

Kaunas University of Technology

Faculty of Electrical and Electronics Engineering

Research of 3D Human Body Parts Measurement Precision

Using Kinect Sensor

Master’s Final Degree Project

Tony AlBitar

Project author

Lect. Kęstas Rimkus

Supervisor

Kaunas, 2021

Kaunas University of Technology

Faculty of Electrical and Electronics Engineering

Research of 3D Human Body Parts Measurement Precision

Using Kinect Sensor

Master’s Final Degree Project

Control Technologies (6211EX014)

Tony AlBitar

Project author

Lect. Kęstas Rimkus

Supervisor

Prof. Rimvydas Simutis

Reviewer

Kaunas, 2021

Kaunas University of Technology

Faculty of Electrical and Electronics Engineering

Tony AlBitar

Research of 3D Human Body Parts Measurement Precision

Using Kinect Sensor

Declaration of Academic Integrity

I confirm the following:

1. I have prepared the final degree project independently and honestly without any violations of the

copyrights or other rights of others, following the provisions of the Law on Copyrights and

Related Rights of the Republic of Lithuania, the Regulations on the Management and Transfer of

Intellectual Property of Kaunas University of Technology (hereinafter – University) and the

ethical requirements stipulated by the Code of Academic Ethics of the University;

2. All the data and research results provided in the final degree project are correct and obtained

legally; none of the parts of this project are plagiarised from any printed or electronic sources; all

the quotations and references provided in the text of the final degree project are indicated in the

list of references;

3. I have not paid anyone any monetary funds for the final degree project or the parts thereof unless

required by the law;

4. I understand that in the case of any discovery of the fact of dishonesty or violation of any rights

of others, the academic penalties will be imposed on me under the procedure applied at the

University; I will be expelled from the University and my final degree project can be submitted

to the Office of the Ombudsperson for Academic Ethics and Procedures in the examination of a

possible violation of academic ethics.

Tony AlBitar

Confirmed electronically

AlBitar, Tony. Research of 3D Human Body Parts Measurement Precision Using Kinect Sensor.

Master's Final Degree Project / supervisor / lect. dr. Kęstas Rimkus; Faculty of Electrical and

Electronics Engineering, Kaunas University of Technology.

Study field and area (study field group): Electronics engineering (engineering science).

Keywords: Kinect sensor, augmented reality, human body measurement, virtual dressing application.

Kaunas, 2021. Number of pages 47 p.

Summary

Non-contact human body parts measurement plays a vital role in augmented reality, virtual fitting,

and physical healthcare applications. Existing Kinect-based body measurement methods encounter

many challenges handling humans wearing clothes or are time-consuming since their objective also

includes 3D scanning and reconstruction. This research project introduces a viable and effective

Kinect-based method to generate 3D human body measurements of human wearing clothes. The

proposed approach involves capturing frames of a subject from a single view and constructing a

denoised 3D point cloud, which allows the acquisition of ten distinct measurements in total. Extensive

experimental results demonstrated that the developed method requires a short execution time of

approximately 20 seconds while producing accurate measurements with comparable quality.

Ultimately, this research offers a convenient approach for designing and improving a real-time 3D

virtual dressing application.

AlBitar, Tony. Trimačio žmogaus kūno dalių matavimo Kinect jutikliu tikslumo tyrimas. Magistro

baigiamasis projektas / vadovas lekt. dr. Kęstas Rimkus; Kauno technologijos universitetas, Elektros

ir elektronikos inžinerijos fakultetas.

Studijų kryptis ir sritis (studijų krypčių grupė): Elektronikos inžinerija (inžinerijos mokslai).

Reikšminiai žodžiai: Kinect jutikis, pridėtinė realybė, žmogaus kūno matavimas, virtualaus

apsirengimo programėlės.

Kaunas, 2021. Puslapių sk. 47 p.

Santrauka

Bekontaktis žmogaus kūno dalių matavimas vaidina svarbų vaidmenį papildytoje realybėje,

virtualiuose matavimuose ir fizinės sveikatos priežiūros programose. Esami kūno matavimo metodai

paremti „Kinect“ tipo jutikiais susiduria su daugybe problemų susijusių su: žmonių dėvimų drabužių

įvairove, arba užima daug laiko, nes jų matavimai apima 3D nuskaitymą bei rekonstrukciją. Šiame

tiriamajame projekte pristatomas perspektyvus ir efektyvus „Kinect“ tipo jutikliams pritaikytas

metodas trimačių žmogaus matmenų gavimui, nepaisant dėvimų rūbų. Siūlomame metode objektas

fotografuojamas iš vienos pozicijos ir konstruoja išvalytą 3D taškų debesį, kuris leidžia iš viso gauti

dešimt skirtingų matavimų. Išsamūs eksperimentiniai rezultatai parodė, kad sukurtam metodui

reikalingas trumpas, maždaug 20 sekundžių vykdymo laikas, tuo pat metu gaunami tikslūs matavimai

su nedideliu išsibarstymu. Galų gale, šis tyrimas siūlo metodą puikiai tinkantį kuriant ir tobulinant

realaus laiko 3D virtualios aprangos programas.

6

Table of contents

List of algorithms ... 7

List of figures ... 8

List of tables ... 9

List of abbreviations and terms .. 10

Introduction ... 11

1. Related work .. 13

1.1. Measurements with large scale motion method ... 13

1.2. Measurements with steady human position method ... 16

1.3. Measurements with multi-view alignment method .. 19

1.4. Measurements with the registration of many depth images method .. 22

1.5. Kinect v1 versus Kinect v2 ... 24

1.6. Kinect versus other RGB-D sensors ... 24

2. Overview ... 26

2.1. Data capturing .. 27

2.2. Segmentation, Denoising and 3D Point Cloud ... 28

2.3. Defining human body parts points ... 30

2.4. Measuring human body parts ... 33

2.5. Selecting the Capturing Distance ... 33

2.6. Developing Error Compensation .. 35

3. Results and discussion ... 37

3.1. Experimental Results .. 37

3.2. Performance Comparison ... 40

3.3. Performance Analysis ... 42

3.4. Advantages of the proposed method .. 43

Results and Conclusions .. 44

List of references .. 45

Appendices ... 48

Appendix 1. Matlab code for frames capturing ... 48

Appendix 2. Matlab code for segmentation and 3D point cloud ... 50

Appendix 3. Matlab code for generating the final human body parts parameters............................. 51

7

List of algorithms

Algorithm 1. Denoising with an averaging filter algorithm ... 30

Algorithm 2. Measuring the human height length.. 33

8

List of figures

Fig. 1. The pipeline of the presented approach: (a) the input depth maps and RGB images from Kinect;

(b) various poses for every frame; (c) the spatial-temporal average model of all frames; (d) final model

after reduction of the clothes effect [15] ... 13

Fig. 2. Results for the reduction of the clothes effect: (a) a person wearing tight clothes; (b) a person

wearing loose clothes [15] ... 14

Fig. 3. Measurements: (a) the human body parameters defined in the presented system; (b) method

for measuring the circumference parameters using the girth [15] ... 14

Fig. 4. Results of 3D model reconstructions [15] ... 15

Fig. 5. Average absolute errors of measurements of people wearing clothes [15] 16

Fig. 6. The pipeline of the presented method [12] .. 17

Fig. 7. Defined skeleton model and body parameters points [12] ... 18

Fig. 8. Outline of the proposed method setup [22] .. 19

Fig. 9. Data frames segmentation and denoising: (a) raw data, (b) after segmentation and removing

the background, (c) after denoising [22] ... 20

Fig. 10. Identified correspondence points between two frames in adjacent views [22].................... 20

Fig. 11. Reconstruction results of full 3D human bodies in different scanning scenarios [22] 21

Fig. 12. Outline of the proposed method setup [20] .. 22

Fig. 13. Super-resolved mesh of a lion model [20] ... 22

Fig. 14. Full 3D human body scanning results of multiple subjects [20] ... 23

Fig. 15. Pipeline of the proposed method .. 26

Fig. 16. Data capturing: (a) capturing scenario; (b) capturing algorithm flowchart 27

Fig. 17. Depth joints map [41] .. 28

Fig. 18. 3D Point cloud segmentation: (a) depth body index frame; (b) depth inverse of binary image;

(c) original full depth image; (d) segmented 3D point cloud .. 29

Fig. 19. Defined human body parts points .. 30

Fig. 20. Kinect v2 sensor field of view ... 34

Fig. 21. Comparison of the obtained human body parts measurements from 3 distances (2m, 2.5m,

3m) ... 34

Fig. 22. Standard deviations of the average absolute error of measurements between the real and the

measured results of the human bodies with the Kinect sensor .. 42

Fig. 23. Accuracy of the acquired human body parts measurements based on the real and the measured

results of the human bodies with the Kinect sensor .. 42

9

List of tables

Table 1. The average computational time for the proposed system [15] .. 15

Table 2. Experimental body parts measurements [12].. 18

Table 3. The average error of measurements between the real and virtual human bodies [22] 22

Table 4. Runtime for each processing part and the average error of the biometric measurements [20]

 ... 23

Table 5. Main characteristics of different RGB-D sensors [30, 33, 34] ... 25

Table 6. Average absolute errors (AAE) (in cm) of the obtained human body parts measurements

from 3 distances (2m, 2.5m, 3m) ... 35

Table 7. Estimated error compensation values ... 36

Table 8. Final body parts measurements of subject 1 (S1) ... 37

Table 9. Final body parts measurements of subject 2 (S2) ... 38

Table 10. Final body parts measurements of subject 3 (S3) ... 38

Table 11. Average absolute error (in cm) of measurements between the measured and real human

body parts with and without error compensation .. 40

Table 12. AAE of human body parts measurement (cm) between the real and the measured results of

the human bodies with the Kinect sensor .. 41

Table 13. Average running time spent during each step in the thorough body parts measurement

procedure ... 43

10

List of abbreviations and terms

Abbreviations:

Lect. – lecturer

RGB-D – red green blue-depth;

2D – two-dimensional;

3D – three-dimensional;

RGB – red green blue;

SCAPE – shape completion and animation of people;

DoF – degree of freedom;

LBS – linear blending skinning;

API – application programming interface;

SDK – software development kit;

ICP – iterative closest point;

PCL – point cloud library;

AEE – average euclidean error;

ToF – time-of-flight;

AAE – average absolute error;

Woc – without compensation;

Wc – with compensation;

11

Introduction

Recent theoretical developments have revealed that augmented reality and virtual dressing

technologies have advanced tremendously and expanded to several areas such as health care,

marketing, gaming, and others. Contactless human body measurement plays a significant role in

clothing and virtual fitting applications [1] as online shopping has become a trend.

In this context, the use of low-cost RGB-D sensors such as Microsoft Kinect, introduced by Microsoft

for Xbox games, in 3D human body measurement and scanning has led to a significant increase in its

convenience. Meanwhile, existing laser-based [2] and structured light sensors are either sophisticated

or expensive as they require expert knowledge for operation, even though they produce high-quality

data. Due to its many capabilities, Microsoft Kinect has particular advantages over conventional 3D

scanners. One of the primary benefits is its ability to capture color and depth data at a video rate with

a minimum consideration of the texture and light condition. These advantages allowed the Kinect

technology to advance in areas such as defense [3], sports [4], virtual dressing applications [5, 6, 7,

8], and health care [9, 10, 11, 40].

With the increasing importance of the human body measurement data in online shopping applications,

researchers focused on finding new methods for obtaining the measurement without using the

traditional measuring techniques that rely on the measuring tape. Therefore, based on Kinect's RGB-

D information, there have been numerous studies on measuring human body parts to accomplish

effectiveness and cost-saving. At the same time, a subject maintains a steady position and using fewer

Kinect sensors [7, 12, 13]. Other researchers' attention has been devoted to achieving measurements

using Kinect sensor for health reasons, such as in [14] that developed a method to estimate waist

circumference to help diagnose abdominal obesity.

Additionally, several researchers endeavored to improve the measured human body parts' accuracy

regardless of the large-scale motion during data capturing [15, 16]. Some authors have also conducted

studies to develop software-based methods to obtain a significant number of measurements regardless

of the human clothes' looseness [17]. Nevertheless, such approaches require multiple operators, a

higher computational time, and an increasingly sophisticated algorithm.

This research project presents a fast, easy, and efficient method for obtaining 3D human body parts

measurements by detecting the human body skeleton using a single Kinect v2 sensor based on the

time-of-flight principle [18] for real-time 3D virtual dressing application. At first, the Kinect sensor

was used to capture depth, color, and skeleton data of users maintaining a "T" pose. Afterward, based

on the captured segmented depth data and the generated 3D point clouds, the system acquired

personalized human body parameters such as height, arm length, and waist front end perimeter with

the aid of the 25 joints points identified by Kinect v2. Ultimately, the resulting measurement errors

were reduced by implementing an error compensation technique. Furthermore, this thesis provides

several suggestions for future research to address and consider to overcome the raised challenges and

improve the achieved results.

12

In brief, this thesis documents several key contributions presented as follows:

– Adopting a fast and easy data capturing approach to scan the human body that requires no

second operator or any complicated setup. In other words, users can configure the frames'

capturing scenario using their personal computer to start and finish the 3D human body parts

measurement process by themselves, with embedded voice commands to assist them.

– Offering an efficient 3D body parts measurement method that generates up to ten different

measurements from the captured data in less than ten seconds using any RGB-D sensor that

provides at least 15 skeleton points.

– Applying an error compensation strategy to minimize the acquired body parts measurement

errors. One of the key benefits of this algorithm is the ability to be implemented in public

environments to achieve realistic 3D virtual fitting applications. To put it another way,

modifying the reconstructed 3D avatars of a subject to match the generated body parts length.

13

1. Related work

This chapter discusses and compares several proposed 3D human body parts measurement methods

with a single Kinect sensor to avoid the complicated system setup. In addition, this chapter provides

a short comparison about RGB-D sensors' efficiency from the perspective of depth accuracy, captured

image quality, device performance, and configuration to present useful information about the chosen

RGB-D sensor in this research project.

1.1. Measurements with large scale motion method

Xu et al. [15] presented an efficient approach to obtaining accurate non-contact human body parts

measurements under the influence of a large-scale motion using a single Microsoft Kinect sensor.

Their method considers the motion effect on the human clothes, which may drive the attached clothes

to the human body tightly or loosely. Therefore, they introduced a space-time evaluation to extract

the information throughout different posture variations, allowing them to obtain accurate human body

parameters and thus made their proposed system feasible to be applied in public environments.

Fig. 1 displays a summary of the proposed method. Firstly, a video sequence of subjects behaving in

various poses was acquired using a single Kinect sensor (Fig. 1(a)). Then, a multi-layer framework

restored each frame's pose in the sequence (Fig. 1(b)), which consisted of a failure-detection and a

pose tracking module. Initially, for pose detection, a SCAPE model was applied to generate the

training database, including body shapes of 300 different individuals and around 50,000 different

poses. In further steps, the authors employed the SCAPE model for modeling the sophisticated non-

rigid deformations of human bodies produced by both the shape and pose variations. In other words,

they approximated the human body geometry by 16 different rigid parts with 36 degrees of freedom

to identify the subjects' different poses.

For pose tracking, the authors implemented the proposed method by Wei et al. [19] while considering

the RGB images' silhouette constraint, which ensured a precise pose estimation for each frame.

Accordingly, the 3D human models were estimated based on the depth maps for distinct poses,

allowing to convert all the obtained poses into a standard pose to eventually reconstruct a spatial-

temporal average model (Fig. 1(c)). Additionally, the application of a space-time evaluation allowed

reducing the clothes' effect (Fig. 1(d)). Fig. 2 displays a comparison between the generated average

model's accuracy and the spatial-average model after mitigating the clothes effect.

Fig. 1. The pipeline of the presented approach: (a) the input depth maps and RGB images from Kinect; (b)

various poses for every frame; (c) the spatial-temporal average model of all frames; (d) final model after

reduction of the clothes effect [15]

14

Moreover, to acquire the body parts measurements, each frame's SCAPE model was initially

optimized using the depth map of the video sequence's first five frames. All the obtained models of

different poses were then transformed into one standard T-pose 3D model using the inverse LBS

model. Specifically, synthesizing the 2.5D information from several distinct views along the time

axis allowed recovering the complete 3D model information. Fig. 3 shows all the defined human

body parameters in the developed system. The indices of two points for each body part were defined

based on the body bone segment to determine the leg, arm, and neck to hip length. Also, the indices

of multiple points surrounding the corresponding body part locations were primarily specified to

measure the waist, chest, and hip circumference. Subsequently, the system reconstructed a circular

convex structure from the predefined points (Fig. 3(b)), allowing them to generate measurements of

the corresponding body parts parameters automatically during runtime.

Based on the developed method to acquire the human body measurements, experimental data were

collected and maintained using 55 video sequences belonging to 25 men and ten women while

assessing several subjects more than once. The tested individuals were between 20 and 45 years old,

ranging from 1.55m to 1.90m.

Fig. 2. Results for the reduction of the clothes effect: (a) a person wearing tight clothes; (b) a person wearing

loose clothes [15]

Fig. 3. Measurements: (a) the human body parameters defined in the presented system; (b) method for

measuring the circumference parameters using the girth [15]

15

Fig. 4 presents the 3D model reconstruction results using the color and depth images obtained from

Kinect. The 3D models were captured with the motion capture module with different poses and were

following this transformed into T-pose. Experimental results confirmed that without using the failed

pose tracking method for pose recovery, the pose estimation module's inaccuracy adversely affected

the acquired body parts measurements to no small degree. Mainly failed poses during motion capture

often increase the outliers, which leads to an increment in the mean error of the body measurements.

Accordingly, the implementation of a failure detection module enabled the detection of the

unsuccessful poses automatically. Table 1 displays the average running time for the developed

system achieved using a dual-core 2.33 GHz Intel processor.

Furthermore, the authors' compared their developed system against the approach presented in [20].

Cui et al. [20] method can reconstruct all the human bodies' details while considering the subjects'

small-scale motion while capturing approximately 40 frames from each view of the selected 12 views.

Fig. 5 displays a comparison between the calculated average absolute errors of measurements

reported in [15] and those reported in [20]. The derived results demonstrated Xu et al. [15] system's

effectiveness in measuring the human body parameters with large-scale motion. Meanwhile, the

average error of neck-to-hip length was slightly higher than that in [20]. Such difference arises from

the extensive human body motion in front of the Kinect sensor during capturing, while in [20], the

experimental subjects experienced minimal movement.

Fig. 4. Results of 3D model reconstructions [15]

Table 1. The average computational time for the proposed system [15]

16

Additionally, the reported findings involved calculating the waist and chest circumference's relative

errors to analyze the obtained results before and after mitigating the clothes effect. Accordingly, the

use of tight clothes produced minor errors compared to those measured with higher looseness.

On this basis, the developed method by Xu et al. [15] can accurately acquire human body

measurements of humans with large-scale motion. In other words, the conducted experiment

demonstrates the applicability of such a system in several public applications, such as hospitals and

shopping malls, with a relatively small price of approximately 150$. Ultimately, quantitative

evaluations of the achieved results demonstrated that their approach produced more precise

measurements than similar works.

1.2. Measurements with steady human position method

Adhikari et al. [12] presented a method to obtain contactless human body parts measurements

dependent on a single Kinect v2 sensor for 3D virtual dressing applications. Fig. 6 shows an outline

of the proposed procedure. Initially, the Kinect v2 device captured the human body of the subject,

maintaining a steady T-pose. Then, the authors determined the corresponding human body depth

information based on the acquired frames.

Afterward, the implementation of several image processing techniques available in the Kinect sensor

[21] allowed segmenting the moving objects and minimizing the background noise. The developed

system could then acquire personalized human body parameters such as height, neck to hip, and leg

length using the sensor's skeleton joints' positions. Similarly, the chest, waist, and stomach's front-

end perimeters were estimated using the corresponding 3D pixels.

Fig. 5. Average absolute errors of measurements of people wearing clothes [15]

17

Although the Kinect sensor can store skeleton points of six people simultaneously, the authors aimed

initially to determine the following measurements of a single subject at once by employing

Pythagoras theorem for 3D space to measure the distance between the defined skeleton points using

a C# code.

– Height of the user: measured as the distance between head and ankle skeleton points.

– Shoulder length: distance from shoulder left to shoulder right points.

– Leg length: spine-base to ankle points.

– Neck to hip length: neck to spine-base points.

– Arm length: shoulder to wrist points.

– Chest, stomach, and waist circumference: calculated as the average front-end perimeter

around each corresponding body part area accordingly. Note that the skeleton points have not

been considered for these measurements as new depth Y coordinates were defined. The

corresponding depth pixels were then converted into real-world camera space points in meters

through Kinect SDK API, which allowed them to generate measurements in meters.

Moreover, the skeleton model and the necessary body parameters were registered for the 3D model

as labels, as shown in Fig. 7. Following this, the developed system reconstructed the corresponding

3D human body model based on the determined measurements and implemented error calibration for

all of them. In other words, the algorithm generated all the necessary body parameters for two users

and then calibrated the obtained results based on the calculated average error percentage as follows:

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 × 𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)

Fig. 6. The pipeline of the presented method [12]

18

Table 2 displays a comparison between the acquired measurements using the Kinect sensor and one

test subject's manual measurements determined with a measuring tape's assistance. According to the

experimental results, the sensor-based measured parameters were relatively accurate since the

calculated errors were less than 5%. The results for the chest, stomach, and waist front-end perimeters

incorporated a maximum error of 12%. Further steps consisted of performing satistical analyses by

applying the average weighted sampling technique to minimize each parameter's errors. The achieved

experimental results were adequate and provided an appropriate approach for designing a 3D virtual

dressing application.

Ultimately, the authors utilized Microsoft visual gesture builder to introduce a gesture controlling and

identification system. A user interface was also designed with three control buttons for recording,

resetting, and saving images of the user captured by the Kinect sensor. Subsequently, the developed

interface displayed the user's skeleton image with all the corresponding body parts measurements

based on the collected human body frames.

Fig. 7. Defined skeleton model and body parameters points [12]

Table 2. Experimental body parts measurements [12]

19

1.3. Measurements with multi-view alignment method

Mao et al. [22] proposed a method to obtain the human body parts measurement using the skeleton

points provided by the Kinect v1 sensor. At first, they reconstructed a full 3D human body by

capturing 18 frames from 6 views. The subsequent step consisted of applying an alignment algorithm

to rapidly realize a globally aligned point cloud of the complete human body's captured frames.

Fig. 8 presents an outline of the reported approach, in which the processing time for each model was

about 10 minutes on average.

To scan the human body, the user had to maintain a steady position within 1m of the sensor.

Meanwhile, the system's setup required adjusting the Kinect sensor to the subject's waist height. Then,

the user had to rotate consistently at approximately 60 degrees to capture three data frames in six

different views, presented as follows:

– one frame horizontal to the Microsoft Kinect.

– another one 20 degrees above the horizontal by rotating the motor controlling the Kinect's tilt-

in base.

– last frame captured 20 degrees below the horizontal.

Compared to the previous methods, the main advantage was the reduced number of captured frames,

which allowed to minimize and enhance the required computation speed for the denoising and

alignment processes. Additionally, the developed algorithm consisted of a local rigid alignment

procedure to merge every three frames of one view. This system then reconstructed two final views

representing the human body's front and back sides from the obtained views before ultimately

combining them to generate the corresponding full human body model.

The following step was the segmentation and denoising of the calibrated RGB-D images because the

captured data frames contained both the human body and the enclosing environment in the scanning

range. For the segmentation process, the authors defined the bottom of the human body by cutting a

plane. They thus provided a threshold to the depth value for dividing the pixels as the scanned human

body was close to the sensor. As for the lateral noise, the implementation of Barron and Malik's [23]

proposed method allowed to smooth the noise resulting from the surface changes, lighting

environment, and other factors during data capturing. A final illustration of the human body

segmentation and denoising is shown in Fig. 9, with the segmented body's edges highlighted to

demonstrate the noise reduction.

Fig. 8. Outline of the proposed method setup [22]

20

Following the segmentation and denoising procedure, the authors implemented a local rigid alignment

technique combined with the ICP algorithm point-to-point search method to merge every three frames

of a single view. In general, the ICP algorithm calculates the correspondence distance between the

source and destination points. However, since the point cloud density increased after merging the

frames, a down-sampling process was conducted using the PCL voxel grid. The following produced

a point cloud divided into multiple grid elements, with each grid's total points approximated with

their corresponding centroid.

After rigidly aligning all the captured frames, the researchers introduced a three-step multi-view

alignment method to combine the obtained six views into two views consisting of:

– A pre-alignment of the frames implemented by finding their pairwise correlation on the human

body silhouette. This process was repeated five times on both the front and back views

considering that they have more data points.

– A rigid alignment of the previously aligned partial views in a group of two-point clouds in an

adjacent position to acquire a more detailed point cloud, as illustrated in Fig. 10.

– A non-rigid alignment of the multi-view frames to cope with the accumulation of errors, which

originates from multiple rigid alignment iterations, by distributing them equally over all the

consecutive frames. This approach was required because, during the scanning process, the

human body can unavoidably experience movement. The following may cause deformations

that can be similarly produced by the human clothes or during the Kinect sensor calibration.

Ultimately, the presented method enabled the merging of the adjacent point clouds views

progressively to form one final view of the human body.

Fig. 9. Data frames segmentation and denoising: (a) raw data, (b) after segmentation and removing the

background, (c) after denoising [22]

Fig. 10. Identified correspondence points between two frames in adjacent views [22]

21

Furthermore, the resulting globally aligned human body model required texture mapping and a

watertight mesh surface. In terms of the watertight mesh surface, the developed algorithm applied the

Poisson reconstruction method [24], which generates polygonal mesh from the dense point cloud.

Regarding texture mapping, a mesh of the 3D human portrait was first developed by segmenting and

projecting the 3D surface to the 2D domain. Afterward, the Kinect's sensor calibration of RGB images

and depth images allowed to assign all the captured frames with colors before aligning them without

down-sampling by the reported global and rigid alignment algorithms. It is important to note that

obtaining the texture mapping of any point in the 3D mesh relied on the weighted mean of the

generated point cloud data's color values. Fig. 11 shows the 3D reconstruction results, which

contained the 3D reconstructed human body avatar with mesh, color, and texture. The achieved results

demonstrated the accuracy of the proposed method in reconstructing 3D avatars with realistic

deformation, clothing wrinkles, and hairstyles.

Based on the obtained 3D models from the multi-view alignment method, the researchers used

skeleton points provided by the Kinect sensor to generate several 3D human body parts measurements

for multiple subjects. Table 3 shows the average error between the calculated and the actual human

body measurements presented in centimeters while comparing them to previous work with similar

results using two Kinects [25, 26] and others using one Kinect [20, 27]. Contrary to these previous

works' findings, Mao et al.'s approach slightly improved the average error between measurements

while generating more precise 3D human body models. Nevertheless, this method had particular

limitations in terms of the captured data quality and modeling robustness. Accordingly, the authors

suggested several recommendations for future research, such as utilizing higher resolution RGB-D

sensors and more advanced denoising algorithms.

Fig. 11. Reconstruction results of full 3D human bodies in different scanning scenarios [22]

22

1.4. Measurements with the registration of many depth images method

Cui et al. [20] proposed a full 3D human body measurements and reconstruction method that focuses

on the rigid and non-rigid registration of many depth images and does not require a reference model

or additional equipment. The following allowed them to reconstruct detailed human body features

such as faces or clothing by applying a super-resolution algorithm that considers the color constraints.

Fig. 12 presents an outline of the reported approach, in which the processing time for each model was

about 14 minutes on average.

To scan the human body, the user had to stand in a range of 2 meters from the Kinect's v1 sensor

while maintaining a "T" pose and turning around 360 degrees for about 20 to 30 seconds to capture

ten frames within 0.5 seconds intervals. Afterward, based on the smoothing super-resolution

algorithm previously described in [28], super-resolved depth and color frames were produced with

an enhanced resolution. Fig. 13 shows the developed algorithm's accuracy in preserving the captured

model frames' smooth surface after integrating the color constraints. Meanwhile, it is essential to

highlight that the AEE, which is the average of error values over all the points in the mesh, is

represented by the color-coded plots (Fig. 13(c) and Fig. 13(e)). Extensive analysis of the presented

AEE results in Fig. 13 demonstrates the added color constraints' effectiveness in decreasing the

euclidean errors.

Table 3. The average error of measurements between the real and virtual human bodies [22]

Fig. 12. Outline of the proposed method setup [20]

Fig. 13. Super-resolved mesh of a lion model [20]

[26]

[25]

[20]

[27]

23

Further steps consisted of a global rigid and non-rigid registration of the noisy Kinect data using a

probabilistic global alignment algorithm, which combined the super-resolved scans into a final model

by aligning all the adjacent frames. For this purpose, the researchers considered the human body as

articulated with rigid structures connected by joints. Note that the articulated model was employed to

describe the non-rigid motion of the human body. Subsequently, the presented non-rigid algorithm

accomplished correct point cloud registration and detection of joint positions when tested against

frames with waving arms.

Moreover, the researchers utilized the Poisson surface reconstruction algorithm [24] to generate 3D

human body mesh with minimized noise. The final step included a texture depth map for each view

of the human body created from the Kinect's raw color data. Fig. 14 displays the reconstructed 3D

human body models of 5 experimental subjects with accurate geometric surface features.

Nonetheless, one concern about this paper's findings was that excessive motion in the user's arms or

legs could distort the developed system's registration process. One of the reported suggestions to solve

this problem involved investigating more complex noise and distorted models to handle extensive

user movements.

Based on the obtained 3D avatars, the authors used the Kinect sensor's skeleton points to generate

several 3D human body parts measurements for all reconstructed models with an Intel Xeon 2.67

GHz CPU 12GB RAM. Lastly, the following allowed them to calculate the corresponding average

error of the biometric measurements in centimeters between the reconstructed and real human bodies

alongside the proposed algorithm's average runtime, as shown in Table 4.

Fig. 14. Full 3D human body scanning results of multiple subjects [20]

Table 4. Runtime for each processing part and the average error of the biometric measurements [20]

24

1.5. Kinect v1 versus Kinect v2

With the increasing popularity of RGB-D sensors in the computer vision community, several studies

have compared Kinect v1 and Kinect v2 [29, 30, 31]. Generally, Kinect v1 is a structured light camera

that captures a projected light form and identifies the distance separating the object and the camera

by monitoring the light pattern's deformation [29]. Although previous research focused on Kinect v1

as one of the most common RGB-D sensors with several algorithms developed for it, a new Kinect

sensor that depends on a different technology was released in 2014. In brief, Kinect v2 is a ToF

camera that estimates the distance between the camera and the object by calculating the sensor's

signal's travel time and emitted from the projector [29].

Meanwhile, Oliver et al. [32] provided a systematized comparison between Kinect sensors' versions

by evaluating their captured depth images accuracy. Their experiment primarily consisted of

acquiring approximately 100,000 depth images for about an hour of runtime while analyzing the

sensor's temperature influence on every frame. Accordingly, the obtained experimental results

suggested that for more reliable depth image quality, the Kinect v2, which has an internal fan, should

be pre-heated for at least 25 minutes before capturing any image. By contrast, Kinect v1 required a

smaller warm-up duration.

Moreover, the conducted research in [32] delivered useful information about the capturing distance's

influence. The presented study findings initially indicated that Kinect v1 accuracy dropped while

increasing the scanning distance. On the contrary, higher distance slightly affected Kinect v2 accuracy

as it remained approximately constant, although the precision dropped substantially. Lastly, the

authors concluded by recommending using Kinect v2 for both 3D reconstruction and human body

measurements applications due to its higher accuracy and ability to identify up to 6 people. On this

basis, the low precision of the acquired depth frames by Kinect v2 has to be considered by applying

pre-processing algorithms on the depth images before using them.

1.6. Kinect versus other RGB-D sensors

In the past decade, the image processing field witnessed an unprecedented shift with the development

of numerous RGB-D sensors integrating the characteristics of laser-based 3D scanners and optical

sensors such as Microsoft Kinect, PrimeSense, and Intel RealSense cameras. Such devices can

achieve 3D scanning and measurements of objects and are, for the most part, portable like optical

sensors. This technology has allowed the following applications to become more convenient with

affordable low-cost RGB-D sensors that can capture both depth and color images in real-time.

Table 5 displays a thorough comparison of the main characteristics of some of the most frequently

used RGB-D sensors in 3D human body measurements and reconstruction applications. Nevertheless,

the displayed RGB-D sensors in this section are not the only available sensors in the market. There

are many other cameras such as Asus Xtion PRO Live, SwissRanger 4000, PMD CamCube 3.0,

CubeEye, Intel RealSense Camera F200, Intel RealSense Depth Camera D415.

To put it differently, determining the most suitable RGB-D device for any application relies on several

factors such as task requirements, budget, and the required sensor’s features.

25

Table 5. Main characteristics of different RGB-D sensors [30, 33, 34]

 Kinect 1.0 Kinect 2.0 PrimeSense RealSense D435

Sensor type Infrared Structured

Light

Time of Flight

(ToF)

Structured Light Active Stereoscopic

RGB resolution (pixel)

and frame rate (fps)

640 × 480 at 30 fps

or 1280 × 1024 at

12 fps

1920 × 1080

at 30 fps

640 × 480

at 30 fps

1920 × 1080

at 30 fps

Depth resolution (pixel)

and frame rate (fps)

640 × 480

at 30 fps

512 × 424

at 30 fps

640 × 480

at 30/60 fps

1280 × 720

at 90 fps

Depth distance range (m) 0.8 − 4 (default)

0.4 − 3.5 (near)

0.5 − 4.5 0.8 − 3.5 or

0.35 − 1.4

0.11 − 10

Field of view of depth

image (Horizontal,

Vertical)

57° × 43° 70° × 60° 57.5° × 45° 85.2° × 58°

Field of view of RGB

image (Horizontal,

Vertical)

62° × 48.6° 84.1° × 53.8° 57.5° × 45° 69.4° × 42.5°

Tilt motor Yes No No No

Skeleton joints defined 20 25 19 15

Maximum skeletal

tracking

2 6 6 6

USB interface 2.0 3.0 2.0 3.0 Type C

Power Supply External Adapter External Adapter USB USB

Price ($) 80 200 295 179

26

2. Overview

This chapter gives an overview of the proposed system for obtaining 3D human body parts

measurement of a subject using a single Kinect v2 sensor. Similarly, a comprehensive description of

each part of the suggested algorithm is displayed.

The presented research project aims to devise and implement a fast and unsophisticated approach for

real-time non-contact 3D human body measurement of a user. With a single RGB-D sensor such as

Microsoft Kinect v2, a user can easily configure the scanning scenario with a personal computer

within a limited workspace, whereas no second operator is needed. Fig. 15 presents an outline of the

proposed method. Initially, the system captures ten frames containing depth, color, and skeleton data

of the human body front view using Kinect v2. Afterward, the acquired human body frames are

segmented, and 3D point clouds of the human body are constructed and denoised.

The next step incorporates using the segmented depth image and the human body's skeleton data,

which consists of 25 skeleton joints points, for defining the depth points' coordinates of the human

body parts. Accordingly, the obtained 2D coordinates are mapped to the 3D point cloud data to

estimate the measurement for each of the body parts. Ultimately, error compensation is applied to

reduce the obtained measurement errors and generate more accurate measurements. For instance, the

introduced algorithm can produce 13 different human body measurements in particular:

– Height,

– Arm left and right lengths,

– Hand left and right lengths,

– Leg left and right lengths,

– Neck to hip length,

– Shoulder length,

– Hip, waist, stomach, and chest front end perimeter,

Fig. 15. Pipeline of the proposed method

27

2.1. Data capturing

In brief, the data capturing process consists of applying Elise et al.'s [35] recommendations. The

following study findings highlighted several suggestions to obtain better measurements from Kinect

v2 and reduce the frames' noise, illustrated as follows:

– Considering a pre-heating time for the device of almost 30min,

– Collecting a tenth of consecutive depth maps from a single viewpoint,

Fig. 16 presents an outline of the proposed system setup for the data capturing process coupled with

the corresponding algorithm. During the frames' acquisition, a user has to maintain a steady "T" pose

in front of the sensor for approximately 10 seconds to capture ten frames while standing within the

selected scanning distance (2.5m). Meanwhile, each subject has ten seconds to stand in front of the

sensor before the capturing process starts. The main advantage of this delay is eliminating the

necessity for a second operator. Additionally, the system verifies the human body skeleton's

identification before saving the collected frames. In other words, an error occurs upon failure in

detecting the required skeleton or exceeding the data capturing limit, which leads to the cancellation

of the entire procedure.

On the contrary, in the case of a successful tracking and identification of the human skeleton, all the

acquired frames metadata are saved into the project's database. The metadata generally consists of

the joints' position coordinates, color image, and depth image data. Furthermore, the user can decide

whether to capture more frames or save the collected data to the corresponding directory and end the

capturing process. Ultimately, using the method presented in [36], Microsoft Cortana voice

commands were added to the system to notify the user about the capture process's failure or success.

Fig. 16. Data capturing: (a) capturing scenario; (b) capturing algorithm flowchart

28

Besides, few limitations arise as it is necessary to consider several factors during the collection of the

human body frames, such as:

– Human must be wearing regular clothes that are not so loose because loose clothes could

affect several body measurements such as waist, chest, and stomach front end perimeter [15],

– Human body scanning must not be performed in an outdoor space as the sun rays may result

in data distortion and increase the noise. Nevertheless, there exists a considerable body of

literature recommending performing the scanning in an enclosed indoor environment such as

in [35],

– A user must maintain a steady position during the capturing process because an increased

motion may cause deformations and eventually affect the accuracy of the obtained results

[22],

Further to this, to be noted that all the RGB-D datasets in the capturing experiments were acquired

using a single Kinect v2 facilitated with an HP Pavilion notebook computer (CPU Intel i7-6700HQ

2.6 GHz, 16 GB RAM) and MATLAB R2018a (C programming language).

2.2. Segmentation, Denoising and 3D Point Cloud

Foreground segmentation and background removal are essential techniques in computer vision. As

mentioned previously, a substantial part of the data capturing is the skeleton tracking executed by the

sensor. The following enables characterizing the human body in each frame by several joint

coordinates, represented as 25 joints points and displayed as a depth joints map in Fig. 17.

Additionally, the generated joints points include both 2D and 3D coordinates, allowing Kinect to

perform depth base segmentation and return the segmented body index frame.

Accordingly, the segmentation of the 3D point cloud of the human body consisted of the following

steps (see Fig. 18):

– Acquiring the depth inverse of the binary image from the sensor's segmented depth body index

frame.

– Transforming the binary image inverse to the same type of the original depth image and

multiplying them together to obtain the main segmented depth image.

– Aligning the previously segmented depth image with the original color image to generate the

corresponding segmented 3D point cloud.

Fig. 17. Depth joints map [41]

29

Moreover, numerous studies investigated the captured data's lateral noise and focused on removing

it in 3D only, such as in [22]. However, unlike previous works, this research project adopts filtering

the noise from the captured 2D depth images and the segmented 3D point cloud. The following is

important when defining the corresponding human body joints' coordinates in 2D before mapping

them to 3D.

Furthermore, the developed algorithm implements the 2D averaging filter to remove the noise from

the segmented depth image in 2D to generate a new denoised 3D segmented point cloud data.

Generally, the averaging filter performs image smoothing by decreasing the intensity differences

between the adjacent pixels and substituting each pixel with the mean of all the neighboring pixels

using a convolution mask over each pixel. Meanwhile, the chosen size of the neighborhood mainly

controls the amount of filtering. Therefore, a relatively small neighborhood size (2) was selected

when using the averaging filter because a larger neighborhood proportion may result in a loss of

image details, although it produces higher noise reduction [38].

Algorithm 1 presents an example of utilizing the 2D averaging filter to smooth both the segmented

2D depth image and the segmented 3D point cloud data. At first, the point cloud location property,

which consists of the point cloud points in the form of a 3-dimensional matrix, was divided.

Afterward, the averaging filter was applied to denoise the main segmented depth image.

Subsequently, the system generates the corresponding X, Y, and Z coordinates of the new denoised

3D point cloud before ultimately obtaining a new denoised 2D depth image.

Fig. 18. 3D Point cloud segmentation: (a) depth body index frame; (b) depth inverse of binary image; (c)

original full depth image; (d) segmented 3D point cloud

30

2.3. Defining human body parts points

In general, several RGB-D sensors, which provide human body tracking capabilities, define the

skeleton points as joints' centers described with several properties, including the corresponding 2D

and 3D coordinates. However, utilizing these points directly to obtain human body parts

measurements can decrease the achieved results' accuracy. Accordingly, in contrast to previous works

that used the predefined skeleton points directly to acquire measurements [22], this research's

essential contribution was to estimate new points located at the human body's edges. The main

advantage of this is that it can be implemented with minimal skeleton points to reduce measurement

errors. In other words, the following allows using any available RGB-D sensor with human body

tracking functionality and at least 15 defined human body skeleton points. Fig. 19 shows all human

body parameters defined by the presented system. First, determining several measurements such as

the height, leg, and arm length required identifying two points' indices for each of them. On the other

hand, to measure the waist, chest, stomach, and hip circumference, the indices of multiple points

surrounding the corresponding body parts' locations were specified.

Algorithm 1. Denoising with an averaging filter algorithm

Fig. 19. Defined human body parts points

31

Moreover, the developed method consisted of multiple steps before defining new body parts points.

The first step was acquiring the inverse of the binary image of the segmented depth body index frame.

Afterward, the coordinates of all the contour points of the generated binary image were determined

using a function implemented based upon [39], which uses the Moore-Neighbor contour tracing

algorithm adjusted by Jacob’s stopping criteria. In brief, to determine the edges in an image, the Moor

neighborhood method identifies the indirect neighbors of a pixel, which are a set of 8 pixels sharing

an edge pixel or a vertex with that pixel.

Based on the obtained depth coordinates of the human body contour, the corresponding points of each

body part were estimated as follows:

5. Height Points:

– Upper point depth coordinates (X, Y) were estimated by searching in the contour coordinates

for the closest point to the skeleton head point, namely the point with identical X coordinate

and minimal Y coordinate.

– Lower point depth coordinates were obtained by searching for the contour point with the

maximal Y coordinate.

6. Arm Left Points:

– The first point has the same depth coordinates as the skeleton's shoulder left point.

– Second point's depth coordinates were obtained by searching for the contour point with the

minimal X coordinates.

7. Arm Right Points:

– The first point has the same depth coordinates as the skeleton's shoulder right point.

– Second point's depth coordinates were acquired by searching for the contour point with the

maximal X coordinates.

8. Hand Left Points:

– The first point has the same depth coordinates as the skeleton's wrist left point.

– Second point's depth coordinates were obtained by searching for the contour point with the

minimal X coordinates.

9. Hand Right Points:

– The first point has the same depth coordinates as the skeleton's wrist right point.

– Second point's depth coordinates were acquired by searching for the contour point with the

maximal X coordinates.

10. Neck to Hip Points:

– The first point has similar depth coordinates as the skeleton's neck point.

– The second point has the same depth coordinates as the skeleton's spine base point.

32

11. Shoulder Points:

– The first point has similar depth coordinates as the skeleton's shoulder left point.

– The second point has the same depth coordinates as the skeleton's shoulder right point.

12. Leg Left Points:

– The first point has the same depth coordinates as the skeleton's hip left point

– Second point's depth coordinates were obtained by searching in the contour coordinates for

the closest point to the skeleton foot left point, namely the point with identical X coordinate

and maximal Y coordinate.

13. Leg Right Points:

– The first point has similar depth coordinates as the skeleton's hip right point.

– Second point's depth coordinates were acquired by searching in the contour coordinates for

the closest point to the skeleton foot right point, namely the point with identical X coordinate

and maximal Y coordinate.

14. Hip Circumference Points:

– In a real-life scenario, hips are not measured as the distance between 2 points but as a

curvature. Therefore, in this research, the hip front end perimeter’s points were determined.

At first, the algorithm specified one contour point with the same Y coordinate as the hip left

or hip right skeleton points. Afterward, the depth binary image coordinates were searched for

all the points with the same Y-axis coordinate as the previously defined hip contour point.

The final obtained points allow measuring the hip circumference.

15. Waist Circumference Points:

– In general, waists are also not measured as the distance between 2 points but as curvature.

Therefore, in this research, the waist front end perimeter’s points were determined. At first,

the system specified the contour's Y coordinate for the waist by searching for the point

positioned one-third the distance between spine-mid and spine base skeleton points. Then, the

depth binary image coordinates were searched for all the points with the same Y-axis

coordinate as the previously defined waist contour point. The final generated points

correspond to the waist circumference points.

16. Stomach Circumference Points:

– Similarly, the stomach circumference points were determined by finding a contour Y

coordinate for the stomach by searching for the point positioned three-fourths the distance

between spine-mid and spine base skeleton points. Accordingly, the depth binary image

coordinates were searched for all the points with the same Y-axis coordinate as the previously

defined stomach contour point. The final obtained points define the stomach circumference

points.

33

17. Chest Circumference Points:

– Likewise, chest circumference points were determined by first finding a contour Y coordinate

for the chest by searching for the contour point positioned one-third the distance between

spine-mid and spine shoulder skeleton points. Following this, the depth binary image

coordinates were searched for all the points with the same Y-axis coordinate as the previously

defined chest contour point. The final collected points allow measuring the chest

circumference.

2.4. Measuring human body parts

After defining all the required human body parts points and their corresponding depth coordinates

(x,y), 2D coordinates had to be mapped into 3D coordinates (x,y,z) by entering the depth coordinates

as parameters in the point cloud location property to generate the corresponding 3D coordinates.

Afterward, based on the acquired 3D coordinates of all the previously defined human body parts

points, all the respective body parts measurements were estimated using the Pythagoras theorem of

3D space. Algorithm 2 presents an illustration of how to determine the human body height length in

meters.

Furthermore, a similar method was applied to obtain the measurements of all the remaining body

parts. However, the main difference was that for several body measurements such as hip, waist,

stomach, and chest, the calculation of the length depended on defining the sum of lengths between

every 2 points of the front-end perimeter points.

2.5. Selecting the Capturing Distance

Generally, when selecting the most suitable capturing distance, many factors must be considered,

such as the sensor's position, the sensor's field of view, and the captured frame resolution.

Additionally, with greater distances, the quality of the captured depth images is degraded by the low

resolution of the depth measurements and the noise. Fig. 20 shows the Kinect's field of view in which

the sensor was placed 1.5 meters above the ground within a capturing distance of 2 meters. The

specified field of view then enables covering the full human body with a maximal vertical point of

2.2m and a minimal vertical point of -0.1m. However, the sensor must be placed with a relatively

small inclination (approximately 13°) because positioning the sensor horizontally to the ground can

lead to losing part of the captured human body legs.

Algorithm 2. Measuring the human height length

34

In brief, to select the most suitable capturing distance for the proposed method, the conducted

experiment consisted of collecting and maintaining a dataset of 300 frames. Each 100 corresponded

to one of the following distances: 2m, 2.5m, and 3m. Note that the captured frames belonged to one

subject wearing the same clothes, in the same indoor environment and lighting conditions. Ultimately,

the system generates the corresponding 3D human body parts parameters for each frame in addition

to the resulting absolute errors of measurements (see Fig. 21).

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑐𝑚 = |𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ|

Moreover, the evaluation of the data presented in this experiment (Fig. 21) proves the developed

approach's capability in generating human body parts measurements from all the selected distances

with a variation of the absolute error from one distance to another. Nevertheless, the achieved results

were insufficient to determine the most suitable capturing distance. Accordingly, the following step

consisted of calculating the AAE of the obtained results, as shown in Table 6.

Fig. 20. Kinect v2 sensor field of view

Fig. 21. Comparison of the obtained human body parts measurements from 3 distances (2m, 2.5m, 3m)

35

Table 6. Average absolute errors (AAE) (in cm) of the obtained human body parts measurements from 3

distances (2m, 2.5m, 3m)

Measurement From 2m From 2.5m From 3m

Height Length 6.6 7.4 5.4

Arm Left Length 6.6 5.2 4.7

Arm Right Length 7.3 7.2 5.7

Hand Left Length 3.9 3.2 6.7

Hand Right Length 1.6 1.4 3.2

Hip Circumference 2.4 3.2 3.4

Leg Left Length 9.3 10.9 11.5

Leg Right Length 11.2 9.2 10.2

Neck to Hip Length 1.4 0.9 2.1

Shoulder Length 1.7 1.9 2.3

Waist Circumference 1.8 1.2 2.0

Stomach Circumference 10.6 9.2 11.4

Chest Circumference 7.4 7.2 8.6

Average of AAE 5.5 5.2 5.9

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 𝑖𝑛 𝑐𝑚

= 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(|𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟

− 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ|)

Table 6 displays the AAE of the human body parts measurements of the captured data from 3

different distances. According to the acquired data, the AAE of seven body parts measurements was

the smallest for the collected results from 2.5m compared to that from 2m and 3m, where the AAE

of only three measurements was the smallest. Similarly, a comparison of the final average of all AAE

shows that 2.5m had the smallest outcome (5.2cm), which is 0.3cm lower than that 2m and 0.7cm

smaller than that obtained from 3m.

2.6. Developing Error Compensation

In general, many factors may affect the accuracy of the obtained human body parts measurements,

such as lighting, clothing, and noisy depth data. For this purpose, this research attempted to integrate

an error compensation strategy to minimize the reconstructed human body parts measurement errors.

Meanwhile, numerous previous studies, such as in [12], implemented error compensation by

calculating the average error of measurements using real human body parts measurements to improve

the final values as follows:

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 + (𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 × 𝐸𝑟𝑟𝑜𝑟 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒)

However, one limitation of such an approach is that it might not be accurate because, in virtual

dressing applications, the main goal is to provide individuals with their final human body parts

measurements without knowing their real measurements.

36

Accordingly, this research project investigated a different strategy for implementing error

compensation. At first, this experiment's dataset incorporated 1000 captured frames of one subject

wearing the same clothes, in the same indoor environment and lighting conditions. Afterward, the 3D

human body parts measurements for each captured frame were estimated and stored in a separate

array corresponding to each body part. The following allowed to approximate a compensation value

for every human body parameter by the expression:

𝐸𝑟𝑟𝑜𝑟 𝐶𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑎𝑟𝑟𝑎𝑦 − 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ)

Furthermore, the obtained error compensation values were positive and negative:

– With positive error compensation:

𝑛𝑒𝑤 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

– With negative error compensation:

𝑛𝑒𝑤 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 + 𝑒𝑟𝑟𝑜𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛

Ultimately, based on the conducted experiment, the final obtained error compensation values for the

corresponding human body parts measurements are presented in Table 7.

Table 7. Estimated error compensation values

Human Body Parameter Error Compensation Value (cm)

Height −6.1

Arm Left −5.2

Arm Right −7.1

Hand Left 3.8

Hand Right 1.9

Hip −5.9

Leg Left −9.4

Leg Right −9.4

Neck to Hip 2.2

Shoulder −1.8

Waist −0.9

Stomach 8.3

Chest 5.6

37

3. Results and discussion

The following chapter presents the achieved 3D human body parts measurement results from this

research project's proposed method.

3.1. Experimental Results

Based on the previously reported error compensation values, the developed system was initially tested

on three subjects. At first, this required collecting the real body parts measurements of all of them

manually using a measurement. Afterward, ten frames were captured for each user separately while

maintaining a “T” pose within a distance of 2.5m of the Kinect sensor. Ultimately, the obtained 3D

human body part measurement results were recorded before and after implementing the error

compensation (see Table 8, Table 9, and Table 10). Note that the proposed algorithm consists of

estimating the final obtained measurements with the sensor as the average measurements of each

captured ten frames.

𝐵𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑙𝑒𝑛𝑔𝑡ℎ

= 𝑟𝑜𝑢𝑛𝑑(𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑎𝑟𝑟𝑎𝑦 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 10 𝑓𝑟𝑎𝑚𝑒𝑠))

Table 8. Final body parts measurements of subject 1 (S1)

Measurement
Manually measured

values (cm)

Sensor values before

compensation (cm)

Sensor values after

compensation (cm)

Height Length 182 176 182

Arm Left Length 81 75 80

Arm Right Length 81 72 79

Hand Left Length 20 27 23

Hand Right Length 20 25 23

Hip Circumference 44 39 45

Leg Left Length 103 95 104

Leg Right Length 103 95 104

Neck to Hip Length 60 58 56

Shoulder Length 40 35 37

Waist Circumference 43 43 44

Stomach Circumference 42.5 43 35

Chest Circumference 46 45 40

38

Table 9. Final body parts measurements of subject 2 (S2)

Measurement
Manually measured

values (cm)

Sensor values before

compensation (cm)

Sensor values after

compensation (cm)

Height Length 178 172 178

Arm Left Length 74 70 75

Arm Right Length 74 69 76

Hand Left Length 19 23 20

Hand Right Length 19 23 21

Hip Circumference 43 38 44

Leg Left Length 96 87 96

Leg Right Length 96 87 97

Neck to Hip Length 60 61 59

Shoulder Length 40 35 37

Waist Circumference 42 38 39

Stomach Circumference 40 42 34

Chest Circumference 47 45 39

Table 10. Final body parts measurements of subject 3 (S3)

Measurement
Manually measured

values (cm)

Sensor values before

compensation (cm)

Sensor values after

compensation (cm)

Height Length 167 161 167

Arm Left Length 73 71 76

Arm Right Length 73 66 74

Hand Left Length 18 22 18

Hand Right Length 18 19 17

Hip Circumference 58 51 57

Leg Left Length 93 80 89

Leg Right Length 93 80 89

Neck to Hip Length 55 58 56

Shoulder Length 41 39 41

Waist Circumference 56 52 53

Stomach Circumference 52 54 46

Chest Circumference 57 59 53

39

Table 8, Table 9, and Table 10 display the acquired 3D human body parts measurements of 3

subjects in a user-friendly and efficient approach based on the reported algorithm. The presented

results incorporated 13 different measurements. Subsequently, the data's evaluation demonstrates the

introduced method's ability to achieve desirable results and reduce measurement errors. In other

words, the obtained measurements after error compensation for the majority of the collected data

were approximately closer to the actual human body values. Compared to the current methods based

on infrared scanning or laser scanning, the Kinect scanning and measuring methods are hence utterly

flexible and capable of conveniently obtaining the 3D measurement of users at low cost.

To further investigate the experimental results, this section evaluates the average absolute error of the

human body parts measurements between the real and the final measured human body parts data with

the Kinect sensor, with and without error compensation. Table 11 shows the AAE of each captured

ten frames corresponding to each subject separately in addition to the total average of AAE of all the

individuals. The displayed results show that the developed compensation was performing adequately

because the calculated average absolute errors for most of the measurements and the average of AAE

of all the generated measurements decreased significantly after implementing the error compensation.

Meanwhile, the average absolute error of several measurements such as neck to hip, stomach, and

chest increased after implementing the error compensation for the following reasons:

– Neck to hip measurement primarily depends on the human's skeleton points generated by the

sensor, which are the neck and spine base points. Therefore, this measurement can be

influenced by the inclination or the position of the user's head while maintaining a steady "T"

pose. The following may result in an unpredictable measurement error. Nevertheless, error

compensation for this body parameter might not be accurate.

– Stomach and chest circumference are influenced by the tightness or looseness of the individual

clothes during the data capturing process, resulting in an unpredictable measurement error.

Thus, error compensation for these measurements might not be accurate.

40

Table 11. Average absolute error (in cm) of measurements between the measured and real human body parts

with and without error compensation

Measurement

AAE of S1 AAE of S2 AAE of S3
Average of AAE of

all subjects

Woc Wc Woc Wc Woc Wc Woc Wc

Height Length 6 0 6 0 6 0 6 0

Arm Left Length 6 1 4 1 2 3 4 1.7

Arm Right Length 9 2 5 2 7 1 7 1.7

Hand Left Length 7 3 4 1 4 0 5 1.3

Hand Right Length 5 3 4 2 1 1 3.3 2

Hip Circumference 5 1 5 1 7 1 5.7 1

Leg Left Length 8 1 9 0 13 4 10 1.7

Leg Right Length 8 1 9 1 13 4 10 2

Neck to Hip Length 2 4 1 2 3 1 1.7 2

Shoulder Length 5 3 5 3 2 0 4 2

Waist Circumference 0 1 4 3 4 3 2.7 2.3

Stomach

Circumference
0.5 7.5 2 6 2 6 1.5 6.5

Chest Circumference 1 6 2 8 2 4 1.7 6

Average of AAE of

all measurements
4.8 2.6 4.6 2.3 5.1 2.1 4.8 2.3

3.2. Performance Comparison

Before assessing the presented method's effectiveness and performance, the first step consisted of

recomputing all experimental individuals' final biometric measurements after executing the suggested

error compensation. However, as previously explained, error compensation was not applied for the

neck to hip, stomach, and chest measurements. For this purpose, the following measurements' final

values remained equal to the values obtained by the sensor before compensation.

Moreover, in further steps, additional data collection of more participants was performed. Hence,

there are six people tested in the conducted experiments. Table 12 shows the average absolute errors

of human body parts measurement in centimeters between the real and the measured results of the

human bodies with the Kinect sensor. Accordingly, this table compares all computed AAE results

against the traditional method's reported results in [12, 15, 20, 22] using one Kinect sensor. These

findings go beyond previous reports, showing that the algorithm highlighted in this thesis provided

ten different body parts measurements, while no other method achieved more than eight.

Additionally, the evaluation of the produced data demonstrates a significant improvement in the AAE

of several human body parts, including height, hip, and waist, as slightly superior outcomes were

achieved.

41

Meanwhile, it must be pointed out that although the compared studies displayed relatively better

results for few measurements such as arm, leg, and shoulder, several arguments can make their

findings not considered accurate and are summarized as follows:

– Some of the previous works presented in Table 12, such as [20, 22], are 3D modeling

applications that focused on reconstructing 3D avatars of human bodies. In other words, the

authors did not introduce any method that justifies the process used to acquire the human body

measurements because they used the skeleton points defined by the RGB-D sensor directly to

obtain them. Consequently, the following process may decrease the accuracy of the generated

measurements because RGB-D sensors define skeleton points as joint centers and not points

at the human body's edge.

– Although the final AAE in this research corresponded to the average of six subjects only, the

results of the majority of the existing methods, including in [12], were for an unknown number

of subjects or one subject only. Nevertheless, this makes it challenging to analyze the accuracy

of the provided experimental results.

– Numerous previous works, such as [15], measured the arm's length of subjects from shoulder

to wrist with a closed hand, while this thesis algorithm measured the entire arm length from

shoulder to the edge of the opened hand.

Furthermore, the presented results in Table 12 were statistically compared using the corresponding

standard deviations displayed in Fig. 22. The calculated standard deviations of the average absolute

error of measurements show a statistically considerable improvement achieved by this research. In

other words, this thesis accomplished the lowest standard deviation (0.6) as opposed to that of all the

presented previous works (≥ 1).

To further investigate the experimental results, Fig. 23 displays the accuracy of the acquired human

body parts measurements of all the tested subjects (6 participants) calculated as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 100 − (
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑤𝑖𝑡ℎ 𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

𝑟𝑒𝑎𝑙 𝑏𝑜𝑑𝑦 𝑝𝑎𝑟𝑡 𝑙𝑒𝑛𝑔𝑡ℎ
) ∗ 100

The findings show that this research achieved measurement accuracy between 92% and 100% on

average. Note that the low accuracy of hands' measurements (92%) is caused by the human's hand's

relative motion during the capturing process.

Table 12. AAE of human body parts measurement (cm) between the real and the measured results of the

human bodies with the Kinect sensor

[12]

[15]

[22]

[20]

42

3.3. Performance Analysis

In general, this research aimed to develop an overarching approach while reducing all

implementations' runtime to avoid unnecessary computations and save processing power. Therefore,

to further demonstrate the proposed method's performance, this section evaluates the thorough body

parts measurement algorithm's execution time. Table 13 shows the average running time, and the

computation cost during each stage of the presented algorithm. A total of 20 seconds on average only

was required to generate the entire human body parts measurements of a subject. Overall, this thesis

provided a concise data capture strategy, an efficient body part measurement algorithm within a short

time, and a simple hardware configuration.

Fig. 22. Standard deviations of the average absolute error of measurements between the real and the

measured results of the human bodies with the Kinect sensor

Fig. 23. Accuracy of the acquired human body parts measurements based on the real and the measured

results of the human bodies with the Kinect sensor

43

Table 13. Average running time spent during each step in the thorough body parts measurement procedure

With CPU Intel i7-6700HQ 2.6 GHz, 16 GB RAM

Step Time (seconds)

Data capturing 10

Segmentation and 3D point cloud 8

Denoising and obtaining final human body measurements 2

Total (seconds) 20

3.4. Advantages of the proposed method

Generally, in 3D human body scanning and 3D human body parts measurement applications,

researchers focus on reconstructing 3D avatars before generating the corresponding body parts

parameters. In essence, such method's algorithms consist of the following steps:

– Data capturing,

– Segmentation and Denoising,

– Rigid and non-rigid alignment,

– Surface reconstruction,

– Obtaining human body parts measurements of reconstructed 3D models,

On the contrary, this thesis investigated measuring the human body parts of a subject without

reconstructing any 3D mesh or using preprocessing algorithms. The main advantage of this is

providing future researchers with the ability to improve virtual dressing applications. Otherwise

stated, based on the acquired body parts measurements, it is possible to modify the reconstructed 3D

avatars' mesh and the 3D surface to match the subject's actual body parts length. Accordingly, virtual

dressing applications would become more accurate and realistic by developing algorithms consisting

of the following steps:

– Data capturing,

– Segmentation and Denoising,

– Acquiring human body parts measurements of reconstructed 3D point clouds,

– Rigid and non-rigid alignment,

– Surface reconstruction,

Furthermore, the additional advantages of the proposed method in this research included minimizing

the runtime required to generate the measurements (20 seconds) while implementing an error

compensation strategy that allowed to acquire measurements with an accuracy between 92% and

100% on average.

44

Results and Conclusions

1. This thesis evaluted the performance of Microsoft Kinect v2 by measuring 10 different human

body parameters. On average, an accuracy of 92% to 100% was obtained among various

parameters.

2. The developed error compensation algorithm showed promising results of increased accuracy. In

case of the height, the error was reduced from 6cm on average to 0cm while that of the hand from

4.15cm on average to 1.4cm.

3. This research's main contribution is the solution it provides to generate measurements with an

average runtime of approximately 20 seconds, fewer captured frames (up to 10), and without the

need for a second operator.

4. Quantitavely, the standard deviation of average absolute error of measurements in this research

(𝜎 = 0.6) outperformed that of the presented previous works (𝜎 >= 1).

5. Future research should consider the potential effects of loose clothes more carefully, for example,

by implementing an offset to minimize the resulting errors. Also, future studies should be devoted

to increasing the robustness of the captured data when there is substantial motion and enhancing

the scanned frames' quality. The former may require the use of higher resolution RGB-D sensors

and more sophisticated denoising algorithms.

45

List of references

1. T. Liu, L. Li and X. Zhang, "Real-time 3D virtual dressing based on users' skeletons", in 4th

International Conference on Systems and Informatics (ICSAI), Hangzhou, 2017, pp. 1378-1382,

DOI: 10.1109/ICSAI.2017.8248501.

2. T. Jiang, "Three-Dimensional Data Registration in Laser Based 3D Scanning Reconstruction", in

8th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC),

Hangzhou, 2016, pp. 457-460.

3. "Army to test Microsoft’s Kinect in helicopter cockpits", April 2012, [online] Available from:

http://www.livescience.com/19991-army-kinect-helicopter-cockpits.html.

4. M. Vij and S. Dawn, "Corrective Self Defence Training Unit using sensing of Kinect Maps", in

International Journal of Computer Applications, 2014, 89(10):8-11, DOI: 10.5120/15665-3692.

5. A. Masri and M. Al-Jabi, "Virtual Dressing Room Application," in IEEE Jordan International

Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman,

Jordan, 2019, pp. 694-698.

6. S.B. Adikari, N.C. Ganegoda, R.G. Meegama, and I.L. Wanniarachchi. "Applicability of a Single

Depth Sensor in Real-Time 3D Clothes Simulation: Augmented Reality Virtual Dressing Room

Using Kinect Sensor", in Advances in Human-Computer Interaction, 2020, DOI:

10.1155/2020/1314598.

7. N. Yoshino, S. Karungaru, and K. Terada, "Body Physical Measurement Using Kinect for Vitual

Dressing Room", in 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI),

Hamamatsu, 2017, pp. 847-852, DOI: 10.1109/IIAI-AAI.2017.207.

8. R. Nakamura, M. Izutsu, and S. Hatakeyama, "Estimation Method of Clothes Size for Virtual

Fitting Room with Kinect Sensor", in IEEE International Conference on Systems, Man, and

Cybernetics, Manchester, 2013, pp. 3733-3738, DOI: 10.1109/SMC.2013.636.

9. Y.C. Du, C.B. Shih, S.C. Fan, H.T. Lin, and P.J. Chen, "An IMU-compensated skeletal tracking

system using Kinect for the upper limb", in Microsystem Technologies, 2018, vol. 24, pp. 4317–

4327.

10. O. Postolache, "Remote sensing technologies for physiotherapy assessment", in 10th

International Symposium on Advanced Topics in Electrical Engineering (ATEE), Bucharest,

2017, pp. 305-312, DOI: 10.1109/ATEE.2017.7905141.

11. E. Silverstein and M. Snyder. "Comparative analysis of respiratory motion tracking using

Microsoft Kinect v2 sensor", in Journal of Applied Clinical Medical Physics, 2018, vol. 19, pp.

193–204. DOI: 10.1002/acm2.12318.

12. A.M.T.S.B. Adikari, N.G.C. Ganegoda, and W.K.I.L. Wanniarachchi, "Non-Contact Human

Body Parameter Measurement Based on Kinect Sensor", in IOSR Journal of Computer

Engineering, 2017, 19(3), pp. 80-85, DOI: 10.9790/0661-1903028085.

13. I. Samejima, K. Maki, S. Kagami, M. Kouchi, and H. Mizoguchi, "A body dimensions estimation

method of subject from a few measurement items using KINECT", in IEEE International

Conference on Systems, Man, and Cybernetics (SMC), Seoul, 2012, pp. 3384-3389, DOI:

10.1109/ICSMC.2012.6378315.

14. D. Seo, E. Kang, Y.M. Kim, S.Y. Kim, I.S. Oh, and M.G. Kim, "SVM-based waist circumference

estimation using Kinect", in Comput Methods Programs Biomed, 2020, Jul;191:105418. DOI:

10.1016/j.cmpb.2020.105418. Epub 2020 Feb 24. PMID: 32126448.

http://www.livescience.com/19991-army-kinect-helicopter-cockpits.html

46

15. H. Xu, Y. Yu, Y. Zhou, Y. Li, and S. Du, "Measuring accurate body parameters of dressed humans

with large-scale motion using a Kinect sensor", in Sensors, 2013, 13(9), pp. 11362–11384, DOI:

10.3390/s130911362.

16. S. Tim, G. Eric, G. Christoph, W. Jurij, and L. Alexande, "Accuracy evaluation of two markerless

motion capture systems for measurement of upper extremities: Kinect V2 and Captiv", in Human

Factors and Ergonomics in Manufacturing, 2020, 30(4), pp. 291-302, DOI: 10.1002/hfm.20840.

17. D. Camila and B. Hurwitz, "Automatic Body Part Measurement of Dressed Humans Using Single

RGB-D Camera", in Proceedings of the 2016 CHI Conference Extended Abstracts on Human

Factors in Computing Systems, 2016, pp. 3042-3048, DOI: 10.1145/2851581.2892337.

18. M. Grzegorzek, C. Theobalt, R. Koch, and A. Kolb, "Time-of-Flight and Depth Imaging. Sensors,

Algorithms and Applications", in Springer, Berlin/Heidelberg, Germany, 2013, vol. 8200.

19. X. Wei, P. Zhang and J. Chai, "Accurate realtime full-body motion capture using a single depth

camera", in ACM Transactions on Graphics, 2012, 31(6).

20. Y. Cui, W. Chang, T. Nöll, and D. Stricker, "Kinectavatar: fully automatic body capture using a

single kinect", in ACCV Proceedings of the 11th international conference on Computer Vision,

2012, pp. 133–147.

21. L. Yang, L. Zhang, H. Dong, A. Alelaiwi, and A. E. Saddik, "Evaluating and Improving the Depth

Accuracy of Kinect for Windows v2", in IEEE Sensors Journal, 2015, 15(8), pp. 4275-4285, DOI:

10.1109/JSEN.2015.2416651.

22. A. Mao, H. Zhang, Y. Liu, Y. Zheng, G. Li, and G. Han, "Easy and fast reconstruction of a 3D

avatar with an RGB-D sensor", in Sensors, 2017, 17(5), DOI: 10.3390/s17051113.

23. J.T. Barron and J. Malik, "Shape, Illumination, and Reflectance from Shading", in IEEE

Transactions on Pattern Analysis and Machine Intelligence, 1 August 2015, 37(8), pp. 1670-

1687.

24. M. Kazhdan and H. Hugues, "Screened poisson surface reconstruction", in ACM Transactions on

Graphics, 2013, vol. 32, DOI: 10.1145/2487228.2487237.

25. J. Tong, J. Zhou, L. Liu, Z. Pan, and H. Yan, "Scanning 3D Full Human Bodies Using Kinects",

in IEEE Transactions on Visualization and Computer Graphics, April 2012, 18(4), pp. 643-650.

26. Y. Chen, G. Dang, Z.Q. Cheng, and K. Xu, "Fast capture of personalized avatar using two

Kinects", in Journal of Manufacturing Systems, 2014, 33(1), pp. 233-240.

27. H. Zhu, Y. Yu, Y. Zhou, and S. Du, "Dynamic human body modeling using a single RGB

camera", in Sensors, March 2016, 16(3), DOI: 10.3390/s16030402.

28. Y. Cui, S. Schuon, S. Thrun, D. Stricker, and C. Theobalt, "Algorithms for 3D Shape Scanning

with a Depth Camera," in IEEE Transactions on Pattern Analysis and Machine Intelligence, May

2013, 35(5), pp. 1039-1050.

29. S. Hamed, L. Damien, and K. Andreas, "Kinect range sensing: structured-light versus time-of-

flight Kinect", in Computer Vision and Image Understanding, 2015, vol. 139, pp. 1–20.

30. P. Diana and P. Livio, "Calibration of Kinect for Xbox One and Comparison between the Two

Generations of Microsoft Sensors", in Sensors, 2015, 15(1), DOI: 27569-27589.

10.3390/s151127569.

31. S. Zennaro et al., "Performance evaluation of the 1st and 2nd generation Kinect for multimedia

applications", in IEEE International Conference on Multimedia and Expo (ICME), Turin, 2015,

pp. 1-6, DOI: 10.1109/ICME.2015.7177380.

47

32. W. Olivier and S. Didier, "Comparison of Kinect V1 and V2 Depth Images in Terms of Accuracy

and Precision", in Computer Vision - ACCV International Workshops Part II, 2016, pp. 34-45,

DOI: 10.1007/978-3-319-54427-4_3.

33. C. Jing, J. Potgieter, F. Noble, and R. Wang, "A comparison and analysis of RGB-D cameras'

depth performance for robotics application", in 24th International Conference on Mechatronics

and Machine Vision in Practice (M2VIP), Auckland, 2017, pp. 1-6.

34. C. Chiu, T. Michael, S. Terry, C. Simon, H. John, and W. Jon, "Comparison of depth cameras for

three-dimensional reconstruction in medicine", in Proceedings of the Institution of Mechanical

Engineers, Part H: Journal of Engineering in Medicine, 2019, vol. 233, DOI: 095441191985992.

10.1177/0954411919859922.

35. L. Elise, M. Hélène, L. Tania, and G. Pierre, "Assessment and Calibration of a RGB-D Camera

(Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling", in Remote Sensing,

2015, vol. 7, pp. 13070-13097, DOI: 10.3390/rs71013070.

36. Siyi Deng (2021), text-to-speech, MATLAB Central File Exchange, [online] Available from:

(https://www.mathworks.com/matlabcentral/fileexchange/18091-text-to-speech).

37. R. Sanne et al., "Human Action Recognition Using Hierarchic Body Related Occupancy Maps",

in Integrated Computer-Aided Engineering, 2019, 26(3), pp. 223 – 241, DOI: 10.3233/ICA-

190599.

38. A. Nath, "Image Denoising Algorithms: A Comparative Study of Different Filtration Approaches

Used in Image Restoration", in International Conference on Communication Systems and

Network Technologies, Gwalior, 2013, pp. 157-163, DOI: 10.1109/CSNT.2013.43.

39. P.Rajashekar Reddy, V.Amarnadh, and Mekala Bhaskar, "Evaluation of Stopping Criterion in

Contour Tracing Algorithms", in International Journal of Computer Science and Information

Technologies, 2012, vol. 3, pp. 3888-3894.

40. A. Fuster-Guilló, J. Azorín-López, M. Saval-Calvo, J.M. Castillo-Zaragoza, N. Garcia-D'Urso,

and R.B. Fisher, "RGB-D-Based Framework to Acquire, Visualize and Measure the Human Body

for Dietetic Treatments", in Sensors, 2020, 20(13), DOI: 10.3390/s20133690.

41. S. Roegiers, G. Allebosch, P. Veelaert, and W. Philips, "Human action recognition using

hierarchic body related occupancy maps", in Integrated Computer-Aided Engineering, 2019, vol.

26, no. 3, pp. 223-241, DOI: 10.3233/ICA-190599.

https://www.mathworks.com/matlabcentral/fileexchange/18091-text-to-speech

48

Appendices

Appendix 1. Matlab code for frames capturing

%% %%%%%%%%%%%%%%Frames Capturing Main Code%%%%%%%%%%%

clc;clear;close all;

tic

%% %%%%%%%%%%%%%%Variables Declaration Section%%%%%%%%%%%

% create video object for color and depth cameras

vid = videoinput('kinect',1,'BGR_1920x1080');

vid2 = videoinput('kinect',2,'Depth_512x424');

%-specific properties of the depth camera

srcDepth = getselectedsource(vid2);

srcDepth.EnableBodyTracking = 'on';

% number of frames to capture per trigger

vid.FramesPerTrigger = 1;

vid2.FramesPerTrigger = 1;

%in order to acquire 201 frames from both the color sensor and the depth sensor.

%trigger can be called triggerRepeat + 1 time

vid.TriggerRepeat = 110;

vid2.TriggerRepeat = 110;

proceed = false;

framesArr = [];

index = 0;

%maximum allowed triggers per loop

maxTriggers = 110;

numTriggers = 1;

%maximum allowed frames per rotation view

maxAllowedFramesPerView = 10;

%directory

directory = 'images/data_set_subject/';

saveFileNameAs = 'all_frames_array_1';

triggerconfig([vid vid2],'manual');

start([vid vid2]);

%% %%%%%%%%%%%%%%Frames Capturing Section%%%%%%%%%%%

while ~proceed

 prompt = 'Start capturing frames? Y/N [Y]: ';

 %get user input and trim spaces

 userInput = strtrim(input(prompt,'s'));

 counter = 1;

 if (strlength(userInput)==1) && (userInput == 'y' || userInput == 'Y')

 % enable capturing

49

 pause(11);

 % allow capturing 2 frames only

 while (counter-1)~=maxAllowedFramesPerView

 numTriggers = numTriggers + 1;

 if numTriggers > maxTriggers

 % too many triggers with no tracking

 disp('No body was tracked');

 tts('Body Tracking Error','Microsoft Eva Mobile - English (United

States)',0)

 userInput = '';

 break;

 end

 % pause(2);

 trigger([vid vid2])

 % Get the acquired frames and metadata.

 [imgDepth, ts_depth, metaData_Depth] = getdata(vid2);

 [imgColor, ts_color, metaData_Color] = getdata(vid);

 %check if any body is tracked

 anyBodiesTracked = any(metaData_Depth.IsBodyTracked ~= 0);

 trackedBodies = find(metaData_Depth.IsBodyTracked);

 nBodies = length(trackedBodies);

 % A body was tracked

 if nBodies~=0

 counter = counter +1

 index = index+1;

 colorData = {imgColor, ts_color, metaData_Color};

 depthData = {imgDepth, ts_depth, metaData_Depth};

 framesArr{index,1}=colorData;

 framesArr{index,2}=depthData;

 %keep track of how many frames were captured

 capturedFrames = length(framesArr);

 if (counter-1) == maxAllowedFramesPerView

 % 2 frames per view were captured

 disp([num2str(maxAllowedFramesPerView),' frames per view were

captured']);

 % make sound when all frames are captured

 %load('splat')

 %sound(y,Fs)

 tts('Capturing Success','Microsoft Eva Mobile - English (United

States)',0)

 userInput = '';

 break;

 end

 end

 end

 elseif (strlength(userInput)==1) && (userInput == 'N' || userInput == 'n')

 % cancel capturing

 proceed = true;

 % imaqhwinfo

 stop([vid vid2]);

 break;

 end

end

50

%% %%%%%%%%%%%%%%Saving frames to Folder Section%%%%%%%%%%%

%once all frames were captured

%check if any frames were captured

if ~isempty(framesArr)

 %check if directory folder exists and create it if not

 if not(isfolder(directory))

 mkdir(directory)

 end

 save(strcat(directory,saveFileNameAs,'.mat'),'framesArr');

else

 disp("No frames were captured");

 tts('No frames were captured','Microsoft Eva Mobile - English (United States)',0)

end

%%

toc;

Appendix 2. Matlab code for segmentation and 3D point cloud

clc;clear;close all;

tic

dirName = 'data_set_subject/';

framesDir = strcat('images/',dirName);

framesList=dir(fullfile(framesDir,'**/*.mat')); %%find all frames meta data

framesCounter=size(framesList,1);

for i=1:framesCounter

 framesDataSet{i,1}= load(strcat(framesDir,framesList(i).name));

end

segmentedDirectory = strcat('segmented_point_cloud/',dirName);

colorDevice = imaq.VideoDevice('kinect',1)

depthDevice = imaq.VideoDevice('kinect',2) %Create a System object for the depth device.

%Initialize the camera

step(colorDevice);

step(depthDevice);

for j=1:framesCounter

 framesArr = framesDataSet{j,1}.framesArr;

 for i=1:length(framesArr)

 imgColor = framesArr{i,1}{1};

 imgDepth = framesArr{i,2}{1};

 metaData_Depth = framesArr{i,2}{3};

 imD = metaData_Depth.BodyIndexFrame;

 %imB = ~(imbinarize(imD)); % inverse of binary image

 % inverse of binary image (substract a value bigger than max value of

 % tracked human bodies which is 6 as imb works only with index 0 and 1

 imB = ~(imbinarize(imD-10));

 imgDepthSegmented=imgDepth.*uint16(imB);

51

 ptCloud = pcfromkinect(depthDevice, imgDepthSegmented, imgColor,'depthCentric');

 allSegmentedFramesArr{i,j} = ptCloud;

 end

end

release(colorDevice);

release(depthDevice);

% creatr directory if it doesnt exist

if not(isfolder(segmentedDirectory))

 mkdir(segmentedDirectory)

end

[rows,cols] = size(allSegmentedFramesArr);

for i=1:cols

 % read all columns of row i and make arr as rows arr

 segmentedFramesArr = allSegmentedFramesArr(:,i);

save(strcat(segmentedDirectory,'all_segmented_frames_array_',num2str(i),'.mat'),'segmente

dFramesArr');

end

toc

Appendix 3. Matlab code for generating the final human body parts parameters

clc;clear;close all;

tic

%% Global variables

framesDataSet = [];

ptCloudFramesDataSet= [];

edgesCoordinatesArr = [];

theta = 180;

measuredHeightArr = [];

heightMeasurementDetails = [];

measuredArmLArr = [];

armLMeasurementDetails = [];

measuredArmRArr = [];

armRMeasurementDetails = [];

measuredHandLArr = [];

handLMeasurementDetails = [];

handLPoints = ([7, 22]); % wristL, handtipL

measuredHandRArr = [];

handRMeasurementDetails = [];

handRPoints = ([11, 24]); % wristR, handtipR

measuredHipArr = [];

hipMeasurementDetails = [];

52

measuredNeckToHipArr = [];

neckToHipMeasurementDetails = [];

%neckToHipPoints = ([3, 1]); % Neck, SpineBase

neckToHipPoints = [[3, 21]; % Neck, SpineShoulder

 [21, 2]; % SpineShoulder, SpineMid

 [2, 1]; % SpineMid, SpineBase

];

measuredShoulderArr = [];

shoulderMeasurementDetails = [];

shoulderPoints = [[5, 21]; % ShoulderLeft, SpineShoulder

 [21, 9]; % SpineShoulder, ShoulderRight

];

measuredLegLArr = [];

legLMeasurementDetails = [];

measuredLegRArr = [];

legRMeasurementDetails = [];

measuredWaistArr = [];

waistMeasurementDetails = [];

measuredStomachArr = [];

stomachMeasurementDetails = [];

measuredChestArr = [];

chestMeasurementDetails = [];

% (S1)

actualHeightLength = 182; %cm

actualArmLength = 81;

actualHandLength = 20;

actualHipLength = 44;

actualLegLength = 103;

actualNeckToHipLength = 60;

actualShoulderLength = 40;

actualWaistLength = 43;

actualStomachLength = 42.5;

actualChestLength = 46;

actualBodyMeasurementArr = [182,81,81,20,20,44,103,103,60,40,43,42.5,46];

tPose = 1; % flag for human pose

% plotting variables

dataSetIdx = 1;

plotIdx = 1;

plotRows = 7;

plotCols = 2;

plot_xLabel = "Nbr of frames";

plot_yLabel = " Absolute error in cm ";

measuredValuesArrBeforeCompensation = [];

% error compensation variables

finalBodyMeasurementValuesArr = [];

if tPose==1

 namesOfHumanBodyParts=

{'Height','ArmL','ArmR','HandL','HandR','Hip','LegL','LegR','NeckToHip','Shoulder','Waist

','Stomach','Chest'};

else

53

 namesOfHumanBodyParts=

{'Height','ArmL','ArmR','Hip','LegL','LegR','NeckToHip','Shoulder','Waist','Stomach','Che

st'};

end

finalSubjectsMeasurementsValuesDir=

'research_data_set_subjects_measurements/denoised_results/';

%%%%%%%%%%%%%%%%%%%%%%%%% compenstion values %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Height

heightCompensationErr = -6.1130;

% Arm

armLCompensationErr = -5.2324;

armRCompensationErr = -7.0760;

% Hand

handLCompensationErr = 3.8556;

handRCompensationErr = 1.8896;

% Hip

hipCompensationErr = -5.8623;

% Leg

legLCompensationErr = -9.4289;

legRCompensationErr = -9.4106;

% NeckToHip

neckToHipCompensationErr = 2.2251;

% Shoulder

shoulderCompensationErr = -1.8283;

% Waist

waistCompensationErr = -0.8839;

% Stomach

stomachCompensationErr = 8.3025;

% Chest

chestCompensationErr = 5.6477;

finalSubjectsMeasurementsValuesDirArrName = 'final_human_body_measured_data_subject_1';

%% Load frames and point clouds

dirName = 'data_set_subject_1/';

framesDir = strcat('images/',dirName);

framesList=dir(fullfile(framesDir,'**/*.mat')); %%find all frames meta data

framesCounter=size(framesList,1);

for i=1:framesCounter

 framesDataSet{i,1}= load(strcat(framesDir,framesList(i).name));

end

ptCloudFramesDir = strcat('segmented_point_cloud/',dirName);

ptCloudFramesList=dir(fullfile(ptCloudFramesDir,'**/*.mat')); %%find all frames meta data

framesCounter=size(ptCloudFramesList,1);

for i=1:framesCounter

 ptCloudFramesDataSet{i,1}= load(strcat(ptCloudFramesDir,ptCloudFramesList(i).name));

end

54

%% Loop through frames of first data set only

if length(framesDataSet)~=length(ptCloudFramesDataSet)

 disp('Error! Number of loaded frames and point cloud files do not match')

 return; % break execution

else

 framesArr = framesDataSet{1,1}.framesArr;

 segmentedFramesArr = ptCloudFramesDataSet{1,1}.segmentedFramesArr;

 if length(framesArr)~=length(segmentedFramesArr)

 disp('Error! Number of frames and segmented frames do not match')

 return; % break execution

 else

 for i=1:length(framesArr)

 % read depth data

 metaData_Depth = framesArr{i,2}{3};

 % flipped segmented depth frame to become x,y

 imD = metaData_Depth.BodyIndexFrame;

 % inverse of binary image

 %imB = ~(imbinarize(imD-10));

 ptCloud = segmentedFramesArr{i,1};

 % flip ptcloud to make it have same as depth

 ptCloud = pointCloud(fliplr(ptCloud.Location),'Color',

fliplr(ptCloud.Color));

 %%%%%% denoising using 2d average filter%%%%%%%%%%%%%%%%%%%

 xLocation = ptCloud.Location(:,:,1);

 yLocation = ptCloud.Location(:,:,2);

 zLocation = ptCloud.Location(:,:,3);

 % filter depth image which is z

 filteredZ = filter2(fspecial('average',2),zLocation);

 tmp1 = zeros(size(xLocation));

 tmp1(find(xLocation)) = 1;

 tmp2 = zeros(size(filteredZ));

 tmp2(find(filteredZ)) = 1;

 % new filtered and denoised pointcloud

 newXLocation = tmp1.*tmp2.*xLocation;

 newYLocation = tmp1.*tmp2.*yLocation;

 newZLocation = tmp1.*tmp2.*filteredZ; % new denoised depth image

 ptCloudOut =

pointCloud(cat(3,newXLocation,newYLocation,newZLocation),'Color',ptCloud.Color);

 ptCloud = ptCloudOut;

 % segmented and denoised binary image

 imB = imbinarize(newZLocation);

 % get full depth image coordinates

 [fullDepthYCol, fullDepthXCol] = find(imB);

 % get contour and its x and y coordinates

 contour = bwboundaries(imB,'noholes');

 edgesCoordinatesArr{i,1} = contour{1};

55

 if isempty(edgesCoordinatesArr{i,1})

 disp(['Error! Contour coordinates of frame ',num2str(i), ' were not

found!']);

 return;

 end

 depthXEdgeCol = edgesCoordinatesArr{i,1}(:,2);

 depthYEdgeCol = edgesCoordinatesArr{i,1}(:,1);

 % 3d joint positions and 2d depth joints coordinates

 jointPositions =

metaData_Depth.JointPositions(:,:,metaData_Depth.IsBodyTracked);

 %rotate 180 degree related to z

 jointPositions = ([cosd(theta), -sind(theta), 0;...

 sind(theta), cosd(theta), 0;...

 0, 0, 1]*jointPositions')';

 headJointPoints = jointPositions(4,:,:);

 footLJointPoints = jointPositions(16,:,:);

 footRJointPoints = jointPositions(20,:,:);

 depthJoints =

metaData_Depth.DepthJointIndices(:,:,metaData_Depth.IsBodyTracked);

 depthHipLPoints = depthJoints(13,:);

 depthHipRPoints = depthJoints(17,:);

 depthFootLPoints = depthJoints(16,:);

 depthFootRPoints = depthJoints(20,:);

 depthShoulderLPoints = depthJoints(5,:);

 depthHeadPoints = depthJoints(4,:);

 depthSpineBasePoints = depthJoints(1,:);

 depthSpineMidPoints = depthJoints(2,:);

 depthSpineShoulderPoints = depthJoints(21,:);

 %% Find Height Points

 % find height highest closest edge point to the skeleton head point

 heightHeadPointIdx =

find(depthXEdgeCol==fix(depthHeadPoints(1))&depthYEdgeCol<depthHeadPoints(2),1);

 heightHeadPointArr{i,1} =

ptCloud.Location(depthYEdgeCol(heightHeadPointIdx),depthXEdgeCol(heightHeadPointIdx),:);

 % height lowest leg point

 heightLegPointIdx = find(depthYEdgeCol==max(depthYEdgeCol),1);

 heightLegPointArr{i,1} =

ptCloud.Location(depthYEdgeCol(heightLegPointIdx),depthXEdgeCol(heightLegPointIdx),:);

 %% Find Arm Points

 % Left Points

 armLPoint1 = jointPositions(5,:,:); % shoulder left point

 armLPointArr{i,1} = [armLPoint1(1),armLPoint1(2),armLPoint1(3)];

 armLPoint2 = find(depthXEdgeCol==min(depthXEdgeCol),1);

 armLPointArr{i,2} =

ptCloud.Location(depthYEdgeCol(armLPoint2),depthXEdgeCol(armLPoint2),:);

 % Right Points

 armRPoint1 = jointPositions(9,:,:); % shoulder right point

 armRPointArr{i,1} = [armRPoint1(1),armRPoint1(2),armRPoint1(3)];

 armRPoint2 = find(depthXEdgeCol==max(depthXEdgeCol),1);

 armRPointArr{i,2} =

ptCloud.Location(depthYEdgeCol(armRPoint2),depthXEdgeCol(armRPoint2),:);

56

 %% Find Hand Points

 % if tPose is enabled then allow obtaining hand points of human

 if tPose==1

 % right points

 handRPoint1 = jointPositions(11,:,:); % wrist right point

 handRPoint2 = jointPositions(24,:,:); % hand tip right point

 handRPointArr{i,1} = [handRPoint1(1),handRPoint1(2),handRPoint1(3)];

 handRPointArr{i,2} = [handRPoint2(1),handRPoint2(2),handRPoint2(3)];

 % left points

 handLPoint1 = jointPositions(7,:,:); % wrist left point

 handLPoint2 = jointPositions(22,:,:); % hand tip left point

 handLPointArr{i,1} = [handLPoint1(1),handLPoint1(2),handLPoint1(3)];

 handLPointArr{i,2} = [handLPoint2(1),handLPoint2(2),handLPoint2(3)];

 end

 %% Find Hip Points

 %hip edge L

 hipLPointIdx = find(depthYEdgeCol==fix(depthHipLPoints(2)),1);

 hipAllDepthPointsIdx = find(fullDepthYCol==depthYEdgeCol(hipLPointIdx));

 for k=1:length(hipAllDepthPointsIdx)

 hipPointsArr{k,i} =

ptCloud.Location(fullDepthYCol(hipAllDepthPointsIdx(k)),fullDepthXCol(hipAllDepthPointsId

x(k)),:);

 end

 %% Find Leg Points

 % right points

 legRPoint1 = jointPositions(17,:,:); % hip right point

 legRPointArr{i,1} = [legRPoint1(1),legRPoint1(2),legRPoint1(3)];

 LegRPoint2Idx =

find(depthXEdgeCol==fix(depthFootRPoints(1))&depthYEdgeCol>depthFootRPoints(2),1);

 legRPointArr{i,2} =

ptCloud.Location(depthYEdgeCol(LegRPoint2Idx),depthXEdgeCol(LegRPoint2Idx),:);

 % left points

 legLPoint1 = jointPositions(13,:,:); % hip left point

 legLPointArr{i,1} = [legLPoint1(1),legLPoint1(2),legLPoint1(3)];

 LegLPoint2Idx =

find(depthXEdgeCol==fix(depthFootLPoints(1))&depthYEdgeCol>depthFootLPoints(2),1);

 legLPointArr{i,2} =

ptCloud.Location(depthYEdgeCol(LegLPoint2Idx),depthXEdgeCol(LegLPoint2Idx),:);

 %% Find Neck to Hip Points

 measuredNeckToHipArr =

[measuredNeckToHipArr,distanceSum(jointPositions,neckToHipPoints).*100];

 %% Find Shoulder Points

 measuredShoulderArr =

[measuredShoulderArr,distanceSum(jointPositions,shoulderPoints).*100];

 %% Find Waist Points

 % waist edge L

57

 waistPointsIdx =

find(depthYEdgeCol<depthSpineBasePoints(2)&depthYEdgeCol>depthSpineMidPoints(2));

 depthSpineMidBasePoints =

[depthSpineMidPoints(1),depthSpineMidPoints(2);depthSpineBasePoints(1),depthSpineBasePoin

ts(2)];

 spineMidBaseDistance = pdist(depthSpineMidBasePoints,'euclidean'); %euclidean

distance between points

 calculatedWaistDistances = [];

 for k=1:length(waistPointsIdx)

 points =

[depthXEdgeCol(hipLPointIdx),depthYEdgeCol(hipLPointIdx);depthXEdgeCol(waistPointsIdx(k))

,depthYEdgeCol(waistPointsIdx(k))];

 calculatedWaistDistances =

[calculatedWaistDistances,pdist(points,'euclidean')];

 end

 [minDistance, waistPointLIdx] = min(abs(calculatedWaistDistances-

(spineMidBaseDistance.*1/3)));

 waistAllDepthPointsIdx =

find(fullDepthYCol==depthYEdgeCol(waistPointsIdx(waistPointLIdx)));

 for k=1:length(waistAllDepthPointsIdx)

 waistPointsArr{k,i} =

ptCloud.Location(fullDepthYCol(waistAllDepthPointsIdx(k)),fullDepthXCol(waistAllDepthPoin

tsIdx(k)),:);

 end

 %% Find Stomach Points

 % stomach edge L

 stomachPointsIdx = waistPointsIdx;

 calculatedStomachDistances = [];

 for k=1:length(stomachPointsIdx)

 points =

[depthXEdgeCol(hipLPointIdx),depthYEdgeCol(hipLPointIdx);depthXEdgeCol(stomachPointsIdx(k

)),depthYEdgeCol(stomachPointsIdx(k))];

 calculatedStomachDistances =

[calculatedStomachDistances,pdist(points,'euclidean')];

 end

 [minDistance, stomachPointLIdx] = min(abs(calculatedStomachDistances-

(spineMidBaseDistance.*3/4)));

 stomachAllDepthPointsIdx =

find(fullDepthYCol==depthYEdgeCol(stomachPointsIdx(stomachPointLIdx)));

 for k=1:length(stomachAllDepthPointsIdx)

 stomachPointsArr{k,i} =

ptCloud.Location(fullDepthYCol(stomachAllDepthPointsIdx(k)),fullDepthXCol(stomachAllDepth

PointsIdx(k)),:);

 end

 %% Find Chest Points

 %chest edge L

 % find spine mid edges points (1 right and 1 left)

 spineMidPointsIdx = find(depthYEdgeCol==fix(depthSpineMidPoints(2)));

 chestPointsIdx =

find(depthYEdgeCol<depthSpineMidPoints(2)&depthYEdgeCol>depthSpineShoulderPoints(2));

58

 spineMidShoulderPoints =

[depthSpineMidPoints(1),depthSpineMidPoints(2);depthSpineShoulderPoints(1),depthSpineShou

lderPoints(2)];

 spineMidShoulderDistance = pdist(spineMidShoulderPoints,'euclidean');

%euclidean distance between points

 calculatedChestDistances = [];

 for k=1:length(chestPointsIdx)

 points =

[depthXEdgeCol(spineMidPointsIdx(2)),depthYEdgeCol(spineMidPointsIdx(2));depthXEdgeCol(ch

estPointsIdx(k)),depthYEdgeCol(chestPointsIdx(k))];

 calculatedChestDistances =

[calculatedChestDistances,pdist(points,'euclidean')];

 end

 [minDistance, ChestPointLIdx] = min(abs(calculatedChestDistances-

(spineMidShoulderDistance.*1/3)));

 chestPoint1Arr{i,1} =

ptCloud.Location(depthYEdgeCol(chestPointsIdx(ChestPointLIdx)),depthXEdgeCol(chestPointsI

dx(ChestPointLIdx)),:);

 chestAllDepthPointsIdx =

find(fullDepthYCol==depthYEdgeCol(chestPointsIdx(ChestPointLIdx)));

 for k=1:length(chestAllDepthPointsIdx)

 chestPointsArr{k,i} =

ptCloud.Location(fullDepthYCol(chestAllDepthPointsIdx(k)),fullDepthXCol(chestAllDepthPoin

tsIdx(k)),:);

 end

 end

 %% Calculate Measurements

 % measure height from obtained points

 if length(heightHeadPointArr)~=length(heightLegPointArr)

 disp('Error! Unable to measure height length as number of top and bottom points

do not match');

 return; % break execution

 else

 for i=1:length(heightHeadPointArr)

 if ~isnan(heightHeadPointArr{i,1}) & ~isnan(heightLegPointArr{i,1})

 measuredHeightArr =

[measuredHeightArr,distance(heightHeadPointArr{i,1},heightLegPointArr{i,1})];

 else

 disp(['Error! Height points of frame ',num2str(i),' are nan']);

 return; % break execution

 end

 end

 measuredHeightArr = measuredHeightArr.*100; % m to cm

 end

 % measure arm from obtained points

 if length(armLPointArr)~=length(armRPointArr)

 disp('Error! Unable to measure arm length as number of left and right points

do not match');

 return; % break execution

 else

 for i=1:length(armRPointArr)

 if ~isnan(armLPointArr{i,1}) & ~isnan(armLPointArr{i,2}) &

~isnan(armRPointArr{i,1}) & ~isnan(armRPointArr{i,2})

59

 armLengthL = distance(armLPointArr{i,1},armLPointArr{i,2});

 armLengthR = distance(armRPointArr{i,1},armRPointArr{i,2});

 measuredArmLArr = [measuredArmLArr, armLengthL];

 measuredArmRArr = [measuredArmRArr, armLengthR];

 else

 disp(['Error! Arm points of frame ',num2str(i),' are nan']);

 return; % break execution

 end

 end

 measuredArmLArr = measuredArmLArr.*100; % m to cm

 measuredArmRArr = measuredArmRArr.*100; % m to cm

 end

 % measure hand from obtained points

 % if tPose is enabled then allow measuring hand length of human

 if tPose==1

 if length(handRPointArr)~=length(handLPointArr)

 disp('Error! Unable to measure hand length as number of left and right points

do not match');

 return; % break execution

 else

 for i=1:length(handRPointArr)

 if ~isnan(handRPointArr{i,1}) & ~isnan(handLPointArr{i,1})

 handLengthR = distance(handRPointArr{i,1},armRPointArr{i,2});

 handLengthL = distance(handLPointArr{i,1},armLPointArr{i,2});

 measuredHandLArr = [measuredHandLArr,handLengthL];

 measuredHandRArr = [measuredHandRArr,handLengthR];

 else

 disp(['Error! Hand points of frame ',num2str(i),' are nan']);

 return; % break execution

 end

 end

 end

 measuredHandLArr = measuredHandLArr.*100; % m to cm

 measuredHandRArr = measuredHandRArr.*100; % m to cm

 end

 % measure hip from obtained points

 [numRowsHipPoints,numColsHipPoints] = size(hipPointsArr);

 hipLength = 0;

 if numColsHipPoints~=length(framesArr)

 disp('Error! Measurements of the hip of one of the frames is missing!');

 return; % break execution

 else

 for i=1:numColsHipPoints

 for k=1:(numRowsHipPoints-1)

 p1 = hipPointsArr{k,i};

 p2 = hipPointsArr{k+1,i};

 if isempty(p1) || isempty(p2)

 continue;

 elseif isnan(p1) | isnan(p2)

 disp(['Error! Hip points of frame ',num2str(i),' are nan']);

 return; % break execution

 else

 hipLength = hipLength + distance(p1,p2);

 end

 end

 measuredHipArr = [measuredHipArr,hipLength];

 hipLength = 0;

 end

60

 measuredHipArr = measuredHipArr.*100; % m to cm

 end

 hipPointsArr = []; % reset array

 % measure legs from obtained points

 if length(legRPointArr)~=length(legLPointArr)

 disp('Error! Unable to measure leg length as number of left and right points

do not match');

 return; % break execution

 else

 for i=1:length(legRPointArr)

 if ~isnan(legLPointArr{i,1}) & ~isnan(legLPointArr{i,2}) &

~isnan(legRPointArr{i,1}) & ~isnan(legRPointArr{i,2})

 legLengthR = distance(legRPointArr{i,1},legRPointArr{i,2});

 legLengthL = distance(legLPointArr{i,1},legLPointArr{i,2});

 measuredLegRArr = [measuredLegRArr,legLengthR];

 measuredLegLArr = [measuredLegLArr,legLengthL];

 else

 disp(['Error! Leg points of frame ',num2str(i),' are nan']);

 return; % break execution

 end

 end

 measuredLegRArr = measuredLegRArr.*100; % m to cm

 measuredLegLArr = measuredLegLArr.*100; % m to cm

 end

 % measure waist from obtained points

 [numRowsWaistPoints,numColsWaistPoints] = size(waistPointsArr);

 waistLength = 0;

 if numColsWaistPoints~=length(framesArr)

 disp('Error! Measurements of the waist of one of the frames is missing!');

 return; % break execution

 else

 for i=1:numColsWaistPoints

 for k=1:(numRowsWaistPoints-1)

 p1 = waistPointsArr{k,i};

 p2 = waistPointsArr{k+1,i};

 if isempty(p1) || isempty(p2)

 continue;

 elseif isnan(p1) | isnan(p2)

 disp(['Error! Waist points of frame ',num2str(i),' are nan']);

 return; % break execution

 else

 waistLength = waistLength+ distance(p1,p2);

 end

 end

 measuredWaistArr = [measuredWaistArr,waistLength];

 waistLength = 0;

 end

 measuredWaistArr = measuredWaistArr.*100; % m to cm

 end

 waistPointsArr = []; % reset array

 % measure stomach from obtained points

 [numRowsStomachPoints,numColsStomachPoints] = size(stomachPointsArr);

 stomachLength = 0;

 if numColsStomachPoints~=length(framesArr)

 disp('Error! Measurements of the stomach of one of the frames is missing!');

 return; % break execution

 else

 for i=1:numColsStomachPoints

61

 for k=1:(numRowsStomachPoints-1)

 p1 = stomachPointsArr{k,i};

 p2 = stomachPointsArr{k+1,i};

 if isempty(p1) || isempty(p2)

 continue;

 elseif isnan(p1) | isnan(p2)

 disp(['Error! Stomach points of frame ',num2str(i),' are nan']);

 return; % break execution

 else

 stomachLength = stomachLength+ distance(p1,p2);

 end

 end

 measuredStomachArr = [measuredStomachArr,stomachLength];

 stomachLength = 0;

 end

 measuredStomachArr = measuredStomachArr.*100; % m to cm

 end

 stomachPointsArr = []; % reset array

 % measure chest from obtained points

 [numRowsChestPoints,numColsChestPoints] = size(chestPointsArr);

 chestLength = 0;

 if numColsChestPoints~=length(framesArr)

 disp('Error! Measurements of the chest of one of the frames is missing!');

 return; % break execution

 else

 for i=1:numColsChestPoints

 for k=1:(numRowsChestPoints-1)

 p1 = chestPointsArr{k,i};

 p2 = chestPointsArr{k+1,i};

 if isempty(p1) || isempty(p2)

 continue;

 elseif isnan(p1) | isnan(p2)

 disp(['Error! Chest points of frame ',num2str(i),' are nan']);

 return; % break execution

 else

 chestLength = chestLength+ distance(p1,p2);

 end

 end

 measuredChestArr = [measuredChestArr,chestLength];

 chestLength = 0;

 end

 measuredChestArr = measuredChestArr.*100; % m to cm

 end

 chestPointsArr = []; % reset array

 end

 %% obtain new measurements values after compensation for other data

set

 % Height (arr with the measuredHeight values before and after compensation)

 heightMeasurementDetails = {measuredHeightArr, measuredHeightArr -

heightCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(heightMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(heightMeasurementDetails{1}))];

 % Arm

62

 armLMeasurementDetails = {measuredArmLArr, measuredArmLArr - armLCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(armLMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(armLMeasurementDetails{1}))];

 armRMeasurementDetails = {measuredArmRArr, measuredArmRArr - armRCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(armRMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(armRMeasurementDetails{1}))];

 % Hand

 if tPose==1

 handLMeasurementDetails = {measuredHandLArr, measuredHandLArr -

handLCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(handLMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(handLMeasurementDetails{1}))];

 handRMeasurementDetails = {measuredHandRArr, measuredHandRArr -

handRCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(handRMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(handRMeasurementDetails{1}))];

 end

 % Hip

 hipMeasurementDetails = {measuredHipArr, measuredHipArr - hipCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(hipMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(hipMeasurementDetails{1}))];

 % Leg

 legLMeasurementDetails = {measuredLegLArr, measuredLegLArr - legLCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(legLMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(legLMeasurementDetails{1}))];

 legRMeasurementDetails = {measuredLegRArr, measuredLegRArr - legRCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(legRMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(legRMeasurementDetails{1}))];

 % NeckToHip

 neckToHipMeasurementDetails = {measuredNeckToHipArr, measuredNeckToHipArr -

neckToHipCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(neckToHipMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(neckToHipMeasurementDetails{1}))];

 % Shoulder

63

 shoulderMeasurementDetails = {measuredShoulderArr, measuredShoulderArr -

shoulderCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(shoulderMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(shoulderMeasurementDetails{1}))];

 % Waist

 waistMeasurementDetails = {measuredWaistArr, measuredWaistArr - waistCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(waistMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(waistMeasurementDetails{1}))];

 % Stomach

 stomachMeasurementDetails = {measuredStomachArr, measuredStomachArr -

stomachCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(stomachMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(stomachMeasurementDetails{1}))];

 % Chest

 chestMeasurementDetails = {measuredChestArr, measuredChestArr - chestCompensationErr};

 finalBodyMeasurementValuesArr = [finalBodyMeasurementValuesArr,

round(mean(chestMeasurementDetails{2}))];

 measuredValuesArrBeforeCompensation = [measuredValuesArrBeforeCompensation,

round(mean(chestMeasurementDetails{1}))];

 %% Save compensation errors into one final array

 % merge array of compensations with the name of body parts

 finalHumanBodyMeasuredDataArr =

[namesOfHumanBodyParts;num2cell(finalBodyMeasurementValuesArr);namesOfHumanBodyParts;...

num2cell(measuredValuesArrBeforeCompensation);namesOfHumanBodyParts;num2cell(actualBodyMe

asurementArr)];

 % creatr directory if it doesnt exist

 if not(isfolder(finalSubjectsMeasurementsValuesDir))

 mkdir(finalSubjectsMeasurementsValuesDir)

 end

save(strcat(finalSubjectsMeasurementsValuesDir,finalSubjectsMeasurementsValuesDirArrName,

'.mat'),'finalHumanBodyMeasuredDataArr');

 toc

end

%% functions

% get distance between two points

function length = distance(P1, P2)

 length = sqrt((P1(1) - P2(1))^2 + (P1(2) - P2(2))^2 + (P1(3) - P2(3))^2);

end

64

% get distance in meters between group of points

function result = distanceSum(jointPositions,jointPoints)

 sum = 0;

 [row col] = size(jointPoints);

 if row==1

 P1 = jointPositions(jointPoints(1,1),:,:);

 P2 = jointPositions(jointPoints(1,2),:,:);

 sum = sum + distance(P1,P2);

 elseif row>1

 for i=1:length(jointPoints)

 P1 = jointPositions(jointPoints(i,1),:,:);

 P2 = jointPositions(jointPoints(i,2),:,:);

 sum = sum + distance(P1,P2);

 end

 end

 result = sum;

end

