RescaleIntercept; 

info.RescaleSlope = info2.RescaleSlope; 

info.SOPInstanceUID = info2.SOPInstanceUID; 

%info.SOPClassUID = info2.SOPClassUID; % MATRICOS KEITIKLIS 

info.PatientID = info2.PatientID; % 

info.PatientName = info2.PatientName; % 

info.Manufacturer = info2.Manufacturer; 

info.Modality = info2.Modality; 

info.StudyDate = info2.StudyDate; 

info.FileMetaInformationGroupLength = info2.FileMetaInformationGroupLength; 

info.InstanceCreationDate = info2.InstanceCreationDate; 

info.InstanceCreationTime = info2.InstanceCreationTime; 

info.AccessionNumber = info2.AccessionNumber; 

info.StudyID = info2.StudyID;  

info.SeriesInstanceUID = uid;  

info.StudyInstanceUID = uid; 

info.Format = info2.Format; 

info.FormatVersion = info2.FormatVersion; 

info.Height = info2.Height; 

info.BitDepth = info2.BitDepth; 

info.ColorType = info2.ColorType; 

info.FileMetaInformationVersion = info2.FileMetaInformationVersion; 

%info.MediaStorageSOPClassUID = info2.MediaStorageSOPClassUID; 

info.MediaStorageSOPInstanceUID = info2.MediaStorageSOPInstanceUID; 

%info.TransferSyntaxUID = info2.TransferSyntaxUID; 

info.ImplementationClassUID = info2.ImplementationClassUID;  

%info.ImplementationVersionName = info2.ImplementationVersionName; 

info.ContentDate = info2.ContentDate; 

info.StudyTime = info2.StudyTime; 

info.ContentTime = info2.ContentTime; 

%info.ConversionType = info2.ConversionType; 

info.PatientBirthDate = info2.PatientBirthDate; 

info.PatientSex = info2.PatientSex; 

%info.SecondaryCaptureDeviceManufacturer = info2.SecondaryCaptureDeviceManufacturer; 

info.SeriesNumber = info2.SeriesNumber; 

info.InstanceNumber = info2.InstanceNumber; 

%info.PhotometricInterpretation = info2.PhotometricInterpretation; 

%info.Rows = info2.Rows; 

%info.Columns = info2.Columns; 
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%info.BitsAllocated = info2.BitsAllocated; 

%info.BitsStored = info2.BitsStored; 

%info.HighBit = info2.HighBit; 

%info.PixelRepresentation = info2.PixelRepresentation % 

%info.ImagePositionPatient = info2.ImagePositionPatient; 

%info.ImageOrientationPatient = info2.ImageOrientationPatient; % 

%info.PositionReferenceIndicator = info2.PositionReferenceIndicator; 

%info.SliceLocation = info2.SliceLocation; 

%info.PatientPosition = info2.PatientPosition; 

%info.WindowCenter = info2.WindowCenter; 

%info.RescaleIntercept = info2.RescaleIntercept; 

%info.RescaleSlope = info2.RescaleSlope; % 

%info.Private_3241_10xx_Creator = info2.Private_3241_10xx_Creator; 

%info.Private_3241_1000 = info2.Private_3241_1000; 

%info.Private_3241_1004 = info2.Private_3241_1004; 

%info.Private_3241_1005 = info2.Private_3241_1005; 

%info.Private_3241_1006 = info2.Private_3241_1006; 

%info.Private_3253_10xx_Creator = info2.Private_3253_10xx; 

%info.Private_3253_1000 = info2.Private_3253_1000; 

%info.Private_3253_1001 = info2.Private_3253_1001; 

%info.Private_3253_1002 = info2.Private_3253_1002; 

%info.FocalSpot = info2.FocalSpot; 

%info.SliceLocation = info2.SliceLocation; 

%info.PositionReferenceIndicator = info2.PositionReferenceIndicator; 

 

info3 = info; 

dicomwrite(I, 'naujas001.dcm',info3); 

%dicomwrite(I, 'naujas001.dcm', info3, 'CreateMode', 'copy');  

 

%info2 = dicominfo('001.dcm') 

%info3 = dicominfo('002.dcm') 
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Appendix 2. Patient No. 2 original and MAR algorithm filtered CT data sets, slice No. 44 

 
Fig.  49. Patient No. 2 original CT pelvic region, Kaunas Clinics, Hospital Of Oncology 

 
Fig.  50. Patient No. 2 filtered CT pelvic region, Kaunas Clinics, Hospital Of Oncology 
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Appendix 3. Patient No. 3 original and MAR algorithm filtered CT data sets, slice No. 83 

 
Fig.  51. Patient No. 3 original CT pelvic region, Kaunas Clinics, Hospital Of Oncology 

 

 
Fig.  52. Patient No. 3 filtered CT pelvic region, Kaunas Clinics, Hospital Of Oncology 
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Appendix 4. Patient No. 4 original and MAR algorithm filtered CT data sets, slice No. 69 

 
Fig.  53. Patient No. 4 original CT pelvic region, Kaunas Clinics, Hospital Of Oncology 

 
Fig.  54. Patient No. 4 filtered CT pelvic region, Kaunas Clinics, Hospital Of Oncology 
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Appendix 5. Patient No. 5 original and MAR algorithm filtered CT data sets, slice No. 44 

 
Fig.  55. Patient No. 5 original CT pelvic region, Kaunas Clinics, Hospital Of Oncology 

 

 
Fig.  56. Patient No. 5 filtered CT pelvic region, Kaunas Clinics, Hospital Of Oncology 
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Appendix 6. Patient No. 6 original and MAR algorithm filtered CT data sets, slice No. 75 

 
Fig.  57. Patient No. 6 original CT pelvic region, Kaunas Clinics, Hospital Of Oncology 

 
Fig.  58. Patient No. 6 filtered CT pelvic region, Kaunas Clinics, Hospital Of Oncology 
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Appendix 7. Patient No. 7 original and MAR algorithm filtered CT data sets, slice No. 51 

 
Fig.  59. Patient No. 7 original CT pelvic region, Kaunas Clinics, Hospital Of Oncology 

 

 
Fig.  60. Patient No. 7 filtered CT pelvic region, Kaunas Clinics, Hospital Of Oncology 

 


