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INTRODUCTION
Relevance of the work

Smart technologies become more and more popular among people of different
ages. Cloud-based technologies that are constantly improving allow majority
services to be offered remotely. In order to monitor the health condition in gyms,
clinics, working places or even at home, various apps are useful for those who
have specific health conditions, are athletes or beginners in sport activities, elderly
people and others. Electronic remote-control systems can sometimes replace
ordinary health monitoring methods. People search for information on the Internet
about their health condition, possible treatment methods, recommendations and
share their experiences with each other. Health monitoring systems often require
additional devices. Even though their demand is growing rapidly, every device and
application needs to meet today’s standards and be user friendly for everyone.

In medicine, biological signals are recorded when a person is in a stationary
condition to make sure that the noise of the signal is minimal. However, it is hard
to get a signal during activity without any noise that appears with breathing,
muscle contractions, poor signal transmit channel or interruptions, blinks and other
disturbances. Scientists from Lithuania and abroad apply numerous signal filtering
methods without damaging the main signal characteristics in time or frequency
scale. Even though signal recording in stationary condition is still widely used in
diagnostics, they have limitations when it comes to the evaluation of interactions
between different human organism systems and dynamic changes in daily
activities.

If a person performs physical or mental exercises, multiple systems work in
parallel: cardiovascular, muscular, neural and others. Heart rate variability and
electrocardiogram parameter dynamical change analysis are becoming more and
more popular because scientists are trying to find out how multiple human parts
interact together as a single complex system. These researches are often based on
ECG signal analysis; they show uninterruptable immediate heart rate variability,
which is a response to different physiological or pathological states. Even though
it may seem that ECG signal registration in movement is not a complex task, the
signals are contaminated with various noises. The obtained noise is non-stationary
and depends on the intensity of a particular exercise. That is why ordinary filtering
methods fail in signal processing without damage to basic signal characteristics.
The proposed filtering algorithm is able to adapt to the level of appearing noise in
different work load (performing exercises with different intensity) and maintain
the most important ECG parameter values that are essential for the health
evaluation and monitoring.



Furthermore, the investigation of heart rate variability is important as well in
physical or mental fatigue detection process. Physical fatigue is of very high
importance for athletes and employees who work intensively. Even though
athletes have a low risk of heart disease, the unnoticed symptoms can cause
permanent heart injuries in a long-term. For this reason, people doing sports often
have an interest in new technologies that allow monitoring health conditions or
training intensity in real time. Meanwhile, office workers suffer from mental
fatigue, which may end up in a chronic disorder and cause long-term
consequences. When not noticed in time, the fatigue may result in disability at
work. In this research, the main ECG signal parameters were estimated for
physical and mental fatigue evaluation by using HRV analysis and machine
learning methods.

The main analysis in this work is made on the ECG signals. However, the
effectiveness of the proposed noise filtering algorithms has been shown as well
for electroencephalograms. The suggested methodology for different types of
fatigue detection can be applied in various mobile applications and be used in daily
life activities. This could serve as a preventive tool to reduce the risk of injuries,
reduce the number of deaths from cardiovascular disorders, detect primary
symptoms of fatigue and increase the efficiency at work.

The object of the research is ECG signals that are recorded multiple times per
day (morning/evening) during different exercises of various intensity.

The aim of the work is to pre-process electrocardiogram signals, analyse their
variations, use the obtained results in training intensity management model and
fatigue recognition process.

The main objectives of this research are as follows:

e Review literature about electrocardiogram signal, essential parameters for
health evaluation process and parameter estimation algorithms;

e Review literature about high and low frequency filters, select and improve
methods for movement contaminated ECG signal processing;

e Conduct ECG signal parameter search algorithm improvement by adding T
wave detection algorithm;

e Create a methodology for physical and mental fatigue detection and
evaluation.

Methods, software and experimental tools:

e CardioScout Multi device was used for the ECG signals recording and
transmission to mobile device (with 500 s~ frequency);

e In this research, for filtering algorithm comparison, clear (without noise) ECG
signals were generated using CMRR 2.0 simulator;



All signal processing, parameter estimation and fatigue identification
algorithms were initialised using MATLAB R2015b mathematical and
statistical packages.

For the defence:

Novel movement artefact filtering algorithm for ECG signal processing,
evaluating filtering parameter changes that depend on the movements made
and intensity of the training.

Improved ECG parameter estimation algorithm with T wave amplitude and
interval values detection.

Modified monitoring system for training intensity to make sure that signal
processing and feedback are given in real time.

Novel fatigue recognition methodology that allows to detect and evaluate
physical and mental or general fatigue.

Scientific novelty and significance

Algorithms suitable for the filtering of ECG signal that were recorded during
the exercise were improved according to the main characteristics of the signal,
without the negative impact on the accuracy of it.

A novel methodology using HRV analysis is proposed and applied for the
physical fatigue recognition. Additionally, beans plot diagrams that were used
were improved for the better understanding and easier comparison of data
distribution.

ECG signal parameter estimation algorithm was arranged by adding T wave
amplitude and interval values detection. The characteristics that allow
detecting instant signal changes in signal classification process were
suggested. This methodology is applied for human health evaluation and
monitoring processes.

Approval or the results

The majority of the results of this dissertation were presented in 5 scientific

publications. Two were published in the list of the Institute for Science
Information (ISI) as the main list of publications with citing indexes. The topics
of this dissertation were presented in 6 international conferences. Signal filtering
methods were initialised in three projects that are related to this research.

Scope and structure of the dissertation

This doctoral dissertation consists of an introduction, 4 main chapters,

conclusions, references and a list of publications. The work volume is 114 pages.
There are 55 figures, 26 tables and a list of 181 cited references.



1. LITERATURE REVIEW
1.1. ECG signal and parameter estimation methods

The electrocardiogram is the recording of electrical signals of the heart using
electrodes placed on the skin surface. Generally, there are 12 different recordings
with different placements on the skin. The most popular and explored is V5
derivation (the example is shown in Figure 1).

The recorded biological signals such as electrocardiogram (ECQ),
electroencephalogram (EEG), electromyogram (EMG) usually are contaminated
with various noises from the environment. Numerous methods have been created
and applied for digital signal processing and filtering, such as moving average
(MA), exponential smoothing or linear Fourier transformation (Gazi, 2016).
Although chaotic signals generally are not predicted, the similarities in particular
parts of biological signal can be noticed. This can be interpreted as the mean, and
the variance of the signal remains almost stationary (Meskauskas, 2017). The main
purpose of signal filtering algorithms is to divide the components into informative
and undesirable noise.
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Figure 1. ECG parameters of V5 derivation

There are many different ECG signal parameters (see Figure 1) that could
describe different heart pathologies or alert about possible diseases. Numerous
articles have been published to help identify the illness or monitor health
condition. R-R intervals and QRS complexes are essential parameters for medical
diagnostics. Scientists have developed various methods for ECG parameter wave
detection and parameter estimation. In 1985, scientists J. Pan and W. Tompkins
suggested an algorithm that was based on signal filtering to reveal the frequencies
that were induced by the fast heart depolarisation process. They assumed that other
frequencies are noise and should be removed. Later, in 2006, scientists J. H. Choi
and H. K. Jung proposed a non-supervised learning algorithm that detects action
potentials and signal features for the classifiers. This method was based on
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multiresolution Teager energy operator (MTEQO) detection algorithm and its
improvement by reducing complexity with sample size implementation (Choi et
al., 2006).

In medicine and diagnostics, not only direct ECG parameter values are
essential. Heart rate variability (HRV) is obtained from R-R intervals and is very
popular in scientific works related to heart behaviour. The HRV analysis is based
on R-R interval estimation. Generally, HRV parameters can be divided into two
main parts: time domain and frequency domain (German-Sallé6 & German-Sallo,
2016).

Time domain analysis. The methods from this category treat the R—R interval
sequence as an unordered set of intervals (in some cases, pairs of intervals) and
employ various techniques to express the variance of these data. If RR is defined
as adjacent cardio cycles, the time domain HRV parameters (RR, SDRR, SDSD,
RMSSD, CV) can be calculated as follows:

1 N
RR = NZ RR,, (1)
n=1
1 N
SDRR = NZ(RRn —RR)?, (2)
n=1
1 N
SDSD = N [(RR,, — RR,,11) — (RR — RR,,,1)]%, A3)
n=1
N
1 2
RMSSD = mZ(RRnH —RR,)?, 4)
n=1
SDRR
CcV = T 100%. (5)

Even though all these measurements of short-term variation estimate high
frequency variations, the correlation between these parameters is high, and
nonlinear dynamic remains undervalued (Yaghoobi Karimui & Azadi, 2017).
Frequency domain analysis. The analysis of power spectral density provides
information about how the power of the ordered R-R intervals is distributed as a
function of frequency. The HRV power spectral density analysis describes two
distinct peaks: low-frequency band (LF: in humans 0.04-0.15 Hz) and high
frequency band (HF: in humans 0.15-0.4 Hz). Generally, HF fluctuations associate
to vagal system modulations, and LF fluctuations are jointly mediated by
sympathetic and vagal systems together with the baroreflex mechanism (Camm &
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Lu, 2018). Usually, for the better comparison and result interpretation, the
frequency domain parameters are normalised in the following way:

LF
Lworm = fragp Horm = 5 pF ©

Nonlinear analysis. The methods to measure the nonlinearity in HRV try to
quantify the structure and complexity of R—R interval time series. The methods of
HRV dynamic analysis are based on chaos or nonlinear system theory. The
mechanisms involved in cardiovascular regulation are likely to interact between
each other in a nonlinear manner (Castafio et al., 2019). The most essential indices
that describe heart dynamic nonlinearity are detrended fluctuation analysis (DFA),
Lyapunov exponents, correlation dimensions and others (Muduli & Mukherjee,
2017). For the nonlinear HRV analysis, the Poincare method was selected.

1.2. Methods for signal processing

In order to obtain a full representation of the signal, the smoothing process
should be applied (insignificant noise that appeared in the recording process
should be removed, and the fluctuations of the signal should be discarded). The
algorithms for signal processing can be divided into two groups: working in the
scale of time domain and in the scale of the frequency domain. The first group
operates directly to the original signal values while other extracts the spectrum of
the signal at first and then filters the frequency domain values. Although linear
filtering methods such as Wiener filter or singular value decomposition (SVD)
(Ziani et al., 2018) are easily described and applied, the effectiveness of these
methods reduces if the signal has sharp angles or impulses. Furthermore, in reality
recorded signals are non-stationary and fluctuate in time.

Universal methods such as Butterworth filter (Jagtap & Uplane, 2012) are
widely used in medicine and diagnostic by Lithuanian scientists (Marozas et al.,
2011) and worldwide. They work effectively in high and low frequency noise
reduction for different types of signal processing. However, the delays that appear
in signal reconstruction process may affect the final result (Tsuzuki & Ogihara,
2018).

The biological signals that are recorded in movement are more
contaminated by noise compared to those that are recorded in a stationary
condition. The main issue for movement contaminated signals is non-stationary
low frequency noise trend. That is why ordinary filtering methods for signal
processing become insufficient. One of the most popular algorithms for ECG trend
removal is moving average (MA) filter. If there are insignificant amplitude
fluctuations, the algorithm eliminates the deviations and transforms the signal in
respect to the isoline. This method can be described with the following formula:
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1 N
y(n) = miZNx(n +1i); (7

where x(n) and y(n) are input and output signals; N is the sample size. Filtered
z(n) signal is found as follows:
z(n) = x(n) — y(n). ®)

The scientist Ivan W. Selesnick together with his colleagues in 2014 suggested
using a low pass filter and denoising of variance at the same time. Their method
is called Baseline Estimation and Denoising with Sparsity (BEADS) (Ning et al.,
2014). As a low frequency filter, they selected linear and nonlinear filtering
method that is called multiscale wavelet algorithm and improved it by adding
sparsity based partial layers between spectrum and peaks. However, this method
has many filtering parameters such as normalised cut-off frequency, asymmetry
coefficient and others.

1.3. Classification methods for health evaluation

Advanced technologies such as social media, smart phones and computers,
portable devices allow to collect big data about various mental or physical health
disorders. One of the most rapidly growing technical fields is computer science
and statistics with artificial intelligence and data science. Effective algorithms for
big data processing are based on machine learning (ML) methodology.

ML can be divided into three main parts: supervised learning (for example,
SVM, KNN, NB, DT), unsupervised learning (for example, NN, clustering) and
semi-supervised learning (for example, semi-supervised SVM, general learning,
mixed models) (Bi et al., 2019). Supervised learning is based on the labelled data
analysis. Meanwhile, unsupervised learning learns from unlabelled data and
extracts similar patterns. Finally, semi-supervised learning contains data with and
without labels because in some cases, there is not enough labelled data that is
needed for the classification or prognosis.

The measurement of predictive performance usually is based on the analysis
of data in the confusion matrix (Bowes et al., 2014). This matrix reports how the
model of prediction classifies different fault categories compared to their actual
classification (predicted versus observed). Four data types after the classification
process can be described, as it is presented in Table 1.

Table 1. ML elements after prediction has been made

Name Shorthand Description

True negative TN Item is predicted as correct, but it is faulty
True positive TP Item is predicted as correct, and it is correct
False positive FP Item predicted as faulty, but it is correct
False negative FN Item predicted as faulty, and it is faulty
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For the better understanding how well the selected method predicts (in general
case), additional measurements can be found. Common statistics are accuracy
and F1 score that are estimated using the following formulas:

TP + TN
accuracy = H (9)
TP+ TN+ FP +FN
F1 (10)

T2 TP+FP+FN
Even though accuracy and F1 are widely used in ML analysis, they do not

consider the size of each category of the confusion matrix. That is why an
additional statistic is measured, which is called Matthews correlation coefficient
or MCC. It gains the worst value with MCC = —1, and the best value when MCC =
1.
TP-TN —FP-FN
= 11
V(TP + FP) - (TP + FN) - (TN + FP) - (TN + FN) (b

In 1960, scientist Jacob Cohen revealed that there is a level of algorithm
precision when the algorithm is no longer capable to predict correctly, and the
answer becomes similar to the guess. This statistic is called kappa and is
expressed in the following formula:
accuracy — d; (12)

1-d

If kappa > 0.75, then kappa is considered perfect,

McC

kappa =
TP+FN

TN+TP+FP+FN’
from 0.4 to 0.75 sufficient and when kappa < 0.4, it is considered weak

(McHugh, 2012).
2. METHODOLOGY

where d =

In this chapter, the proposed methods of ECG signal processing are described.
Moreover, the algorithms and their improvements are presented with detailed
descriptions and pseudo codes. The flow chart of initialised methods is shown in
Figure 2.
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Figure 2. ECG signal processing scheme
2.1. Filtering algorithms

ECG signal recorded in movement can be written in such form:

y(n) =x(n) +v(n) + wn), n=1,..,N; (13)
where x is a low—pass signal without noise, w — stationary white Gaussian noise, v
— sparse derivative signal (movement artefact or trend) and N — signal length.

For the data like y(n), two-method combination should be used for denoising.
The DWT algorithm was chosen as a high pass filter. Filtering parameter
estimation and comparison for this algorithm is described in chapter 3.

Low frequency noise usually is named as trend or movement artefact. While
the participant is in a stationary condition (usual in medicine for ECG or EEG
signal recordings), ECG signal is located in one horizontal line—isoline (see Figure
1). Discrete N points ECG signal could be written as:

[x1, %5, w0, 2 ]T; (14)
where 7T indicates the transpose function of analysed vector or matrix. Usually, the
moving average (MA) algorithm is used for trend detection because it does not
require additional signal preparation for filtering, does not have many filtering
parameters that need to be estimated before computations, works fast and does not
require many computational resources. However, it is not suitable for noisy ECG
signal processing that is recorded in sudden movement changes, for example,
during training session. That is why in this research, the improved BEADS
algorithm was chosen for the baseline detection and its removal.
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BEADS algorithm: this low frequency filter is described by using difference
matrixes and cost function minimisation. First order difference D; could be
expressed in this form:

-1 1
D, = o . (15)

For N point signal x, the first order difference is D1x, where the size of matrix Dy s
(N — 1) X N. Similarly, second order difference matrix with size (N — 2) X N is
defined as:

-1 2 -1

D, = (16)

-1 2 -1

In general, & order difference operator with size (N — k) X N is defined as Dy. For
further derivations, the identity matrix I is defined as zero order difference matrix
Dy :=1 (k = 0) (size N X N) (Selesnick et al., 2014). In order to find the best
solution (minimise cost function G (x)), the optimization task of three parts should
be solved: low frequency noise extraction using a high frequency filter,
asymmetric penalty function for negative ECG peaks evaluation and symmetric
penalty functions for positive extremums should be defined.

Which penalty function should be used depends on the analysed signal
structure. Asymmetry function is used when it is known that the analysed signal
x = [x4,%;, ..., xy] has more positive values than negative and vice versa (as it is
in ECG signals). Then, negative and positive signal parts are penalised differently.
The 6(x,r) function is defined as an asymmetric function with asymmetry
parameter 7

x, x =0,
0(x,1) = {—rx, x < 0. a7

Then, the second order polynomial function 6, (x, r) can be defined as follows (see
full derivation in (Ning et al., 2014)):

X, x> ¢
1+r 1-r 1+r

0, (x, 1) = > x2 + S Xte—— x| <& (18)
—-TrX, x < —€;

where € > 0 is a small constant. The behaviour of new penalty function 6, (x, 1)
is similar to 8(x, r) and is continuously differentiated (Ning et al., 2014).

Using the same definitions, the asymmetric penalty function can be defined as
(N X N) size diagonal matrix I'(v) with elements in the main diagonal expressed
as follows:

14



) |Un| =&
4|v
F@)ln =] 100! (19)
2 ml=e

where v = [vy, Vs, ..., vy]. Moreover, the symmetric penalty function can be
defined as diagonal matrix A(v) where elements in the main diagonal are
expressed in the following form:

"(v

A, = £, (20)
n

where ¢ is symmetric function and ¢’ its derivative (see (Selesnick et al., 2014)).
The symmetric penalty function is used when filtered signal x and its derivatives
D;x are positive and negative with the same probability. So far defined penalty
functions are mostly used to filter extremums. However, the ECG signal as well
requires a high pass filter that passes frequencies over higher chosen frequency
barrier and leaves the rest part of the signal. High frequency filter can be written
as a transfer matrix:

—z+2—2z1)¢
Czr2-z ) ; @
(—z4+2—-zYHY+a(z+2+2z71)4
where a and d are positive, d € Z and defines the order of analysed matrix. The
norms of variable x are estimated as follows:

ey = D bl B = ) Il 22)
n n

Filtering task with all three parts can be written in this form:

H(z) =

N-1
1
% = argmind 2 KO = )13 + 2 ) 006, 7)
X
=0
Ner (23)

+izi PIRA(LEIBIE

where A; are regularisation parameters, and M indicates the number of symmetric
penalty functions that are used in this algorithm. Then, the cost function G (x) can
be written in this form:

600 = 3IHEY ~ DI + 22" TGO + b x

M
)
i=0

where D; is the it order differential operator, and b is a vector of the same values:

A 4
7‘ (D;x)"[A(D;x)](D;x)

)
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(Bl =~ (25)

The minimization of the cost function G (x) with respect to x leads to this solution:
-1

M
2= (HTH +22,T(x) + Z 2 iDiT[A(Dix)]Di) HHy 26)
i=0
= AQ 1BTBA ly;
where Q = BTB+AT(Z}, 1 DI[A(D;x)]D;)A. A pseudo code of BEADS
algorithm is written in Figure 3.

Cost function minimisation of BEADS algorithm
Input: y- noisy ECK signal; r > 1 — asymmetry coefficient, A and B — matrixes of
filtering coefficients, 4; — regularisation parameters, i = 1, ..., M; & — small positive

constant.
Output: x — filtered ECK signal, f — value of cost function
BEGIN

[bln =55

d =B"BA 'y — 1)ATh;

xX=y;

while f converge

if |v,| = &, tai
1+r
[r]n,n - m:

if |v,| < &, tai
1+r
[r]n,n ~ 4’

for each i frorr} 0 t]o M do
/([Dx],)
[Ai]n,n = ‘I,[I)T’
M = 2/,T;
for each i from 0 to M do
M =M + 4,DIA;D;
Q =B"B+ ATMA;
x=AQ 4,
f=y-x-BA\(y—x);
END

Figure 3. Cost function minimisation of BEADS algorithm

BEADS algorithm recalculates all parameter values as long as the baseline is
detected (trend with the smallest errors). A prediction of what parameter values
and penalty functions should be used is a complicated task, especially if there is
only a little prior information about the analysed signal. ECG signals can be
characterised by the QRS complex (see Figure 1) that is an important parameter in
medicine and diagnostics. In order to make sure that BEADS algorithm and its
filtering parameters are oriented and suitable for ECG signal processing, this
method was modified by adding a new algorithm described in Figure 4. The

16



purpose of this algorithm is to find BEADS filtering parameter values that ensure
the maximum number of QRS complexes.

BEADS filter parameter estimation algorithm
Input: movement — contaminated ECG signal
Output: BEADS filter parameter values
BEGIN
for each parameter of BEADS filter do
best value =0;
ORS_maximum = 0;
for each parameter _value do
extract low frequency noise from ECG signal using BEADS algorithm
find R, Q and S peaks;
J=L
for each i from 1 to max(length(R), length (Q), length(S)) do
if O(i) or R(i) or S(i) is empty
i=i+1;
else
ORS(j) = estimate QRS complex;
J=ith
if ORS maximum < length(QRS)
ORS_maximum = length(QRS);
best value = parameter value;

END

Figure 4. BEADS filter parameter estimation algorithm

The algorithms for QRS complex and other ECG parameters detection are
described in subchapter 2.2.

For the high frequency noise reduction, the DWT algorithm was used.
Additional filtering parameter estimation analysis is performed in subchapter 3.1.

2.2. Parameter search of ECG signal

| Q peak |
. AST
R peak I—b —DI T peak I——bl T interval I——DI amplitude |

L 2
|R-R interval'—il co(r)n};lscx | | J dot | | P peak |

Poincar'e . DIT
interval

| HRV | |parameters | | Discriminant

Poincar'e
diagrams

Figure 5. ECG signal parameter estimation sequence
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ECG signal parameter search starts with the R peak detection. Then, Q and S
peaks can be found or R-R interval estimated. The sequence of all ECG parameter
search is presented in Figure 5.

As ECG signals are contaminated with various noises (if recorded in
movement), and signal processing should be done in real time; the multiresolution
Teager energy operator algorithm was chosen for QRS complex detection. This
method and its addition are described in this chapter. The module of peak
estimation consists of three parts: signal enhancement, MTEO computation and
statistical thresholding (Sedghamiz & Santonocito, 2016).

Signal enhancement. ECG signal is filtered by high pass filter and normalised
using low pass filter. Noise reduction algorithms are described in the previous
chapter.

MTEO computation. Motor unit action potentials (MUAP) have typically high
amplitude and instantaneous frequency. The Teager energy operator (TEO) is
time—frequency domain analysis that has been employed in many signal
processing applications and is defined as:

w(x(nT)) = x2(nT) — x(nT — T)x(nT + T). 27

K-TEO is a multiresolution version of MTEO where x(nT — T)x(nT + t) is
replaced with x(nT — kT)x(nT + kT). There, k is an arbitrary parameter that is
known as a lag parameter, and 7 is the sampling rate. Furthermore, ~~TEO can be
adjusted to sensitive and more specific frequencies. Therefore, &~~TEO is an
attractive tool due to its effectiveness (compared to the other time—frequency
domain methods) and low computational power.

If x(nT) is marked as the original (raw) ECG signal where n = 1,2, ..., N, and
N is the number of signal samples, then ~~TEO can be defined as:

Y, (nT) = x?(nT) — x(nT — kT)x(nT + kT); (28)
where the choice of k£ depends on the period of analysed spike. Increasing & makes
the detector less sensitive to the high frequencies and more sensitive to the low
frequencies. Finally, the output of MTEO is t(nT) and is expressed as:

t(nT) = max{¥,(nT), %, (nT), ..., Y, (nT) }; (29)
where Y, (nT) is Y, (nT) after it is smoothed with Hamming window with size
4k + 1 (Drake & Callaghan, 2006) and normalised using squared variance at scale
k.

Statistical thresholding. The purpose of this task is to determine the time when
MUAPs appear in t(nT). In this part, a statistical testing method was employed.
Two binary hypotheses are defined: Hywhen MUAP is not present, and H, is
present:

Hy:t(nT) = G(nT), 30

{Hl: t(nT) = s(nT) + G(nT); (30)

where s(nT) is the MUAP generated signal, and G(nT) is a random Gaussian
noise. The standard deviation § of t(nT) can be approximated as the median of its
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absolute deviation values because median is a random variable and is less sensitive
to the outliers than its variance. It can be written as follows:

6 = MEDIANA{|t(T) — ul, ..., [t(NT) — ul}; 31
where u is the sample’s average value. Furthermore, a close to optimal
performance is chosen for the threshold TH;:

TH, = 6V2InN. (32)

Therefore, t(nT) is compared to TH, and divided into signal segments t5(nT)

and noise t¢(nT):
t¢(nT) = {t(nT) < TH,}

t(nT) . (33)
té(nT)
Two prior probabilities of the two binary hypotheses (P(H,) and P(H;)) can be
estimated as follows:

t5(nT) =

lte @I
P(Hy) = Tl
; 34
_lIEml, Y
P(Hy) ==
where || ||; is expressed in the (22) formula. Finally, the decision threshold TH,
can be written as:
n 6° P(Hy)
TH,==—+—(C+1 ;
5 2+Tl< +nP(H1) (35)

where 7 is the mean of absolute t(n) values, C is selected scaling constant that
determines the sensitivity of this method. With previous definitions and testing, a
signal with MUAPs is generated:
MUnT) = {t(nT) = TH,}. (36)
The final output of this algorithm is a set of local maxima that indicate ECG
signal peaks Q, R, S. A pseudocode of this algorithm adjusted to the QRS complex
detection in the ECG signal is shown in Figure 6.
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Q, R, S peaks estimation with k£ — TEO algorithm
Input: ECG — filtered ECK signal; C — constant; frequency — signal recording frequency
Output: positions of O, R, S peaks in ECK signal
BEGIN
N = length(ECG);
L=2- frequency;
for each i from 4 to N—3 do
MQ) = (Eca(i))2 — (ECG(i — 1) - ECG(i + 1));
M(2)= (Eca(i))2 — (ECG(i — 2) - ECG(i + 2));
M@3)= (Eca(i))2 — (ECG(i - 3) - ECG(i + 3));
MTEO((i) = max(M(1), M(2), M(3));
STD = std(MTEO(1), MTEO(2), ..., MTEO(L));
THO=C-STD- (2InL)?%
TH1 =THO;
for each i from 4 to N—3 do
if MTEO(i — 2) < MTEO(i — 1) and MTEO(i — 1) > MTEO(i)
if MTEO(i — 1) > TH1
MUAP = MTEO(i — 1);
noise = 0,125 MTEO(i — 1) + 0,875 - noise;
TH1 = noise + 0,3 - (MUAP — noise),
TH2 = C-TH1,
if MTEO(i — 1) > TH2
RR _interval(j) = MTEO(i — 1);
j=ji+1
for each & from 1 to j do
R(k) = R peak detection;
Q(k) = Q peak detection;
S(k) = S peak detection;
END

Figure 6. Q, R, S peaks estimation with k-TEO algorithm

In the V5 derivation of human ECG signal, Q and S peaks gain negative values
with respect to isoline. Often, Q peak is obscure and sometimes, even close to zero
value. Meanwhile, R or S waves have high deviations from isoline. The QRS
complex is a time scale parameter—interval from the beginning of the Q wave to
the end of the S wave.

This investigation of ECG signals includes not only R-R and QRS interval
search or Q, R, S peak detection. Further analysis includes T wave amplitude and
interval values’ estimation. T interval starts at the beginning of T wave and ends
when T wave reaches isoline again. k-TEO algorithm does not include these
parameters’ search. That is why additional algorithm was made for the other ECG
parameter estimation that is based on the local extremum search (see Figure 7).
This method consists of three main parts:
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T wave peak estimation. T wave stands between S wave and Q wave peaks and
has the highest amplitude value in this interval (see Figure 1). This means that T
wave peak can be estimated using (37) this formula:

T(n) = {Fok; (37)

=S (n) Q(n+1)

where S(n), Q(n) are positions in ECG signal f of S and Q waves, respectively.

Detection start and end position points of the T wave. T wave starts when the
ECG signal changes its direction with respect to isoline (starts to increase). The
beginning of T wave is a bit further than the end of S wave but does not reach its
peak. Although the ECG signal is filtered, it still contains some minor value
fluctuations that make additional local minima and maxima. The critical values of
T (n) wave can be estimated from this equation:

%() =0;i€ (S(n) +C-fs: T(n)) (38)

where C is a constant and fs is recording the frequency of ECG signal. The
beginning of T wave is considered to be the position of minimal value of all
estimated local extremums:

Tstare () = min{K;(n)}; (39)

where N is the number of local extremums and K; is i" extremum value. The end
of T wave is estimated similarly. In this case, the extremums are in the interval
between the peak of T wave and before the beginning of Q wave.

YD _ o1 e (1) 0(n + 1) (40)

di
Tena(n) = min {K;(n)}. (41)

T interval estimation. If the previous steps (that detects T wave start and end
position points) are realized correctly, the T interval estimation is an
uncomplicated task and can be done using this formula:

Tint (n) = Tend (n) - Tstart (n) (42)
A pseudo-code for T wave detection in presented in Figure 7.

If R peaks, QRS complexes, T intervals are estimated correctly, further
parameters can be found (ST, QT, DJT or AST). J point is an inflection point in
the interval from the end of S wave to the start of T wave. Usually, the J point
position matches the end of S wave or has a completely different position in this
interval. In order to find the inflection point J, the equation with second row
derivative should be solved:

2
I _, (43)

dx?
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T interval estimation algorithm
Input: ECG — filtered ECK signal; C — constant; Q,R,S peaks; frequency — signal
recording frequency
Output: T interval, T amplitude
BEGIN
N = length(S)
for each i from 1 to N do
T position(i) = local extremum in the interval [S(i) + C - frequency; Q(i + 1)];
T amplitude(i) = ECG(T position(i));
start_extrema = ECG extrema in the interval [S(i) + 2C - frequency; T(i)];
end_ekstema = ECG extrema in the interval [T (i); Q(i + 1)];
start number = length(start extrema);
end_number = length(end_extrema);
if start number= 0
T start(i) = (S@) +T(i))/2;
else
T start(i) = min(start_extrema);
if end number= 0
T end(i) = (T()+ Q(i +1))/2;
else
T end(i) = min(end_extrema);
T interval(i) =T end(i) — T start(i);
END

Figure 7. T interval estimation algorithm

DIJT interval starts at the J point and ends at the end of T wave. In order to
estimate this value, the subtraction (from T wave end position point subtracted J
point) should be made. AST parameter is the amplitude distance from isoline to S
wave end point. If the human heart is in a good condition, the AST= 0. Otherwise,
this parameter can gain positive or negative values.

One of the most popular ECG derivative parameters is a discriminant that
describes the fluctuation of R-R intervals and QRS complexes. In ECG signal
analysis, the selected discriminant estimation method is expressed in this form:

D(RR — QRS), = (RR, — QRS,)?
(44)

+ 4'(RRn—l - QRSn—l)(RRn+1 - QRSn+1);
where RR is duration between R peaks, n is the cycle number of the heart. This
parameter is very sensitive to all changes in ECG signal and is widely used to
monitor the health condition of sportsman during the stress tests.

2.3. Signal classification

A classification algorithm is a method that consists of two main parts: primary
signal transformation and the classification itself. Primary transformation process
is used to gain specific features from the raw signal and reduce its dimension for
the better classification results. At the end of this process, a part of ECG signal (or
its parameters) is considered as noise and is removed from the further analysis (as
non-essential information) (Wei et al., 2018). The classification of ECG signals to
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different pathologies or health stages is a complicated task that is based on signal
structure recognition. Generally, several classification algorithms are used to solve
the particular problem (Shao et al., 2018). A similar classification task can be
formulated in the fatigue identification process. In this case, the research object is
not continuous ECG signal or its fragmentation but different signals that were
recorded at different times of the day (in the morning and in the evening). Usually,
fatigue appears after intensive physical activity or at the end of the day. Physical
fatigue detection is a simpler task because after intensive training session, the heart
works faster. Meanwhile, mental fatigue detection is a complicated task because
there is no clear difference in ECG signal parameters. The suggested classification
process for mental fatigue identification is shown in Figure 8.

Data processing ECG parameter
E%_G sigr}z})l estimation
recording without ~Q amplitude
fatigue - High frequency -R amgl_itude
@ noise reduction q> - _?, g%gllllttﬁgg
ECG signal - Movement = R}ig inter\{al
recording with atifact removal i ? inte(lz'(\)/g}p 28
fatigue - others
Comparison of different]
ML algorithms for
signal classification
. - KNN
bDetIe\dnillnc tl?cd < I§DA
Fatigue identification <l:| est metho -SVM
for ECG signal GZ -DT
classiﬂcat%on -RF
- others

Figure 8. ECG signal classification scheme for fatigue detection

In data science and forecasting, plenty machine learning algorithms have been
created, such as k-nearest neighbours (KNN), linear discriminant analysis (LDA),
support vector machine (SVM), decision trees (DT), random forest (RF) and
others. In this research, a comparison of different methods was made. It appeared
that RF classifies signals with the highest accuracy (see subchapter 4.2). This
algorithm is based on DT and consists of three main parts:

e Input all data into root nodes for every DT;

e  Minimize the Gini coefficient by dividing data into nodes;

e  Repeat all steps at each split node until the RMSE in the node falls below
a certain value, or the tree reaches a defined depth.
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Ifn is defined as a number of samples in the node t and each node has c classes,
then the number of samples belonging to the class i is n;. The ratio p(i|t) is given
by:

. n;
p(ilt) =— (45)
Gini coefficient I; for each node can be defined as (Oeda & Chieda, 2019):
[
— _ i 2
6(6) = 1= ) p(ile)® 6
i=1

The random forest algorithm requires two data sets, i.e., for training and
testing. The more data is given, the higher classification accuracy can be reached.

2.4. Modelling of training process

As healthy lifestyle is becoming more popular, people practise sports more
often. Biological parameters became the main indicator to avoid heart failure.
Furthermore, people that are doing sports professionally aim to improve their
physical condition in order to achieve better results. The suggested training session
model allows monitoring health condition in real time and warns when the
intensity should be reduced or suggests to increase the training intensity.

In this doctoral dissertation, a real time is defined as 10 sec time interval in
which the ECG signal is recorded. At each 10 sec, the QRS complex and
discriminant are measured, and their values are averaged. The training session
process could be described in five parts: duration, heart rate, QRS complex, JT
interval and discriminant (D).

Duration. Each training session duration depends on the R-R interval quantity.
It is recommended that it should not exceed 1500 R—R intervals.

Heart rate (HR). The lower and upper bounds of heart rate are defined as
follows:

HRy,, = ((220 — A) — HR,,) - 0.5 + HR,, (47)

HR,, = ((220 — A) — HR,) - 0.85 + HR; (48)
where HR,,,, is a lower bound of HR and HR,,,, is upper bound, HR,, is HR before
training, A is the age of a person (Poderys et al., 2010). If HR reaches a lower
value than HR,,,,, then the training intensity should be increased. Moreover, if HR
is higher than HR,,,,, then the exercises should be chosen with lower intensity or
the training session should be stopped.
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Figure 9. Decision making scheme for the training session

ORS complex. If in 30 sec, QRS increases by 5%, the training intensity should
be reduced. For the next 60 sec, the parameter estimation process is suspended.
Then, if QRS is still increasing, the training session must be stopped.

JT interval. If JT duration becomes less than 190 msec, the training intensity
should be reduced, and the parameter estimation is stopped for the next 60 sec.
After that time, if JT still is less than 190 msec, the training session should be
stopped.

Discriminant (D). The discriminant monitoring process is similar to the QRS
complex: if it increases for 30 sec by 10%, the training intensity should be reduced,
and only after 60 sec, it is measured again. If in the next 30 sec it is increasing
again, the training session must be stopped.

If ECG signal parameters are stable (QRS and D do not increase) or do not
reach critical values, the training intensity should remain the same. Otherwise, it
should be increased, decreased, or the training session must be stopped (Gobinath
Aroganam, 2019).

The whole rule-based decision-making algorithm is shown in Figure 9. There
is a variable named “index” that is a used mark if the critical parameter value were
reached for the first or second time. At the beginning of this algorithm, “index” is
equal to zero, and before intensity reduction, it gains value 1. Then, the
corresponding parameter is not evaluated for 60 sec, and the training session
should be stopped if the parameter still indicates a critical health condition.
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Otherwise, the variable “index” again is equal to zero, and the participant
continuous exercising with lower intensity.

The main purpose of this model is to detect physiological state changes and the
best training intensity according to internal and external factors (e.g., as adaptation
to different geographical conditions and time difference, remained fatigue, etc.).
In the international CareWare project “Electronic Wearable Sport and Health
Solutions”, collaborating with scientists from different scientific fields, a mobile
app was created that gave feedback about the training intensity in real time. In this
application, the health state evaluation is made by using ECG signals and
evaluating its parameter values.

3. ECG SIGNAL FILTERING ALGORITHMS

For the algorithms accuracy comparison and filtering parameter estimation,
ECG signal was generated using CMRR 2.0 simulator that illustrates clear
(without noise) electrocardiogram of a healthy heart. The simulator generates a
sinusoid with 150 bpm (beats per minute). The high and low frequency noises
were added to this signal, i.e., high frequency — random Gaussian white noise, low
frequency — sinusoid. The new ECG signal is transformed as follows:

f()=03-sin(09-m-t)+0.001-d; (49)
where d is a random variable with a standard normal distribution.

3.1. Comparison of filtering algorithms and estimation of parameters

Before BEADS filtering parameter estimation, it is important to make sure that
this algorithm is suitable for real time data processing. The run-time of BEADS
for N—point data is presented in Figure 10. Fifty different ECG signals were
generated and filtered using BEADS method. In this graph, some fluctuations can
be seen. In certain cases, the calculations took more than 3 sec. However, the
average curve has a linear correlation to the data size. This shows a good
asymptotic complexity of the analysed algorithm and appropriate real time data
filtering.

® 3 <

Duration, sec _
P
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Number of ECG data paints 10*

Figure 10. The complexity of the BEADS algorithm in ECG signal filtering
26



In the high frequency filtering process, a three-level discrete wavelet transform
algorithm was chosen where threshold functions are from Daubechies wavelet
function family. This method gives the best results at wavelet functions families
of “db11” and “db12”. For further analysis, the “db11” has been chosen. The
simulated and filtered ECG signals using both methods (BEADS and DWT) are
shown in Figure 11.
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Figure 11. Filtering example for simulated ECG signal: (a) simulated signal and
estimated trend with BEADS algorithm, (b) signal without movement artefacts, (c) signal
with noise reduction using DWT filter

For the best movement artefact detection, several methods were compared
between each other, such as the moving average filter (MA), Butterworth filter,
Wiener filter, DWT, etc. The main issue with standard methods is that some parts
of ECG signal are smoothed, and the signal loses a certain amplitude parameter
value. Methods like Wiener filter are not capable to identify the movement trend
precisely, and the signal becomes rambling with respect to isoline. Meanwhile,
MA and BEADS may adapt to the analysed signal and extract movement artefact
without losing the most important ECG signal characteristics. Even though both
algorithms are working precisely, the MA not always manages to adapt to sudden
signal changes and precisely transform it on the isoline.

In Figure 12, the comparison of two filtering methods (MA and BEADS) is
presented where a participant was doing different exercises. If exercises are not
intense and movements are slow and simple (squats and lunge parts (a) and (b)),
the movement trend (bolded line) looks similar in both methods. There are some
variations, but it should not affect the final classification result. Meanwhile, in part
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(c), a severe shortage of MA method can be seen when some ECG parameters
change their sign together with the amplitude value. The identification and
interpretation of these parameters become a complicated task for diagnosis and
health evaluation. The major difference between MA and BEADS methods can be
seen in part (d) where the ECG signal is more contaminated by noise. In this part,
almost all QRS complex falls lower isoline (except R peak). In this way, the T

wave interval becomes shorter, and other parameters change their values.
BEADS BEADS

500

-500 ‘ : -500
0 1 2 470
(©

2

(d

Figure 12. Comparison of MA and BEADS filtering algorithms: (a) squats, (b) lunge, (c)
standing up from sitting position, (d) air squats
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Table 2. The number of QRS complexes that were found using BEADS and MA

algorithms
No. Type of performed exercise BEADS, QRS MA, QRS number
number in 1 min. in 1 min.
1 Squats 119 118
2 Lunge 124 124
3 Lunge 138 138
4 Cardio 147 142
5 Cardio 150 147
6 Cardio 153 143

Additional comparison of MA and BEADS methods can be seen in Table 2,

where the numbers of QRS complexes are shown. In this table, similar results are
presented: when training intensity is high and movements are fast, a lot of
information is lost while filtering with MA algorithm. In some cases, even 10 QRS
complexes are missing compared to the BEADS filter. Furthermore, it should be
noticed that the length of the delay window in MA algorithm was selected 0.5 sec
and for reconstruction, 0.25 sec.

3.2. Noisy EEG signal simulation using ECG signal movement
artefacts

In this subchapter, the EEG signal is simulated using ECG movement artefacts.

This process consists of five parts:

Signal recording: ECG signals were recorded while a series of different
physical exercises were performed. The SOA was used to monitor human
physiological signals.
BEADS filter parameters optimization using noisy ECG signal as a reference
and the number of detected QRS complexes as a fitness function.
Movement artefact extraction from the ECG signal using the modified
BEADS filter.
Generation of the surrogate movement signals using Intrinsic Mode Function
(IMFs) that has derived from Empirical Mode Decomposition (EMD). Then,
it is applied on the EEG signal.
Movement artefacts removal from the noisy EEG signal.

The flow chart of the proposed methodology is shown in Figure 13.

) . BEADS Movement Surrogate Movement
Signal recordin parameters extraction from movement artefacts removal
optimization ECG signal generation of EEG signal

Figure 13. Schematic diagram of applied methods for the EEG signal simulation
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For the ECG signal recording, the CardioScout Multi device was selected
(sampling frequency 500 s~1). This experiment consists of ten main functional
training exercises with two static exercises (plank and side plank), two cardio
exercises (star jump and high knee) and six dynamical exercises (dead bug, burpee,
lunge, air squat, scatter jump and push up). The duration of each exercise
performance was about 1 min. The recorded ECG signals have various amplitudes
and fluctuations because they have been affected by different high and low
frequency noise.
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Figure 14. Normalised cut-off frequencies in different physical exercises and QRS
complexes detection in noisy ECG signals

Some examples of BEADS filter parameters optimization during different
exercises are presented in Figure 14. The most important parameter for filtering is
normalised cut-off frequency f,. Each exercise has its own baseline because
different muscles are working. In Figure 14, it can be seen that the best results
(highest QRS number) are reached with f. < 0.1. Some exercises are almost
stationary (plank, side plank), and their normalised frequency values should be
lower than f, < 0.02. Furthermore, cardio exercises (such as high knee or skater
jump) have larger trend and are more affected by high and low frequency noise.
That is why the QRS detection becomes a complicated task, and f, fluctuates more.
During the ECG signal processing and its trend removal, the QRS detection
process is initialized in each step. It is assumed that the higher number of QRS
complexes leads to a better filtering result.

Furthermore, it can be noticed that the “dead bug” exercise has a high trend
that fluctuates a lot. The example of this exercise and movement signal extraction
is presented in Figure 15.

After the ECG signal pre-processing had been completed, and all movement
trends had been obtained, the next step was a baseline appliance on the EEG signal.
Simulated EEG signals were modelled as a superposition of two main components,
i.e., the original EEG signal and surrogate movement signals. This allows to
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simulate movement contaminated EEG signals and learn or suggest different
methods for the EEG signal processing during physical activity.
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Figure 15. (a) Example of the ECG signal contaminated by movement artefact, (b)
detrended ECG signal, (c) signal of extracted movement

The spectral Pearson’s correlation was estimated using the spectra of the
original and simulated EEG signal (see Table 3). There, spkory;, shows the
spectrum correlation of the original and detrended EEG signals. For better
comparison, alpha, beta and gamma waves were separated, and their spectrum
correlations were calculated as well. spkorypne, SPkOTherq, SPKOTgamma
represents the spectrum correlation between alpha (8—15 Hz), beta (16-31 Hz) and
gamma (= 32 Hz) waves of the EEG signal. The results represented in Table 3
show that the proposed method does not damage the spectral characteristics of the
EEG signal and the denoised signal resemble the original signal. The best
correlation was achieved when the participant performed “star jump” and “air
squat” exercises. Moreover, higher frequencies lead to lower Pearson correlation.
This could have happened at the time of trend removal process because of the
corruption of the signal. The higher is the frequency, the bigger corruption is done,
because EEG signals mainly have high frequency waves.

31



Table 3. Correlations of original EEG and filtered EEG signals that were contaminated by
movement artefacts

Exercise spkorig Spkoraipna | SPkOTperq spkoTyamma fz
Plank 0.895 0.908 0.929 0.931 0.083
Side plank (left) 0.900 0.948 0.958 0.962 0.002
Side plank 0.907 0.954 0.963 0.963 0.003
(right)

Dead bug 0.923 0.920 0.954 0.963 0.010
Star jump 0.930 0.962 0.974 0.964 0.028
High knee 0.914 0.930 0.969 0.966 0.010
Bur pee 0.902 0.924 0.957 0.950 0.062
Air squat 0.928 0.958 0.972 0.960 0.031
Lunge 0.836 0.849 0.871 0.869 0.167
Skater jump 0.920 0.867 0.942 0.949 0.023
Push up 0.923 0.916 0.960 0.963 0.062

3.3. Conclusions

Stationary recorded ECG signal filtering does not require difficult methods,
and it can be done using MA filter or Furje transformation. Generally, the
processing of these signals requires only one filtering method for low and high
frequency noise reduction. Ordinary ECG filtering methods cannot be reliably
used in movement because of two main problems:

1) some methods are not capable to sufficiently reduce the noise and expose
basic ECG signal characteristics because of the noise frequency fluctuations.

2) the selected removable frequency interval is too wide and that causes essential
information losses about the signal itself.

The majority of simple filtering methods is not considering the time domain
delay, or the signal is smoothed to the point that there is no meaning of analysing
amplitude parameter values that have been left. During low intensity exercises,
MA algorithm works fine and with similar accuracy as BEADS filter. However, if
exercises make muscles contract fast and hear is loaded more intensively, MA fails
in movement-artefact detection and hardly reconstructs the ECG signal on the
isoline. Some parameter values even change its sign (amplitude value).

The fluctuations of high and low frequency noise depend on the exercise type
and are not stationary. That is why different algorithms were proposed for those
tasks: BEADS algorithm extracts the trend of the particular movement, and DWT
method reduces high frequency noise. Even though BEADS algorithm is more
complex and requires more computational resources (compared with MA filter),
its complexity has a linear correlation to the size of the data that leads to good real
time processing results. It has been found that the same filtering methods are
appropriate for EEG signal processing and do no damage to the spectral
characteristics of the analysed signal.
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4. ECG SIGNAL ANALYSIS FOR FATIGUE DETECTION AND
EVALUATION

4.1. Fatigue evaluation using HRV analysis

Before HRV analysis and fatigue detection, it is important to filter and correct
the R-R intervals sequence. There are mainly two artefact types in R—R interval
series, i.e., ectopic beats and missing/misread value. Three artefact detection
methods (percentage filer, standard deviation filter, median filter) were applied
that form the corrected signal data points with spline interpolation for the detected
artefact. Using these filtering methods, the R-R interval data was prepared for
linear and non-linear HRV analysis.

Linear heart rate variability parameters can be divided into two main groups:
time and frequency scale parameters. In this research, ECG signals were recorded
for 60 days (each duration was 60 sec). Two times a day (in the morning and in
the evening), 8 exercises were performed (4 with low intensity: squats, lunge, side
lunge, stand up from sitting position and 4 with high intensity: high knee, air
squats, star jumps, scatter jumps). Each exercise was performed for 15-16 times
with 15 sec rest. ECG signals were recorded before and after the training sessions.
Four different stages can be defined: Al in the morning, before exercises; A2 in
the morning, after exercises; A3 in the evening, before exercises; A4 in the
evening, after exercises. For the recorded ECG signals, R-R intervals were
estimated, and HRV parameters were found. Time and frequency scale HRV
parameters distribution is shown in Figure 16 where bean plots are presented. In
Figure 16, the differences between data distributions of all four stages can be seen:
linear HRV time scale parameters differ a lot between stages A1 and A2 or A3 and
A4. This means that instant physical fatigue can be recognized from those graphs.
However, the detection of mental or general (physiological) fatigue that appears
in the evening (between stages Al and A3) is a more complicated task. There is
no big difference in bean plots (data distribution) of those stages. In this research,
additional statistics were calculated for stages A1 and A3. From basic linear HRV
parameter statistics and data correlation hypothesis, no statistical significance in
correlation has been noticed, and p > 0.05 = a. This leads to the conclusion that
linear HRV analysis is not suitable for the physiological fatigue detection.
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Figure 16. Beans plots of linear HRV parameters in different stages (A1, A2, A3, A4)

Further analysis was performed using a nonlinear HRV method with Poincare
plots and parameters. In this research, five different stages were discussed: Bl
before training, B2 low intensity exercises, B3 rest time, B4 high intensity training,
BS recovery time. The example of measured Poincare parameters is presented in
Table 4. In this table, the heart rate variability changes of different training stages
are shown. The estimated parameters are expressed in seconds. In this particular
example, the participant performed squats as a low intensity exercise and air squats
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as a high intensity exercise. In Table 4, the B1 stage illustrates a good heart
condition with scattered dots that leads to high heart rate variability. The same
tendency can be noticed in stages B3 and B5. However, B2 and B4 show limited
HRYV. During the resting time, SDRR increased and reached an even better value
than it was before training (SDRR; = 0.086 < 0.142 = SDRR;). This means that
after low intensity training session, HRV returned to the normal condition.
However, after the training session (stage B5), SDRR parameter decreased, and
HRYV hardly returned to the normal condition. This could be described as fatigue.

Table 4. Poincare parameters in different exercises

Stage Training intensity SD1 S5D2 SDRR RMSSD
Bl Before training 0.010 0.111 0.086 0.015
B2 Low intensity exercise 0.006 0.064 0.087 0.008
B3 Testing time 0.017 0.116 0.142 0.024
B4 High intensity exercise 0.007 0.088 0.078 0.011
BS5 Recovery time 0.009 0.131 0.065 0.011
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Figure 17. Poincare ellipses examples in different stages: (a) person that was exercising
regularly, (b) person that did not have intensive physical activity for a long time

Two examples of Poincare ellipses are shown in Figure 17 where participants
have different physical preparation: part (a) is when the participant is doing sports
professionally and regularly, part (b) is when the participant did not have any high
intense activity for a long time. In Figure 17, it can be seen that the ellipse of stage
B2 in part (b) (of the person with no physical preparation) dropped instantly
compared to the ellipse in stage B1. It can be stated that for this person, HRV is
small and cannot adapt even to the low intensity exercises. Moreover, in three
minutes of recovery time, the ellipse of this participant (in part (b)) hardly moved
from the position of stage B4 (high intensity exercise). Meanwhile, a person in
part (a) had almost full recovery in stage B5 where the ellipse consistently came
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back to the initial position. Based on these observations, it can be stated that
Poincare analysis is a good method for instant fatigue detection and evaluation of
human physical preparation. However, linear and nonlinear HRV analysis
methods are not sufficient for mental or physiological fatigue detection.

4.2. ECG signal classification for fatigue identification

Even though the HRV analysis is a good tool for physical fatigue detection,
the mental or physiological fatigue identification is a more complicated task and
requires using more complex methods. In this research, additional ECG
parameters were estimated: Q, R, S, T peak amplitude values (marked as Qa, Ra,
Sa, Ta), QRS complexes (marked as QRS) and R—R, T, ST, QT intervals (marked
as RR, Tint, ST, QT). The example of ECG parameter estimation is shown in Figure
18. For physiological fatigue detection, stages Al and A3 were analysed (see
subchapter 4.1); 8271 measurements have been estimated in 60 days of ECG
signal recordings: 4195 belong to stage Al and 4076 to stage A3. It has been
noticed that some ECG signal parameter values overlap. For example, there is no
significant difference between stages Al and A3 in RR interval values. That is
why simple and linear methods are not capable to separate these stages and identify
fatigue. In this research, machine learning technique was selected to classify the
ECG parameters into stages Al and A3.

>
5 200
3 ECG signal
a =] Q ) o =] -] -] o Qll
;T'; 0 —_— —_ —_ —_ — —_ — — Ra
g Sa
< o Ta

-200 — Tint

1 2 3 4 5 6
Time, s

Figure 18. Example of ECG parameter estimation

At the beginning of this research, different ML algorithms were analysed and
compared (see Table 5 and Figure 19) with all 9 ECG characteristics. The data set
is split into training and validation (70%) and testing (30%) subsets. To all ML
methods, 10-fold cross validation was applied to make sure that the model does
not overfit the training data. In Figure 19, the validation accuracy results have been
presented when 100 calculations were applied. In Table 5, validationgecyracy-
F1, MCC were averaged and compared to all analysed ML algorithms.
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Figure 19. Boxplots of different ML algorithm accuracies

From Table 5 and Figure 19, it can be seen that the best algorithm for
physiological fatigue detection is random forest that classifies stages Al and A3
with higher than 95% accuracy. For all compared ML techniques, different
hyperparameter values were analysed. In this research, DT had 100 maximum
splits and 9 maximum surrogates in each node. Meanwhile, the selected RF
algorithm consists of 30 DT with maximum 20 splits for every tree. Based on these
results (see Table 5), RF algorithm was selected for further analysis.

Table 5. The accuracy of different machine learning algorithms

Method validationggcyracy - 100% F1 McC
KNN 94.19% 0.94 0.87
LDA 76.82% 0.75 0.46
Quadratic SVM 90.89% 0.91 0.82
DT 92.31% 0.92 0.83
RF 95.08% 0.95 0.90

RF algorithm consists of different DT in which every node is a condition on a
single feature, designed to split dataset into two parts. Similar response values end
up in the same data set. Different ECG characteristics (parameters) may have
different impact on the classification result. The importance of the feature is
computed from how much each feature decreases the entropy in a tree.
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Figure 20. The importance of ECG parameters in stages Al and A3 classification: (a)
ECG parameters and FR accuracy, (b) cumulative accuracy curve for RF model

As it can be seen in Figure 20, if the selected threshold is equal to 0.8, only
four ECG parameters (Sa, Ra, Ta and QT) are important for A1 and A3 stage

classification (fatigue detection). Based on these results,

designed using only these four ECG characteristics.

the final RF model is

A random forest algorithm has many different hyper parameters, and all should
be estimated. For this task, a random search algorithm was selected. It is based on
grid search technique (that tries every possible combination) but iterated limited
times and randomly selects hyperparameter values. Only the best hyperparameter
values are saved that maximize the FR validation accuracy. The final results are

shown in Table 6.

Table 6. RF model hyperparameter values

newly added tree

Parameter Value
“max_depth” ensures that no further splitting will be made if | 7
the maximum tree height is reached

“min_samples_split” only nodes with equal or higher number | 40
of samples could be split

“max_features” defines the number of features to be | 2
considered while initiating each split

“min_samples_leaf” defines the minimum number of samples | 7

in every leaf

“n_estimators” is the number of decision trees 40
“learning_rate” defines the impact of final result for every | 0.15

Finally, RF model testing results are presented in Figure 21 where confusion
matrix is shown. It can be noticed that true positive (stage A3) and false positive
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(stage A1) values are predicted with similar accuracy (95% and 94%). The general
testing accuracy of this model is 94.5%.

1425
95%

=}

True class

Predicted class
Figure 21. Confusion matrix of stages Al and A3 classification results
4.3. Conclusions

Signal artefact detection and its correction for the recordings of physiological
signals during dynamic activities are important for the analysis and understanding
the way human body works. This research presents a novel approach for the
analysis of signal artefacts from R—R interval data series.

This research analyses two types of fatigue, i.e., 1) physical fatigue that
appears instantly during or after training session, 2) mental fatigue that appears at
the end of the day or after intensive work in front of the computer. When a
comparison of ECG signals before and after the training session was done, some
of the suggested linear HRV parameters exposed instant physical fatigue. No
statistical significance was found between the morning/evening estimation of
HRYV linear parameters.

Nonlinear HRV analysis using Poincare diagrams identifies physical fatigue
as well as allows making assumptions about physical preparation of participant’s
heart for an intensive work load. Observing R—R interval fluctuations in different
stages (while performing different exercises) and the shape of the ellipse or
position in the (RR(n), RR(n + 1)) coordinate plane, the exercises can be grouped
by intensity. Furthermore, it has been noticed that the more intense is the exercise,
the lower SDRR value can be reached (for example, when walking for the first
time, SDRR, 4 = 0.239, while in the first “scatter jump” round,
SDRRscatter jump = 0.040).

Whereas the HRV analysis limited to R-R interval analysis and its
fluctuations, identifying mental or general fatigue, is a hard task. An additional
analysis was made for this purpose where other ECG parameters were estimated:
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Q, R, S, T peak amplitude values, QRS complex, R—R interval, T interval, QT and
ST. However, using the RF model, only four features (Sa, Ra, Ta and QT) appeared
to be important for A1 and A3 stage classification task. The final RF model can
predict fatigue with higher than 94% accuracy.

CONCLUSIONS

40

1. ECG signals that are recorded in movement are contaminated by various
disturbances such as electrode contact noise, unstable wires and movement
artefacts. In this research, it has been found that only one filtering algorithm is
not enough to process these signals. A combined filtering method was
proposed that consists of two different algorithms, i.e., modified BEADS
algorithm for low frequency noise (movement artefacts) removal and DWT for
high frequency noise reduction.

2. Inthis research, a modification of BEADS algorithm was introduced. With
this improvement, different BEADS algorithm parameters (such as f;) can
adapt to ECG signal noise and eliminate it. The modification allows to extract
low frequency noise without damaging bio-signal time and frequency scale
characteristics. During the study, it appeared that similar algorithms (such as
moving average filter) distort some ECG signal characteristics (for example,
moves T wave above the isoline). In addition, the extracted movement artefact
signal from ECG signal is as well used to generate surrogate EEG signals.

3. The ECG parameter search algorithm is based on &~-TEO method. It was
extended by adding T wave peak and interval detection. The suggested method
is appropriate for real time processing. The obtained ECG parameter values
are used in HRV analysis and signal classification process.

4. A special training session intensity control model is presented. It helps to
avoid heart failure or injury. This model is integrated in Careware mobile app
and used together with CardioScout Multi device for athlete training sessions.
5. A new linear and nonlinear HRV analysis methodology is suggested that
allows to immediately identify physical fatigue while exercising or just after
the training session. In addition, a significant correlation between Poincare
ellipse shape or position in coordinates plane and participant training
preparation has been noticed.

6. After ML algorithms comparison, the random forest method was selected
for physiological fatigue identification. In addition, it appeared that four ECG
parameters (Sa, Ra, Ta and QT) are the most important in the fatigue
classification process. The final RF model can predict physiological fatigue
with higher than 94% accuracy.
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EKG SIGNALU ANALIZE TRENIRUOCIU PROCESO
MODELIAVIMUI IR NUOVARGIO VERTINIMO METODIKOS
SUDARYMUI

Temos aktualumas ir svarba

ISmaniosios technologijos vis populiaré¢ja tarp jvairaus amziaus Zmoniy, o
tobuléjantys jrenginiai bei besiplétojanti debesy duomeny saugojimo sistema
leidzia dauguma paslaugy vykdyti nuotoliniu biidu.

Sveikatos buklés stebéjimui sporto klubuose, klinikose, darbo vietose ar
namuose vis daZniau naudojamos jvairios mobilios aplikacijos, skirtos mégéjiskai
sportuojantiems, atsakingus darbus dirbantiems, vyresnio amziaus ar specifiniy
susirgimy turintiems zmonéms, profesionaliems sportininkams ir kt. Elektroninés
nuotolinio valdymo sistemos kartais gali pakeisti jprastus sveikatos priezitiros ir
stebésenos metodus. Zmonés vis dazniau iesko informacijos internete apie savo
sveikatos bikle, galimus gydymo metodus, rekomendacijas ar dalijasi patirtimi
tarpusavyje. Neretai sveikatos stebéjimo sistemoms reikalingi papildomi
prietaisai, todé¢l jy paklausa nuolat auga, taCiau tiek jrenginius, tiek aplikacijas turi
biiti paprasta naudoti, jie turi biiti lengvai suprantami kiekvienam vartotojui.
Invaziniai tyrimo metodai tokiu atveju tampa netinkami, todél elektrinius
gyvybinius signalus ir kitus sveikatos duomenis registruojantys neinvaziniai
jrenginiai bei juos apdorojanti programiné jranga tampa paklausi.

Medicinoje elektriniai signalai paprastai yra registruojami zmogui esant
stacionarioje biisenoje, nes norima minimizuoti galimus iSorinius triukSmus.
Taciau registruojant jprastin¢je aplinkoje retai pavyksta iSvengti triuk§my, kurie
gali atsirasti dél kvépavimo, raumeny susitraukimy, prasty signalo perdavimo
kanaly ar nutrikimy, nepilno elektrodo saly¢io su oda, mirkciojimo ir kity trikdziy.
Lietuvos ir uzsienio mokslininkai pritaiké bei iSplétojo daugybe signaly filtravimo
algoritmy, kuriy déka jvairiis triuk§mai gali btiti sumazinami nesugadinant pacio
elektrinio signalo charakteristiky. Nors stacionariai registruoti signalai vis dar
placiai naudojami diagnostikoje, jie netinkami jvertinti Zmogaus organizmo
skirtingy sistemy tarpusavio sgveika bei kitimo dinamika kasdienés jprastinés
veiklos metu.

Zmogui atliekant fizinius ar protinés veiklos pratimus veikia kelios
sistemos, taip pat Sirdies bei kraujagysliy, raumeniné ir nervy sistemos. Vis
populiar¢janciais Sirdies ritmo variabilumo bei elektrokardiogramy parametry
dinaminiy sasajy tyrimais siekiama rasti sarySius tarp zmogaus kompleksinés
sistemos komponenty. Nors Sie tyrimai dazniausiai pagrijsti elektrokardiogramy
signaly analize, jie atspindi nepertraukiamus momentiniy Sirdies ritmy svyravimus
ir suprantami kaip atsakas j jvairias fiziologines biisenas ar tam tikras patologines
bukles, reguliuojamas autonominés nervy sistemos ar kraujotakos. Nors judesio
metu elektrokardiogramy registravimas neatrodo sudétinga uzduotis, taciau patys
signalai yra gerokai triukSmingesni nei fiksuoti stacionariomis salygomis.
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Priklausomai nuo judesio intensyvumo triukSmai tampa nestacionariis ir
standartiniai filtravimo algoritmai nebesugeba signaly apdoroti tinkamai,
nepazeisdami svarbiausiy charakteristiky. Siame darbe pasiilyti elektriniy signaly
filtravimo algoritmai geba prisitaikyti prie triukSmo lygio esant skirtingai Sirdies
apkrovai (parenkant skirtingo intensyvumo fizinius pratimus) bei iSsaugo
pagrindines elektrokardiogramos signalo parametry reikSmes, reikalingas buklés
jvertinimui ir proceso valdymui.

Sirdies ritmo variabilumo tyrimai taip pat svarbiis ir fizinio ar fiziologinio
nuovargio identifikavimo procese. Fiziologiniu nuovargiu vadinamas bendras
nuovargis, apimantis fizinj, protinj ir emocinj zmogaus nuovargj. Fizinis
nuovargis ypac¢ aktualus profesionaliai sportuojantiems ar intensyvy atsakinga
darbg atlickantiems asmenims. Sportininkai patenka j mazos rizikos grupg dél
tikimybés susirgti Sirdies ligomis, taciau, nepastebéjus simptomy laiku, gali
atsirasti negrjztami Sirdies pazeidimai. Dél Sios priezasties vis daugiau
profesionaliy sportininky ir neprofesionaliai sportuojanciy Zmoniy domisi
naujausiomis technologijomis, leidzianciomis stebéti savo sveikatos bukle bei
kontroliuoti treniruotés intensyvuma realiu laiku. Tuo tarpu, biuro darbuotojai
dazniausiai susiduria su fiziologinio nuovargio problemomis, kurios gali pereiti j
letinius sveikatos sutrikimus bei turéti ilgalaikiy pasekmiy. Neretai laiku
nepastebétas nuovargis gali tapti pagrindine nedarbingumo priezastimi. Sio tyrimo
metu buvo identifikuojami pagrindiniai elektrokardiogramos parametrai,
leidziantys aptikti fizinj ar fiziologinj nuovarg] naudojant Sirdies ritmo
variabilumo analiz¢ ir ma$ininj mokyma.

Pagrindiniai tyrimai Siame darbe atliekami naudojant elektrokardiogramos
signalus, taiau taip pat parodyta, kad naudoti triuk§my filtravimo algoritmai yra
efektyviis ir kitiems elektriniams signalams. Apdorotiems signalams buvo
patobulinti ir pritaikyti elektrokardiogramos parametry paieskos algoritmai ir,
naudojant Sirdies ritmo variabilumo analizg, parinkti metodai nuovargio
vertinimui. Be to, nuovargio identifikavimo metodika ateityje gali buti pritaikyta
jvairiose mobiliose aplikacijose ir naudojama darbo metu. Tai leisty sumazinti
traumy rizika, mirciy skaiciy dél Sirdies ir kraujagysliy ligy bei laiku aptikti
nuovargio pirmuosius simptomus ir, juos efektyviai paSalinus, padidinti
darbinguma.

Tyrimy objektas — elektrokardiogramos signalai, registruoti jvairaus
intensyvumo fiziniy ir protiniy pratimy metu.

Darbo tikslas — apdoroti elektrokardiogramos signalus ir analizuoti jy
poky¢ius, gautus rezultatus panaudoti treniruociy proceso valdymo modelio ir
nuovargio vertinimo metodikos sudarymui.

Darbe sprendziami uZdaviniai:

e FElektrokardiogramos signalus bei jy apdorojima apraSancios literatiiros
analiz¢ ir pagrindiniy parametry identifikavimas, siekiant istirti sveikatos
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biiklés vertinimo parametrus.

e Zemo ir aukito dazniy triuk$my pasalinimo algoritmy apzvalga bei
tinkamy metody parinkimas ir jy pagerinimas.

e EKG signalo parametry paieSkos metody papildymas jtraukiant j
algoritma T bangos amplitudines bei intervalines vertes.

e Fiziologinio nuovargio vertinimo metodikos sudarymas, realizavimas bei
testavimas realiomis sglygomis.

Darbui naudojami jrenginiai ir programinés priemonés:

e FElektrokardiogramos registruojamos naudojant CardioScout Multi
jrenginj (su registravimo dazniu 500 s™1).

e  Algoritmy paklaidoms vertinti generuojami elektrokardiogramy signalai
naudojant simuliatoriy CMRR 2.0, kuris generuoja sinusoide su 150 bpm
(duiziy per minutg).

e Visi signaly apdorojimo, EKG parametry paieskos bei nuovargio
vertinimo algoritmai realizuoti naudojant MATLAB R2015b paketo
matematings ir statistinés analizés funkcijas.

e R-R intervaly filtravimo algoritmai realizuoti naudojant Kubios HRV
programinj paketa.

Darbo mokslinis naujumas ir praktiné svarba:

e Tyrimo metu buvo parinkta elektrokardiogramos, registruotos judesio
metu, filtravimo algoritmai bei patobulinti atsizvelgiant | pagrindines
signalo charakteristikas, jy neiskraipant.

e Suformuota Sirdies ritmo variabilumo vertinimo metodika fiziniam
nuovargiui jvertinti, apimanti duomeny analiz¢, interpretacija ir
vizualizacija.

e Sudaryta elektrokardiogramos signalo parametry paieskos metodika,
jtraukiant T piko amplitudines ir intervalines reikSmes. Signaly
klasifikavimui pasiiilytos charakteristikos, kurios leidzia jvertinti signalo
pokyc¢ius. Metodikos taikomos zmogaus sveikatos biklei vertinti ir
stebéti bei nuovargiui identifikuoti.

e Individualizuotos treniruotés valdymo rekomendacijos, vertinimui
naudojant duomenis, gautus i$ nutriukSmintos elektrokardiogramos.

Darbo rezultaty aprobavimas:

Disertacijos tema pateikti 5 moksliniai straipsniai, i§ kuriy 2 mokslinés
informacijos instituto duomeny bazés (ISI) leidiniuose, kurios turi citavimo
indeksa. Viena publikacija atspausdinta tarptautingje, kita nacionalingje
leidyklose. Likusios trys publikacijos pristatytos kity tarptautiniy duomeny baziy
recenzuojamuose leidiniuose.

Siame darbe gauti rezultatai buvo pristatyti 6 tarptautinése konferencijose.
Lietuvoje vykusiose tarptautinése konferencijose: 2017 metais Druskininkuose
,Mathematical modeling and analysis: 22nd international conference®, 2018
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metais Druskininkuose ,,10th international workshop on data analysis methods for
software systems®“, 2019 metais Kaune ,,Sportininky rengimo valdymas ir
sportininky darbinguma lemiantys veiksniai: sporto forumas — tarptautiné
moksliné konferencija, skirta Lietuvos sporto universiteto 85-meciui paminéti* ir
Vilniuje ,,Information and software technologies: 25th international conference*.
Taip pat disertacijoje apraSyti tyrimai pristatyti 2017 metais Graikijoje, Saloniky
mieste, ,International conference on biomedical and health informatics® ir
Estijoje, Talino mieste, ,,Sampling theory and applications 2017: 12th international
conference®. Pasidalinta patirtimi bei pristatyti tyrimai Porto universitete
Portugalijoje 5 dieny stazuotéje ,,STSM scientific mission® tema: ,,ECG signal
filtering, analysis and parameter estimation®, kuri buvo finansuojama European
Cooperation in Science and Technology (COST).

Disertacijos darbo rezultatai buvo naudojami struktiiriniy fondy projekto
,,EKG signalo filtravimo ir parametry skai¢iavimo tyrimas® (inocekiai nr. 01.2.1-
MITA-K-824-01-0359) moksliniy tyrimy ir technologinés plétros jgyvendinimui
(2017 09-2018 02). Taip pat plétojami tyrimai programos EUREKA projekte
11169 ,,Non-intrusivehuman fatigue assessment (Fatigue)* (2018 09 01-2021 08
30). Be to, dalis darbe aprasyty metody prisidéjo prie ,,CareWare: Electronics
Wearable Sport and Health Solutions* projekto plétojamy tyrimy.

Darbo apimtis ir struktiira:

Sig daktaro disertacija sudaro jvadas, 4 pagrindiniai skyriai, i$vados,
praktiné svarba, literatiiros sgrasas ir publikacijy saraSas. Darbo apimtis yra 114
puslapiy, 55 paveiksly, 26 lentelés ir 181cituojamy literatiiros Saltiniy aprasas.

ISVADOS

1. Judesio metu registruoti EKG signalai yra triukSmingi dél atsiradusiy jvairiy
trikdziy (tokiy kaip elektrodo salyc¢io su oda, laidy judéjimo ir pan.) ir pacio
judesio pobiidzio. Tyrimo metu nustatyta, kad vieno bendro filtravimo
algoritmo tokiems signalams apdoroti nepakanka. Siame darbe pasiilyta
naudoti dviejy metody derinj: modifikuota BEADS algoritmg — Zemo daznio
triuk§mams (judesio artefaktams) paSalinti ir DWT — aukSto daznio
triuk§mams sumazinti.

2. Siame darbe aprasyta BEADS algoritmo modifikacija skirta judesio metu
registruotiems EKG signalams filtruoti. D¢l Sio patobulinimo, algoritmo
parametrai (tokie kaip f,.) geba prisitaikyti prie skirtingy judesio triukSmy ir
sékmingai juos eliminuoja nepazeidziant pagrindiniy signalo parametry.
Tyrimo metu paaiskéjo, kad alternatyvis algoritmai, tokie kaip slenkancio
vidurkio filtras, kai kurias EKG signalo dalis iSkraipo (pvz., T banga atsiduria
zemiau izolinijos), o tai apsunkina tolesng EKG parametry paieska. Be to,
naudojant modifikuota BEADS algoritma neiSkraipomos pagrindinés
biologiniy elektriniy signaly (EKG, EEG, EMQG) laiko ar dazniy skaliy
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charakteristikos.

Palyginus kelis filtravimo metodus buvo parinktas DWT algoritmas EKG
signalo aukSto daznio triukSmams sumazinti. Naudojant §j algoritma
simuliuotiems EKG signalams su Daubeches ,,db11* bangelémis paSalinami
auksto daznio triukSmai ir gaunama RMSE paklaida lygi 0,088.

EKG parametry paieskos & — TEO algoritmas papildytas T bangos
apskaiCiavimu ir rastos kity EKG parametry (7a, Tint, QT ar ST) reikSmes.
Kadangi Sio signalo forma bei parametry eiliSkumas Zinomas, papildymai
remiasi ekstremumy nustatymu ir nereikalauja dideliy skaic¢iavimo resursy
(reikalingy duomeny apdorojimui realiu laiku) bei randa parametrus
triuk§mingame signale.

Atlikus papildomus eksperimentus sudarytas ir apraSytas treniruotés
intensyvumo valdymo modelis, leidziantis sportuojanciam iSvengti Sirdies
veiklos sutrikimy, traumy ir pasiekti maksimaliy rezultaty (jvertinus QRS, SR,
JT ir kt.). Sis algoritmas jdiegtas j Careware mobilig aplikacijg ir kartu su
CardioScout Multi jrenginiu naudojamas profesionaliai sportuojanciy Zmoniy
treniruotés metu.

Pasiiilyta tiesin¢ ir netiesiné SRV metodika geba identifikuoti fizinj nuovargj
treniruotés metu ar po jos. Priklausomai nuo pratimo intensyvumo keiciasi
Poincare elipsés forma bei pozicija. Nors sudétinga iSskirti konkrecias
parametry reikSmes, lemiancias nuovargj, tyrimo metu nustatyta, kad
Poincare elipsés postiimis Zemyn reiSkia padidéjusi Sirdies darbg. Létas
elipsés atsistatymas | prading pozicija gali rodyti stipry fizinj nuovargj arba
prastg fizinj parengtuma.

Palyginus jvairius maSininio mokymo metodus ir jvertinus jy tiksluma,
pasirinktas atsitiktinio miSko algoritmas kaip geriausiai tinkantis fiziologinio
nuovargio identifikavimui (tikslumas apie 95 %). Tyrimo metu paaiskéjo, kad
geriausiai nuovargj apraso keturi EKG signalo parametrai: Sa, Ra, Ta, QT.
Nustatyta, kad atsitiktinio miSko klasifikatorius individualiam nuovargiui
identifikuoti susideda i§ 40 skirtingy sprendimy medziy, kuriy kiekvieno
aukstis ne didesnis nei 7.
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