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INTRODUCTION 

Relevance of the work 

Smart technologies become more and more popular among people of different 
ages. Cloud-based technologies that are constantly improving allow majority 
services to be offered remotely. In order to monitor the health condition in gyms, 
clinics, working places or even at home, various apps are useful for those who 
have specific health conditions, are athletes or beginners in sport activities, elderly 
people and others. Electronic remote-control systems can sometimes replace 
ordinary health monitoring methods. People search for information on the Internet 
about their health condition, possible treatment methods, recommendations and 
share their experiences with each other. Health monitoring systems often require 
additional devices. Even though their demand is growing rapidly, every device and 
application needs to meet today’s standards and be user friendly for everyone. 

In medicine, biological signals are recorded when a person is in a stationary 
condition to make sure that the noise of the signal is minimal. However, it is hard 
to get a signal during activity without any noise that appears with breathing, 
muscle contractions, poor signal transmit channel or interruptions, blinks and other 
disturbances. Scientists from Lithuania and abroad apply numerous signal filtering 
methods without damaging the main signal characteristics in time or frequency 
scale. Even though signal recording in stationary condition is still widely used in 
diagnostics, they have limitations when it comes to the evaluation of interactions 
between different human organism systems and dynamic changes in daily 
activities.  

If a person performs physical or mental exercises, multiple systems work in 
parallel: cardiovascular, muscular, neural and others. Heart rate variability and 
electrocardiogram parameter dynamical change analysis are becoming more and 
more popular because scientists are trying to find out how multiple human parts 
interact together as a single complex system. These researches are often based on 
ECG signal analysis; they show uninterruptable immediate heart rate variability, 
which is a response to different physiological or pathological states. Even though 
it may seem that ECG signal registration in movement is not a complex task, the 
signals are contaminated with various noises. The obtained noise is non-stationary 
and depends on the intensity of a particular exercise. That is why ordinary filtering 
methods fail in signal processing without damage to basic signal characteristics. 
The proposed filtering algorithm is able to adapt to the level of appearing noise in 
different work load (performing exercises with different intensity) and maintain 
the most important ECG parameter values that are essential for the health 
evaluation and monitoring. 
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Furthermore, the investigation of heart rate variability is important as well in 
physical or mental fatigue detection process. Physical fatigue is of very high 
importance for athletes and employees who work intensively. Even though 
athletes have a low risk of heart disease, the unnoticed symptoms can cause 
permanent heart injuries in a long-term. For this reason, people doing sports often 
have an interest in new technologies that allow monitoring health conditions or 
training intensity in real time. Meanwhile, office workers suffer from mental 
fatigue, which may end up in a chronic disorder and cause long-term 
consequences. When not noticed in time, the fatigue may result in disability at 
work. In this research, the main ECG signal parameters were estimated for 
physical and mental fatigue evaluation by using HRV analysis and machine 
learning methods. 

The main analysis in this work is made on the ECG signals. However, the 
effectiveness of the proposed noise filtering algorithms has been shown as well 
for electroencephalograms. The suggested methodology for different types of 
fatigue detection can be applied in various mobile applications and be used in daily 
life activities. This could serve as a preventive tool to reduce the risk of injuries, 
reduce the number of deaths from cardiovascular disorders, detect primary 
symptoms of fatigue and increase the efficiency at work. 
The object of the research is ECG signals that are recorded multiple times per 
day (morning/evening) during different exercises of various intensity. 
The aim of the work is to pre-process electrocardiogram signals, analyse their 
variations, use the obtained results in training intensity management model and 
fatigue recognition process. 

The main objectives of this research are as follows: 

• Review literature about electrocardiogram signal, essential parameters for 
health evaluation process and parameter estimation algorithms; 

• Review literature about high and low frequency filters, select and improve 
methods for movement contaminated ECG signal processing; 

• Conduct ECG signal parameter search algorithm improvement by adding T 
wave detection algorithm; 

• Create a methodology for physical and mental fatigue detection and 
evaluation.  

Methods, software and experimental tools: 

• CardioScout Multi device was used for the ECG signals recording and 
transmission to mobile device (with 500 𝑠!" frequency); 

• In this research, for filtering algorithm comparison, clear (without noise) ECG 
signals were generated using CMRR 2.0 simulator; 
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• All signal processing, parameter estimation and fatigue identification 
algorithms were initialised using MATLAB_R2015b mathematical and 
statistical packages. 

For the defence: 

• Novel movement artefact filtering algorithm for ECG signal processing, 
evaluating filtering parameter changes that depend on the movements made 
and intensity of the training. 

• Improved ECG parameter estimation algorithm with T wave amplitude and 
interval values detection. 

• Modified monitoring system for training intensity to make sure that signal 
processing and feedback are given in real time. 

• Novel fatigue recognition methodology that allows to detect and evaluate 
physical and mental or general fatigue. 

Scientific novelty and significance 

• Algorithms suitable for the filtering of ECG signal that were recorded during 
the exercise were improved according to the main characteristics of the signal, 
without the negative impact on the accuracy of it. 

• A novel methodology using HRV analysis is proposed and applied for the 
physical fatigue recognition. Additionally, beans plot diagrams that were used 
were improved for the better understanding and easier comparison of data 
distribution. 

• ECG signal parameter estimation algorithm was arranged by adding T wave 
amplitude and interval values detection. The characteristics that allow 
detecting instant signal changes in signal classification process were 
suggested. This methodology is applied for human health evaluation and 
monitoring processes.  

Approval or the results 

The majority of the results of this dissertation were presented in 5 scientific 
publications. Two were published in the list of the Institute for Science 
Information (ISI) as the main list of publications with citing indexes. The topics 
of this dissertation were presented in 6 international conferences. Signal filtering 
methods were initialised in three projects that are related to this research. 

Scope and structure of the dissertation 

This doctoral dissertation consists of an introduction, 4 main chapters, 
conclusions, references and a list of publications. The work volume is 114 pages. 
There are 55 figures, 26 tables and a list of 181 cited references. 
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1. LITERATURE REVIEW 

1.1. ECG signal and parameter estimation methods 

The electrocardiogram is the recording of electrical signals of the heart using 
electrodes placed on the skin surface. Generally, there are 12 different recordings 
with different placements on the skin. The most popular and explored is V5 
derivation (the example is shown in Figure 1). 

The recorded biological signals such as electrocardiogram (ECG), 
electroencephalogram (EEG), electromyogram (EMG) usually are contaminated 
with various noises from the environment. Numerous methods have been created 
and applied for digital signal processing and filtering, such as moving average 
(MA), exponential smoothing or linear Fourier transformation (Gazi, 2016). 
Although chaotic signals generally are not predicted, the similarities in particular 
parts of biological signal can be noticed. This can be interpreted as the mean, and 
the variance of the signal remains almost stationary (Meškauskas, 2017). The main 
purpose of signal filtering algorithms is to divide the components into informative 
and undesirable noise. 

 
Figure 1. ECG parameters of V5 derivation 

There are many different ECG signal parameters (see Figure 1) that could 
describe different heart pathologies or alert about possible diseases. Numerous 
articles have been published to help identify the illness or monitor health 
condition. R–R intervals and QRS complexes are essential parameters for medical 
diagnostics. Scientists have developed various methods for ECG parameter wave 
detection and parameter estimation. In 1985, scientists J. Pan and W. Tompkins 
suggested an algorithm that was based on signal filtering to reveal the frequencies 
that were induced by the fast heart depolarisation process. They assumed that other 
frequencies are noise and should be removed. Later, in 2006, scientists J. H. Choi 
and H. K. Jung proposed a non-supervised learning algorithm that detects action 
potentials and signal features for the classifiers. This method was based on 
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multiresolution Teager energy operator (MTEO) detection algorithm and its 
improvement by reducing complexity with sample size implementation (Choi et 
al., 2006). 

In medicine and diagnostics, not only direct ECG parameter values are 
essential. Heart rate variability (HRV) is obtained from R–R intervals and is very 
popular in scientific works related to heart behaviour. The HRV analysis is based 
on R–R interval estimation. Generally, HRV parameters can be divided into two 
main parts: time domain and frequency domain (Germán-Salló & Germán-Salló, 
2016). 

Time domain analysis. The methods from this category treat the R–R interval 
sequence as an unordered set of intervals (in some cases, pairs of intervals) and 
employ various techniques to express the variance of these data. If 𝑅𝑅 is defined 
as adjacent cardio cycles, the time domain HRV parameters (𝑅𝑅####, SDRR, SDSD, 
RMSSD, CV) can be calculated as follows: 

𝑅𝑅#### =
1
𝑁'𝑅𝑅#

$

#%"

, (1) 

𝑆𝐷𝑅𝑅 = +
1
𝑁'

(𝑅𝑅# − 𝑅𝑅####)&
$

#%"

, (2) 

𝑆𝐷𝑆𝐷 = +
1
𝑁'

[(𝑅𝑅# − 𝑅𝑅#'") − (𝑅𝑅#### − 𝑅𝑅#'")]&
$

#%"

, (3) 

𝑅𝑀𝑆𝑆𝐷 = +
1

𝑁 − 1'
(𝑅𝑅#'" − 𝑅𝑅#)&

$

#%"

, (4) 

𝐶𝑉 =
𝑆𝐷𝑅𝑅
𝑅𝑅####

∙ 100%. (5) 

Even though all these measurements of short-term variation estimate high 
frequency variations, the correlation between these parameters is high, and 
nonlinear dynamic remains undervalued (Yaghoobi Karimui & Azadi, 2017). 

Frequency domain analysis. The analysis of power spectral density provides 
information about how the power of the ordered R–R intervals is distributed as a 
function of frequency. The HRV power spectral density analysis describes two 
distinct peaks: low-frequency band (LF: in humans 0.04–0.15 Hz) and high 
frequency band (HF: in humans 0.15–0.4 Hz). Generally, HF fluctuations associate 
to vagal system modulations, and LF fluctuations are jointly mediated by 
sympathetic and vagal systems together with the baroreflex mechanism (Camm & 
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Lu, 2018). Usually, for the better comparison and result interpretation, the 
frequency domain parameters are normalised in the following way: 

𝐿𝐹#()* =
𝐿𝐹

𝐿𝐹 + 𝐻𝐹 , 𝐻𝐹#()* =
𝐻𝐹

𝐿𝐹 + 𝐻𝐹. 
(6) 

 
Nonlinear analysis. The methods to measure the nonlinearity in HRV try to 

quantify the structure and complexity of R–R interval time series. The methods of 
HRV dynamic analysis are based on chaos or nonlinear system theory. The 
mechanisms involved in cardiovascular regulation are likely to interact between 
each other in a nonlinear manner (Castaño et al., 2019). The most essential indices 
that describe heart dynamic nonlinearity are detrended fluctuation analysis (DFA), 
Lyapunov exponents, correlation dimensions and others (Muduli & Mukherjee, 
2017). For the nonlinear HRV analysis, the Poincare method was selected. 

1.2. Methods for signal processing 

In order to obtain a full representation of the signal, the smoothing process 
should be applied (insignificant noise that appeared in the recording process 
should be removed, and the fluctuations of the signal should be discarded). The 
algorithms for signal processing can be divided into two groups: working in the 
scale of time domain and in the scale of the frequency domain. The first group 
operates directly to the original signal values while other extracts the spectrum of 
the signal at first and then filters the frequency domain values. Although linear 
filtering methods such as Wiener filter or singular value decomposition (SVD) 
(Ziani et al., 2018) are easily described and applied, the effectiveness of these 
methods reduces if the signal has sharp angles or impulses. Furthermore, in reality 
recorded signals are non-stationary and fluctuate in time.  

Universal methods such as Butterworth filter (Jagtap & Uplane, 2012) are 
widely used in medicine and diagnostic by Lithuanian scientists (Marozas et al., 
2011) and worldwide. They work effectively in high and low frequency noise 
reduction for different types of signal processing. However, the delays that appear 
in signal reconstruction process may affect the final result (Tsuzuki & Ogihara, 
2018). 

 The biological signals that are recorded in movement are more 
contaminated by noise compared to those that are recorded in a stationary 
condition. The main issue for movement contaminated signals is non-stationary 
low frequency noise trend. That is why ordinary filtering methods for signal 
processing become insufficient. One of the most popular algorithms for ECG trend 
removal is moving average (MA) filter. If there are insignificant amplitude 
fluctuations, the algorithm eliminates the deviations and transforms the signal in 
respect to the isoline. This method can be described with the following formula: 
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𝑦(𝑛) =
1

2𝑁 + 1 ' 𝑥(𝑛 + 𝑖)
$

+%!$

; (7) 

where 𝑥(𝑛) and 𝑦(𝑛) are input and output signals; 𝑁 is the sample size. Filtered 
𝑧(𝑛) signal is found as follows: 

𝑧(𝑛) = 𝑥(𝑛) − 𝑦(𝑛). (8) 
The scientist Ivan W. Selesnick together with his colleagues in 2014 suggested 

using a low pass filter and denoising of variance at the same time. Their method 
is called Baseline Estimation and Denoising with Sparsity (BEADS) (Ning et al., 
2014). As a low frequency filter, they selected linear and nonlinear filtering 
method that is called multiscale wavelet algorithm and improved it by adding 
sparsity based partial layers between spectrum and peaks. However, this method 
has many filtering parameters such as normalised cut-off frequency, asymmetry 
coefficient and others. 

1.3. Classification methods for health evaluation 

Advanced technologies such as social media, smart phones and computers, 
portable devices allow to collect big data about various mental or physical health 
disorders. One of the most rapidly growing technical fields is computer science 
and statistics with artificial intelligence and data science. Effective algorithms for 
big data processing are based on machine learning (ML) methodology.  

ML can be divided into three main parts: supervised learning (for example, 
SVM, KNN, NB, DT), unsupervised learning (for example, NN, clustering) and 
semi-supervised learning (for example, semi-supervised SVM, general learning, 
mixed models) (Bi et al., 2019). Supervised learning is based on the labelled data 
analysis. Meanwhile, unsupervised learning learns from unlabelled data and 
extracts similar patterns. Finally, semi-supervised learning contains data with and 
without labels because in some cases, there is not enough labelled data that is 
needed for the classification or prognosis. 

The measurement of predictive performance usually is based on the analysis 
of data in the confusion matrix (Bowes et al., 2014). This matrix reports how the 
model of prediction classifies different fault categories compared to their actual 
classification (predicted versus observed). Four data types after the classification 
process can be described, as it is presented in Table 1.  
Table 1. ML elements after prediction has been made 

Name Shorthand Description 
True negative TN Item is predicted as correct, but it is faulty 
True positive TP Item is predicted as correct, and it is correct 
False positive FP Item predicted as faulty, but it is correct 
False negative FN Item predicted as faulty, and it is faulty 
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For the better understanding how well the selected method predicts (in general 
case), additional measurements can be found. Common statistics are 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 
and 𝐹1 score that are estimated using the following formulas: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 ; 
(9) 

𝐹1 =
2 ∙ 𝑇𝑃

2 ∙ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁. 
(10) 

Even though 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 and 𝐹1 are widely used in ML analysis, they do not 
consider the size of each category of the confusion matrix. That is why an 
additional statistic is measured, which is called Matthews correlation coefficient 
or 𝑀𝐶𝐶. It gains the worst value with 𝑀𝐶𝐶 = −1, and the best value when 𝑀𝐶𝐶 =
1. 

𝑀𝐶𝐶 =
𝑇𝑃 ∙ 𝑇𝑁 − 𝐹𝑃 ∙ 𝐹𝑁

L(𝑇𝑃 + 𝐹𝑃) ∙ (𝑇𝑃 + 𝐹𝑁) ∙ (𝑇𝑁 + 𝐹𝑃) ∙ (𝑇𝑁 + 𝐹𝑁)
 (11) 

In 1960, scientist Jacob Cohen revealed that there is a level of algorithm 
precision when the algorithm is no longer capable to predict correctly, and the 
answer becomes similar to the guess. This statistic is called 𝑘𝑎𝑝𝑝𝑎 and is 
expressed in the following formula: 

𝑘𝑎𝑝𝑝𝑎 =
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑑

1 − 𝑑 ; (12) 

where 𝑑 = ,-'.$
,$',-'.-'.$

. If 𝑘𝑎𝑝𝑝𝑎 > 0.75, then 𝑘𝑎𝑝𝑝𝑎 is considered perfect, 
from 0.4 to 0.75 sufficient and when 𝑘𝑎𝑝𝑝𝑎 < 0.4, it is considered weak 
(McHugh, 2012). 

2. METHODOLOGY 

In this chapter, the proposed methods of ECG signal processing are described. 
Moreover, the algorithms and their improvements are presented with detailed 
descriptions and pseudo codes. The flow chart of initialised methods is shown in 
Figure 2. 
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Figure 2. ECG signal processing scheme 

2.1. Filtering algorithms 

ECG signal recorded in movement can be written in such form: 
𝑦(𝑛) = 𝑥(𝑛) + 𝑣(𝑛) + 𝑤(𝑛), 𝑛 = 1,… ,𝑁; (13) 

where x is a low–pass signal without noise, w – stationary white Gaussian noise, v 
– sparse derivative signal (movement artefact or trend) and N – signal length. 

For the data like 𝑦(𝑛), two-method combination should be used for denoising. 
The DWT algorithm was chosen as a high pass filter. Filtering parameter 
estimation and comparison for this algorithm is described in chapter 3. 

Low frequency noise usually is named as trend or movement artefact. While 
the participant is in a stationary condition (usual in medicine for ECG or EEG 
signal recordings), ECG signal is located in one horizontal line–isoline (see Figure 
1). Discrete N points ECG signal could be written as: 

[𝑥", 𝑥&, … , 𝑥$],; (14) 
where T indicates the transpose function of analysed vector or matrix. Usually, the 
moving average (MA) algorithm is used for trend detection because it does not 
require additional signal preparation for filtering, does not have many filtering 
parameters that need to be estimated before computations, works fast and does not 
require many computational resources. However, it is not suitable for noisy ECG 
signal processing that is recorded in sudden movement changes, for example, 
during training session. That is why in this research, the improved BEADS 
algorithm was chosen for the baseline detection and its removal. 
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BEADS algorithm: this low frequency filter is described by using difference 
matrixes and cost function minimisation. First order difference 𝐃𝟏 could be 
expressed in this form: 

𝐃𝟏 ≔ Z

−1 1
−1 1

⋱ ⋱
−1 1

\. (15) 

For N point signal x, the first order difference is D1x, where the size of matrix 𝐃𝟏is 
(𝑁 − 1) × 𝑁. Similarly, second order difference matrix with size (𝑁 − 2) × 𝑁 is 
defined as: 

𝐃𝟐 ≔ Z

−1 2 −1
−1 2 −1

⋱ ⋱
−1

⋱
2 −1

\. (16) 

In general, k order difference operator with size (𝑁 − 𝑘) × 𝑁 is defined as 𝐃𝐤. For 
further derivations, the identity matrix I is defined as zero order difference matrix 
𝐃𝟎 ≔ 𝐈 (𝑘 = 0) (size 𝑁 ×𝑁) (Selesnick et al., 2014). In order to find the best 
solution (minimise cost function 𝐺(𝒙)), the optimization task of three parts should 
be solved: low frequency noise extraction using a high frequency filter, 
asymmetric penalty function for negative ECG peaks evaluation and symmetric 
penalty functions for positive extremums should be defined. 

Which penalty function should be used depends on the analysed signal 
structure. Asymmetry function is used when it is known that the analysed signal 
𝒙 =	 [𝑥", 𝑥&, … , 𝑥$]	has more positive values than negative and vice versa (as it is 
in ECG signals). Then, negative and positive signal parts are penalised differently. 
The 𝜃(𝑥, 𝑟) function is defined as an asymmetric function with asymmetry 
parameter 𝑟: 

𝜃(𝑥, 𝑟) = c 𝑥,			𝑥 ≥ 0,
−𝑟𝑥,			𝑥 < 0. (17) 

Then, the second order polynomial function 𝜃3(𝑥, 𝑟) can be defined as follows (see 
full derivation in (Ning et al., 2014)): 

𝜃3(𝑥, 𝑟) = e

𝑥, 𝑥 > 𝜀;	
1 + 𝑟
4𝜀 𝑥& +

1 − 𝑟
2

−𝑟𝑥, 𝑥 < −𝜀;
𝑥 + 𝜀

1 + 𝑟
4 , |𝑥| ≤ 𝜀;	 (18) 

where 𝜀 > 0 is a small constant. The behaviour of new penalty function 𝜃3(𝑥, 𝑟) 
is similar to 𝜃(𝑥, 𝑟) and is continuously differentiated (Ning et al., 2014). 

Using the same definitions, the asymmetric penalty function can be defined as 
(𝑁 ×𝑁) size diagonal matrix 𝚪(𝒗) with elements in the main diagonal expressed 
as follows: 
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[𝚪(𝒗)]#,# =

⎩
⎨

⎧
1 + 𝑟
4|𝑣#|

,			|𝑣#| ≥ 𝜀

1 + 𝑟
4𝜀 ;			 |𝑣#| ≤ 𝜀

			 (19) 

where 𝒗 = [𝑣", 𝑣&, … , 𝑣$]. Moreover, the symmetric penalty function can be 
defined as diagonal matrix 𝚲(𝒗) where elements in the main diagonal are 
expressed in the following form: 

[𝚲(𝒗)]#,# =
𝜑5(𝑣#)
𝑣#

; (20) 

where 𝜑 is symmetric function and 𝜑5 its derivative (see (Selesnick et al., 2014)). 
The symmetric penalty function is used when filtered signal 𝒙 and its derivatives 
𝑫+𝒙 are positive and negative with the same probability. So far defined penalty 
functions are mostly used to filter extremums. However, the ECG signal as well 
requires a high pass filter that passes frequencies over higher chosen frequency 
barrier and leaves the rest part of the signal. High frequency filter can be written 
as a transfer matrix: 

𝐇(𝑧) =
(−𝑧 + 2 − 𝑧!")6

(−𝑧 + 2 − 𝑧!")6 + 𝛼(𝑧 + 2 + 𝑧!")6 ; 
(21) 

where 𝛼 and 𝑑 are positive, 𝑑 ∈ 𝐙 and defines the order of analysed matrix. The 
norms of variable 𝒙 are estimated as follows: 

‖𝒙‖" ='|𝑥#|
#

, ‖𝒙‖&& ='|𝑥#|&
#

. (22) 

Filtering task with all three parts can be written in this form:  

𝒙v = 𝑎𝑟𝑔min
𝒙
{
1
2
‖𝐇(𝒚 − 𝒙)‖&& + l8 '𝜃(𝑥#, 𝑟)

$!"

#%8

+'l+

9

+%"

' 𝜑([𝐃+𝒙]#)
$!!"

#%8

} ; 

(23) 

 
where l+ are regularisation parameters, and M indicates the number of symmetric 
penalty functions that are used in this algorithm. Then, the cost function 𝐺(𝒙) can 
be written in this form:  

𝐺(𝒙) =
1
2
‖𝐇(𝒚 − 𝒙)‖&& + 𝜆8𝑥,[𝚪(𝒙)]𝒙 + 𝜆8𝒃,𝒙

+'�
λ:
2
(𝐃:𝒙);[𝚲(𝐃:𝒙)](𝐃:𝒙)�

<

:%8

; 
(24) 

where 𝐃+ is the 𝑖=> order differential operator, and 𝒃 is a vector of the same values: 
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[𝒃]# =
1 − 𝑟
2 . (25) 

The minimization of the cost function 𝐺(𝒙) with respect to 𝒙 leads to this solution: 

𝒙v = �𝐇;𝐇+ 2𝜆8𝜞(𝒙) +'λ:𝐃:
;[𝚲(𝐃𝐢𝒙)]𝐃:

<

:%8

�

!"

𝐇𝐓𝑯𝒚

= 𝐀𝐐!𝟏𝐁𝐓𝐁𝐀!𝟏𝒚; 

(26) 

where 𝐐 = 𝐁;𝐁 + 𝐀;�∑ λ:𝐃:
;[𝚲(𝐃:𝒙)]𝐃:<

:%8 �𝐀. A pseudo code of BEADS 
algorithm is written in Figure 3. 

 
Figure 3. Cost function minimisation of BEADS algorithm 

BEADS algorithm recalculates all parameter values as long as the baseline is 
detected (trend with the smallest errors). A prediction of what parameter values 
and penalty functions should be used is a complicated task, especially if there is 
only a little prior information about the analysed signal. ECG signals can be 
characterised by the QRS complex (see Figure 1) that is an important parameter in 
medicine and diagnostics. In order to make sure that BEADS algorithm and its 
filtering parameters are oriented and suitable for ECG signal processing, this 
method was modified by adding a new algorithm described in Figure 4. The 
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purpose of this algorithm is to find BEADS filtering parameter values that ensure 
the maximum number of QRS complexes. 

 
Figure 4. BEADS filter parameter estimation algorithm 

The algorithms for QRS complex and other ECG parameters detection are 
described in subchapter 2.2. 

For the high frequency noise reduction, the DWT algorithm was used. 
Additional filtering parameter estimation analysis is performed in subchapter 3.1. 

2.2. Parameter search of ECG signal 

 
Figure 5. ECG signal parameter estimation sequence 
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ECG signal parameter search starts with the R peak detection. Then, Q and S 
peaks can be found or R–R interval estimated. The sequence of all ECG parameter 
search is presented in Figure 5. 

As ECG signals are contaminated with various noises (if recorded in 
movement), and signal processing should be done in real time; the multiresolution 
Teager energy operator algorithm was chosen for QRS complex detection. This 
method and its addition are described in this chapter. The module of peak 
estimation consists of three parts: signal enhancement, MTEO computation and 
statistical thresholding (Sedghamiz & Santonocito, 2016). 

Signal enhancement. ECG signal is filtered by high pass filter and normalised 
using low pass filter. Noise reduction algorithms are described in the previous 
chapter. 

MTEO computation. Motor unit action potentials (MUAP) have typically high 
amplitude and instantaneous frequency. The Teager energy operator (TEO) is 
time–frequency domain analysis that has been employed in many signal 
processing applications and is defined as: 

𝜔(𝑥(𝑛𝑇)) = 𝑥&(𝑛𝑇) − 𝑥(𝑛𝑇 − 𝑇)𝑥(𝑛𝑇 + 𝑇). (27) 
K–TEO is a multiresolution version of MTEO where 𝑥(𝑛𝑇 − 𝑇)𝑥(𝑛𝑇 + 𝑡) is 

replaced with 𝑥(𝑛𝑇 − 𝑘𝑇)𝑥(𝑛𝑇 + 𝑘𝑇). There, k is an arbitrary parameter that is 
known as a lag parameter, and T is the sampling rate. Furthermore, k–TEO can be 
adjusted to sensitive and more specific frequencies. Therefore, k–TEO is an 
attractive tool due to its effectiveness (compared to the other time–frequency 
domain methods) and low computational power. 

If 𝑥(𝑛𝑇) is marked as the original (raw) ECG signal where 𝑛 = 1,2,… ,𝑁, and 
𝑁 is the number of signal samples, then k–TEO can be defined as: 

𝑌A(𝑛𝑇) = 𝑥&(𝑛𝑇) − 𝑥(𝑛𝑇 − 𝑘𝑇)𝑥(𝑛𝑇 + 𝑘𝑇); (28) 
where the choice of k depends on the period of analysed spike. Increasing k makes 
the detector less sensitive to the high frequencies and more sensitive to the low 
frequencies. Finally, the output of MTEO is 𝑡(𝑛𝑇) and is expressed as: 

𝑡(𝑛𝑇) = 𝑚𝑎𝑥�𝑌�"(𝑛𝑇), 𝑌�&(𝑛𝑇),… , 𝑌�A(𝑛𝑇)	�; (29) 
where 𝑌�A(𝑛𝑇) is 𝑌A(𝑛𝑇) after it is smoothed with Hamming window with size 
4𝑘 + 1 (Drake & Callaghan, 2006) and normalised using squared variance at scale 
k. 

Statistical thresholding. The purpose of this task is to determine the time when 
MUAPs appear in 𝑡(𝑛𝑇). In this part, a statistical testing method was employed. 
Two binary hypotheses are defined: 𝐻8when MUAP is not present, and 𝐻" is 
present: 

� 𝐻8: 𝑡(𝑛𝑇) = 𝐺(𝑛𝑇),
𝐻": 𝑡(𝑛𝑇) = 𝑠(𝑛𝑇) + 𝐺(𝑛𝑇); (30) 

where 𝑠(𝑛𝑇) is the MUAP generated signal, and 𝐺(𝑛𝑇) is a random Gaussian 
noise. The standard deviation 𝜎� of 𝑡(𝑛𝑇) can be approximated as the median of its 
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absolute deviation values because median is a random variable and is less sensitive 
to the outliers than its variance. It can be written as follows: 

𝜎� = 𝑀𝐸𝐷𝐼𝐴𝑁𝐴{|𝑡(𝑇) − 𝜇|, … , |𝑡(𝑁𝑇) − 𝜇|}; (31) 
where 𝜇 is the sample’s average value. Furthermore, a close to optimal 
performance is chosen for the threshold 𝑇𝐻": 

𝑇𝐻" = 𝜎�√2 ln𝑁. (32) 
Therefore, 𝑡(𝑛𝑇) is compared to 𝑇𝐻" and divided into signal segments 𝑡B(𝑛𝑇) 

and noise 𝑡C(𝑛𝑇): 

{
𝑡C(𝑛𝑇) ≔ {𝑡(𝑛𝑇) ≤ 𝑇𝐻"}

𝑡B(𝑛𝑇) ≔
𝑡(𝑛𝑇)
𝑡C(𝑛𝑇)

. (33) 

Two prior probabilities of the two binary hypotheses (𝑃(𝐻8) and 𝑃(𝐻")) can be 
estimated as follows: 

𝑃(𝐻8) =
‖𝑡C(𝑛)‖"

𝑁

𝑃(𝐻") =
‖𝑡B(𝑛)‖"

𝑁

; (34) 

where ‖. ‖" is expressed in the (22) formula. Finally, the decision threshold 𝑇𝐻& 
can be written as: 

𝑇𝐻& =
𝜂
2 +

𝜎�&

𝜂  𝐶 + ln
𝑃(𝐻8)
𝑃(𝐻")

¡ ; (35) 

where 𝜂 is the mean of absolute 𝑡(𝑛) values, 𝐶 is selected scaling constant that 
determines the sensitivity of this method. With previous definitions and testing, a 
signal with MUAPs is generated: 

𝑀𝑈(𝑛𝑇) ≔ {𝑡(𝑛𝑇) ≥ 𝑇𝐻&}. (36) 
The final output of this algorithm is a set of local maxima that indicate ECG 

signal peaks Q, R, S. A pseudocode of this algorithm adjusted to the QRS complex 
detection in the ECG signal is shown in Figure 6. 
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Figure 6. Q, R, S peaks estimation with k-TEO algorithm 

In the V5 derivation of human ECG signal, Q and S peaks gain negative values 
with respect to isoline. Often, Q peak is obscure and sometimes, even close to zero 
value. Meanwhile, R or S waves have high deviations from isoline. The QRS 
complex is a time scale parameter–interval from the beginning of the Q wave to 
the end of the S wave. 

This investigation of ECG signals includes not only R–R and QRS interval 
search or Q, R, S peak detection. Further analysis includes T wave amplitude and 
interval values’ estimation. T interval starts at the beginning of T wave and ends 
when T wave reaches isoline again. k-TEO algorithm does not include these 
parameters’ search. That is why additional algorithm was made for the other ECG 
parameter estimation that is based on the local extremum search (see Figure 7). 
This method consists of three main parts: 
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T wave peak estimation. T wave stands between S wave and Q wave peaks and 
has the highest amplitude value in this interval (see Figure 1). This means that T 
wave peak can be estimated using (37) this formula: 

𝑇(𝑛) = max
+%B(#):G(#'")

{𝑓(𝑖)} ; (37) 
where 𝑆(𝑛), 𝑄(𝑛) are positions in ECG signal 𝑓 of S and Q waves, respectively. 

Detection start and end position points of the T wave. T wave starts when the 
ECG signal changes its direction with respect to isoline (starts to increase). The 
beginning of T wave is a bit further than the end of S wave but does not reach its 
peak. Although the ECG signal is filtered, it still contains some minor value 
fluctuations that make additional local minima and maxima. The critical values of 
𝑇(𝑛) wave can be estimated from this equation: 

𝑑𝑓(𝑖)
𝑑𝑖 = 0; 𝑖 ∈ �𝑆(𝑛) + 𝐶 ∙ 𝑓𝑠: 𝑇(𝑛)�; (38) 

where 𝐶 is a constant and 𝑓𝑠 is recording the frequency of ECG signal. The 
beginning of T wave is considered to be the position of minimal value of all 
estimated local extremums: 

𝑇H=I)=(𝑛) = min
+%":$

{𝐾+(𝑛)}; (39) 
where 𝑁 is the number of local extremums and 𝐾+ is 𝑖=> extremum value. The end 
of T wave is estimated similarly. In this case, the extremums are in the interval 
between the peak of T wave and before the beginning of Q wave. 

𝑑𝑓(𝑖)
𝑑𝑖 = 0; 𝑖 ∈ �𝑇(𝑛): 𝑄(𝑛 + 1)�; (40) 

𝑇J#6(𝑛) = min
+%":$

{𝐾+(𝑛)}. (41) 
T interval estimation. If the previous steps (that detects T wave start and end 

position points) are realized correctly, the T interval estimation is an 
uncomplicated task and can be done using this formula: 

𝑇+#=(𝑛) = 𝑇J#6(𝑛) − 𝑇H=I)=(𝑛). (42) 
A pseudo-code for T wave detection in presented in Figure 7. 

If R peaks, QRS complexes, T intervals are estimated correctly, further 
parameters can be found (ST, QT, DJT or AST). J point is an inflection point in 
the interval from the end of S wave to the start of T wave. Usually, the J point 
position matches the end of S wave or has a completely different position in this 
interval. In order to find the inflection point J, the equation with second row 
derivative should be solved: 

𝑑&𝑓(𝑥)
𝑑𝑥& = 0. (43) 
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Figure 7. T interval estimation algorithm 

DJT interval starts at the J point and ends at the end of T wave. In order to 
estimate this value, the subtraction (from T wave end position point subtracted J 
point) should be made. AST parameter is the amplitude distance from isoline to S 
wave end point. If the human heart is in a good condition, the AST= 0. Otherwise, 
this parameter can gain positive or negative values. 

One of the most popular ECG derivative parameters is a discriminant that 
describes the fluctuation of R–R intervals and QRS complexes. In ECG signal 
analysis, the selected discriminant estimation method is expressed in this form: 

𝐷(𝑅𝑅 − 𝑄𝑅𝑆)# = (𝑅𝑅# − 𝑄𝑅𝑆#)&
+ 4(𝑅𝑅#!" − 𝑄𝑅𝑆#!")(𝑅𝑅#'" − 𝑄𝑅𝑆#'"); 

(44) 

where 𝑅𝑅 is duration between R peaks, 𝑛 is the cycle number of the heart. This 
parameter is very sensitive to all changes in ECG signal and is widely used to 
monitor the health condition of sportsman during the stress tests. 

2.3. Signal classification 

A classification algorithm is a method that consists of two main parts: primary 
signal transformation and the classification itself. Primary transformation process 
is used to gain specific features from the raw signal and reduce its dimension for 
the better classification results. At the end of this process, a part of ECG signal (or 
its parameters) is considered as noise and is removed from the further analysis (as 
non-essential information) (Wei et al., 2018). The classification of ECG signals to 
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different pathologies or health stages is a complicated task that is based on signal 
structure recognition. Generally, several classification algorithms are used to solve 
the particular problem (Shao et al., 2018). A similar classification task can be 
formulated in the fatigue identification process. In this case, the research object is 
not continuous ECG signal or its fragmentation but different signals that were 
recorded at different times of the day (in the morning and in the evening). Usually, 
fatigue appears after intensive physical activity or at the end of the day. Physical 
fatigue detection is a simpler task because after intensive training session, the heart 
works faster. Meanwhile, mental fatigue detection is a complicated task because 
there is no clear difference in ECG signal parameters. The suggested classification 
process for mental fatigue identification is shown in Figure 8. 

 
Figure 8. ECG signal classification scheme for fatigue detection 

In data science and forecasting, plenty machine learning algorithms have been 
created, such as k-nearest neighbours (KNN), linear discriminant analysis (LDA), 
support vector machine (SVM), decision trees (DT), random forest (RF) and 
others. In this research, a comparison of different methods was made. It appeared 
that RF classifies signals with the highest accuracy (see subchapter 4.2). This 
algorithm is based on DT and consists of three main parts: 

• Input all data into root nodes for every DT; 
• Minimize the Gini coefficient by dividing data into nodes; 
• Repeat all steps at each split node until the RMSE in the node falls below 

a certain value, or the tree reaches a defined depth. 
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If 𝑛 is defined as a number of samples in the node 𝑡 and each node has 𝑐 classes, 
then the number of samples belonging to the class 𝑖 is 𝑛+. The ratio 𝑝(𝑖|𝑡) is given 
by: 

𝑝(𝑖|𝑡) =
𝑛+
𝑛 . (45) 

Gini coefficient 𝐼C for each node can be defined as (Oeda & Chieda, 2019): 

𝐼C(𝑡) = 1 −'𝑝(𝑖|𝑡)&
K

+%"

.  
(46) 

The random forest algorithm requires two data sets, i.e., for training and 
testing. The more data is given, the higher classification accuracy can be reached.  

2.4. Modelling of training process 

As healthy lifestyle is becoming more popular, people practise sports more 
often. Biological parameters became the main indicator to avoid heart failure. 
Furthermore, people that are doing sports professionally aim to improve their 
physical condition in order to achieve better results. The suggested training session 
model allows monitoring health condition in real time and warns when the 
intensity should be reduced or suggests to increase the training intensity. 

In this doctoral dissertation, a real time is defined as 10 sec time interval in 
which the ECG signal is recorded. At each 10 sec, the QRS complex and 
discriminant are measured, and their values are averaged. The training session 
process could be described in five parts: duration, heart rate, QRS complex, JT 
interval and discriminant (D).  

Duration. Each training session duration depends on the R–R interval quantity. 
It is recommended that it should not exceed 1500 R–R intervals. 

Heart rate (𝐻𝑅). The lower and upper bounds of heart rate are defined as 
follows: 

𝐻𝑅L(M = �(220 − 𝐴) − 𝐻𝑅N� ∙ 0.5 + 𝐻𝑅N , (47) 
𝐻𝑅OP = �(220 − 𝐴) − 𝐻𝑅N� ∙ 0.85 + 𝐻𝑅N; (48) 

where 𝐻𝑅L(M is a lower bound of HR and 𝐻𝑅OP is upper bound, 𝐻𝑅N is HR before 
training, 𝐴 is the age of a person (Poderys et al., 2010). If HR reaches a lower 
value than 𝐻𝑅L(M, then the training intensity should be increased. Moreover, if HR 
is higher than 𝐻𝑅OP, then the exercises should be chosen with lower intensity or 
the training session should be stopped. 
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Figure 9. Decision making scheme for the training session 

QRS complex. If in 30 sec, 𝑄𝑅𝑆 increases by 5%, the training intensity should 
be reduced. For the next 60 sec, the parameter estimation process is suspended. 
Then, if 𝑄𝑅𝑆 is still increasing, the training session must be stopped.  

JT interval. If 𝐽𝑇 duration becomes less than 190 msec, the training intensity 
should be reduced, and the parameter estimation is stopped for the next 60 sec. 
After that time, if 𝐽𝑇 still is less than 190 msec, the training session should be 
stopped. 

Discriminant (𝐷). The discriminant monitoring process is similar to the QRS 
complex: if it increases for 30 sec by 10%, the training intensity should be reduced, 
and only after 60 sec, it is measured again. If in the next 30 sec it is increasing 
again, the training session must be stopped. 

If ECG signal parameters are stable (QRS and D do not increase) or do not 
reach critical values, the training intensity should remain the same. Otherwise, it 
should be increased, decreased, or the training session must be stopped (Gobinath 
Aroganam, 2019). 

The whole rule-based decision-making algorithm is shown in Figure 9. There 
is a variable named “index” that is a used mark if the critical parameter value were 
reached for the first or second time. At the beginning of this algorithm, “index” is 
equal to zero, and before intensity reduction, it gains value 1. Then, the 
corresponding parameter is not evaluated for 60 sec, and the training session 
should be stopped if the parameter still indicates a critical health condition. 
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Otherwise, the variable “index” again is equal to zero, and the participant 
continuous exercising with lower intensity. 

The main purpose of this model is to detect physiological state changes and the 
best training intensity according to internal and external factors (e.g., as adaptation 
to different geographical conditions and time difference, remained fatigue, etc.). 
In the international CareWare project “Electronic Wearable Sport and Health 
Solutions”, collaborating with scientists from different scientific fields, a mobile 
app was created that gave feedback about the training intensity in real time. In this 
application, the health state evaluation is made by using ECG signals and 
evaluating its parameter values. 

3. ECG SIGNAL FILTERING ALGORITHMS 

For the algorithms accuracy comparison and filtering parameter estimation, 
ECG signal was generated using CMRR 2.0 simulator that illustrates clear 
(without noise) electrocardiogram of a healthy heart. The simulator generates a 
sinusoid with 150 bpm (beats per minute). The high and low frequency noises 
were added to this signal, i.e., high frequency – random Gaussian white noise, low 
frequency – sinusoid. The new ECG signal is transformed as follows: 

𝑓(𝑡) = 0.3 ∙ sin(0.9 ∙ 𝜋 ∙ 𝑡) + 0.001 ∙ 𝑑; (49) 
where 𝑑 is a random variable with a standard normal distribution. 

3.1. Comparison of filtering algorithms and estimation of parameters 

Before BEADS filtering parameter estimation, it is important to make sure that 
this algorithm is suitable for real time data processing. The run-time of BEADS 
for N–point data is presented in Figure 10. Fifty different ECG signals were 
generated and filtered using BEADS method. In this graph, some fluctuations can 
be seen. In certain cases, the calculations took more than 3 sec. However, the 
average curve has a linear correlation to the data size. This shows a good 
asymptotic complexity of the analysed algorithm and appropriate real time data 
filtering. 

 
Figure 10. The complexity of the BEADS algorithm in ECG signal filtering 
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In the high frequency filtering process, a three-level discrete wavelet transform 
algorithm was chosen where threshold functions are from Daubechies wavelet 
function family. This method gives the best results at wavelet functions families 
of “db11” and “db12”. For further analysis, the “db11” has been chosen. The 
simulated and filtered ECG signals using both methods (BEADS and DWT) are 
shown in Figure 11. 

 
Figure 11. Filtering example for simulated ECG signal: (a) simulated signal and 

estimated trend with BEADS algorithm, (b) signal without movement artefacts, (c) signal 
with noise reduction using DWT filter 

For the best movement artefact detection, several methods were compared 
between each other, such as the moving average filter (MA), Butterworth filter, 
Wiener filter, DWT, etc. The main issue with standard methods is that some parts 
of ECG signal are smoothed, and the signal loses a certain amplitude parameter 
value. Methods like Wiener filter are not capable to identify the movement trend 
precisely, and the signal becomes rambling with respect to isoline. Meanwhile, 
MA and BEADS may adapt to the analysed signal and extract movement artefact 
without losing the most important ECG signal characteristics. Even though both 
algorithms are working precisely, the MA not always manages to adapt to sudden 
signal changes and precisely transform it on the isoline. 

In Figure 12, the comparison of two filtering methods (MA and BEADS) is 
presented where a participant was doing different exercises. If exercises are not 
intense and movements are slow and simple (squats and lunge parts (a) and (b)), 
the movement trend (bolded line) looks similar in both methods. There are some 
variations, but it should not affect the final classification result. Meanwhile, in part 
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(c), a severe shortage of MA method can be seen when some ECG parameters 
change their sign together with the amplitude value. The identification and 
interpretation of these parameters become a complicated task for diagnosis and 
health evaluation. The major difference between MA and BEADS methods can be 
seen in part (d) where the ECG signal is more contaminated by noise. In this part, 
almost all QRS complex falls lower isoline (except R peak). In this way, the T 
wave interval becomes shorter, and other parameters change their values. 

 
(a)                 (b) 

 
(c)                (d) 

Figure 12. Comparison of MA and BEADS filtering algorithms: (a) squats, (b) lunge, (c) 
standing up from sitting position, (d) air squats 
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Table 2. The number of QRS complexes that were found using BEADS and MA 
algorithms 

No. Type of performed exercise BEADS, QRS 
number in 1 min. 

MA, QRS number 
in 1 min. 

1 Squats 119 118 
2 Lunge 124 124 
3 Lunge 138 138 
4 Cardio 147 142 
5 Cardio 150 147 
6 Cardio 153 143 

 
Additional comparison of MA and BEADS methods can be seen in Table 2, 

where the numbers of QRS complexes are shown. In this table, similar results are 
presented: when training intensity is high and movements are fast, a lot of 
information is lost while filtering with MA algorithm. In some cases, even 10 QRS 
complexes are missing compared to the BEADS filter. Furthermore, it should be 
noticed that the length of the delay window in MA algorithm was selected 0.5 sec 
and for reconstruction, 0.25 sec. 

3.2. Noisy EEG signal simulation using ECG signal movement 
artefacts 

In this subchapter, the EEG signal is simulated using ECG movement artefacts. 
This process consists of five parts: 
• Signal recording: ECG signals were recorded while a series of different 

physical exercises were performed. The SOA was used to monitor human 
physiological signals. 

• BEADS filter parameters optimization using noisy ECG signal as a reference 
and the number of detected QRS complexes as a fitness function.  

• Movement artefact extraction from the ECG signal using the modified 
BEADS filter. 

• Generation of the surrogate movement signals using Intrinsic Mode Function 
(IMFs) that has derived from Empirical Mode Decomposition (EMD). Then, 
it is applied on the EEG signal. 

• Movement artefacts removal from the noisy EEG signal. 
The flow chart of the proposed methodology is shown in Figure 13. 

 
Figure 13. Schematic diagram of applied methods for the EEG signal simulation 
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For the ECG signal recording, the CardioScout Multi device was selected 
(sampling frequency 500 s!"). This experiment consists of ten main functional 
training exercises with two static exercises (plank and side plank), two cardio 
exercises (star jump and high knee) and six dynamical exercises (dead bug, burpee, 
lunge, air squat, scatter jump and push up). The duration of each exercise 
performance was about 1 min. The recorded ECG signals have various amplitudes 
and fluctuations because they have been affected by different high and low 
frequency noise. 

 
Figure 14. Normalised cut-off frequencies in different physical exercises and QRS 

complexes detection in noisy ECG signals 

Some examples of BEADS filter parameters optimization during different 
exercises are presented in Figure 14. The most important parameter for filtering is 
normalised cut-off frequency 𝑓K. Each exercise has its own baseline because 
different muscles are working. In Figure 14, it can be seen that the best results 
(highest QRS number) are reached with 𝑓K < 0.1. Some exercises are almost 
stationary (plank, side plank), and their normalised frequency values should be 
lower than 𝑓K < 0.02. Furthermore, cardio exercises (such as high knee or skater 
jump) have larger trend and are more affected by high and low frequency noise. 
That is why the QRS detection becomes a complicated task, and 𝑓K fluctuates more. 
During the ECG signal processing and its trend removal, the QRS detection 
process is initialized in each step. It is assumed that the higher number of QRS 
complexes leads to a better filtering result. 

Furthermore, it can be noticed that the “dead bug” exercise has a high trend 
that fluctuates a lot. The example of this exercise and movement signal extraction 
is presented in Figure 15. 

After the ECG signal pre-processing had been completed, and all movement 
trends had been obtained, the next step was a baseline appliance on the EEG signal. 
Simulated EEG signals were modelled as a superposition of two main components, 
i.e., the original EEG signal and surrogate movement signals. This allows to 
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simulate movement contaminated EEG signals and learn or suggest different 
methods for the EEG signal processing during physical activity. 

 
Figure 15. (a) Example of the ECG signal contaminated by movement artefact, (b) 

detrended ECG signal, (c) signal of extracted movement 

The spectral Pearson’s correlation was estimated using the spectra of the 
original and simulated EEG signal (see Table 3). There, 𝑠𝑝𝑘𝑜𝑟H+Q shows the 
spectrum correlation of the original and detrended EEG signals. For better 
comparison, alpha, beta and gamma waves were separated, and their spectrum 
correlations were calculated as well. 𝑠𝑝𝑘𝑜𝑟ILP>I, 𝑠𝑝𝑘𝑜𝑟NJ=I, 𝑠𝑝𝑘𝑜𝑟QI**I 
represents the spectrum correlation between alpha (8–15 Hz), beta (16–31 Hz) and 
gamma (≥ 32 Hz) waves of the EEG signal. The results represented in Table 3 
show that the proposed method does not damage the spectral characteristics of the 
EEG signal and the denoised signal resemble the original signal. The best 
correlation was achieved when the participant performed “star jump” and “air 
squat” exercises. Moreover, higher frequencies lead to lower Pearson correlation. 
This could have happened at the time of trend removal process because of the 
corruption of the signal. The higher is the frequency, the bigger corruption is done, 
because EEG signals mainly have high frequency waves. 
 
 



32 
 

Table 3. Correlations of original EEG and filtered EEG signals that were contaminated by 
movement artefacts 

Exercise 𝑠𝑝𝑘𝑜𝑟!"# 𝑠𝑝𝑘𝑜𝑟$%&'$ 𝑠𝑝𝑘𝑜𝑟()*$ 𝑠𝑝𝑘𝑜𝑟#$++$ 𝑓, 
Plank 0.895 0.908 0.929 0.931 0.083 
Side plank (left) 0.900 0.948 0.958 0.962 0.002 
Side plank 
(right) 

0.907 0.954 0.963 0.963 0.003 

Dead bug 0.923 0.920 0.954 0.963 0.010 
Star jump 0.930 0.962 0.974 0.964 0.028 
High knee 0.914 0.930 0.969 0.966 0.010 
Bur pee 0.902 0.924 0.957 0.950 0.062 
Air squat 0.928 0.958 0.972 0.960 0.031 
Lunge 0.836 0.849 0.871 0.869 0.167 
Skater jump 0.920 0.867 0.942 0.949 0.023 
Push up 0.923 0.916 0.960 0.963 0.062 

3.3. Conclusions 

Stationary recorded ECG signal filtering does not require difficult methods, 
and it can be done using MA filter or Furje transformation. Generally, the 
processing of these signals requires only one filtering method for low and high 
frequency noise reduction. Ordinary ECG filtering methods cannot be reliably 
used in movement because of two main problems: 
1) some methods are not capable to sufficiently reduce the noise and expose 

basic ECG signal characteristics because of the noise frequency fluctuations. 
2) the selected removable frequency interval is too wide and that causes essential 

information losses about the signal itself. 
The majority of simple filtering methods is not considering the time domain 

delay, or the signal is smoothed to the point that there is no meaning of analysing 
amplitude parameter values that have been left. During low intensity exercises, 
MA algorithm works fine and with similar accuracy as BEADS filter. However, if 
exercises make muscles contract fast and hear is loaded more intensively, MA fails 
in movement-artefact detection and hardly reconstructs the ECG signal on the 
isoline. Some parameter values even change its sign (amplitude value). 

The fluctuations of high and low frequency noise depend on the exercise type 
and are not stationary. That is why different algorithms were proposed for those 
tasks: BEADS algorithm extracts the trend of the particular movement, and DWT 
method reduces high frequency noise. Even though BEADS algorithm is more 
complex and requires more computational resources (compared with MA filter), 
its complexity has a linear correlation to the size of the data that leads to good real 
time processing results. It has been found that the same filtering methods are 
appropriate for EEG signal processing and do no damage to the spectral 
characteristics of the analysed signal. 
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4. ECG SIGNAL ANALYSIS FOR FATIGUE DETECTION AND 
EVALUATION 

4.1. Fatigue evaluation using HRV analysis 

Before HRV analysis and fatigue detection, it is important to filter and correct 
the R–R intervals sequence. There are mainly two artefact types in R–R interval 
series, i.e., ectopic beats and missing/misread value. Three artefact detection 
methods (percentage filer, standard deviation filter, median filter) were applied 
that form the corrected signal data points with spline interpolation for the detected 
artefact. Using these filtering methods, the R–R interval data was prepared for 
linear and non-linear HRV analysis. 

Linear heart rate variability parameters can be divided into two main groups: 
time and frequency scale parameters. In this research, ECG signals were recorded 
for 60 days (each duration was 60 sec). Two times a day (in the morning and in 
the evening), 8 exercises were performed (4 with low intensity: squats, lunge, side 
lunge, stand up from sitting position and 4 with high intensity: high knee, air 
squats, star jumps, scatter jumps). Each exercise was performed for 15–16 times 
with 15 sec rest. ECG signals were recorded before and after the training sessions. 
Four different stages can be defined: A1 in the morning, before exercises; A2 in 
the morning, after exercises; A3 in the evening, before exercises; A4 in the 
evening, after exercises. For the recorded ECG signals, R–R intervals were 
estimated, and HRV parameters were found. Time and frequency scale HRV 
parameters distribution is shown in Figure 16 where bean plots are presented. In 
Figure 16, the differences between data distributions of all four stages can be seen: 
linear HRV time scale parameters differ a lot between stages A1 and A2 or A3 and 
A4. This means that instant physical fatigue can be recognized from those graphs. 
However, the detection of mental or general (physiological) fatigue that appears 
in the evening (between stages A1 and A3) is a more complicated task. There is 
no big difference in bean plots (data distribution) of those stages. In this research, 
additional statistics were calculated for stages A1 and A3. From basic linear HRV 
parameter statistics and data correlation hypothesis, no statistical significance in 
correlation has been noticed, and 𝑝 > 0.05 = 𝛼. This leads to the conclusion that 
linear HRV analysis is not suitable for the physiological fatigue detection. 
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Figure 16. Beans plots of linear HRV parameters in different stages (A1, A2, A3, A4) 

Further analysis was performed using a nonlinear HRV method with Poincare 
plots and parameters. In this research, five different stages were discussed: B1  
before training, B2 low intensity exercises, B3 rest time, B4 high intensity training, 
B5 recovery time. The example of measured Poincare parameters is presented in 
Table 4. In this table, the heart rate variability changes of different training stages 
are shown. The estimated parameters are expressed in seconds. In this particular 
example, the participant performed squats as a low intensity exercise and air squats 
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as a high intensity exercise. In Table 4, the B1 stage illustrates a good heart 
condition with scattered dots that leads to high heart rate variability. The same 
tendency can be noticed in stages B3 and B5. However, B2 and B4 show limited 
HRV. During the resting time, 𝑆𝐷𝑅𝑅 increased and reached an even better value 
than it was before training (𝑆𝐷𝑅𝑅" = 0.086 < 0.142 = 𝑆𝐷𝑅𝑅R). This means that 
after low intensity training session, HRV returned to the normal condition. 
However, after the training session (stage B5), 𝑆𝐷𝑅𝑅 parameter decreased, and 
HRV hardly returned to the normal condition. This could be described as fatigue.  
Table 4. Poincare parameters in different exercises 

Stage Training intensity 𝑆𝐷1 𝑆𝐷2 𝑆𝐷𝑅𝑅 𝑅𝑀𝑆𝑆𝐷 
B1 Before training 0.010 0.111 0.086 0.015 
B2 Low intensity exercise 0.006 0.064 0.087 0.008 
B3 Testing time 0.017 0.116 0.142 0.024 
B4 High intensity exercise 0.007 0.088 0.078 0.011 
B5 Recovery time 0.009 0.131 0.065 0.011 

 
(a)               (b) 

Figure 17. Poincare ellipses examples in different stages: (a) person that was exercising 
regularly, (b) person that did not have intensive physical activity for a long time 

Two examples of Poincare ellipses are shown in Figure 17 where participants 
have different physical preparation: part (a) is when the participant is doing sports 
professionally and regularly, part (b) is when the participant did not have any high 
intense activity for a long time. In Figure 17, it can be seen that the ellipse of stage 
B2 in part (b) (of the person with no physical preparation) dropped instantly 
compared to the ellipse in stage B1. It can be stated that for this person, HRV is 
small and cannot adapt even to the low intensity exercises. Moreover, in three 
minutes of recovery time, the ellipse of this participant (in part (b)) hardly moved 
from the position of stage B4 (high intensity exercise). Meanwhile, a person in 
part (a) had almost full recovery in stage B5 where the ellipse consistently came 
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back to the initial position. Based on these observations, it can be stated that 
Poincare analysis is a good method for instant fatigue detection and evaluation of 
human physical preparation. However, linear and nonlinear HRV analysis 
methods are not sufficient for mental or physiological fatigue detection. 

4.2. ECG signal classification for fatigue identification 

Even though the HRV analysis is a good tool for physical fatigue detection, 
the mental or physiological fatigue identification is a more complicated task and 
requires using more complex methods. In this research, additional ECG 
parameters were estimated: Q, R, S, T peak amplitude values (marked as Qa, Ra, 
Sa, Ta), QRS complexes (marked as QRS) and R–R, T, ST, QT intervals (marked 
as RR, Tint, ST, QT). The example of ECG parameter estimation is shown in Figure 
18. For physiological fatigue detection, stages A1 and A3 were analysed (see 
subchapter 4.1); 8271 measurements have been estimated in 60 days of ECG 
signal recordings: 4195 belong to stage A1 and 4076 to stage A3. It has been 
noticed that some ECG signal parameter values overlap. For example, there is no 
significant difference between stages A1 and A3 in RR interval values. That is 
why simple and linear methods are not capable to separate these stages and identify 
fatigue. In this research, machine learning technique was selected to classify the 
ECG parameters into stages A1 and A3. 

 
Figure 18. Example of ECG parameter estimation 

At the beginning of this research, different ML algorithms were analysed and 
compared (see Table 5 and Figure 19) with all 9 ECG characteristics. The data set 
is split into training and validation (70%) and testing (30%) subsets. To all ML 
methods, 10-fold cross validation was applied to make sure that the model does 
not overfit the training data. In Figure 19, the validation accuracy results have been 
presented when 100 calculations were applied. In Table 5, 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛IKKO)IKS, 
𝐹1, 𝑀𝐶𝐶 were averaged and compared to all analysed ML algorithms. 
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Figure 19. Boxplots of different ML algorithm accuracies 

From Table 5 and Figure 19, it can be seen that the best algorithm for 
physiological fatigue detection is random forest that classifies stages A1 and A3 
with higher than 95% accuracy. For all compared ML techniques, different 
hyperparameter values were analysed. In this research, DT had 100 maximum 
splits and 9 maximum surrogates in each node. Meanwhile, the selected RF 
algorithm consists of 30 DT with maximum 20 splits for every tree. Based on these 
results (see Table 5), RF algorithm was selected for further analysis. 
Table 5. The accuracy of different machine learning algorithms 

Method 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛$,,0/$,1 ∙ 100% 𝐹1 𝑀𝐶𝐶 
KNN 94.19% 0.94 0.87 
LDA 76.82% 0.75 0.46 
Quadratic SVM 90.89% 0.91 0.82 
DT 92.31% 0.92 0.83 
RF 95.08% 0.95 0.90 

 
RF algorithm consists of different DT in which every node is a condition on a 

single feature, designed to split dataset into two parts. Similar response values end 
up in the same data set. Different ECG characteristics (parameters) may have 
different impact on the classification result. The importance of the feature is 
computed from how much each feature decreases the entropy in a tree. 
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     (a)            (b) 

Figure 20. The importance of ECG parameters in stages A1 and A3 classification: (a) 
ECG parameters and FR accuracy, (b) cumulative accuracy curve for RF model 

As it can be seen in Figure 20, if the selected threshold is equal to 0.8, only 
four ECG parameters (Sa, Ra, Ta and QT) are important for A1 and A3 stage 
classification (fatigue detection). Based on these results, the final RF model is 
designed using only these four ECG characteristics.  

A random forest algorithm has many different hyper parameters, and all should 
be estimated. For this task, a random search algorithm was selected. It is based on 
grid search technique (that tries every possible combination) but iterated limited 
times and randomly selects hyperparameter values. Only the best hyperparameter 
values are saved that maximize the FR validation accuracy. The final results are 
shown in Table 6. 
Table 6. RF model hyperparameter values 

Parameter Value 
“max_depth” ensures that no further splitting will be made if 
the maximum tree height is reached 

7 

“min_samples_split” only nodes with equal or higher number 
of samples could be split 

40 

“max_features” defines the number of features to be 
considered while initiating each split 

2 

“min_samples_leaf” defines the minimum number of samples 
in every leaf 

7 

“n_estimators” is the number of decision trees 40 
“learning_rate” defines the impact of final result for every 
newly added tree 

0.15 

 
Finally, RF model testing results are presented in Figure 21 where confusion 

matrix is shown. It can be noticed that true positive (stage A3) and false positive 
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(stage A1) values are predicted with similar accuracy (95% and 94%). The general 
testing accuracy of this model is 94.5%. 

 
Figure 21. Confusion matrix of stages A1 and A3 classification results 

4.3. Conclusions 

Signal artefact detection and its correction for the recordings of physiological 
signals during dynamic activities are important for the analysis and understanding 
the way human body works. This research presents a novel approach for the 
analysis of signal artefacts from R–R interval data series. 

This research analyses two types of fatigue, i.e., 1) physical fatigue that 
appears instantly during or after training session, 2) mental fatigue that appears at 
the end of the day or after intensive work in front of the computer. When a 
comparison of ECG signals before and after the training session was done, some 
of the suggested linear HRV parameters exposed instant physical fatigue. No 
statistical significance was found between the morning/evening estimation of 
HRV linear parameters. 

Nonlinear HRV analysis using Poincare diagrams identifies physical fatigue 
as well as allows making assumptions about physical preparation of participant’s 
heart for an intensive work load. Observing R–R interval fluctuations in different 
stages (while performing different exercises) and the shape of the ellipse or 
position in the (𝑅𝑅(𝑛), 𝑅𝑅(𝑛 + 1)) coordinate plane, the exercises can be grouped 
by intensity. Furthermore, it has been noticed that the more intense is the exercise, 
the lower 𝑆𝐷𝑅𝑅 value can be reached (for example, when walking for the first 
time, 𝑆𝐷𝑅𝑅MILA = 0.239, while in the first “scatter jump” round, 
𝑆𝐷𝑅𝑅HKI==J)	UO*P = 0.040). 

Whereas the HRV analysis limited to R–R interval analysis and its 
fluctuations, identifying mental or general fatigue, is a hard task. An additional 
analysis was made for this purpose where other ECG parameters were estimated: 
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Q, R, S, T peak amplitude values, QRS complex, R–R interval, T interval, QT and 
ST. However, using the RF model, only four features (Sa, Ra, Ta and QT) appeared 
to be important for A1 and A3 stage classification task. The final RF model can 
predict fatigue with higher than 94% accuracy. 

CONCLUSIONS 

1. ECG signals that are recorded in movement are contaminated by various 
disturbances such as electrode contact noise, unstable wires and movement 
artefacts. In this research, it has been found that only one filtering algorithm is 
not enough to process these signals. A combined filtering method was 
proposed that consists of two different algorithms, i.e., modified BEADS 
algorithm for low frequency noise (movement artefacts) removal and DWT for 
high frequency noise reduction. 
2. In this research, a modification of BEADS algorithm was introduced. With 
this improvement, different BEADS algorithm parameters (such as 𝑓K) can 
adapt to ECG signal noise and eliminate it. The modification allows to extract 
low frequency noise without damaging bio-signal time and frequency scale 
characteristics. During the study, it appeared that similar algorithms (such as 
moving average filter) distort some ECG signal characteristics (for example, 
moves T wave above the isoline). In addition, the extracted movement artefact 
signal from ECG signal is as well used to generate surrogate EEG signals. 
3. The ECG parameter search algorithm is based on k-TEO method. It was 
extended by adding T wave peak and interval detection. The suggested method 
is appropriate for real time processing. The obtained ECG parameter values 
are used in HRV analysis and signal classification process. 
4. A special training session intensity control model is presented. It helps to 
avoid heart failure or injury. This model is integrated in Careware mobile app 
and used together with CardioScout Multi device for athlete training sessions. 
5. A new linear and nonlinear HRV analysis methodology is suggested that 
allows to immediately identify physical fatigue while exercising or just after 
the training session. In addition, a significant correlation between Poincare 
ellipse shape or position in coordinates plane and participant training 
preparation has been noticed. 
6. After ML algorithms comparison, the random forest method was selected 
for physiological fatigue identification. In addition, it appeared that four ECG 
parameters (Sa, Ra, Ta and QT) are the most important in the fatigue 
classification process. The final RF model can predict physiological fatigue 
with higher than 94% accuracy. 
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EKG SIGNALŲ ANALIZĖ TRENIRUOČIŲ PROCESO 
MODELIAVIMUI IR NUOVARGIO VERTINIMO METODIKOS 

SUDARYMUI 

Temos aktualumas ir svarba 
Išmaniosios technologijos vis populiarėja tarp įvairaus amžiaus žmonių, o 

tobulėjantys įrenginiai bei besiplėtojanti debesų duomenų saugojimo sistema 
leidžia daugumą paslaugų vykdyti nuotoliniu būdu.  

Sveikatos būklės stebėjimui sporto klubuose, klinikose, darbo vietose ar 
namuose vis dažniau naudojamos įvairios mobilios aplikacijos, skirtos mėgėjiškai 
sportuojantiems, atsakingus darbus dirbantiems, vyresnio amžiaus ar specifinių 
susirgimų turintiems žmonėms, profesionaliems sportininkams ir kt. Elektroninės 
nuotolinio valdymo sistemos kartais gali pakeisti įprastus sveikatos priežiūros ir 
stebėsenos metodus. Žmonės vis dažniau ieško informacijos internete apie savo 
sveikatos būklę, galimus gydymo metodus, rekomendacijas ar dalijasi patirtimi 
tarpusavyje. Neretai sveikatos stebėjimo sistemoms reikalingi papildomi 
prietaisai, todėl jų paklausa nuolat auga, tačiau tiek įrenginius, tiek aplikacijas turi 
būti paprasta naudoti, jie turi būti lengvai suprantami kiekvienam vartotojui. 
Invaziniai tyrimo metodai tokiu atveju tampa netinkami, todėl elektrinius 
gyvybinius signalus ir kitus sveikatos duomenis registruojantys neinvaziniai 
įrenginiai bei juos apdorojanti programinė įranga tampa paklausi. 

Medicinoje elektriniai signalai paprastai yra registruojami žmogui esant 
stacionarioje būsenoje, nes norima minimizuoti galimus išorinius triukšmus. 
Tačiau registruojant įprastinėje aplinkoje retai pavyksta išvengti triukšmų, kurie 
gali atsirasti dėl kvėpavimo, raumenų susitraukimų, prastų signalo perdavimo 
kanalų ar nutrūkimų, nepilno elektrodo sąlyčio su oda, mirkčiojimo ir kitų trikdžių. 
Lietuvos ir užsienio mokslininkai pritaikė bei išplėtojo daugybę signalų filtravimo 
algoritmų, kurių dėka įvairūs triukšmai gali būti sumažinami nesugadinant pačio 
elektrinio signalo charakteristikų. Nors stacionariai registruoti signalai vis dar 
plačiai naudojami diagnostikoje, jie netinkami įvertinti žmogaus organizmo 
skirtingų sistemų tarpusavio sąveiką bei kitimo dinamiką kasdienės įprastinės 
veiklos metu. 

Žmogui atliekant fizinius ar protinės veiklos pratimus veikia kelios 
sistemos, taip pat širdies bei kraujagyslių, raumeninė ir nervų sistemos. Vis 
populiarėjančiais širdies ritmo variabilumo bei elektrokardiogramų parametrų 
dinaminių sąsajų tyrimais siekiama rasti sąryšius tarp žmogaus kompleksinės 
sistemos komponentų. Nors šie tyrimai dažniausiai pagrįsti elektrokardiogramų 
signalų analize, jie atspindi nepertraukiamus momentinių širdies ritmų svyravimus 
ir suprantami kaip atsakas į įvairias fiziologines būsenas ar tam tikras patologines 
būkles, reguliuojamas autonominės nervų sistemos ar kraujotakos. Nors judesio 
metu elektrokardiogramų registravimas neatrodo sudėtinga užduotis, tačiau patys 
signalai yra gerokai triukšmingesni nei fiksuoti stacionariomis sąlygomis. 
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Priklausomai nuo judesio intensyvumo triukšmai tampa nestacionarūs ir 
standartiniai filtravimo algoritmai nebesugeba signalų apdoroti tinkamai, 
nepažeisdami svarbiausių charakteristikų. Šiame darbe pasiūlyti elektrinių signalų 
filtravimo algoritmai geba prisitaikyti prie triukšmo lygio esant skirtingai širdies 
apkrovai (parenkant skirtingo intensyvumo fizinius pratimus) bei išsaugo 
pagrindines elektrokardiogramos signalo parametrų reikšmes, reikalingas būklės 
įvertinimui ir proceso valdymui. 

Širdies ritmo variabilumo tyrimai taip pat svarbūs ir fizinio ar fiziologinio 
nuovargio identifikavimo procese. Fiziologiniu nuovargiu vadinamas bendras 
nuovargis, apimantis fizinį, protinį ir emocinį žmogaus nuovargį. Fizinis 
nuovargis ypač aktualus profesionaliai sportuojantiems ar intensyvų atsakingą 
darbą atliekantiems asmenims. Sportininkai patenka į mažos rizikos grupę dėl 
tikimybės susirgti širdies ligomis, tačiau, nepastebėjus simptomų laiku, gali 
atsirasti negrįžtami širdies pažeidimai. Dėl šios priežasties vis daugiau 
profesionalių sportininkų ir neprofesionaliai sportuojančių žmonių domisi 
naujausiomis technologijomis, leidžiančiomis stebėti savo sveikatos būklę bei 
kontroliuoti treniruotės intensyvumą realiu laiku. Tuo tarpu, biuro darbuotojai 
dažniausiai susiduria su fiziologinio nuovargio problemomis, kurios gali pereiti į 
lėtinius sveikatos sutrikimus bei turėti ilgalaikių pasekmių. Neretai laiku 
nepastebėtas nuovargis gali tapti pagrindine nedarbingumo priežastimi. Šio tyrimo 
metu buvo identifikuojami pagrindiniai elektrokardiogramos parametrai, 
leidžiantys aptikti fizinį ar fiziologinį nuovargį naudojant širdies ritmo 
variabilumo analizę ir mašininį mokymą. 

Pagrindiniai tyrimai šiame darbe atliekami naudojant elektrokardiogramos 
signalus, tačiau taip pat parodyta, kad naudoti triukšmų filtravimo algoritmai yra 
efektyvūs ir kitiems elektriniams signalams. Apdorotiems signalams buvo 
patobulinti ir pritaikyti elektrokardiogramos parametrų paieškos algoritmai ir, 
naudojant širdies ritmo variabilumo analizę, parinkti metodai nuovargio 
vertinimui. Be to, nuovargio identifikavimo metodika ateityje gali būti pritaikyta 
įvairiose mobiliose aplikacijose ir naudojama darbo metu. Tai leistų sumažinti 
traumų riziką, mirčių skaičių dėl širdies ir kraujagyslių ligų bei laiku aptikti 
nuovargio pirmuosius simptomus ir, juos efektyviai pašalinus, padidinti 
darbingumą. 

Tyrimų objektas – elektrokardiogramos signalai, registruoti įvairaus 
intensyvumo fizinių ir protinių pratimų metu. 

Darbo tikslas – apdoroti elektrokardiogramos signalus ir analizuoti jų 
pokyčius, gautus rezultatus panaudoti treniruočių proceso valdymo modelio ir 
nuovargio vertinimo metodikos sudarymui. 

Darbe sprendžiami uždaviniai: 
• Elektrokardiogramos signalus bei jų apdorojimą aprašančios literatūros 

analizė ir pagrindinių parametrų identifikavimas, siekiant ištirti sveikatos 
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būklės vertinimo parametrus. 
• Žemo ir aukšto dažnių triukšmų pašalinimo algoritmų apžvalga bei 

tinkamų metodų parinkimas ir jų pagerinimas. 
• EKG signalo parametrų paieškos metodų papildymas įtraukiant į 

algoritmą T bangos amplitudines bei intervalines vertes. 
• Fiziologinio nuovargio vertinimo metodikos sudarymas, realizavimas bei 

testavimas realiomis sąlygomis. 
Darbui naudojami įrenginiai ir programinės priemonės: 

• Elektrokardiogramos registruojamos naudojant CardioScout Multi 
įrenginį (su registravimo dažniu 500 s!"). 

• Algoritmų paklaidoms vertinti generuojami elektrokardiogramų signalai 
naudojant simuliatorių CMRR 2.0, kuris generuoja sinusoidę su 150 bpm 
(dūžių per minutę). 

• Visi signalų apdorojimo, EKG parametrų paieškos bei nuovargio 
vertinimo algoritmai realizuoti naudojant MATLAB_R2015b paketo 
matematinės ir statistinės analizės funkcijas. 

• R-R intervalų filtravimo algoritmai realizuoti naudojant Kubios HRV 
programinį paketą. 

Darbo mokslinis naujumas ir praktinė svarba: 
• Tyrimo metu buvo parinkta elektrokardiogramos, registruotos judesio 

metu, filtravimo algoritmai bei patobulinti atsižvelgiant į pagrindines 
signalo charakteristikas, jų neiškraipant. 

• Suformuota širdies ritmo variabilumo vertinimo metodika fiziniam 
nuovargiui įvertinti, apimanti duomenų analizę, interpretaciją ir 
vizualizaciją. 

• Sudaryta elektrokardiogramos signalo parametrų paieškos metodika, 
įtraukiant T piko amplitudines ir intervalines reikšmes. Signalų 
klasifikavimui pasiūlytos charakteristikos, kurios leidžia įvertinti signalo 
pokyčius. Metodikos taikomos žmogaus sveikatos būklei vertinti ir 
stebėti bei nuovargiui identifikuoti. 

• Individualizuotos treniruotės valdymo rekomendacijos, vertinimui 
naudojant duomenis, gautus iš nutriukšmintos elektrokardiogramos. 

Darbo rezultatų aprobavimas: 
Disertacijos tema pateikti 5 moksliniai straipsniai, iš kurių 2 mokslinės 

informacijos instituto duomenų bazės (ISI) leidiniuose, kurios turi citavimo 
indeksą. Viena publikacija atspausdinta tarptautinėje, kita nacionalinėje 
leidyklose. Likusios trys publikacijos pristatytos kitų tarptautinių duomenų bazių 
recenzuojamuose leidiniuose. 

Šiame darbe gauti rezultatai buvo pristatyti 6 tarptautinėse konferencijose. 
Lietuvoje vykusiose tarptautinėse konferencijose: 2017 metais Druskininkuose 
„Mathematical modeling and analysis: 22nd international conference“, 2018 
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metais Druskininkuose „10th international workshop on data analysis methods for 
software systems“, 2019 metais Kaune „Sportininkų rengimo valdymas ir 
sportininkų darbingumą lemiantys veiksniai: sporto forumas – tarptautinė 
mokslinė konferencija, skirta Lietuvos sporto universiteto 85-mečiui paminėti“ ir 
Vilniuje „Information and software technologies: 25th international conference“. 
Taip pat disertacijoje aprašyti tyrimai pristatyti 2017 metais Graikijoje, Salonikų 
mieste, „International conference on biomedical and health informatics“ ir 
Estijoje, Talino mieste, „Sampling theory and applications 2017: 12th international 
conference“. Pasidalinta patirtimi bei pristatyti tyrimai Porto universitete 
Portugalijoje 5 dienų stažuotėje „STSM scientific mission“ tema: „ECG signal 
filtering, analysis and parameter estimation“, kuri buvo finansuojama European 
Cooperation in Science and Technology (COST). 

Disertacijos darbo rezultatai buvo naudojami struktūrinių fondų projekto 
„EKG signalo filtravimo ir parametrų skaičiavimo tyrimas“ (inočekiai nr. 01.2.1-
MITA-K-824-01-0359) mokslinių tyrimų ir technologinės plėtros įgyvendinimui 
(2017 09–2018 02). Taip pat plėtojami tyrimai programos EUREKA projekte 
11169 „Non-intrusivehuman fatigue assessment (Fatigue)“ (2018 09 01–2021 08 
30). Be to,  dalis darbe aprašytų metodų prisidėjo prie „CareWare: Electronics 
Wearable Sport and Health Solutions“ projekto plėtojamų tyrimų. 

Darbo apimtis ir struktūra: 
Šią daktaro disertaciją sudaro įvadas, 4 pagrindiniai skyriai, išvados, 

praktinė svarba, literatūros sąrašas ir publikacijų sąrašas. Darbo apimtis yra 114 
puslapių, 55 paveikslų, 26 lentelės ir 181cituojamų literatūros šaltinių aprašas. 

IŠVADOS 

1. Judesio metu registruoti EKG signalai yra triukšmingi dėl atsiradusių įvairių 
trikdžių (tokių kaip elektrodo sąlyčio su oda, laidų judėjimo ir pan.) ir pačio 
judesio pobūdžio. Tyrimo metu nustatyta, kad vieno bendro filtravimo 
algoritmo tokiems signalams apdoroti nepakanka. Šiame darbe pasiūlyta 
naudoti dviejų metodų derinį: modifikuotą BEADS algoritmą – žemo dažnio 
triukšmams (judesio artefaktams) pašalinti ir DWT – aukšto dažnio 
triukšmams sumažinti. 

2. Šiame darbe aprašyta BEADS algoritmo modifikacija skirta judesio metu 
registruotiems EKG signalams filtruoti. Dėl šio patobulinimo, algoritmo 
parametrai (tokie kaip 𝑓K) geba prisitaikyti prie skirtingų judesio triukšmų ir 
sėkmingai juos eliminuoja nepažeidžiant pagrindinių signalo parametrų. 
Tyrimo metu paaiškėjo, kad alternatyvūs algoritmai, tokie kaip slenkančio 
vidurkio filtras, kai kurias EKG signalo dalis iškraipo (pvz., T banga atsiduria 
žemiau izolinijos), o tai apsunkina tolesnę EKG parametrų paiešką. Be to, 
naudojant modifikuotą BEADS algoritmą neiškraipomos pagrindinės 
biologinių elektrinių signalų (EKG, EEG, EMG) laiko ar dažnių skalių 
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charakteristikos. 
3. Palyginus kelis filtravimo metodus buvo parinktas DWT algoritmas EKG 

signalo aukšto dažnio triukšmams sumažinti. Naudojant šį algoritmą 
simuliuotiems EKG signalams su Daubeches „db11“ bangelėmis pašalinami 
aukšto dažnio triukšmai ir gaunama RMSE paklaida lygi 0,088. 

4. EKG parametrų paieškos k – TEO algoritmas papildytas T bangos 
apskaičiavimu ir rastos kitų EKG parametrų (Ta, Tint, QT ar ST) reikšmės. 
Kadangi šio signalo forma bei parametrų eiliškumas žinomas, papildymai 
remiasi ekstremumų nustatymu ir nereikalauja didelių skaičiavimo resursų 
(reikalingų duomenų apdorojimui realiu laiku) bei randa parametrus 
triukšmingame signale. 

5. Atlikus papildomus eksperimentus sudarytas ir aprašytas treniruotės 
intensyvumo valdymo modelis, leidžiantis sportuojančiam išvengti širdies 
veiklos sutrikimų, traumų ir pasiekti maksimalių rezultatų (įvertinus QRS, ŠR, 
JT ir kt.). Šis algoritmas įdiegtas į Careware mobilią aplikaciją ir kartu su 
CardioScout Multi įrenginiu naudojamas profesionaliai sportuojančių žmonių 
treniruotės metu. 

6. Pasiūlyta tiesinė ir netiesinė ŠRV metodika geba identifikuoti fizinį nuovargį 
treniruotės metu ar po jos. Priklausomai nuo pratimo intensyvumo keičiasi 
Poincare elipsės forma bei pozicija. Nors sudėtinga išskirti konkrečias 
parametrų reikšmes, lemiančias nuovargį, tyrimo metu nustatyta, kad 
Poincare elipsės postūmis žemyn reiškia padidėjusį širdies darbą. Lėtas 
elipsės atsistatymas į pradinę poziciją gali rodyti stiprų fizinį nuovargį arba 
prastą fizinį parengtumą. 

7. Palyginus įvairius mašininio mokymo metodus ir įvertinus jų tikslumą, 
pasirinktas atsitiktinio miško algoritmas kaip geriausiai tinkantis fiziologinio 
nuovargio identifikavimui (tikslumas apie 95 %). Tyrimo metu paaiškėjo, kad 
geriausiai nuovargį aprašo keturi EKG signalo parametrai: 𝑆𝑎, 𝑅𝑎, 𝑇𝑎, 𝑄𝑇. 
Nustatyta, kad atsitiktinio miško klasifikatorius individualiam nuovargiui 
identifikuoti susideda iš 40 skirtingų sprendimų medžių, kurių kiekvieno 
aukštis ne didesnis nei 7. 

 

UDK 004.421.2+616.12-073.7](043.3) 

 
SL344. 2021-*-*,  * leidyb. apsk. l. Tiražas 50 egz.  
Išleido Kauno technologijos universitetas, K. Donelaičio g. 73, 44249 Kaunas 
Spausdino leidyklos „Technologija“ spaustuvė, Studentų g. 54, 51424 Kaunas 


