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Summary 

Non-contact human body parts measurement plays a vital role in augmented reality, virtual fitting, 

and physical healthcare applications. Existing Kinect-based body measurement methods encounter 

many challenges handling humans wearing clothes or are time-consuming since their objective also 

includes 3D scanning and reconstruction. This research project introduces a viable and effective 

Kinect-based method to generate 3D human body measurements of human wearing clothes. The 

proposed approach involves capturing frames of a subject from a single view and constructing a 

denoised 3D point cloud, which allows the acquisition of ten distinct measurements in total. Extensive 

experimental results demonstrated that the developed method requires a short execution time of 

approximately 20 seconds while producing accurate measurements with comparable quality. 

Ultimately, this research offers a convenient approach for designing and improving a real-time 3D 

virtual dressing application. 
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Santrauka 

Bekontaktis žmogaus kūno dalių matavimas vaidina svarbų vaidmenį papildytoje realybėje, 

virtualiuose matavimuose ir fizinės sveikatos priežiūros programose. Esami kūno matavimo metodai 

paremti „Kinect“ tipo jutikiais susiduria su daugybe problemų susijusių su: žmonių dėvimų drabužių 

įvairove, arba užima daug laiko, nes jų matavimai apima 3D nuskaitymą bei rekonstrukciją. Šiame 

tiriamajame projekte pristatomas perspektyvus ir efektyvus „Kinect“ tipo jutikliams pritaikytas 

metodas trimačių žmogaus matmenų gavimui, nepaisant dėvimų rūbų. Siūlomame metode objektas 

fotografuojamas iš vienos pozicijos ir konstruoja išvalytą 3D taškų debesį, kuris leidžia iš viso gauti 

dešimt skirtingų matavimų. Išsamūs eksperimentiniai rezultatai parodė, kad sukurtam metodui 

reikalingas trumpas, maždaug 20 sekundžių vykdymo laikas, tuo pat metu gaunami tikslūs matavimai 

su nedideliu išsibarstymu. Galų gale, šis tyrimas siūlo metodą puikiai tinkantį kuriant ir tobulinant 

realaus laiko 3D virtualios aprangos programas. 
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Introduction 

Recent theoretical developments have revealed that augmented reality and virtual dressing 

technologies have advanced tremendously and expanded to several areas such as health care, 

marketing, gaming, and others. Contactless human body measurement plays a significant role in 

clothing and virtual fitting applications [1] as online shopping has become a trend. 

In this context, the use of low-cost RGB-D sensors such as Microsoft Kinect, introduced by Microsoft 

for Xbox games, in 3D human body measurement and scanning has led to a significant increase in its 

convenience. Meanwhile, existing laser-based [2] and structured light sensors are either sophisticated 

or expensive as they require expert knowledge for operation, even though they produce high-quality 

data. Due to its many capabilities, Microsoft Kinect has particular advantages over conventional 3D 

scanners. One of the primary benefits is its ability to capture color and depth data at a video rate with 

a minimum consideration of the texture and light condition. These advantages allowed the Kinect 

technology to advance in areas such as defense [3], sports [4], virtual dressing applications [5, 6, 7, 

8], and health care [9, 10, 11, 40]. 

With the increasing importance of the human body measurement data in online shopping applications, 

researchers focused on finding new methods for obtaining the measurement without using the 

traditional measuring techniques that rely on the measuring tape. Therefore, based on Kinect's RGB-

D information, there have been numerous studies on measuring human body parts to accomplish 

effectiveness and cost-saving. At the same time, a subject maintains a steady position and using fewer 

Kinect sensors [7, 12, 13]. Other researchers' attention has been devoted to achieving measurements 

using Kinect sensor for health reasons, such as in [14] that developed a method to estimate waist 

circumference to help diagnose abdominal obesity.  

Additionally, several researchers endeavored to improve the measured human body parts' accuracy 

regardless of the large-scale motion during data capturing [15, 16]. Some authors have also conducted 

studies to develop software-based methods to obtain a significant number of measurements regardless 

of the human clothes' looseness [17]. Nevertheless, such approaches require multiple operators, a 

higher computational time, and an increasingly sophisticated algorithm. 

This research project presents a fast, easy, and efficient method for obtaining 3D human body parts 

measurements by detecting the human body skeleton using a single Kinect v2 sensor based on the 

time-of-flight principle [18] for real-time 3D virtual dressing application. At first, the Kinect sensor 

was used to capture depth, color, and skeleton data of users maintaining a "T" pose. Afterward, based 

on the captured segmented depth data and the generated 3D point clouds, the system acquired 

personalized human body parameters such as height, arm length, and waist front end perimeter with 

the aid of the 25 joints points identified by Kinect v2. Ultimately, the resulting measurement errors 

were reduced by implementing an error compensation technique. Furthermore, this thesis provides 

several suggestions for future research to address and consider to overcome the raised challenges and 

improve the achieved results. 
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In brief, this thesis documents several key contributions presented as follows: 

– Adopting a fast and easy data capturing approach to scan the human body that requires no 

second operator or any complicated setup. In other words, users can configure the frames' 

capturing scenario using their personal computer to start and finish the 3D human body parts 

measurement process by themselves, with embedded voice commands to assist them. 

– Offering an efficient 3D body parts measurement method that generates up to ten different 

measurements from the captured data in less than ten seconds using any RGB-D sensor that 

provides at least 15 skeleton points. 

– Applying an error compensation strategy to minimize the acquired body parts measurement 

errors. One of the key benefits of this algorithm is the ability to be implemented in public 

environments to achieve realistic 3D virtual fitting applications. To put it another way, 

modifying the reconstructed 3D avatars of a subject to match the generated body parts length. 
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1. Related work 

This chapter discusses and compares several proposed 3D human body parts measurement methods 

with a single Kinect sensor to avoid the complicated system setup. In addition, this chapter provides 

a short comparison about RGB-D sensors' efficiency from the perspective of depth accuracy, captured 

image quality, device performance, and configuration to present useful information about the chosen 

RGB-D sensor in this research project. 

1.1. Measurements with large scale motion method 

Xu et al. [15] presented an efficient approach to obtaining accurate non-contact human body parts 

measurements under the influence of a large-scale motion using a single Microsoft Kinect sensor. 

Their method considers the motion effect on the human clothes, which may drive the attached clothes 

to the human body tightly or loosely. Therefore, they introduced a space-time evaluation to extract 

the information throughout different posture variations, allowing them to obtain accurate human body 

parameters and thus made their proposed system feasible to be applied in public environments. 

Fig. 1 displays a summary of the proposed method. Firstly, a video sequence of subjects behaving in 

various poses was acquired using a single Kinect sensor (Fig. 1(a)). Then, a multi-layer framework 

restored each frame's pose in the sequence (Fig. 1(b)), which consisted of a failure-detection and a 

pose tracking module. Initially, for pose detection, a SCAPE model was applied to generate the 

training database, including body shapes of 300 different individuals and around 50,000 different 

poses. In further steps, the authors employed the SCAPE model for modeling the sophisticated non-

rigid deformations of human bodies produced by both the shape and pose variations. In other words, 

they approximated the human body geometry by 16 different rigid parts with 36 degrees of freedom 

to identify the subjects' different poses. 

For pose tracking, the authors implemented the proposed method by Wei et al. [19] while considering 

the RGB images' silhouette constraint, which ensured a precise pose estimation for each frame. 

Accordingly, the 3D human models were estimated based on the depth maps for distinct poses, 

allowing to convert all the obtained poses into a standard pose to eventually reconstruct a spatial-

temporal average model (Fig. 1(c)). Additionally, the application of a space-time evaluation allowed 

reducing the clothes' effect (Fig. 1(d)). Fig. 2 displays a comparison between the generated average 

model's accuracy and the spatial-average model after mitigating the clothes effect.  

 

Fig. 1. The pipeline of the presented approach: (a) the input depth maps and RGB images from Kinect; (b) 

various poses for every frame; (c) the spatial-temporal average model of all frames; (d) final model after 

reduction of the clothes effect [15] 
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Moreover, to acquire the body parts measurements, each frame's SCAPE model was initially 

optimized using the depth map of the video sequence's first five frames. All the obtained models of 

different poses were then transformed into one standard T-pose 3D model using the inverse LBS 

model. Specifically, synthesizing the 2.5D information from several distinct views along the time 

axis allowed recovering the complete 3D model information. Fig. 3 shows all the defined human 

body parameters in the developed system. The indices of two points for each body part were defined 

based on the body bone segment to determine the leg, arm, and neck to hip length. Also, the indices 

of multiple points surrounding the corresponding body part locations were primarily specified to 

measure the waist, chest, and hip circumference. Subsequently, the system reconstructed a circular 

convex structure from the predefined points (Fig. 3(b)), allowing them to generate measurements of 

the corresponding body parts parameters automatically during runtime. 

Based on the developed method to acquire the human body measurements, experimental data were 

collected and maintained using 55 video sequences belonging to 25 men and ten women while 

assessing several subjects more than once. The tested individuals were between 20 and 45 years old, 

ranging from 1.55m to 1.90m.   

 

Fig. 2. Results for the reduction of the clothes effect: (a) a person wearing tight clothes; (b) a person wearing 

loose clothes [15] 

 

Fig. 3. Measurements: (a) the human body parameters defined in the presented system; (b) method for 

measuring the circumference parameters using the girth [15] 
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Fig. 4 presents the 3D model reconstruction results using the color and depth images obtained from 

Kinect. The 3D models were captured with the motion capture module with different poses and were 

following this transformed into T-pose. Experimental results confirmed that without using the failed 

pose tracking method for pose recovery, the pose estimation module's inaccuracy adversely affected 

the acquired body parts measurements to no small degree. Mainly failed poses during motion capture 

often increase the outliers, which leads to an increment in the mean error of the body measurements. 

Accordingly, the implementation of a failure detection module enabled the detection of the 

unsuccessful poses automatically. Table 1 displays the average running time for the developed 

system achieved using a dual-core 2.33 GHz Intel processor. 

Furthermore, the authors' compared their developed system against the approach presented in [20]. 

Cui et al. [20] method can reconstruct all the human bodies' details while considering the subjects' 

small-scale motion while capturing approximately 40 frames from each view of the selected 12 views. 

Fig. 5 displays a comparison between the calculated average absolute errors of measurements 

reported in [15] and those reported in [20]. The derived results demonstrated Xu et al. [15] system's 

effectiveness in measuring the human body parameters with large-scale motion. Meanwhile, the 

average error of neck-to-hip length was slightly higher than that in [20]. Such difference arises from 

the extensive human body motion in front of the Kinect sensor during capturing, while in [20], the 

experimental subjects experienced minimal movement.  

 

Fig. 4. Results of 3D model reconstructions [15] 

Table 1. The average computational time for the proposed system [15] 
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Additionally, the reported findings involved calculating the waist and chest circumference's relative 

errors to analyze the obtained results before and after mitigating the clothes effect. Accordingly, the 

use of tight clothes produced minor errors compared to those measured with higher looseness. 

On this basis, the developed method by Xu et al. [15] can accurately acquire human body 

measurements of humans with large-scale motion. In other words, the conducted experiment 

demonstrates the applicability of such a system in several public applications, such as hospitals and 

shopping malls, with a relatively small price of approximately 150$. Ultimately, quantitative 

evaluations of the achieved results demonstrated that their approach produced more precise 

measurements than similar works. 

1.2. Measurements with steady human position method 

Adhikari et al. [12] presented a method to obtain contactless human body parts measurements 

dependent on a single Kinect v2 sensor for 3D virtual dressing applications. Fig. 6 shows an outline 

of the proposed procedure. Initially, the Kinect v2 device captured the human body of the subject, 

maintaining a steady T-pose. Then, the authors determined the corresponding human body depth 

information based on the acquired frames. 

Afterward, the implementation of several image processing techniques available in the Kinect sensor 

[21] allowed segmenting the moving objects and minimizing the background noise. The developed 

system could then acquire personalized human body parameters such as height, neck to hip, and leg 

length using the sensor's skeleton joints' positions. Similarly, the chest, waist, and stomach's front-

end perimeters were estimated using the corresponding 3D pixels. 

  

 

Fig. 5. Average absolute errors of measurements of people wearing clothes [15] 
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Although the Kinect sensor can store skeleton points of six people simultaneously, the authors aimed 

initially to determine the following measurements of a single subject at once by employing 

Pythagoras theorem for 3D space to measure the distance between the defined skeleton points using 

a C# code. 

– Height of the user: measured as the distance between head and ankle skeleton points. 

– Shoulder length: distance from shoulder left to shoulder right points. 

– Leg length: spine-base to ankle points. 

– Neck to hip length: neck to spine-base points. 

– Arm length: shoulder to wrist points. 

– Chest, stomach, and waist circumference: calculated as the average front-end perimeter 

around each corresponding body part area accordingly. Note that the skeleton points have not 

been considered for these measurements as new depth Y coordinates were defined. The 

corresponding depth pixels were then converted into real-world camera space points in meters 

through Kinect SDK API, which allowed them to generate measurements in meters. 

Moreover, the skeleton model and the necessary body parameters were registered for the 3D model 

as labels, as shown in Fig. 7. Following this, the developed system reconstructed the corresponding 

3D human body model based on the determined measurements and implemented error calibration for 

all of them. In other words, the algorithm generated all the necessary body parameters for two users 

and then calibrated the obtained results based on the calculated average error percentage as follows: 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 +  (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 ×  𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) 

  

 

Fig. 6. The pipeline of the presented method [12] 
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Table 2 displays a comparison between the acquired measurements using the Kinect sensor and one 

test subject's manual measurements determined with a measuring tape's assistance. According to the 

experimental results, the sensor-based measured parameters were relatively accurate since the 

calculated errors were less than 5%. The results for the chest, stomach, and waist front-end perimeters 

incorporated a maximum error of 12%. Further steps consisted of performing satistical analyses by 

applying the average weighted sampling technique to minimize each parameter's errors. The achieved 

experimental results were adequate and provided an appropriate approach for designing a 3D virtual 

dressing application.  

Ultimately, the authors utilized Microsoft visual gesture builder to introduce a gesture controlling and 

identification system. A user interface was also designed with three control buttons for recording, 

resetting, and saving images of the user captured by the Kinect sensor. Subsequently, the developed 

interface displayed the user's skeleton image with all the corresponding body parts measurements 

based on the collected human body frames. 

  

 

Fig. 7. Defined skeleton model and body parameters points [12] 

Table 2. Experimental body parts measurements [12] 
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1.3. Measurements with multi-view alignment method 

Mao et al. [22] proposed a method to obtain the human body parts measurement using the skeleton 

points provided by the Kinect v1 sensor. At first, they reconstructed a full 3D human body by 

capturing 18 frames from 6 views. The subsequent step consisted of applying an alignment algorithm 

to rapidly realize a globally aligned point cloud of the complete human body's captured frames.  

Fig. 8 presents an outline of the reported approach, in which the processing time for each model was 

about 10 minutes on average. 

To scan the human body, the user had to maintain a steady position within 1m of the sensor. 

Meanwhile, the system's setup required adjusting the Kinect sensor to the subject's waist height. Then, 

the user had to rotate consistently at approximately 60 degrees to capture three data frames in six 

different views, presented as follows:  

– one frame horizontal to the Microsoft Kinect. 

– another one 20 degrees above the horizontal by rotating the motor controlling the Kinect's tilt-

in base. 

– last frame captured 20 degrees below the horizontal. 

Compared to the previous methods, the main advantage was the reduced number of captured frames, 

which allowed to minimize and enhance the required computation speed for the denoising and 

alignment processes. Additionally, the developed algorithm consisted of a local rigid alignment 

procedure to merge every three frames of one view. This system then reconstructed two final views 

representing the human body's front and back sides from the obtained views before ultimately 

combining them to generate the corresponding full human body model. 

The following step was the segmentation and denoising of the calibrated RGB-D images because the 

captured data frames contained both the human body and the enclosing environment in the scanning 

range. For the segmentation process, the authors defined the bottom of the human body by cutting a 

plane. They thus provided a threshold to the depth value for dividing the pixels as the scanned human 

body was close to the sensor. As for the lateral noise, the implementation of Barron and Malik's [23] 

proposed method allowed to smooth the noise resulting from the surface changes, lighting 

environment, and other factors during data capturing. A final illustration of the human body 

segmentation and denoising is shown in Fig. 9, with the segmented body's edges highlighted to 

demonstrate the noise reduction. 

  

 

Fig. 8. Outline of the proposed method setup [22] 
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Following the segmentation and denoising procedure, the authors implemented a local rigid alignment 

technique combined with the ICP algorithm point-to-point search method to merge every three frames 

of a single view. In general, the ICP algorithm calculates the correspondence distance between the 

source and destination points. However, since the point cloud density increased after merging the 

frames, a down-sampling process was conducted using the PCL voxel grid. The following produced 

a point cloud divided into multiple grid elements, with each grid's total points approximated with 

their corresponding centroid.  

After rigidly aligning all the captured frames, the researchers introduced a three-step multi-view 

alignment method to combine the obtained six views into two views consisting of: 

– A pre-alignment of the frames implemented by finding their pairwise correlation on the human 

body silhouette. This process was repeated five times on both the front and back views 

considering that they have more data points. 

– A rigid alignment of the previously aligned partial views in a group of two-point clouds in an 

adjacent position to acquire a more detailed point cloud, as illustrated in Fig. 10. 

– A non-rigid alignment of the multi-view frames to cope with the accumulation of errors, which 

originates from multiple rigid alignment iterations, by distributing them equally over all the 

consecutive frames. This approach was required because, during the scanning process, the 

human body can unavoidably experience movement. The following may cause deformations 

that can be similarly produced by the human clothes or during the Kinect sensor calibration. 

Ultimately, the presented method enabled the merging of the adjacent point clouds views 

progressively to form one final view of the human body.  

 

Fig. 9. Data frames segmentation and denoising: (a) raw data, (b) after segmentation and removing the 

background, (c) after denoising [22] 

 

Fig. 10. Identified correspondence points between two frames in adjacent views [22] 
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Furthermore, the resulting globally aligned human body model required texture mapping and a 

watertight mesh surface. In terms of the watertight mesh surface, the developed algorithm applied the 

Poisson reconstruction method [24], which generates polygonal mesh from the dense point cloud. 

Regarding texture mapping, a mesh of the 3D human portrait was first developed by segmenting and 

projecting the 3D surface to the 2D domain. Afterward, the Kinect's sensor calibration of RGB images 

and depth images allowed to assign all the captured frames with colors before aligning them without 

down-sampling by the reported global and rigid alignment algorithms. It is important to note that 

obtaining the texture mapping of any point in the 3D mesh relied on the weighted mean of the 

generated point cloud data's color values. Fig. 11 shows the 3D reconstruction results, which 

contained the 3D reconstructed human body avatar with mesh, color, and texture. The achieved results 

demonstrated the accuracy of the proposed method in reconstructing 3D avatars with realistic 

deformation, clothing wrinkles, and hairstyles. 

Based on the obtained 3D models from the multi-view alignment method, the researchers used 

skeleton points provided by the Kinect sensor to generate several 3D human body parts measurements 

for multiple subjects. Table 3 shows the average error between the calculated and the actual human 

body measurements presented in centimeters while comparing them to previous work with similar 

results using two Kinects [25, 26] and others using one Kinect [20, 27]. Contrary to these previous 

works' findings, Mao et al.'s approach slightly improved the average error between measurements 

while generating more precise 3D human body models. Nevertheless, this method had particular 

limitations in terms of the captured data quality and modeling robustness. Accordingly, the authors 

suggested several recommendations for future research, such as utilizing higher resolution RGB-D 

sensors and more advanced denoising algorithms. 

  

 

Fig. 11. Reconstruction results of full 3D human bodies in different scanning scenarios [22] 
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1.4. Measurements with the registration of many depth images method 

Cui et al. [20] proposed a full 3D human body measurements and reconstruction method that focuses 

on the rigid and non-rigid registration of many depth images and does not require a reference model 

or additional equipment. The following allowed them to reconstruct detailed human body features 

such as faces or clothing by applying a super-resolution algorithm that considers the color constraints. 

Fig. 12 presents an outline of the reported approach, in which the processing time for each model was 

about 14 minutes on average. 

To scan the human body, the user had to stand in a range of  2 meters from the Kinect's v1 sensor 

while maintaining a "T" pose and turning around 360 degrees for about 20 to 30 seconds to capture 

ten frames within 0.5 seconds intervals. Afterward, based on the smoothing super-resolution 

algorithm previously described in [28], super-resolved depth and color frames were produced with 

an enhanced resolution. Fig. 13 shows the developed algorithm's accuracy in preserving the captured 

model frames' smooth surface after integrating the color constraints. Meanwhile, it is essential to 

highlight that the AEE, which is the average of error values over all the points in the mesh, is 

represented by the color-coded plots (Fig. 13(c) and Fig. 13(e)). Extensive analysis of the presented 

AEE results in Fig. 13 demonstrates the added color constraints' effectiveness in decreasing the 

euclidean errors. 

Table 3. The average error of measurements between the real and virtual human bodies [22] 

 

 

Fig. 12. Outline of the proposed method setup [20] 

 

Fig. 13. Super-resolved mesh of a lion model [20] 

[26] 

[25] 

[20] 

[27] 
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Further steps consisted of a global rigid and non-rigid registration of the noisy Kinect data using a 

probabilistic global alignment algorithm, which combined the super-resolved scans into a final model 

by aligning all the adjacent frames. For this purpose, the researchers considered the human body as 

articulated with rigid structures connected by joints. Note that the articulated model was employed to 

describe the non-rigid motion of the human body. Subsequently, the presented non-rigid algorithm 

accomplished correct point cloud registration and detection of joint positions when tested against 

frames with waving arms.  

Moreover, the researchers utilized the Poisson surface reconstruction algorithm [24] to generate 3D 

human body mesh with minimized noise. The final step included a texture depth map for each view 

of the human body created from the Kinect's raw color data. Fig. 14 displays the reconstructed 3D 

human body models of 5 experimental subjects with accurate geometric surface features. 

Nonetheless, one concern about this paper's findings was that excessive motion in the user's arms or 

legs could distort the developed system's registration process. One of the reported suggestions to solve 

this problem involved investigating more complex noise and distorted models to handle extensive 

user movements. 

Based on the obtained 3D avatars, the authors used the Kinect sensor's skeleton points to generate 

several 3D human body parts measurements for all reconstructed models with an Intel Xeon 2.67 

GHz CPU 12GB RAM. Lastly, the following allowed them to calculate the corresponding average 

error of the biometric measurements in centimeters between the reconstructed and real human bodies 

alongside the proposed algorithm's average runtime, as shown in Table 4. 

 

Fig. 14. Full 3D human body scanning results of multiple subjects [20] 

Table 4. Runtime for each processing part and the average error of the biometric measurements [20] 
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1.5. Kinect v1 versus Kinect v2 

With the increasing popularity of RGB-D sensors in the computer vision community, several studies 

have compared Kinect v1 and Kinect v2 [29, 30, 31]. Generally, Kinect v1 is a structured light camera 

that captures a projected light form and identifies the distance separating the object and the camera 

by monitoring the light pattern's deformation [29]. Although previous research focused on Kinect v1 

as one of the most common RGB-D sensors with several algorithms developed for it, a new Kinect 

sensor that depends on a different technology was released in 2014. In brief, Kinect v2 is a ToF 

camera that estimates the distance between the camera and the object by calculating the sensor's 

signal's travel time and emitted from the projector [29]. 

Meanwhile, Oliver et al. [32] provided a systematized comparison between Kinect sensors' versions 

by evaluating their captured depth images accuracy. Their experiment primarily consisted of 

acquiring approximately 100,000 depth images for about an hour of runtime while analyzing the 

sensor's temperature influence on every frame. Accordingly, the obtained experimental results 

suggested that for more reliable depth image quality, the Kinect v2, which has an internal fan, should 

be pre-heated for at least 25 minutes before capturing any image. By contrast, Kinect v1 required a 

smaller warm-up duration.  

Moreover, the conducted research in [32] delivered useful information about the capturing distance's 

influence. The presented study findings initially indicated that Kinect v1 accuracy dropped while 

increasing the scanning distance. On the contrary, higher distance slightly affected Kinect v2 accuracy 

as it remained approximately constant, although the precision dropped substantially. Lastly, the 

authors concluded by recommending using Kinect v2 for both 3D reconstruction and human body 

measurements applications due to its higher accuracy and ability to identify up to 6 people. On this 

basis, the low precision of the acquired depth frames by Kinect v2 has to be considered by applying 

pre-processing algorithms on the depth images before using them. 

1.6. Kinect versus other RGB-D sensors 

In the past decade, the image processing field witnessed an unprecedented shift with the development 

of numerous RGB-D sensors integrating the characteristics of laser-based 3D scanners and optical 

sensors such as Microsoft Kinect, PrimeSense, and Intel RealSense cameras. Such devices can 

achieve 3D scanning and measurements of objects and are, for the most part, portable like optical 

sensors. This technology has allowed the following applications to become more convenient with 

affordable low-cost RGB-D sensors that can capture both depth and color images in real-time.  

Table 5 displays a thorough comparison of the main characteristics of some of the most frequently 

used RGB-D sensors in 3D human body measurements and reconstruction applications. Nevertheless, 

the displayed RGB-D sensors in this section are not the only available sensors in the market. There 

are many other cameras such as Asus Xtion PRO Live, SwissRanger 4000, PMD CamCube 3.0, 

CubeEye, Intel RealSense Camera F200, Intel RealSense Depth Camera D415. 

To put it differently, determining the most suitable RGB-D device for any application relies on several 

factors such as task requirements, budget, and the required sensor’s features. 
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Table 5. Main characteristics of different RGB-D sensors [30, 33, 34] 

 Kinect 1.0 Kinect 2.0 PrimeSense RealSense D435 

Sensor type Infrared Structured 

Light 

Time of Flight 

(ToF) 

Structured Light Active Stereoscopic 

RGB resolution (pixel) 

and frame rate (fps) 

640 × 480 at 30 fps 

or 1280 × 1024 at 

12 fps 

1920 × 1080  

at 30 fps 

640 × 480  

at 30 fps 

1920 × 1080  

at 30 fps 

Depth resolution (pixel) 

and frame rate (fps) 

640 × 480  

at 30 fps 

512 × 424  

at 30 fps 

640 × 480  

at 30/60 fps 

1280 × 720  

at 90 fps 

Depth distance range (m) 0.8 − 4 (default) 

0.4 − 3.5 (near) 

0.5 − 4.5  0.8 − 3.5 or 

0.35 − 1.4 

0.11 − 10 

Field of view of depth 

image (Horizontal, 

Vertical) 

57° × 43° 70° × 60° 57.5° × 45° 85.2° × 58° 

Field of view of RGB 

image (Horizontal, 

Vertical) 

62° × 48.6° 84.1° × 53.8° 57.5° × 45° 69.4° × 42.5° 

Tilt motor Yes No No No 

Skeleton joints defined 20 25 19 15 

Maximum skeletal 

tracking 

2 6 6 6 

USB interface 2.0 3.0 2.0 3.0 Type C 

Power Supply External Adapter  External Adapter USB USB 

Price ($) 80 200 295 179 
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2. Overview 

This chapter gives an overview of the proposed system for obtaining 3D human body parts 

measurement of a subject using a single Kinect v2 sensor. Similarly, a comprehensive description of 

each part of the suggested algorithm is displayed. 

The presented research project aims to devise and implement a fast and unsophisticated approach for 

real-time non-contact 3D human body measurement of a user. With a single RGB-D sensor such as 

Microsoft Kinect v2, a user can easily configure the scanning scenario with a personal computer 

within a limited workspace, whereas no second operator is needed. Fig. 15 presents an outline of the 

proposed method. Initially, the system captures ten frames containing depth, color, and skeleton data 

of the human body front view using Kinect v2. Afterward, the acquired human body frames are 

segmented, and 3D point clouds of the human body are constructed and denoised.  

The next step incorporates using the segmented depth image and the human body's skeleton data, 

which consists of 25 skeleton joints points, for defining the depth points' coordinates of the human 

body parts. Accordingly, the obtained 2D coordinates are mapped to the 3D point cloud data to 

estimate the measurement for each of the body parts. Ultimately, error compensation is applied to 

reduce the obtained measurement errors and generate more accurate measurements. For instance, the 

introduced algorithm can produce 13 different human body measurements in particular: 

– Height, 

– Arm left and right lengths, 

– Hand left and right lengths, 

– Leg left and right lengths, 

– Neck to hip length, 

– Shoulder length, 

– Hip, waist, stomach, and chest front end perimeter, 

  

 

Fig. 15. Pipeline of the proposed method 
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2.1. Data capturing 

In brief, the data capturing process consists of applying Elise et al.'s [35] recommendations. The 

following study findings highlighted several suggestions to obtain better measurements from Kinect 

v2 and reduce the frames' noise, illustrated as follows: 

– Considering a pre-heating time for the device of almost 30min, 

– Collecting a tenth of consecutive depth maps from a single viewpoint, 

Fig. 16 presents an outline of the proposed system setup for the data capturing process coupled with 

the corresponding algorithm. During the frames' acquisition, a user has to maintain a steady "T" pose 

in front of the sensor for approximately 10 seconds to capture ten frames while standing within the 

selected scanning distance (2.5m). Meanwhile, each subject has ten seconds to stand in front of the 

sensor before the capturing process starts. The main advantage of this delay is eliminating the 

necessity for a second operator. Additionally, the system verifies the human body skeleton's 

identification before saving the collected frames. In other words, an error occurs upon failure in 

detecting the required skeleton or exceeding the data capturing limit, which leads to the cancellation 

of the entire procedure.  

On the contrary, in the case of a successful tracking and identification of the human skeleton, all the 

acquired frames metadata are saved into the project's database. The metadata generally consists of 

the joints' position coordinates, color image, and depth image data. Furthermore, the user can decide 

whether to capture more frames or save the collected data to the corresponding directory and end the 

capturing process. Ultimately, using the method presented in [36], Microsoft Cortana voice 

commands were added to the system to notify the user about the capture process's failure or success. 

  

 

Fig. 16. Data capturing: (a) capturing scenario; (b) capturing algorithm flowchart 
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Besides, few limitations arise as it is necessary to consider several factors during the collection of the 

human body frames, such as: 

– Human must be wearing regular clothes that are not so loose because loose clothes could 

affect several body measurements such as waist, chest, and stomach front end perimeter [15], 

– Human body scanning must not be performed in an outdoor space as the sun rays may result 

in data distortion and increase the noise. Nevertheless, there exists a considerable body of 

literature recommending performing the scanning in an enclosed indoor environment such as 

in [35], 

– A user must maintain a steady position during the capturing process because an increased 

motion may cause deformations and eventually affect the accuracy of the obtained results 

[22], 

Further to this, to be noted that all the RGB-D datasets in the capturing experiments were acquired 

using a single Kinect v2 facilitated with an HP Pavilion notebook computer (CPU Intel i7-6700HQ 

2.6 GHz, 16 GB RAM) and MATLAB R2018a (C programming language). 

2.2. Segmentation, Denoising and 3D Point Cloud 

Foreground segmentation and background removal are essential techniques in computer vision. As 

mentioned previously, a substantial part of the data capturing is the skeleton tracking executed by the 

sensor. The following enables characterizing the human body in each frame by several joint 

coordinates, represented as 25 joints points and displayed as a depth joints map in Fig. 17. 

Additionally, the generated joints points include both 2D and 3D coordinates, allowing Kinect to 

perform depth base segmentation and return the segmented body index frame. 

Accordingly, the segmentation of the 3D point cloud of the human body consisted of the following 

steps (see Fig. 18): 

– Acquiring the depth inverse of the binary image from the sensor's segmented depth body index 

frame. 

– Transforming the binary image inverse to the same type of the original depth image and 

multiplying them together to obtain the main segmented depth image. 

– Aligning the previously segmented depth image with the original color image to generate the 

corresponding segmented 3D point cloud.  

 

Fig. 17. Depth joints map [41] 
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Moreover, numerous studies investigated the captured data's lateral noise and focused on removing 

it in 3D only, such as in [22]. However, unlike previous works, this research project adopts filtering 

the noise from the captured 2D depth images and the segmented 3D point cloud. The following is 

important when defining the corresponding human body joints' coordinates in 2D before mapping 

them to 3D. 

Furthermore, the developed algorithm implements the 2D averaging filter to remove the noise from 

the segmented depth image in 2D to generate a new denoised 3D segmented point cloud data. 

Generally, the averaging filter performs image smoothing by decreasing the intensity differences 

between the adjacent pixels and substituting each pixel with the mean of all the neighboring pixels 

using a convolution mask over each pixel. Meanwhile, the chosen size of the neighborhood mainly 

controls the amount of filtering. Therefore, a relatively small neighborhood size (2) was selected 

when using the averaging filter because a larger neighborhood proportion may result in a loss of 

image details, although it produces higher noise reduction [38].  

Algorithm 1 presents an example of utilizing the 2D averaging filter to smooth both the segmented 

2D depth image and the segmented 3D point cloud data. At first, the point cloud location property, 

which consists of the point cloud points in the form of a 3-dimensional matrix, was divided. 

Afterward, the averaging filter was applied to denoise the main segmented depth image. 

Subsequently, the system generates the corresponding X, Y, and Z coordinates of the new denoised 

3D point cloud before ultimately obtaining a new denoised 2D depth image. 

  

 

Fig. 18. 3D Point cloud segmentation: (a) depth body index frame; (b) depth inverse of binary image; (c) 

original full depth image; (d) segmented 3D point cloud 
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2.3. Defining human body parts points 

In general, several RGB-D sensors, which provide human body tracking capabilities, define the 

skeleton points as joints' centers described with several properties, including the corresponding 2D 

and 3D coordinates. However, utilizing these points directly to obtain human body parts 

measurements can decrease the achieved results' accuracy. Accordingly, in contrast to previous works 

that used the predefined skeleton points directly to acquire measurements [22], this research's 

essential contribution was to estimate new points located at the human body's edges. The main 

advantage of this is that it can be implemented with minimal skeleton points to reduce measurement 

errors. In other words, the following allows using any available RGB-D sensor with human body 

tracking functionality and at least 15 defined human body skeleton points. Fig. 19 shows all human 

body parameters defined by the presented system. First, determining several measurements such as 

the height, leg, and arm length required identifying two points' indices for each of them. On the other 

hand, to measure the waist, chest, stomach, and hip circumference, the indices of multiple points 

surrounding the corresponding body parts' locations were specified. 

Algorithm 1. Denoising with an averaging filter algorithm 

 

 

Fig. 19. Defined human body parts points 
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Moreover, the developed method consisted of multiple steps before defining new body parts points. 

The first step was acquiring the inverse of the binary image of the segmented depth body index frame. 

Afterward, the coordinates of all the contour points of the generated binary image were determined 

using a function implemented based upon [39], which uses the Moore-Neighbor contour tracing 

algorithm adjusted by Jacob’s stopping criteria. In brief, to determine the edges in an image, the Moor 

neighborhood method identifies the indirect neighbors of a pixel, which are a set of 8 pixels sharing 

an edge pixel or a vertex with that pixel.  

Based on the obtained depth coordinates of the human body contour, the corresponding points of each 

body part were estimated as follows: 

5. Height Points: 

– Upper point depth coordinates (X, Y) were estimated by searching in the contour coordinates 

for the closest point to the skeleton head point, namely the point with identical X coordinate 

and minimal Y coordinate. 

– Lower point depth coordinates were obtained by searching for the contour point with the 

maximal Y coordinate. 

6. Arm Left Points: 

– The first point has the same depth coordinates as the skeleton's shoulder left point. 

– Second point's depth coordinates were obtained by searching for the contour point with the 

minimal X coordinates. 

7. Arm Right Points: 

– The first point has the same depth coordinates as the skeleton's shoulder right point. 

– Second point's depth coordinates were acquired by searching for the contour point with the 

maximal X coordinates. 

8. Hand Left Points: 

– The first point has the same depth coordinates as the skeleton's wrist left point. 

– Second point's depth coordinates were obtained by searching for the contour point with the 

minimal X coordinates. 

9. Hand Right Points: 

– The first point has the same depth coordinates as the skeleton's wrist right point. 

– Second point's depth coordinates were acquired by searching for the contour point with the 

maximal X coordinates. 

10. Neck to Hip Points: 

– The first point has similar depth coordinates as the skeleton's neck point. 

– The second point has the same depth coordinates as the skeleton's spine base point. 
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11. Shoulder Points: 

– The first point has similar depth coordinates as the skeleton's shoulder left point. 

– The second point has the same depth coordinates as the skeleton's shoulder right point. 

12. Leg Left Points: 

– The first point has the same depth coordinates as the skeleton's hip left point 

– Second point's depth coordinates were obtained by searching in the contour coordinates for 

the closest point to the skeleton foot left point, namely the point with identical X coordinate 

and maximal Y coordinate. 

13. Leg Right Points: 

– The first point has similar depth coordinates as the skeleton's hip right point. 

– Second point's depth coordinates were acquired by searching in the contour coordinates for 

the closest point to the skeleton foot right point, namely the point with identical X coordinate 

and maximal Y coordinate. 

14. Hip Circumference Points: 

– In a real-life scenario, hips are not measured as the distance between 2 points but as a 

curvature. Therefore, in this research, the hip front end perimeter’s points were determined. 

At first, the algorithm specified one contour point with the same Y coordinate as the hip left 

or hip right skeleton points. Afterward, the depth binary image coordinates were searched for 

all the points with the same Y-axis coordinate as the previously defined hip contour point. 

The final obtained points allow measuring the hip circumference. 

15. Waist Circumference Points: 

– In general, waists are also not measured as the distance between 2 points but as curvature. 

Therefore, in this research, the waist front end perimeter’s points were determined. At first, 

the system specified the contour's Y coordinate for the waist by searching for the point 

positioned one-third the distance between spine-mid and spine base skeleton points. Then, the 

depth binary image coordinates were searched for all the points with the same Y-axis 

coordinate as the previously defined waist contour point. The final generated points 

correspond to the waist circumference points. 

16. Stomach Circumference Points: 

– Similarly, the stomach circumference points were determined by finding a contour Y 

coordinate for the stomach by searching for the point positioned three-fourths the distance 

between spine-mid and spine base skeleton points. Accordingly, the depth binary image 

coordinates were searched for all the points with the same Y-axis coordinate as the previously 

defined stomach contour point. The final obtained points define the stomach circumference 

points. 
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17. Chest Circumference Points: 

– Likewise, chest circumference points were determined by first finding a contour Y coordinate 

for the chest by searching for the contour point positioned one-third the distance between 

spine-mid and spine shoulder skeleton points. Following this, the depth binary image 

coordinates were searched for all the points with the same Y-axis coordinate as the previously 

defined chest contour point. The final collected points allow measuring the chest 

circumference. 

2.4. Measuring human body parts 

After defining all the required human body parts points and their corresponding depth coordinates 

(x,y), 2D coordinates had to be mapped into 3D coordinates (x,y,z) by entering the depth coordinates 

as parameters in the point cloud location property to generate the corresponding 3D coordinates. 

Afterward, based on the acquired 3D coordinates of all the previously defined human body parts 

points, all the respective body parts measurements were estimated using the Pythagoras theorem of 

3D space. Algorithm 2 presents an illustration of how to determine the human body height length in 

meters. 

Furthermore, a similar method was applied to obtain the measurements of all the remaining body 

parts. However, the main difference was that for several body measurements such as hip, waist, 

stomach, and chest, the calculation of the length depended on defining the sum of lengths between 

every 2 points of the front-end perimeter points. 

2.5. Selecting the Capturing Distance 

Generally, when selecting the most suitable capturing distance, many factors must be considered, 

such as the sensor's position, the sensor's field of view, and the captured frame resolution. 

Additionally, with greater distances, the quality of the captured depth images is degraded by the low 

resolution of the depth measurements and the noise. Fig. 20 shows the Kinect's field of view in which 

the sensor was placed 1.5 meters above the ground within a capturing distance of 2 meters. The 

specified field of view then enables covering the full human body with a maximal vertical point of 

2.2m and a minimal vertical point of -0.1m. However, the sensor must be placed with a relatively 

small inclination (approximately 13°) because positioning the sensor horizontally to the ground can 

lead to losing part of the captured human body legs. 

  

Algorithm 2. Measuring the human height length 
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In brief, to select the most suitable capturing distance for the proposed method, the conducted 

experiment consisted of collecting and maintaining a dataset of 300 frames. Each 100 corresponded 

to one of the following distances: 2m, 2.5m, and 3m. Note that the captured frames belonged to one 

subject wearing the same clothes, in the same indoor environment and lighting conditions. Ultimately, 

the system generates the corresponding 3D human body parts parameters for each frame in addition 

to the resulting absolute errors of measurements (see Fig. 21). 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑐𝑚 = |𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ| 

Moreover, the evaluation of the data presented in this experiment (Fig. 21) proves the developed 

approach's capability in generating human body parts measurements from all the selected distances 

with a variation of the absolute error from one distance to another. Nevertheless, the achieved results 

were insufficient to determine the most suitable capturing distance. Accordingly, the following step 

consisted of calculating the AAE of the obtained results, as shown in Table 6. 

  

 

Fig. 20. Kinect v2 sensor field of view 

 

Fig. 21. Comparison of the obtained human body parts measurements from 3 distances (2m, 2.5m, 3m) 
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Table 6. Average absolute errors (AAE) (in cm) of the obtained human body parts measurements from 3 

distances (2m, 2.5m, 3m) 

Measurement From 2m From 2.5m From 3m 

Height Length 6.6 7.4 5.4 

Arm Left Length 6.6 5.2 4.7 

Arm Right Length 7.3 7.2 5.7 

Hand Left Length 3.9 3.2 6.7 

Hand Right Length 1.6 1.4 3.2 

Hip Circumference 2.4 3.2 3.4 

Leg Left Length 9.3 10.9 11.5 

Leg Right Length 11.2 9.2 10.2 

Neck to Hip Length 1.4 0.9 2.1 

Shoulder Length 1.7 1.9 2.3 

Waist Circumference 1.8 1.2 2.0 

Stomach Circumference 10.6 9.2 11.4 

Chest Circumference 7.4 7.2 8.6 

Average of AAE 5.5 5.2 5.9 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑐𝑚

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(|𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟

− 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ|) 

Table 6 displays the AAE of the human body parts measurements of the captured data from 3 

different distances. According to the acquired data, the AAE of seven body parts measurements was 

the smallest for the collected results from 2.5m compared to that from 2m and 3m, where the AAE 

of only three measurements was the smallest. Similarly, a comparison of the final average of all AAE 

shows that 2.5m had the smallest outcome (5.2cm), which is 0.3cm lower than that 2m and 0.7cm 

smaller than that obtained from 3m. 

2.6. Developing Error Compensation 

In general, many factors may affect the accuracy of the obtained human body parts measurements, 

such as lighting, clothing, and noisy depth data. For this purpose, this research attempted to integrate 

an error compensation strategy to minimize the reconstructed human body parts measurement errors. 

Meanwhile, numerous previous studies, such as in [12], implemented error compensation by 

calculating the average error of measurements using real human body parts measurements to improve 

the final values as follows: 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 +  (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 ×  𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒) 

However, one limitation of such an approach is that it might not be accurate because, in virtual 

dressing applications, the main goal is to provide individuals with their final human body parts 

measurements without knowing their real measurements.   
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Accordingly, this research project investigated a different strategy for implementing error 

compensation. At first, this experiment's dataset incorporated 1000 captured frames of one subject 

wearing the same clothes, in the same indoor environment and lighting conditions. Afterward, the 3D 

human body parts measurements for each captured frame were estimated and stored in a separate 

array corresponding to each body part. The following allowed to approximate a compensation value 

for every human body parameter by the expression: 

𝐸𝑟𝑟𝑜𝑟 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑎𝑟𝑟𝑎𝑦 − 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ) 

Furthermore, the obtained error compensation values were positive and negative: 

– With positive error compensation: 

𝑛𝑒𝑤 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 

– With negative error compensation: 

𝑛𝑒𝑤 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 

Ultimately, based on the conducted experiment, the final obtained error compensation values for the 

corresponding human body parts measurements are presented in Table 7. 

Table 7. Estimated error compensation values 

Human Body Parameter Error Compensation Value (cm) 

Height −6.1 

Arm Left −5.2 

Arm Right −7.1 

Hand Left 3.8 

Hand Right 1.9 

Hip −5.9 

Leg Left −9.4 

Leg Right −9.4 

Neck to Hip 2.2 

Shoulder −1.8 

Waist −0.9 

Stomach 8.3 

Chest 5.6 
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3. Results and discussion 

The following chapter presents the achieved 3D human body parts measurement results from this 

research project's proposed method. 

3.1. Experimental Results 

Based on the previously reported error compensation values, the developed system was initially tested 

on three subjects. At first, this required collecting the real body parts measurements of all of them 

manually using a measurement. Afterward, ten frames were captured for each user separately while 

maintaining a “T” pose within a distance of 2.5m of the Kinect sensor. Ultimately, the obtained 3D 

human body part measurement results were recorded before and after implementing the error 

compensation (see Table 8, Table 9, and Table 10). Note that the proposed algorithm consists of 

estimating the final obtained measurements with the sensor as the average measurements of each 

captured ten frames. 

𝐵𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝑟𝑜𝑢𝑛𝑑(𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 10 𝑓𝑟𝑎𝑚𝑒𝑠 )) 

Table 8. Final body parts measurements of subject 1 (S1) 

Measurement 
Manually measured 

values (cm) 

Sensor values before 

compensation (cm) 

Sensor values after 

compensation (cm) 

Height Length 182 176 182 

Arm Left Length 81 75 80 

Arm Right Length 81 72 79 

Hand Left Length 20 27 23 

Hand Right Length 20 25 23 

Hip Circumference 44 39 45 

Leg Left Length 103 95 104 

Leg Right Length 103 95 104 

Neck to Hip Length 60 58 56 

Shoulder Length 40 35 37 

Waist Circumference 43 43 44 

Stomach Circumference 42.5 43 35 

Chest Circumference 46 45 40 

 

  



38 

Table 9. Final body parts measurements of subject 2 (S2) 

Measurement 
Manually measured 

values (cm) 

Sensor values before 

compensation (cm) 

Sensor values after 

compensation (cm) 

Height Length 178 172 178 

Arm Left Length 74 70 75 

Arm Right Length 74 69 76 

Hand Left Length 19 23 20 

Hand Right Length 19 23 21 

Hip Circumference 43 38 44 

Leg Left Length 96 87 96 

Leg Right Length 96 87 97 

Neck to Hip Length 60 61 59 

Shoulder Length 40 35 37 

Waist Circumference 42 38 39 

Stomach Circumference 40 42 34 

Chest Circumference 47 45 39 

 

Table 10. Final body parts measurements of subject 3 (S3) 

Measurement 
Manually measured 

values (cm) 

Sensor values before 

compensation (cm) 

Sensor values after 

compensation (cm) 

Height Length 167 161 167 

Arm Left Length 73 71 76 

Arm Right Length 73 66 74 

Hand Left Length 18 22 18 

Hand Right Length 18 19 17 

Hip Circumference 58 51 57 

Leg Left Length 93 80 89 

Leg Right Length 93 80 89 

Neck to Hip Length 55 58 56 

Shoulder Length 41 39 41 

Waist Circumference 56 52 53 

Stomach Circumference 52 54 46 

Chest Circumference 57 59 53 
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Table 8, Table 9, and Table 10 display the acquired 3D human body parts measurements of 3 

subjects in a user-friendly and efficient approach based on the reported algorithm. The presented 

results incorporated 13 different measurements. Subsequently, the data's evaluation demonstrates the 

introduced method's ability to achieve desirable results and reduce measurement errors. In other 

words, the obtained measurements after error compensation for the majority of the collected data 

were approximately closer to the actual human body values. Compared to the current methods based 

on infrared scanning or laser scanning, the Kinect scanning and measuring methods are hence utterly 

flexible and capable of conveniently obtaining the 3D measurement of users at low cost. 

To further investigate the experimental results, this section evaluates the average absolute error of the 

human body parts measurements between the real and the final measured human body parts data with 

the Kinect sensor, with and without error compensation. Table 11 shows the AAE of each captured 

ten frames corresponding to each subject separately in addition to the total average of AAE of all the 

individuals. The displayed results show that the developed compensation was performing adequately 

because the calculated average absolute errors for most of the measurements and the average of AAE 

of all the generated measurements decreased significantly after implementing the error compensation. 

Meanwhile, the average absolute error of several measurements such as neck to hip, stomach, and 

chest increased after implementing the error compensation for the following reasons: 

– Neck to hip measurement primarily depends on the human's skeleton points generated by the 

sensor, which are the neck and spine base points. Therefore, this measurement can be 

influenced by the inclination or the position of the user's head while maintaining a steady "T" 

pose. The following may result in an unpredictable measurement error. Nevertheless, error 

compensation for this body parameter might not be accurate. 

– Stomach and chest circumference are influenced by the tightness or looseness of the individual 

clothes during the data capturing process, resulting in an unpredictable measurement error. 

Thus, error compensation for these measurements might not be accurate. 
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Table 11. Average absolute error (in cm) of measurements between the measured and real human body parts 

with and without error compensation 

Measurement 

AAE of S1 AAE of S2 AAE of S3 
Average of AAE of 

all subjects 

Woc Wc Woc Wc Woc Wc Woc Wc 

Height Length 6 0 6 0 6 0 6 0 

Arm Left Length 6 1 4 1 2 3 4 1.7 

Arm Right Length 9 2 5 2 7 1 7 1.7 

Hand Left Length 7 3 4 1 4 0 5 1.3 

Hand Right Length 5 3 4 2 1 1 3.3 2 

Hip Circumference 5 1 5 1 7 1 5.7 1 

Leg Left Length 8 1 9 0 13 4 10 1.7 

Leg Right Length 8 1 9 1 13 4 10 2 

Neck to Hip Length 2 4 1 2 3 1 1.7 2 

Shoulder Length 5 3 5 3 2 0 4 2 

Waist Circumference 0 1 4 3 4 3 2.7 2.3 

Stomach 

Circumference 
0.5 7.5 2 6 2 6 1.5 6.5 

Chest Circumference 1 6 2 8 2 4 1.7 6 

Average of AAE of 

all measurements 
4.8 2.6 4.6 2.3 5.1 2.1 4.8 2.3 

 

3.2. Performance Comparison 

Before assessing the presented method's effectiveness and performance, the first step consisted of 

recomputing all experimental individuals' final biometric measurements after executing the suggested 

error compensation. However, as previously explained, error compensation was not applied for the 

neck to hip, stomach, and chest measurements. For this purpose, the following measurements' final 

values remained equal to the values obtained by the sensor before compensation. 

Moreover, in further steps, additional data collection of more participants was performed. Hence, 

there are six people tested in the conducted experiments. Table 12 shows the average absolute errors 

of human body parts measurement in centimeters between the real and the measured results of the 

human bodies with the Kinect sensor. Accordingly, this table compares all computed AAE results 

against the traditional method's reported results in [12, 15, 20, 22] using one Kinect sensor. These 

findings go beyond previous reports, showing that the algorithm highlighted in this thesis provided 

ten different body parts measurements, while no other method achieved more than eight. 

Additionally, the evaluation of the produced data demonstrates a significant improvement in the AAE 

of several human body parts, including height, hip, and waist, as slightly superior outcomes were 

achieved.   
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Meanwhile, it must be pointed out that although the compared studies displayed relatively better 

results for few measurements such as arm, leg, and shoulder, several arguments can make their 

findings not considered accurate and are summarized as follows: 

– Some of the previous works presented in Table 12, such as [20, 22], are 3D modeling 

applications that focused on reconstructing 3D avatars of human bodies. In other words, the 

authors did not introduce any method that justifies the process used to acquire the human body 

measurements because they used the skeleton points defined by the RGB-D sensor directly to 

obtain them. Consequently, the following process may decrease the accuracy of the generated 

measurements because RGB-D sensors define skeleton points as joint centers and not points 

at the human body's edge. 

– Although the final AAE in this research corresponded to the average of six subjects only, the 

results of the majority of the existing methods, including in [12], were for an unknown number 

of subjects or one subject only. Nevertheless, this makes it challenging to analyze the accuracy 

of the provided experimental results. 

– Numerous previous works, such as [15], measured the arm's length of subjects from shoulder 

to wrist with a closed hand, while this thesis algorithm measured the entire arm length from 

shoulder to the edge of the opened hand. 

Furthermore, the presented results in Table 12 were statistically compared using the corresponding 

standard deviations displayed in Fig. 22. The calculated standard deviations of the average absolute 

error of measurements show a statistically considerable improvement achieved by this research. In 

other words, this thesis accomplished the lowest standard deviation (0.6) as opposed to that of all the 

presented previous works (≥ 1). 

To further investigate the experimental results, Fig. 23 displays the accuracy of the acquired human 

body parts measurements of all the tested subjects (6 participants) calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 − (
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ  𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
) ∗ 100 

The findings show that this research achieved measurement accuracy between 92% and 100% on 

average. Note that the low accuracy of hands' measurements (92%) is caused by the human's hand's 

relative motion during the capturing process.  

Table 12. AAE of human body parts measurement (cm) between the real and the measured results of the 

human bodies with the Kinect sensor 

 

[12] 

[15] 

[22] 

[20] 
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3.3. Performance Analysis 

In general, this research aimed to develop an overarching approach while reducing all 

implementations' runtime to avoid unnecessary computations and save processing power. Therefore, 

to further demonstrate the proposed method's performance, this section evaluates the thorough body 

parts measurement algorithm's execution time. Table 13 shows the average running time, and the 

computation cost during each stage of the presented algorithm. A total of 20 seconds on average only 

was required to generate the entire human body parts measurements of a subject. Overall, this thesis 

provided a concise data capture strategy, an efficient body part measurement algorithm within a short 

time, and a simple hardware configuration. 

 

  

 

Fig. 22. Standard deviations of the average absolute error of measurements between the real and the 

measured results of the human bodies with the Kinect sensor 

 

Fig. 23. Accuracy of the acquired human body parts measurements based on the real and the measured 

results of the human bodies with the Kinect sensor 
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Table 13. Average running time spent during each step in the thorough body parts measurement procedure 

With CPU Intel i7-6700HQ 2.6 GHz, 16 GB RAM 

Step Time (seconds) 

Data capturing 10 

Segmentation and 3D point cloud 8 

Denoising and obtaining final human body measurements 2 

Total (seconds) 20 

 

3.4. Advantages of the proposed method 

Generally, in 3D human body scanning and 3D human body parts measurement applications, 

researchers focus on reconstructing 3D avatars before generating the corresponding body parts 

parameters. In essence, such method's algorithms consist of the following steps: 

– Data capturing, 

– Segmentation and Denoising, 

– Rigid and non-rigid alignment, 

– Surface reconstruction, 

– Obtaining human body parts measurements of reconstructed 3D models, 

On the contrary, this thesis investigated measuring the human body parts of a subject without 

reconstructing any 3D mesh or using preprocessing algorithms. The main advantage of this is 

providing future researchers with the ability to improve virtual dressing applications. Otherwise 

stated, based on the acquired body parts measurements, it is possible to modify the reconstructed 3D 

avatars' mesh and the 3D surface to match the subject's actual body parts length. Accordingly, virtual 

dressing applications would become more accurate and realistic by developing algorithms consisting 

of the following steps: 

– Data capturing, 

– Segmentation and Denoising, 

– Acquiring human body parts measurements of reconstructed 3D point clouds, 

– Rigid and non-rigid alignment, 

– Surface reconstruction, 

Furthermore, the additional advantages of the proposed method in this research included minimizing 

the runtime required to generate the measurements (20 seconds) while implementing an error 

compensation strategy that allowed to acquire measurements with an accuracy between 92% and 

100% on average. 
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Results and Conclusions 

1. This thesis evaluted the performance of Microsoft Kinect v2 by measuring 10 different human 

body parameters. On average, an accuracy of 92% to 100% was obtained among various 

parameters. 

2. The developed error compensation algorithm showed promising results of increased accuracy. In 

case of the height, the error was reduced from 6cm on average to 0cm while that of the hand from 

4.15cm on average to 1.4cm. 

3. This research's main contribution is the solution it provides to generate measurements with an 

average runtime of approximately 20 seconds, fewer captured frames (up to 10), and without the 

need for a second operator. 

4. Quantitavely, the standard deviation of average absolute error of measurements in this research 

(𝜎 =  0.6) outperformed that of the presented previous works (𝜎 >= 1). 

5. Future research should consider the potential effects of loose clothes more carefully, for example, 

by implementing an offset to minimize the resulting errors. Also, future studies should be devoted 

to increasing the robustness of the captured data when there is substantial motion and enhancing 

the scanned frames' quality. The former may require the use of higher resolution RGB-D sensors 

and more sophisticated denoising algorithms. 
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Appendices 

Appendix 1. Matlab code for frames capturing 

%%                          %%%%%%%%%%%%%%Frames Capturing Main Code%%%%%%%%%%% 

  

clc;clear;close all; 

  

tic 

  

%%                          %%%%%%%%%%%%%%Variables Declaration Section%%%%%%%%%%% 

% create video object for color and depth  cameras 

vid = videoinput('kinect',1,'BGR_1920x1080'); 

vid2 = videoinput('kinect',2,'Depth_512x424'); 

  

%-specific properties of the depth camera 

srcDepth = getselectedsource(vid2); 

srcDepth.EnableBodyTracking = 'on';   

  

% number of frames to capture per  trigger 

vid.FramesPerTrigger = 1; 

vid2.FramesPerTrigger = 1; 

  

  

%in order to acquire 201 frames from both the color sensor and the depth sensor. 

%trigger can be called triggerRepeat + 1 time 

vid.TriggerRepeat = 110; 

vid2.TriggerRepeat = 110; 

  

proceed = false; 

  

framesArr = []; 

index = 0; 

  

%maximum allowed triggers per loop 

maxTriggers = 110; 

numTriggers = 1; 

  

%maximum allowed frames per rotation view  

maxAllowedFramesPerView = 10; 

  

%directory 

directory = 'images/data_set_subject/'; 

saveFileNameAs = 'all_frames_array_1'; 

  

triggerconfig([vid vid2],'manual'); 

  

start([vid vid2]); 

  

%%                          %%%%%%%%%%%%%%Frames Capturing Section%%%%%%%%%%% 

while ~proceed 

     

    prompt = 'Start capturing frames? Y/N [Y]: '; 

    %get user input and trim spaces 

    userInput = strtrim(input(prompt,'s')); 

    

    counter = 1; 

     

    if (strlength(userInput)==1) && (userInput == 'y' || userInput == 'Y') 

        % enable capturing 
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        pause(11); 

         

        % allow capturing 2 frames only 

        while (counter-1)~=maxAllowedFramesPerView 

             

            numTriggers = numTriggers + 1; 

             

            if numTriggers > maxTriggers 

                % too many triggers with no tracking 

                disp('No body was tracked'); 

                tts('Body Tracking Error','Microsoft Eva Mobile - English (United 

States)',0)       

                userInput = ''; 

                break;  

            end 

           % pause(2); 

            trigger([vid vid2]) 

             

            % Get the acquired frames and metadata. 

            [imgDepth, ts_depth, metaData_Depth] = getdata(vid2); 

            [imgColor, ts_color, metaData_Color] = getdata(vid); 

             

            %check if any body is tracked 

            anyBodiesTracked = any(metaData_Depth.IsBodyTracked ~= 0); 

            trackedBodies = find(metaData_Depth.IsBodyTracked); 

            nBodies = length(trackedBodies); 

            % A body was tracked 

            if nBodies~=0 

                counter = counter +1 

                index = index+1; 

                 

                colorData = {imgColor, ts_color, metaData_Color}; 

                depthData = {imgDepth, ts_depth, metaData_Depth}; 

                framesArr{index,1}=colorData;  

                framesArr{index,2}=depthData;  

                 

                %keep track of how many frames were captured 

                capturedFrames = length(framesArr); 

                 

                if (counter-1) == maxAllowedFramesPerView 

                    % 2 frames per view were captured 

                    disp([num2str(maxAllowedFramesPerView),' frames per view were 

captured']); 

                    % make sound when all frames are captured 

                    %load('splat') 

                    %sound(y,Fs) 

                    tts('Capturing Success','Microsoft Eva Mobile - English (United 

States)',0) 

                    userInput = ''; 

                    break; 

                end 

            end 

        end     

    elseif (strlength(userInput)==1) && (userInput == 'N' || userInput == 'n') 

        % cancel capturing 

         

        proceed = true; 

        % imaqhwinfo 

        stop([vid vid2]); 

        break; 

    end 

end  
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%%                          %%%%%%%%%%%%%%Saving frames to Folder Section%%%%%%%%%%% 

%once all frames were captured 

%check if any frames were captured 

if ~isempty(framesArr) 

    %check if directory folder exists and create it if not 

    if not(isfolder(directory)) 

        mkdir(directory) 

    end 

     

    save(strcat(directory,saveFileNameAs,'.mat'),'framesArr'); 

else 

    disp("No frames were captured"); 

    tts('No frames were captured','Microsoft Eva Mobile - English (United States)',0)                     

end 

  

%%  

toc; 

 

Appendix 2. Matlab code for segmentation and 3D point cloud 

clc;clear;close all; 

  

tic 

  

dirName = 'data_set_subject/'; 

  

framesDir = strcat('images/',dirName); 

framesList=dir(fullfile(framesDir,'**/*.mat')); %%find all frames meta data  

framesCounter=size(framesList,1); 

  

for i=1:framesCounter 

    framesDataSet{i,1}= load(strcat(framesDir,framesList(i).name)); 

end 

  

segmentedDirectory = strcat('segmented_point_cloud/',dirName); 

  

colorDevice = imaq.VideoDevice('kinect',1) 

depthDevice = imaq.VideoDevice('kinect',2) %Create a System object for the depth device. 

  

%Initialize the camera 

step(colorDevice); 

step(depthDevice); 

  

for j=1:framesCounter 

    

    framesArr = framesDataSet{j,1}.framesArr; 

     

    for i=1:length(framesArr) 

     

        imgColor = framesArr{i,1}{1}; 

        imgDepth = framesArr{i,2}{1};  

         

        metaData_Depth = framesArr{i,2}{3}; 

        imD = metaData_Depth.BodyIndexFrame; 

        %imB = ~(imbinarize(imD)); % inverse of binary image 

        % inverse of binary image (substract a value bigger than max value of 

        % tracked human bodies which is 6 as imb works only with index 0 and 1 

        imB = ~(imbinarize(imD-10));  

        imgDepthSegmented=imgDepth.*uint16(imB); 
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        ptCloud = pcfromkinect(depthDevice, imgDepthSegmented, imgColor,'depthCentric'); 

         

        allSegmentedFramesArr{i,j} = ptCloud; 

    end 

     

end 

  

release(colorDevice); 

release(depthDevice); 

  

% creatr directory if it doesnt exist 

if not(isfolder(segmentedDirectory)) 

        mkdir(segmentedDirectory) 

end 

  

[rows,cols] = size(allSegmentedFramesArr); 

            

for i=1:cols 

    % read all columns of row i and make arr as rows arr 

    segmentedFramesArr = allSegmentedFramesArr(:,i); 

    

save(strcat(segmentedDirectory,'all_segmented_frames_array_',num2str(i),'.mat'),'segmente

dFramesArr'); 

end 

  

toc 

 

Appendix 3. Matlab code for generating the final human body parts parameters 

clc;clear;close all; 

tic 

  

%%                                      Global variables 

  

framesDataSet = []; 

ptCloudFramesDataSet= []; 

  

edgesCoordinatesArr = []; 

  

theta = 180; 

  

measuredHeightArr = []; 

heightMeasurementDetails = []; 

  

measuredArmLArr = []; 

armLMeasurementDetails = []; 

  

measuredArmRArr = []; 

armRMeasurementDetails = []; 

  

measuredHandLArr = []; 

handLMeasurementDetails = []; 

handLPoints = ([7, 22]);   % wristL, handtipL 

  

measuredHandRArr = []; 

handRMeasurementDetails = []; 

handRPoints = ([11, 24]);   % wristR, handtipR 

  

measuredHipArr = []; 

hipMeasurementDetails = []; 
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measuredNeckToHipArr = []; 

neckToHipMeasurementDetails = []; 

%neckToHipPoints = ([3, 1]);   % Neck, SpineBase 

neckToHipPoints =  [ [3, 21];   % Neck, SpineShoulder 

                     [21, 2];   % SpineShoulder, SpineMid 

                     [2, 1];    % SpineMid, SpineBase 

                   ]; 

  

measuredShoulderArr = []; 

shoulderMeasurementDetails = []; 

shoulderPoints =  [ [5, 21];   % ShoulderLeft, SpineShoulder 

                    [21, 9];   % SpineShoulder, ShoulderRight 

                  ]; 

  

measuredLegLArr = []; 

legLMeasurementDetails = []; 

  

measuredLegRArr = []; 

legRMeasurementDetails = []; 

  

measuredWaistArr = []; 

waistMeasurementDetails = []; 

  

measuredStomachArr = []; 

stomachMeasurementDetails = []; 

  

measuredChestArr = []; 

chestMeasurementDetails = []; 

  

% (S1) 

actualHeightLength = 182; %cm 

actualArmLength = 81; 

actualHandLength = 20; 

actualHipLength = 44; 

actualLegLength = 103; 

actualNeckToHipLength = 60; 

actualShoulderLength = 40; 

actualWaistLength = 43; 

actualStomachLength = 42.5; 

actualChestLength = 46; 

actualBodyMeasurementArr = [182,81,81,20,20,44,103,103,60,40,43,42.5,46]; 

  

tPose = 1; % flag for human pose 

  

% plotting variables 

dataSetIdx = 1; 

plotIdx = 1; 

plotRows = 7; 

plotCols = 2; 

plot_xLabel = "Nbr of frames"; 

plot_yLabel = " Absolute error in cm "; 

  

  

measuredValuesArrBeforeCompensation = []; 

  

% error compensation variables 

finalBodyMeasurementValuesArr = []; 

if tPose==1 

    namesOfHumanBodyParts= 

{'Height','ArmL','ArmR','HandL','HandR','Hip','LegL','LegR','NeckToHip','Shoulder','Waist

','Stomach','Chest'}; 

else  
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    namesOfHumanBodyParts= 

{'Height','ArmL','ArmR','Hip','LegL','LegR','NeckToHip','Shoulder','Waist','Stomach','Che

st'}; 

end 

finalSubjectsMeasurementsValuesDir= 

'research_data_set_subjects_measurements/denoised_results/'; 

  

%%%%%%%%%%%%%%%%%%%%%%%%% compenstion values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Height  

heightCompensationErr = -6.1130; 

  

% Arm 

armLCompensationErr = -5.2324; 

armRCompensationErr = -7.0760; 

  

% Hand 

handLCompensationErr = 3.8556; 

handRCompensationErr = 1.8896; 

  

% Hip 

hipCompensationErr = -5.8623; 

  

% Leg 

legLCompensationErr = -9.4289; 

legRCompensationErr = -9.4106; 

  

% NeckToHip 

neckToHipCompensationErr = 2.2251; 

  

% Shoulder 

shoulderCompensationErr = -1.8283; 

  

% Waist 

waistCompensationErr = -0.8839; 

  

% Stomach 

stomachCompensationErr = 8.3025; 

  

% Chest 

chestCompensationErr = 5.6477; 

  

finalSubjectsMeasurementsValuesDirArrName = 'final_human_body_measured_data_subject_1'; 

  

%%                                      Load frames and point clouds 

dirName = 'data_set_subject_1/'; 

framesDir = strcat('images/',dirName); 

framesList=dir(fullfile(framesDir,'**/*.mat')); %%find all frames meta data  

framesCounter=size(framesList,1); 

  

for i=1:framesCounter 

    framesDataSet{i,1}= load(strcat(framesDir,framesList(i).name)); 

end 

  

ptCloudFramesDir = strcat('segmented_point_cloud/',dirName); 

ptCloudFramesList=dir(fullfile(ptCloudFramesDir,'**/*.mat')); %%find all frames meta data  

framesCounter=size(ptCloudFramesList,1); 

  

for i=1:framesCounter 

    ptCloudFramesDataSet{i,1}= load(strcat(ptCloudFramesDir,ptCloudFramesList(i).name)); 

end 
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%%                                      Loop through frames of first data set only 

  

if length(framesDataSet)~=length(ptCloudFramesDataSet) 

    disp('Error! Number of loaded frames and point cloud files do not match') 

    return; % break execution 

else 

    

    framesArr = framesDataSet{1,1}.framesArr; 

    segmentedFramesArr = ptCloudFramesDataSet{1,1}.segmentedFramesArr; 

  

    if length(framesArr)~=length(segmentedFramesArr) 

         disp('Error! Number of frames and segmented frames do not match') 

         return; % break execution 

    else 

       for i=1:length(framesArr) 

             % read depth data 

            metaData_Depth = framesArr{i,2}{3}; 

  

            % flipped segmented depth frame to become x,y 

            imD = metaData_Depth.BodyIndexFrame; 

            % inverse of binary image 

            %imB = ~(imbinarize(imD-10));  

             

            ptCloud = segmentedFramesArr{i,1}; 

  

            % flip ptcloud to make it have same as depth 

            ptCloud = pointCloud(fliplr(ptCloud.Location),'Color', 

fliplr(ptCloud.Color)); 

  

            %%%%%% denoising using 2d average filter%%%%%%%%%%%%%%%%%%% 

            xLocation = ptCloud.Location(:,:,1); 

            yLocation = ptCloud.Location(:,:,2); 

            zLocation = ptCloud.Location(:,:,3); 

  

            % filter depth image which is z 

            filteredZ = filter2(fspecial('average',2),zLocation); 

  

            tmp1 = zeros(size(xLocation)); 

            tmp1(find(xLocation)) = 1; 

            tmp2 = zeros(size(filteredZ)); 

            tmp2(find(filteredZ)) = 1; 

  

            % new filtered and denoised pointcloud 

            newXLocation = tmp1.*tmp2.*xLocation; 

            newYLocation = tmp1.*tmp2.*yLocation; 

            newZLocation = tmp1.*tmp2.*filteredZ; % new denoised depth image 

  

            ptCloudOut = 

pointCloud(cat(3,newXLocation,newYLocation,newZLocation),'Color',ptCloud.Color); 

  

            ptCloud = ptCloudOut; 

  

            % segmented and denoised binary image 

            imB = imbinarize(newZLocation); 

  

            % get full depth image coordinates 

            [fullDepthYCol, fullDepthXCol] = find(imB); 

  

            % get contour and its x and y coordinates 

            contour = bwboundaries(imB,'noholes'); 

            edgesCoordinatesArr{i,1} = contour{1}; 
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            if isempty(edgesCoordinatesArr{i,1}) 

               disp(['Error! Contour coordinates of frame ',num2str(i), ' were not 

found!']); 

               return; 

            end 

  

            depthXEdgeCol = edgesCoordinatesArr{i,1}(:,2); 

            depthYEdgeCol = edgesCoordinatesArr{i,1}(:,1); 

             

             

            % 3d joint positions and 2d depth joints coordinates 

            jointPositions = 

metaData_Depth.JointPositions(:,:,metaData_Depth.IsBodyTracked); 

            %rotate 180 degree related to z 

            jointPositions = ([cosd(theta),      -sind(theta),    0;... 

                               sind(theta),       cosd(theta),    0;... 

                                 0,                 0,            1]*jointPositions')'; 

  

            headJointPoints = jointPositions(4,:,:); 

            footLJointPoints = jointPositions(16,:,:); 

            footRJointPoints = jointPositions(20,:,:); 

  

            depthJoints = 

metaData_Depth.DepthJointIndices(:,:,metaData_Depth.IsBodyTracked); 

            depthHipLPoints = depthJoints(13,:); 

            depthHipRPoints = depthJoints(17,:); 

            depthFootLPoints = depthJoints(16,:); 

            depthFootRPoints = depthJoints(20,:); 

            depthShoulderLPoints = depthJoints(5,:); 

            depthHeadPoints = depthJoints(4,:); 

            depthSpineBasePoints = depthJoints(1,:); 

            depthSpineMidPoints = depthJoints(2,:); 

            depthSpineShoulderPoints = depthJoints(21,:); 

  

            %%                           Find Height Points   

            % find height highest closest edge point to the skeleton head point 

            heightHeadPointIdx = 

find(depthXEdgeCol==fix(depthHeadPoints(1))&depthYEdgeCol<depthHeadPoints(2),1); 

            heightHeadPointArr{i,1} = 

ptCloud.Location(depthYEdgeCol(heightHeadPointIdx),depthXEdgeCol(heightHeadPointIdx),:); 

  

            % height lowest leg point 

            heightLegPointIdx = find(depthYEdgeCol==max(depthYEdgeCol),1); 

            heightLegPointArr{i,1} = 

ptCloud.Location(depthYEdgeCol(heightLegPointIdx),depthXEdgeCol(heightLegPointIdx),:); 

  

  

            %%                           Find Arm Points 

  

           % Left Points 

           armLPoint1 = jointPositions(5,:,:); % shoulder left point 

           armLPointArr{i,1} = [armLPoint1(1),armLPoint1(2),armLPoint1(3)]; 

           armLPoint2 = find(depthXEdgeCol==min(depthXEdgeCol),1); 

           armLPointArr{i,2} = 

ptCloud.Location(depthYEdgeCol(armLPoint2),depthXEdgeCol(armLPoint2),:); 

  

           % Right Points 

           armRPoint1 = jointPositions(9,:,:); % shoulder right point 

           armRPointArr{i,1} = [armRPoint1(1),armRPoint1(2),armRPoint1(3)]; 

           armRPoint2 = find(depthXEdgeCol==max(depthXEdgeCol),1); 

           armRPointArr{i,2} = 

ptCloud.Location(depthYEdgeCol(armRPoint2),depthXEdgeCol(armRPoint2),:);  
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           %%                       Find Hand Points 

  

           % if tPose is enabled then allow obtaining hand points of human 

           if tPose==1 

               % right points 

               handRPoint1 = jointPositions(11,:,:); % wrist right point 

               handRPoint2 = jointPositions(24,:,:); % hand tip right point 

               handRPointArr{i,1} = [handRPoint1(1),handRPoint1(2),handRPoint1(3)]; 

               handRPointArr{i,2} = [handRPoint2(1),handRPoint2(2),handRPoint2(3)]; 

  

               % left points 

               handLPoint1 = jointPositions(7,:,:); % wrist left point 

               handLPoint2 = jointPositions(22,:,:); % hand tip left point 

               handLPointArr{i,1} = [handLPoint1(1),handLPoint1(2),handLPoint1(3)]; 

               handLPointArr{i,2} = [handLPoint2(1),handLPoint2(2),handLPoint2(3)]; 

           end 

  

           %%                           Find Hip Points 

  

           %hip edge L 

           hipLPointIdx = find(depthYEdgeCol==fix(depthHipLPoints(2)),1); 

  

           hipAllDepthPointsIdx = find(fullDepthYCol==depthYEdgeCol(hipLPointIdx)); 

           for k=1:length(hipAllDepthPointsIdx) 

                hipPointsArr{k,i} = 

ptCloud.Location(fullDepthYCol(hipAllDepthPointsIdx(k)),fullDepthXCol(hipAllDepthPointsId

x(k)),:); 

           end 

  

           %%                           Find Leg Points 

  

           % right points 

           legRPoint1 = jointPositions(17,:,:); % hip right point 

           legRPointArr{i,1} = [legRPoint1(1),legRPoint1(2),legRPoint1(3)];         

           LegRPoint2Idx = 

find(depthXEdgeCol==fix(depthFootRPoints(1))&depthYEdgeCol>depthFootRPoints(2),1); 

           legRPointArr{i,2} = 

ptCloud.Location(depthYEdgeCol(LegRPoint2Idx),depthXEdgeCol(LegRPoint2Idx),:); 

  

           % left points 

           legLPoint1 = jointPositions(13,:,:); % hip left point 

           legLPointArr{i,1} = [legLPoint1(1),legLPoint1(2),legLPoint1(3)];         

           LegLPoint2Idx = 

find(depthXEdgeCol==fix(depthFootLPoints(1))&depthYEdgeCol>depthFootLPoints(2),1); 

           legLPointArr{i,2} = 

ptCloud.Location(depthYEdgeCol(LegLPoint2Idx),depthXEdgeCol(LegLPoint2Idx),:); 

  

  

           %%                           Find Neck to Hip Points 

  

           measuredNeckToHipArr = 

[measuredNeckToHipArr,distanceSum(jointPositions,neckToHipPoints).*100]; 

  

           %%                           Find Shoulder Points 

  

           measuredShoulderArr = 

[measuredShoulderArr,distanceSum(jointPositions,shoulderPoints).*100]; 

  

           %%                           Find Waist Points 

  

           % waist edge L 
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           waistPointsIdx = 

find(depthYEdgeCol<depthSpineBasePoints(2)&depthYEdgeCol>depthSpineMidPoints(2)); 

           depthSpineMidBasePoints = 

[depthSpineMidPoints(1),depthSpineMidPoints(2);depthSpineBasePoints(1),depthSpineBasePoin

ts(2)]; 

           spineMidBaseDistance = pdist(depthSpineMidBasePoints,'euclidean'); %euclidean 

distance between points  

 

           calculatedWaistDistances = []; 

  

           for k=1:length(waistPointsIdx) 

                points = 

[depthXEdgeCol(hipLPointIdx),depthYEdgeCol(hipLPointIdx);depthXEdgeCol(waistPointsIdx(k))

,depthYEdgeCol(waistPointsIdx(k))]; 

                calculatedWaistDistances = 

[calculatedWaistDistances,pdist(points,'euclidean')]; 

           end 

  

           [minDistance, waistPointLIdx] = min(abs(calculatedWaistDistances-

(spineMidBaseDistance.*1/3))); 

  

           waistAllDepthPointsIdx = 

find(fullDepthYCol==depthYEdgeCol(waistPointsIdx(waistPointLIdx))); 

           for k=1:length(waistAllDepthPointsIdx) 

                waistPointsArr{k,i} = 

ptCloud.Location(fullDepthYCol(waistAllDepthPointsIdx(k)),fullDepthXCol(waistAllDepthPoin

tsIdx(k)),:); 

           end 

  

           %%                          Find Stomach Points 

  

           % stomach edge L 

           stomachPointsIdx = waistPointsIdx; 

           calculatedStomachDistances = []; 

  

           for k=1:length(stomachPointsIdx) 

                points = 

[depthXEdgeCol(hipLPointIdx),depthYEdgeCol(hipLPointIdx);depthXEdgeCol(stomachPointsIdx(k

)),depthYEdgeCol(stomachPointsIdx(k))]; 

                calculatedStomachDistances = 

[calculatedStomachDistances,pdist(points,'euclidean')]; 

           end 

  

           [minDistance, stomachPointLIdx] = min(abs(calculatedStomachDistances-

(spineMidBaseDistance.*3/4))); 

  

           stomachAllDepthPointsIdx = 

find(fullDepthYCol==depthYEdgeCol(stomachPointsIdx(stomachPointLIdx))); 

           for k=1:length(stomachAllDepthPointsIdx) 

                stomachPointsArr{k,i} = 

ptCloud.Location(fullDepthYCol(stomachAllDepthPointsIdx(k)),fullDepthXCol(stomachAllDepth

PointsIdx(k)),:); 

           end 

           %%                           Find Chest Points 

  

           %chest edge L 

           % find spine mid edges points (1 right and 1 left)  

           spineMidPointsIdx = find(depthYEdgeCol==fix(depthSpineMidPoints(2)));   

           chestPointsIdx = 

find(depthYEdgeCol<depthSpineMidPoints(2)&depthYEdgeCol>depthSpineShoulderPoints(2)); 
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           spineMidShoulderPoints = 

[depthSpineMidPoints(1),depthSpineMidPoints(2);depthSpineShoulderPoints(1),depthSpineShou

lderPoints(2)]; 

           spineMidShoulderDistance = pdist(spineMidShoulderPoints,'euclidean'); 

%euclidean distance between points  

  

           calculatedChestDistances = []; 

  

           for k=1:length(chestPointsIdx) 

 

                points = 

[depthXEdgeCol(spineMidPointsIdx(2)),depthYEdgeCol(spineMidPointsIdx(2));depthXEdgeCol(ch

estPointsIdx(k)),depthYEdgeCol(chestPointsIdx(k))]; 

                calculatedChestDistances = 

[calculatedChestDistances,pdist(points,'euclidean')]; 

           end 

  

           [minDistance, ChestPointLIdx] = min(abs(calculatedChestDistances-

(spineMidShoulderDistance.*1/3))); 

           chestPoint1Arr{i,1} = 

ptCloud.Location(depthYEdgeCol(chestPointsIdx(ChestPointLIdx)),depthXEdgeCol(chestPointsI

dx(ChestPointLIdx)),:); 

  

           chestAllDepthPointsIdx = 

find(fullDepthYCol==depthYEdgeCol(chestPointsIdx(ChestPointLIdx))); 

           for k=1:length(chestAllDepthPointsIdx) 

                chestPointsArr{k,i} = 

ptCloud.Location(fullDepthYCol(chestAllDepthPointsIdx(k)),fullDepthXCol(chestAllDepthPoin

tsIdx(k)),:); 

           end 

  

       end  

         

       %%                                Calculate Measurements 

             

        % measure height from obtained points 

        if length(heightHeadPointArr)~=length(heightLegPointArr) 

            disp('Error! Unable to measure height length as number of top and bottom points 

do not match'); 

            return; % break execution 

        else 

            for i=1:length(heightHeadPointArr) 

                if ~isnan(heightHeadPointArr{i,1}) & ~isnan(heightLegPointArr{i,1}) 

                    measuredHeightArr = 

[measuredHeightArr,distance(heightHeadPointArr{i,1},heightLegPointArr{i,1})];  

                else 

                   disp(['Error! Height points of frame ',num2str(i),' are nan']); 

                   return; % break execution  

                end 

            end 

            measuredHeightArr = measuredHeightArr.*100; % m to cm 

        end 

         

        % measure arm from obtained points 

        if length(armLPointArr)~=length(armRPointArr) 

            disp('Error! Unable to measure arm length as number of left and right points 

do not match'); 

            return; % break execution 

        else 

            for i=1:length(armRPointArr) 

                if ~isnan(armLPointArr{i,1}) & ~isnan(armLPointArr{i,2}) & 

~isnan(armRPointArr{i,1}) & ~isnan(armRPointArr{i,2})  
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                    armLengthL = distance(armLPointArr{i,1},armLPointArr{i,2}); 

                    armLengthR = distance(armRPointArr{i,1},armRPointArr{i,2}); 

  

                    measuredArmLArr = [measuredArmLArr, armLengthL]; 

                    measuredArmRArr = [measuredArmRArr, armLengthR]; 

                else 

                   disp(['Error! Arm points of frame ',num2str(i),' are nan']); 

                   return; % break execution  

                end  

            end 

            measuredArmLArr = measuredArmLArr.*100; % m to cm 

            measuredArmRArr = measuredArmRArr.*100; % m to cm 

        end 

  

        % measure hand from obtained points 

        % if tPose is enabled then allow measuring hand length of human 

        if tPose==1 

           if length(handRPointArr)~=length(handLPointArr) 

             disp('Error! Unable to measure hand length as number of left and right points 

do not match'); 

             return; % break execution 

           else 

                for i=1:length(handRPointArr) 

                    if ~isnan(handRPointArr{i,1}) & ~isnan(handLPointArr{i,1}) 

                        handLengthR = distance(handRPointArr{i,1},armRPointArr{i,2}); 

                        handLengthL = distance(handLPointArr{i,1},armLPointArr{i,2}); 

  

                        measuredHandLArr = [measuredHandLArr,handLengthL]; 

                        measuredHandRArr = [measuredHandRArr,handLengthR]; 

                    else 

                        disp(['Error! Hand points of frame ',num2str(i),' are nan']); 

                        return; % break execution  

                    end   

                end 

            end 

            measuredHandLArr = measuredHandLArr.*100; % m to cm 

            measuredHandRArr = measuredHandRArr.*100; % m to cm 

        end 

        % measure hip from obtained points 

        [numRowsHipPoints,numColsHipPoints] = size(hipPointsArr); 

        hipLength = 0; 

        if numColsHipPoints~=length(framesArr) 

           disp('Error! Measurements of the hip of one of the frames is missing!'); 

           return; % break execution 

        else 

           for i=1:numColsHipPoints 

                for k=1:(numRowsHipPoints-1) 

                    p1 = hipPointsArr{k,i}; 

                    p2 = hipPointsArr{k+1,i}; 

                    if isempty(p1) || isempty(p2) 

                        continue; 

                    elseif isnan(p1) | isnan(p2) 

                        disp(['Error! Hip points of frame ',num2str(i),' are nan']); 

                        return; % break execution  

                    else 

                        hipLength = hipLength + distance(p1,p2); 

                    end 

                end 

  

                measuredHipArr = [measuredHipArr,hipLength];  

                hipLength = 0; 

           end  
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           measuredHipArr = measuredHipArr.*100; % m to cm 

        end   

        hipPointsArr = []; % reset array 

  

        % measure legs from obtained points 

        if length(legRPointArr)~=length(legLPointArr) 

            disp('Error! Unable to measure leg length as number of left and right points 

do not match'); 

            return; % break execution 

        else 

            for i=1:length(legRPointArr) 

                if ~isnan(legLPointArr{i,1}) & ~isnan(legLPointArr{i,2}) & 

~isnan(legRPointArr{i,1}) & ~isnan(legRPointArr{i,2}) 

                    legLengthR = distance(legRPointArr{i,1},legRPointArr{i,2}); 

                    legLengthL = distance(legLPointArr{i,1},legLPointArr{i,2}); 

  

                    measuredLegRArr = [measuredLegRArr,legLengthR]; 

                    measuredLegLArr = [measuredLegLArr,legLengthL]; 

                else 

                    disp(['Error! Leg points of frame ',num2str(i),' are nan']); 

                    return; % break execution  

                end 

            end 

            measuredLegRArr = measuredLegRArr.*100; % m to cm 

            measuredLegLArr = measuredLegLArr.*100; % m to cm 

        end 

        % measure waist from obtained points 

        [numRowsWaistPoints,numColsWaistPoints] = size(waistPointsArr); 

        waistLength = 0; 

        if numColsWaistPoints~=length(framesArr) 

           disp('Error! Measurements of the waist of one of the frames is missing!'); 

           return; % break execution 

        else 

           for i=1:numColsWaistPoints 

                for k=1:(numRowsWaistPoints-1) 

                    p1 = waistPointsArr{k,i}; 

                    p2 = waistPointsArr{k+1,i}; 

                    if isempty(p1) || isempty(p2) 

                        continue; 

                    elseif isnan(p1) | isnan(p2) 

                        disp(['Error! Waist points of frame ',num2str(i),' are nan']); 

                        return; % break execution  

                    else 

                        waistLength = waistLength+ distance(p1,p2); 

                    end 

                end 

                 

                measuredWaistArr = [measuredWaistArr,waistLength];  

                waistLength = 0; 

           end 

           measuredWaistArr = measuredWaistArr.*100; % m to cm 

        end 

        waistPointsArr = []; % reset array 

  

        % measure stomach from obtained points 

        [numRowsStomachPoints,numColsStomachPoints] = size(stomachPointsArr); 

        stomachLength = 0; 

        if numColsStomachPoints~=length(framesArr) 

           disp('Error! Measurements of the stomach of one of the frames is missing!'); 

           return; % break execution 

        else 

           for i=1:numColsStomachPoints  
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                for k=1:(numRowsStomachPoints-1) 

                    p1 = stomachPointsArr{k,i}; 

                    p2 = stomachPointsArr{k+1,i}; 

                    if isempty(p1) || isempty(p2) 

                        continue; 

                    elseif isnan(p1) | isnan(p2) 

                        disp(['Error! Stomach points of frame ',num2str(i),' are nan']); 

                        return; % break execution  

                    else 

                        stomachLength = stomachLength+ distance(p1,p2); 

                    end 

                end 

  

                measuredStomachArr = [measuredStomachArr,stomachLength];  

                stomachLength = 0; 

           end 

           measuredStomachArr = measuredStomachArr.*100; % m to cm 

        end 

        stomachPointsArr = []; % reset array 

 

        % measure chest from obtained points 

        [numRowsChestPoints,numColsChestPoints] = size(chestPointsArr); 

        chestLength = 0; 

        if numColsChestPoints~=length(framesArr) 

           disp('Error! Measurements of the chest of one of the frames is missing!'); 

           return; % break execution 

        else 

           for i=1:numColsChestPoints 

                for k=1:(numRowsChestPoints-1) 

                    p1 = chestPointsArr{k,i}; 

                    p2 = chestPointsArr{k+1,i}; 

                    if isempty(p1) || isempty(p2) 

                        continue; 

                    elseif isnan(p1) | isnan(p2) 

                        disp(['Error! Chest points of frame ',num2str(i),' are nan']); 

                        return; % break execution  

                    else 

                        chestLength = chestLength+ distance(p1,p2); 

                    end 

                end 

  

                measuredChestArr = [measuredChestArr,chestLength];  

                chestLength = 0; 

           end 

           measuredChestArr = measuredChestArr.*100; % m to cm 

        end 

        chestPointsArr = []; % reset array 

         

    end 

     

    %%                  obtain new measurements values after compensation for other data 

set 

  

    % Height (arr with the measuredHeight values before and after compensation) 

    heightMeasurementDetails = {measuredHeightArr, measuredHeightArr - 

heightCompensationErr};  

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(heightMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(heightMeasurementDetails{1}))]; 

     

    % Arm  
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    armLMeasurementDetails = {measuredArmLArr, measuredArmLArr - armLCompensationErr};  

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(armLMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(armLMeasurementDetails{1}))]; 

     

    armRMeasurementDetails = {measuredArmRArr, measuredArmRArr - armRCompensationErr};  

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(armRMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(armRMeasurementDetails{1}))]; 

     

    % Hand  

    if tPose==1 

        handLMeasurementDetails = {measuredHandLArr, measuredHandLArr - 

handLCompensationErr};  

        finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(handLMeasurementDetails{2}))]; 

        measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(handLMeasurementDetails{1}))]; 

     

        handRMeasurementDetails = {measuredHandRArr, measuredHandRArr - 

handRCompensationErr}; 

        finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(handRMeasurementDetails{2}))]; 

        measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(handRMeasurementDetails{1}))]; 

    end 

  

    % Hip 

    hipMeasurementDetails = {measuredHipArr, measuredHipArr - hipCompensationErr};  

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(hipMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(hipMeasurementDetails{1}))]; 

     

     

    % Leg 

    legLMeasurementDetails = {measuredLegLArr, measuredLegLArr - legLCompensationErr};  

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(legLMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(legLMeasurementDetails{1}))]; 

     

    legRMeasurementDetails = {measuredLegRArr, measuredLegRArr - legRCompensationErr}; 

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(legRMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(legRMeasurementDetails{1}))]; 

     

     

    % NeckToHip 

    neckToHipMeasurementDetails = {measuredNeckToHipArr, measuredNeckToHipArr - 

neckToHipCompensationErr}; 

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(neckToHipMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(neckToHipMeasurementDetails{1}))]; 

     

     

    % Shoulder 
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    shoulderMeasurementDetails = {measuredShoulderArr, measuredShoulderArr - 

shoulderCompensationErr}; 

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(shoulderMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(shoulderMeasurementDetails{1}))]; 

     

    % Waist 

    waistMeasurementDetails = {measuredWaistArr, measuredWaistArr - waistCompensationErr}; 

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(waistMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(waistMeasurementDetails{1}))]; 

     

    % Stomach 

    stomachMeasurementDetails = {measuredStomachArr, measuredStomachArr - 

stomachCompensationErr}; 

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(stomachMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(stomachMeasurementDetails{1}))]; 

     

    % Chest 

    chestMeasurementDetails = {measuredChestArr, measuredChestArr - chestCompensationErr}; 

    finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr, 

round(mean(chestMeasurementDetails{2}))]; 

    measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation, 

round(mean(chestMeasurementDetails{1}))]; 

     

  

     

    %%                                Save compensation errors into one final array 

     

    % merge array of compensations with the name of body parts 

    finalHumanBodyMeasuredDataArr =  

[namesOfHumanBodyParts;num2cell(finalBodyMeasurementValuesArr);namesOfHumanBodyParts;... 

        

num2cell(measuredValuesArrBeforeCompensation);namesOfHumanBodyParts;num2cell(actualBodyMe

asurementArr)]; 

     

    % creatr directory if it doesnt exist 

    if not(isfolder(finalSubjectsMeasurementsValuesDir)) 

            mkdir(finalSubjectsMeasurementsValuesDir) 

    end 

     

    

save(strcat(finalSubjectsMeasurementsValuesDir,finalSubjectsMeasurementsValuesDirArrName,

'.mat'),'finalHumanBodyMeasuredDataArr'); 

     

    toc 

     

end 

  

  

%%                                  functions       

  

% get distance between two points 

function length = distance(P1, P2) 

   length = sqrt((P1(1) - P2(1))^2 + (P1(2) - P2(2))^2 + (P1(3) - P2(3))^2); 

end 
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% get distance in meters between group of points 

function result = distanceSum(jointPositions,jointPoints) 

    sum = 0; 

     

    [row col] = size(jointPoints); 

     

    if row==1 

        P1 = jointPositions(jointPoints(1,1),:,:); 

        P2 = jointPositions(jointPoints(1,2),:,:); 

        sum = sum + distance(P1,P2); 

    elseif row>1 

        for i=1:length(jointPoints) 

            P1 = jointPositions(jointPoints(i,1),:,:); 

            P2 = jointPositions(jointPoints(i,2),:,:); 

            sum = sum + distance(P1,P2); 

        end 

    end 

     

    result = sum; 

end 

 


