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2. Aim and tasks of the project

Aim: To design and evaluate a stereo vision-based system for accurate depth measurement of

precisely fitted electronic elements (holtite sockets).

Tasks:

1. Implement a deep learning technique using object detection to differentiate and localize both
holtite sockets and PCB holes.

2. Design a mechanical setup for implementing a stereo vision-based depth measurement system.

3. Develop a stereo vision system to measure the depth of the pressed holtite sockets into their
corresponding holes.

3. Initial data of the project

| The fitted socket has an allowable elevation tolerance from the PCB hole's surface of + 100 pm |

4. Main requirements and conditions

Al development board (Nvidia Jetson Nano A02).

Cameras that support interchangeable lenses.

Opensource platforms for developing the code in python programming language.
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Summary

An automated visual inspection system incorporating computer vision was investigated, and a
prototype for a proof of concept was developed in this final degree project. The extensive usage of
deep learning in the 4th industrial revolution was the inspiring factor for implementing it as part of
the system. A traditional computer vision method known as stereovision integrated with deep
learning-based artificial intelligence to simplify the algorithm used for depth measurement. This
technique can be used widely in various inspection systems in different industries. The industry of
focus is the electronics industry, where precise small components have their depths of fit being
measured. The proposed system is cost-effective. The deep learning-based neural network was
deployed on the Nvidia Jetson Nano board, which operates on the Linux OS. Python programming
language was used to develop the code, and an x-y translation stage was integrated into this prototype.
The system incorporated the newly released Raspberry Pi HQ cameras that support interchangeable
lenses, allowing for the mounting microscopic lenses.
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Santrauka

Siame darbe buvo nagrinéjama automatizuota objekty atstumo, statmena pavir§iui kryptimi,
matavimo sistema, pagrista kompiuterine rega. Taip pat sukurtas koncepcinis prototipas. Platus gilaus
mokymosi panaudojimas 4-ojoje pramonés revoliucijoje buvo jkvepiantis veiksnys jgyvendinant tai
kaip sistemos dalj. Tradicinis kompiuterinés regos metodas, zinomas kaip sterco-vizija, buvo
integruojamas kartu su Giliuoju mokymusi gristu dirbtiniu intelektu, siekiant supaprastinti
gylio/atstumo matavimui naudojama algoritma. Sio tipo sistemos gali biiti naudojamos jvairiose
pramonés srityse. Darbe démesys skiriamas elektronikos pramongje naudojamiems tiksliems,
maziems komponentams, kuriems reikia atlikti atstumo/gylio matavimus. Kuriama sistema yra
pakankamai ekonomiska. Giliuoju mokymusi gristas neuroninis tinklas buvo realizuotas naudojant
»Nvidia Jetson Nano“ vystymo plokste naudojant ,,Linux‘ operacing sistemg. Kuriant programa buvo
naudojamas ,,Phython® programavimo kalba. Sistemoje taip pat panaudotas jau sukurtas xy
koordinatinis staliukas. Sistemoje panaudotos Raspberry Pi HQ kameros, su kei¢iamais I¢Siais, kurios
Siuo atveju yra integruojamos su mikroskopiniais leSiais.
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Introduction

Automated visual inspection systems have been developing, especially with the rising trend of
artificial intelligence and, more specifically, deep learning. Traditional computer vision techniques
for perceiving depth information about objects have been used in industries for quality inspection.
However, some objects have various irregular shapes, sizes, and colour intensities and have
difficulties extracting their features accurately through traditional image processing techniques.
Therefore, deep learning-based computer vision can be integrated with the traditional means to extract
features having variances and thus improve the accuracy of depth measurement performed by
traditional computer vision techniques. An application where the integration of both techniques
becomes very useful is the inspection of pressed holtite sockets into PCB holes. The holtite sockets
are pressed either manually or using a machine into corresponding PCB holes. The sockets need to
be inspected visually to detect defects and, more importantly, to decide whether the depth of which
the socket is pressed into the hole complies with the manufacturer’s tolerances or not. The
components are minute in size, and the depth into which they are pressed into the PCB holes is usually
in the micrometres range. Furthermore, according to the manufacturer, the traditional method of
inspection is using human-based visual inspection. Therefore, proposing an automated visual
inspection system that can accurately measure the depth of the pressed socket into the holes would
be an effective, more accurate, and time-saving solution.

Aim:

To design and evaluate a stereo vision-based system for accurate depth measurement of precisely
fitted electronic elements (holtite sockets).

Tasks:
1. Implement a deep learning technique using object detection to differentiate and localize both

holtite sockets and PCB holes.
2. Design a mechanical setup for implementing a stereo vision-based depth measurement system.
3. Develop a stereo vision system to measure the depth of the pressed holtite sockets into their
corresponding holes.

Initial data of the project:

The fitted socket has an allowable elevation tolerance from the PCB hole’s surface of + 100 um.
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1. Literature review
1.1.Manual visual inspection

Visual inspection is simply the use of the naked eye to investigate equipment and its working
conditions. Where flaws, defects, or any issues can cause the equipment to malfunction. However,
precise measurements cannot be performed by manual inspection [1]. VI is considered a method of
quality control that would be implemented for processes, products. Moreover, human-based VI was
considered reliable during the 20th century. During the 1950s, the human factor was realized to be
the weakest link in the quality control process [2].

Errors arising from manual visual inspection vary depending on various factors and also differ with
different industrial sectors. Some of the technical factors affecting the error are the defect types,
standards used, skilfulness of the inspector. Moreover, psychophysical factors such as age,
experience, creativity, organizational factors such as training, clarity of instructions influence the
inspection error [2 p. 4]. Furthermore, social factors play a vital role during crises like global
pandemics (covid-19), placing additional pressure on inspectors. Time is another vital factor to
consider for large production lines. For complex parts that need a thorough inspection, the process
can take a considerable amount of time. Thus, to achieve more reliable and accurate V1, the mentioned
factors should be evaluated and optimized by the operating companies. Optimizing the factors
involves additional costs and resource allocation.

1.2.Automated visual inspection

Automated visual inspection replaces the human factor and uses machines incorporating computer
vision to perform inspection tasks. CV systems are constructed from cameras and computer
processors. The cameras mimic the human eye to observe the scene, and the processors mimic the
human brain to process observations[3]. Research and development of AVI systems started back in
the 1980s, and the field has been expanding tremendously since then [2]

Fig. 1. Analogy between human and computer vision [3]
The Advantages of AVI in comparison to manual VI are summarized below [3]:

— Suitable for precise measurements, unlike manual VI

14



— Faster, objective inspection

— Inspected data can be stored and is thus traceable

— Real-time feedback is crucial for process improvement
— Ability to deploy in hazardous environments

1.2.1. Traditional computer vision
Traditional CV systems work in the following way:

4. Collect an image database of the object to be inspected.

5. An engineer manually extracts the features of interest for each object that the model needs to
learn.

6. Those extracted features are then fed into a machine-learning algorithm that can classify and
detect objects based on the extracted features.

Output

@
Input ‘:% —>»  Features |—>

Feature Engineering Classifier with
(Manual Extraction+Selection) @) shallow structure

Fig. 2. A traditional CV system’s workflow [4]

Thus CV can recognize patterns, shapes, edges, colours, sizes. In other words, the features that were
identified initially by the engineer during the system setup and programming phase. After that, the
system can operate in an automated manner. Famous applications in the industry are barcode reading
and identification, identifying the presence and absence of objects, robotic guidance, and making 3D
measurements of objects inspected. The main drawback of a traditional CV system is manually
extracting the features needed to identify objects. Suppose the use of CV for inspection in the
electronics industry is considered. Then for detecting defects, the engineer would have to extract and
define all features that define the defect by using appropriate image processing techniques for
detecting defects. For example, edge detection techniques are used for detecting edges. Hough
transform is a technique used to detect circles. Other techniques are used for detecting size, colour,
but the engineer needs to define the features and corresponding techniques himself in the
programming phase while setting up the system. Therefore, the drawbacks of manual feature
extraction and thus traditional CV systems would be :

— Time-consuming.
— Requires skilled engineers.
— Personal training by engineers can induce errors in the detection algorithm.

1.2.2. Deep learning-based computer vision

Deep learning is a subcategory of machine learning, which is a subcategory of artificial intelligence.
Deep learning utilizes deep neural networks, multi-layered artificial neural networks that imitate the
human’s methodology of processing information. The Deep Neural Networks attempt to reproduce
the way the human neurons function. A DNN processes information by identifying patterns, relations,
and classifications of different types of information [5].

15



ARTIFICIAL INTELLIGENCE

A program that can sense, reason
act, and adapt

MACHINE LEARNING

Algorithms whose performance improve

as they are exposed to more data over time

Fig. 3. Deep Learning, machine learning, and artificial intelligence [5]

Concerning computer vision, the real benefit of deep learning lies in overcoming the biggest
drawback of traditional CV, which is the manual extraction of features. In deep learning, the whole
classification process occurs from A to Z through the DNN, as shown inFig. 4. It extracts and the
necessary features during the training process from the provided dataset, then the extracted features
are processed in a similar way humans use neurons to process information. The feature extraction is
achieved through artificial neural networks, which are the basis on which DL is built. Considering a
car as an example, a traditional CV system would take the input as an image of a car, and then human
intervention is needed to identify all the features that define a car for the system. This process is
executed for every image in the training dataset. However, with deep learning, only images of cars
are used as input. The DNN then identifies and extracts all features that define a car. Therefore, human
intervention is eliminated.

oy 3 < A
5.{:'{'1“\'-;: 1 ENAN
Input > " D)
P -zf.:-._‘ ; D )
W Ao oo 7\
~ v

Feature Learning + Classifier

99

Output

'Y

(111
¥

Fig. 4. Workflow of a deep learning-based CV system [4]

An essential criterion in comparing traditional CV with deep learning-based CV is performance. Deep
learning models outperform traditional techniques. In fact, with robust training of the model through
increasing the amount of training data, the performance of the DNN can increase linearly. Whereas
traditional CV algorithms reach a saturation point after a certain amount of data, this is illustrated in
Fig. 5. Therefore, DNNs improve quality control from an industrial perspective, and thus, the industry
giants are incorporating robust DL techniques for controlling the quality of their products.

Industry
giants

Quality gap
inAl
products

Deep Learning

Small and
medium size
companies

Performance

Older algorithms

Amount of data

Fig. 5. Comparing the performance of DL vs traditional CV techniques [6]
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Other manufacturing-related advantages of using DL in CV applications would be [6] :

— Lower operation costs (due to the elimination of the human factor in operating the system).
— Reduction in machine downtime, where no maintenance is required after setting up the model.
— Flexibility, adaptation to variations in consumer demands.

— Enhancement of productivity.

— Gain a competitive edge in respective markets.

DL-based CV systems show enormous potential for integration in the Internet of things systems,
which drives the fourth industrial revolution. Listed below are some application of DL-based CV
systems in Industry 4.0 [6] :

— Object detection in smart factories during packaging, assembling products.
— Detecting surface defects.

— Self-driving cars.

— Smart traffic light control.

1.3.Deep Neural Networks

DNN has the same structure as a simple ANN, with the difference being that it uses multiple hidden
layers, as shown in Fig. 6. The layers increase the network’s complexity and accuracy in making
predictions.

Fig. 6. ANN (left) vs DNN (right) [7]

Each layer in a DNN consists of multiple neurons connected to other neurons in the following and
preceding layers to constitute the network. A simple example of what occurs at one neuron is shown
below in fig Fig. 7. Input data is fed into neurons of hidden layers with a set of coefficients known
as weights. Weights assign the significance of inputs concerning the task that the network is aiming
to learn. The inputs are multiplied by their weights, and the weighted sum is computed where a bias
is also added. The sum is then passed through the neuron’s activation function, determining whether
or not to activate this neuron. The activation function thus produces an output from the calculation.
This output is then fed as input to other nodes in the following layers in the network, where a
relationship may exist between those nodes. This way, deep neural networks can be used for complex
tasks where lots of dependent features are linked and aggregated instead of simple ANNSs, which only
have one hidden layer.

Inputs  Weights Net input Activation
function function
( l\Wk
Ve w] output
(x, 2
P W,
&
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m

Fig. 7. Neuron activation in an artificial neural network [8]
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The neuron’s input function, onto which the activation function is applied, is shown in equation 1.1

below:
n

z= inwi +b (1.1)
i=1
DNN’s are feedforward networks, where feedforward networks are the simplest type of neural
network. In Feedforward networks, information flows directly from the input layers through the
network’s hidden layers to produce an output layer. There are no feedback connections into which
outputs of the model are fed back [7].

1.3.1. Loss function

Training a neural network in general, whether it is a simple ANN or a sophisticated DNN, contributes
significantly to the accuracy of the DNN. The purpose of a good training algorithm is to feed the
DNN with enough information such that it can later detect that information on its own. To
contextualize CV and AVI, generally, the more images a DNN is trained on representing a task-
related scenario, the more accurate the network will be executing inspection tasks. There are two
types of learning algorithms from which a DNN can learn, supervised and unsupervised learning. In
supervised learning uses labelled images to train a DNN, whereas unsupervised learning does not.
Labelled images identify the objects of interest and differentiate them from other objects or
backgrounds in the image. Unsupervised learning uses images containing several different types of
objects, and the algorithm allows the DNN to establish relations between objects of the same class
and group them by extracting standard features between the objects. The difference between both
learning methods is shown in Fig. 8.

supervised learning
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Fig. 8. Supervised vs unsupervised learning [9]

Only supervised learning will be considered in the thesis, and thus the unsupervised learning’s
working algorithm will not be reviewed. Before discussing how supervised learning works, first, the
loss function is to be explained. A loss function calculates the loss in the algorithm’s accuracy, that
is, the error between the network’s predicted output and the actual one. The loss function compares
the predicted value of the neurons in the final layer of the DNN with the actual value for a single
training data, for example, one image in the context of CV. Thus, the loss function calculates the error
of the network. This process of calculating the loss function occurs for each training image used to
build the network. The final error is then interpreted differently for different loss functions. For
example, the means squared error is a function that squares all the errors of the training data and then
calculates the mean of the total error. Moreover, the most common loss functions used in CV
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applications are the mean squared error used in regression and the categorical cross-entropy loss
function used for multi-class classification [10].

IO,
Lyse = EZ(Yl -Y) (1.2)
i=1
Where :
— Y;" is the vector denoting n number of prediction values representing the dataset.
— Y; is the vector denoting n number of actual values representing the dataset.

The categorical cross-entropy function works by comparing the output probabilities for multi-class
classification with the truth values. Considering the example in Fig. 9. The input image of a dog
passes through a convolutional neural network which is a type of DNNs and is discussed in the
following section 0. a SoftMax function which is an activation function, is used to convert logits into
output probabilities, which are then compared to the true values as shown in the same figure. The
categorical cross-entropy loss function is expressed as follows [11] :

n
Leeg = —Z t;log(p;) (1.3)
i=1
Where :
— n s the number of classes.
— t; is the truth value (0 or 1).
— p; is the softmax probability for the class of index i.

o s T
Input image Logits (L) Softmax p"’bab)'""es Classes
3.2 0.775 Dog 0.775 1
W 1.3 S(y); = L(y) 0.116 Cat 0.116 Lcg(SM 0
? SR | P N ™ 0.039 0
. 0.8 0.070 Cheetah 0.070 0
a) Output probabilities for classes b) CCE loss function comparing predicted

and actual values.
Fig. 9. Multi-class classification using the categorical cross-entropy loss function
1.3.2. Backpropagation and optimizers

The purpose of calculating the loss function is to reduce the error with each iterative process where a
backpropagation algorithm is used to propagate backwards in the network to reduce the classification
error of the network. Furthermore, backpropagation works by adjusting the weights of important
neurons (activated ones) that detect relevant features for classifying objects within the acquired
images. The loss function is recalculated after adjusting the weights, and the process is iterated. Thus
the loss of the network reduces over time. Backpropagation works by calculating the gradient of the
loss function with regards to the model’s variables, which are the weights. The gradient shows how
much the weights need to be changed to minimize the loss function. The chain rule is used to compute
the gradients. The formulas and derivation for calculating the gradient using backpropagation are
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shown below in Equations 1.4 — 1.7 [12]. where the gradient is only calculated for one weight here
as an example denoted as wjlk. Where j is the index of the neurone in layer Land K is the index of the
neuron in the preceding layer, layer L-1.

oL oL 0z
awjlk az} aw}k (1.4)
n
Zjl = Z 1"/'jlkxllc_1 + b} (1.5)
k=1

Where:
- _ai,Ll is the partial derivative of the loss function concerning the considered weight
jk

~ Zisthe partial derivative of the loss function concerning the input to neuron at layer L

1
6zj

— z} is the weighted sum of the product of the input neuron at layer L-1 and the considered
weight and the chosen bias.

Thus, we can derive the gradient as follows:

oL oL ,_,
ow}, 0z (1.6)

The same set of equations is used to calculate the derivative of the loss function for the chosen bias
[26].

oL 0L

b 97 (1.7)

1.3.3. Optimizers and hyperparameters

After using Backpropagation to calculate the gradient of the loss function concerning the weight, the
weights need to be updated to reduce the loss function. Before explaining and comparing optimizers,
it is important to define at first the hyperparameters of the network. The hyperparameters are
parameters of the network that can be fine-tuned to improve the accuracy of the neural network and
reduce the computational power and speed required by the network. The following list includes
common hyperparameters used by all optimizers for training the network. Some optimizers include
other hyperparameters related only to their optimization algorithms.

— Learning rate: the rate at which the neural network learns

— Number of epochs (iterations)

— Batch size: in the context of CV, the number of images grouped in a batch where one training
iteration is performed on the batch, for datasets of large numbers of images, a batch size of 32
and more are used

Choosing the common hyperparameters can either be achieved manually through trial and error or
Bayesian optimization. The optimization functions are reviewed in the following section
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At first, according to [13], a review of two classification MNIST datasets CIFAR-10 using various
optimizers is shown in Fig. 10 and Fig. 11. The MNIST dataset is a classification dataset for numbers,
and CIFAR-10 is a dataset of 10 classes of animals and vehicles. According to the two datasets, the
following three optimizers performed the best: SGD- Nesterov, Adam, and AdaMax, as they were
the most accurate three optimizers.

CNN-1 CNN-2 CNN-3
Algorithm Test Loss Test Acc. Test Loss Test Acc. Test Loss Test Acc.
SGD 0.0468 99.00 0.0724 99.03 0.0780 99.24
SGD - momentum 0.0395 99.26 0.0633 99.18 0.0718 99.26
SGD - Nesterov 0.0366 99.34 0.0511 99.35 0.0589 99.41
AdaGrad 0.0600 98.57 0.0753 98.79 0.0730 99.08
AdaDelta 0.0306 99.50 0.0395 99.49 0.0460 99.40
RMSProp 0.0505 99.26 0.1899 98.70 0.1108 99.32
Adam 0.0425 99.35 0.0597 99.00 0.0536 99.29
AdaMax 0.0337 99.37 0.0418 99.51 0.0454 99.42
Nadam 0.0364 99.32 0.0567 99.19 0.0565 99.16
AMSGrad 0.0401 99.24 0.0561 99.28 0.0497 99.36

Fig. 10. Comparing classification accuracy between optimizers for the MNIST dataset

CINN-1 CNN-2 CNN-3
Algorithm Test Loss Test Ace. Test Loss Test Ace.  Test Loss  Test Acce.
SGD 0.9428 67.98 0.8899 70.84 1.0112 68.19
SGD - momentum 1.2479 T74.96 1.3368 T6.74 1.1978 78.21
SGD - Nesterov 1.2235 76.01 1.2909 77.96 1.1651 79.97
AdaGrad 1.2428 56.62 1.1769 59.61 1.1531 60.55
AdaDelta 1.6619 74.08 1.7222 76.23 1.4789 78.55
RMSProp 1.2670 75.01 1.1354 T76.14 0.9821 74.81
Adam 1.2279 76.05 1.1988 76.94 0.9393 79.03
AdaMax 0.8054 76.89 1.1240 79.17 1.0437 81.41
Nadam 1.2735 76.11 1.3102 76.60 1.0672 78.98
AMSGrad 1.1940 76.43 1.2000 T7.11 1.0135 78.27

Fig. 11. Comparing classification accuracy between optimizers for the CIFAR-10 dataset
To sum up:

— Optimization algorithms performance is related to the dataset they train on, and some can
perform better than others with specific datasets and network architectures.

— Optimizing hyperparameters such as learning rate during training a network is necessary to
reduce the loss of the network and improve computational efficiency.

— Adam and SGD-Nesterov momentum algorithms are computationally efficient optimization
algorithms, with Adam having the advantage of adaptive learning rate optimization.

— In some cases, SGD based algorithms are used instead of Adam, where Adam can have
difficulties generalizing on the training dataset, where they perform well at the beginning of
training but are outperformed by SGD at later stages, and a room for improvement is still
available for adaptive algorithms such as ADAM [14].

— For optimal results, while using a DNN, it is recommended to implement and compare various
optimization algorithms with the developed datasets before implementing one in the final
implementation of the network.
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Fig. 12. Training the DenseNet architecture on the CIFAR-10 data
1.4.Deep learning-based object detection

Obiject detection tasks built based on deep neural networks have gained popularity in the last five
years, especially after the evolution of image classification based on convolutional neural networks.
Image classification simply identifies the type of object present in an image by assigning a class to it,
based on the dataset provided for training the network. Object detection is a more complicated task
that combines image classification and object localization. For object localization, bounding box
regression is used to return the bounding box coordinates, which localize and border the classified
objects. Image classification can only detect one object in an image. With object detection, a various
number of objects can be classified and localized.
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¢
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Fig. 13. Object detection based on deep learning [15]

The three main object detection techniques built on deep learning and commonly used on embedded
systems are the Single-Shot-Detectors, You-Only-Look-Once and the Faster region convolutional
neural network. The following figures compare between the mentioned techniques where the main
criteria are the mean average precision of the detection network and their speed which is concerned
with the time spent on detecting an image after training the dataset. The PASCAL VOC dataset was
used for comparing the performance of the SSD and Faster RCNN networks. According to [15],
Faster RCNN had the highest mean average precision amongst all networks with a value of 96.07 %.
SSD detector had a mAP value of 84.35 %. The detection time taken for Faster RCNN had a mean
value of 30 ms with a standard deviation of + 2 ms whereas, SSD had a mean value of 17 ms with a
standard deviation of + 2 ms. Thus SSD performs almost twice as fast as Faster RCNN at the expense
of a lower network detection precision. The results of the literature are shown in Fig. 14.
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Fig. 14. Performance comparison between SSD and Faster RCNN object detection DNNs
1.5.Depth measurement techniques incorporating computer vision

Acquiring three-dimensional information about components undergoing inspection is an essential
aspect of constructing automated visual inspection systems. Moreover, due to the rapid growth in
computer vision application in the quality inspection sector, three-dimensional vision systems have
been widely integrated into quality inspection systems. The focus in the thesis is the electronics
industry, where inspecting the depth of pressed holtite sockets into PCB holes is the application under
focus.

1.5.1. Standard techniques used for 3D measurement and inspection in the electronic industry

The most common techniques used for non-contact depth measurement incorporating computer
vision are the time of flight, structured light, stereo vision, and laser triangulation systems.

1. Time of flight

The time-of-flight principle works by illuminating light onto the object's surface, whose depth is
measured. The light beam is reflected onto a camera sensor, and the time taken is calculated. The
depth can be measured using the time taken for the pulses of light emitted and the speed of light. The
pulses of light are usually very short, which last for few nanoseconds. The principle is visualized in
Fig. 15.
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Fig. 15. TOF working principle [16]

2. Stereo vision

Stereo vision is a well-known widespread technique that uses two cameras to estimate both cameras'
distance from an object. The setup of such a system is shown in Fig. 16.
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Fig. 16. Stereovision system setup and triangulation for depth calculation

The cameras are separated by a horizontal distance called the baseline, and by using triangulation,
the distance to the object can be measured. This setup is known as a passive stereo vision setup that
does not use light sources or projection.

The distance is expressed as follows: [17]

d (1.15)

U
I

XL - XR (116)
Where:

— Zis the depth from the object to the camera lens

— f is the focal length of the cameras.

— B is the baseline, the horizontal distance between the cameras

— dis the disparity.

— x;, is the horizontal position of point p in the frame of the left camera
— xp is the horizontal position of point p in the frame of the right camera

Matching the same point in both cameras is known as the correspondence problem. The main
challenge of stereo vision systems is solving the correspondence problem to find the disparity and
calculate the distance. This requires extensive computational efforts for extracting features and
matching them to represent the same object in both camera frames [16].

The general formula for calculating the depth measurement error of a stereovision system is shown
below in Equation 1.17.

bf (1.17)
Where:

— OZ is the depth error
— &d is the disparity error

3. Structured light
This technique utilizes a setup consisting of a camera, a high-quality projector (usually an LCD/DLP),
and an image processing unit. The projector emits a light pattern towards the object of interest. The
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light pattern gets obstructed by the object and thus detected by the camera. The camera captures
images that are used by the processing unit to calculate the depth of the object. The calculation uses
the triangulation technique shown for passive stereovision; however, since one camera is replaced
with the projector, the correspondence matching is avoided.

Having discussed each technique, the following table compares between them.
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Fig. 17. Structured light system’s working principle

Table 1. Comparing between depth measurement techniques used in CV applications [16]

accuracy

system parameters

criteria Stereovision Structured light Time of flight Laser triangulation
Material costs Low Medium/high Medium High

Low light Weak Depends on the Good Good

performance chosen light source

Software complexity | High High Low High

Depth measurement | Depends on selected | um-cm mm-cm pum

Measurement range

Short to mid-range

Very short range

Short-range

Very short range

Image resolution High resolution. High resolution. Up to 204x204 Camera dependent
Depending on Depending on
cameras selected cameras selected

Frame rate Camera dependent Camera dependent Up to 25 fps Camera dependent

The following table outlines the advantages and disadvantages of each discussed depth measurement

techniques.

Table 2. advantages and disadvantages of techniques summarized [16, 18]

Technique

Advantages

Disadvantages

Stereovision
(passive)

-Cost-effective solution
- Performs well on objects with high texture
-high resolution of the captured scene.

-Depending on the setup, it can achieve high
distance measurement accuracy

-Does not perform well for scenes of weak
texture

-Limited to a well-defined object
-Weak performance under low light exposure

Structured light

-High data acquisition rate
-Performance does not depend on ambient light

-Since it does not implement correspondence,
occlusions can occur

-Harder to measure depth difference between
objects having interference.
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Time of flight -High measurement accuracy for medium-range - Accuracy degrades when objects are
measurements placed at a close range to the camera

-performance is independent of ambient light -Expensive

1.5.2. Stereovision systems active and passive

From the comparison shown in Table 2. it can be seen that a stereovision system could be the best
solution for depth measurement if it can overcome its bad performance under low light and with
scenes of weak texture. Active stereo vision systems solve those problems, where an active system
also introduces a light source to add texture to objects of weak texture and contrast. Moreover, it
solves the issues with low light. Furthermore, any light illuminator can be chosen; it does not
necessarily need to be an expensive projector like in the cases of structured light and time of flight
methods. Thus, active stereo vision systems add to the cost of a passive system but with significant
performance improvements. The following paper [19] compares the depth measurement accuracy
between passive and active stereovision systems. 2 setups were compared for each system, one setup
where the cameras are perpendicular to the measured object, which was a wall, and another set up
with the cameras tilted at angles to the wall. A wall was chosen as the object to measure due to the
soft textures and low contrasts, which exposes passive systems to its low unfavourable conditions
where their performance is low. The setup and results of the experiment are shown in Fig. 18 and Fig.
19. The results show that active systems have a reduced measurement error where the range error is
quadratic in range for passive stereo systems and cubic in range for active stereo systems. Thus it can
be deduced that in cases where the distances of the objects are to be measured where the surface
texture is weak, or the contrast between the objects is low, then an active stereo system setup would
be needed and would still be cheaper than other techniques discussed above in The following table
outlines the advantages and disadvantages of each discussed depth measurement techniques.

Table 2.

Fig. 18. Experimental setup, closeup (left), perpendicular set up at night time (centre), and tilted setup at day

time (right)
Passive, perp. Active, perp.
Passive, tilted Active, tilted
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Fig. 19. Experimental results on different setups for passive and active systems
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1.5.3. Review of an active stereo vision system used in the inspection of electronic connectors.

An active stereo vision system is implemented in a similar application measuring the depth of an
electronic connector used in a production line [18]. The system setup is shown in Fig. 20. The system
uses a tilted setup of ethernet-based GigE vision cameras with a white light illuminator used as the
active source. The illuminator enriches the texture and contrast of the connector pins as they have
shiny surfaces, where a passive setup would not perform well. The system has the following setup:

— A baseline distance between the camera sensors of 250 mm

— A distance from the cameras to the connector of 160 mm

— Two 3.75 um pixel size 1.2 MP GigE vision ethernet-based cameras

— Two 25 mm focal length high-resolution lenses for machine vision

— An angle of convergence between the tilted cameras of 73°

— The field of view of the setup is 30 x 40 mm, and the depth of field of the cameras is 4mm

a) Connector pins

Lefe=2

Reference camera | Target camera
b 3b

b) System setup ¢) Triangulation used to calculate depth

Fig. 20. inspected object and system layout

Pattern matching algorithms with pyramidal decomposition and pixel refinement are used to solve
the correspondence problem for matching the same point of the object (p) in both camera frames
(right and left). Moreover, this algorithm works well because the pattern of the connectors can be
recognized by image processing techniques, as the connector’s geometric cross-sectional shape is not
complex. The distance computing algorithm consists of the following:

1. camera calibration is done to computing the intrinsic and extrinsic properties of the camera with
the lens and remove lens distortion.

2. Feature extraction is achieved using pattern matching algorithms with the pyramidal
decomposition technique.

3. The images taken after feature extraction are rectified; since the cameras are tilted, the position
of the connector in both camera frames will not lie on the same horizontal line. Rectification is
used to align the position of the connector and thus its extracted features on the same horizontal
line in both the right and left camera frames. This, in turn, simplifies the correspondence algorithm
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where only the x values differences of the measured points representing the connector are used to
compute the disparities.

4. The disparity values are calculated.

5. The real-world 3D coordinates of the connector are extracted.

The setup and algorithm both perform well in terms of depth resolution and accuracy. The resolution
was found to be 2,6 um, and the maximum error of the depth measurement was found to be 11.7 pm.
The obtained values prove that stereovision systems can indeed be used to measure the depth of
objects in a concise range with high accuracy compared to more expensive techniques such as laser
triangulation. For measuring the depth accuracy, a translational stage was moved in steps of 1 um for
up to 10 mm. The error between the known movement and the measured depth of the connector is
computed. The distribution of errors is shown in Fig. 21. It is also noticeable that when the distance
increases, the accuracy reduces.

Moreover, the distance moved to 10 mm by the stage means that the total distance between the camera
and the connector increased to 170 mm at the complete translation stage. Since the depth of field of
the chosen lenses is only 4mm, it means that from 4-10 mm ranges of movement of the stage, the
scene was not in good focus. However, the maximum error was only 11.7 um. To have a better
interpretation of the error, the maximum error taken at until 4 mm, which is the maximum depth of
field of the cameras with the lenses, from the graph its seen to be one value’s deviation to 11 um,
however for precise points clustered together, the accuracy is less than 5 pm. The linearity of the
measurement is also high, with only a 1.25 % error [18]. The experiment's reproducibility on a real
production line where 3300 measurements were taken was 84 um for the distance measurement.
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Fig. 21. Distance measurement accuracy experimental results

The total cost of the system is quite expensive as just one industrial camera model used: The Allied
Vision G-125 costs around $600. Thus, the total cost of the proposed can exceed a price tag of $2000,
including the lenses used and remaining costs. Moreover, the algorithm also adds to the distance
measurement error and affects the time taken for measuring the connectors’ depth. The total time
taken to inspect and measure distances using seven scenes and 156 pins of various shapes and
dimensions was 65 seconds. Moreover, the processing was executed on an Intel i7 processor with 16
GB of RAM.

To conclude from the paper and previous literature regarding active stereovision systems:
— Choosing cameras of high resolution and a smaller pixel size improve the distance
measurement accuracy
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— Choosing lenses of high focal length and larger baseline distance between both cameras
improves the measurement’s resolution and accuracy

— the matching algorithm mainly feature extraction, and the choice of processor used for
computations improves the accuracy of the measurement as well as the total cycle time

— active means incorporating an illumination source is necessary to achieve good depth
measurement results, especially for objects having low texture and contrast

1.6.Embedded vision

Embedded vision systems are compact vision systems, similar in concept to CV, where the main
difference is that embedded vision systems do not require an industrial PC to perform vision tasks.
The systems are based on integrating camera modules, central processing units, and graphical
processing units into a compact device, as shown in Fig. 22. Therefore, such systems are small in size
and acquire low power consumption [20]. Additionally, such systems have lower purchase costs and
less maintenance required compared to computer vision PC-based systems. Embedded vision systems
are one of the tools that offer a massive potential in the fourth industrial revolution and can be used
in the following smart factory applications [20] :

— Manufacturing of vehicle components.

— Industrial robotics.

— Packaging solutions.

— Manufacturing and assembly of electronic components.

Embedded Vision
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Fig. 22. Replacing traditional computer-based vision with embedded vision [21]
1.7.Cameras used in computer vision

The cameras are the most significant component of the automated visual inspection system. They are
the sensor that is analogous to the human eyes for manual VI systems. Therefore, caution must be
taken while selecting them. In this review, the camera sensors used in CV applications and the
interfacing technology are presented.

1.7.1. Camera sensor

The camera sensor is the central component that a camera is built around. The main two types are
CMOS (Complementary Metal Oxide Semiconductor) and CCD (charge-coupled device) sensors.
Both operate with the same fundamental concept, where pixels collect light energy (photons) and
convert them into an electrical charge to represent the image electronically. However, the process is
carried out differently. Sony announced in 2015 that it would halt the production of CCD image
sensors. To further contextualize with regards to CV applications, CMOS sensors have the following
advantages over CCD [22] :

— Higher light sensitivity, which is beneficial in lower light applications.

29



— Improved pixel depth (saturation capacity), leading to a higher dynamic range.
— Lower Power consumption.
— Lower cost.

1.7.2. Camera interfacing technology

Industrial cameras used in inspection implement various interfacing technologies. The cameras could
be interfaced with PCs or with embedded electronic systems. In the review, the concern is regarding
embedded vision systems, as mentioned in the Embedded vision section. The standard camera
interface technologies in embedded vision systems are MIP1 CSI-2 D-PHY, USB Vision, and GigE
Vision interfaces. Mobile Industry Processor Interface (MIPI) CSI-2 is a standard interface used in
mobile devices such as smartphones to connect the sensor to the processing unit. Typical applications
of using the interface are the automotive and loT industries. USB vision is a standard of industrial
interfacing cameras based on the USB 3.0 interface. GigE Vision is a standard that incorporates the
use of ethernet cables to transmit data up to a distance of 100 meters at a bandwidth speed up to 115
Mb/s [23]. Table 3 compares the three standards, including the most important criteria.

Table 3. Comparison between camera interfaces used in embedded vision systems [23, 24]

MIPI CSI-2 D-PHY USB 3.0 Vision GigE Vision
Bandwidth 1.5 Gh/s v1.1 (oldest) Up to 400 Mb/s 115 Mb/s
Cable Length Upto0.6m Upto 0.8 m Upto 100 m
CPU usage Low Medium High
Software complexity High Low) Low
Size Very small Small Medium
Cost Low Medium Medium

As seen from the table, the MIPI CSI-2 interface is the best option due to its very high bandwidth
speed of transmitting image data and consuming the least power. Furthermore, combining
performance with low cost gives it a winning edge over the other options. However, the only
drawback would be the less user-friendly interface and the required programming knowledge to
program the cameras.

a) MIPI CSI-2 camera

DAHEN
m\amg ! |

c) GigE Vision
Fig. 23. Cameras of various interfacing technologies
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2. Deep learning implementation
2.1.Background and implemented algorithm

Deep learning-based object detection was needed to classify and localize both the holtite socket and
the PCB hole into which the socket is pressed. The algorithm works by incorporating an SSD-
Mobilenet V2 object detection network that uses an SSD-300 single shot Multibox detector with the
Mobilenet V2 convolutional neural network. Mobilenet is an image classification CNN with the
advantages of low power consumption and high inference speed, which uses a depthwise separable
convolution to speed up the network inference time while maintaining high accuracy. With regards
to Nvidia jetson nano, as shown in Fig. 24 The fastest object detection network was the SSD
(300x300) Mobilenet V2 network, which takes in an image and resizes its resolution to 300 x300
pixels before training the network. Moreover, the steps of implementing the algorithm are discussed
below.

obilenet-V2
960x544 480

Network Model

Fig. 24 Speed performance on popular deep learning object detection networks used with Nvidia Jetson
Nano [25]

The Nvidia Jetson nano board version A02 was available to use to implement the object detection
network. An inference by the Nvidia company known as jetson inference was used as the open-source
platform to implement object detection on the holtite sockets of the PCB. Moreover, the algorithm
followed is shown in The algorithm can also be simplified into three main steps:

1. Take different pictures of the PCB consisting of the pressed holtite sockets from both cameras
individually

2. Before network training, labelling is used to identify for the network what each component is and
localize its co-ordinates

3. The images and labels created are input to the network to train it.

4. During the training procedures, the network’s hyperparameters such as the learning rate and
optimization functions are tuned to speed up the training time and seek sufficient network training.

5. The training files are then exported to a format known as ONNX, which is used to deploy the
generated neural network on the GPU of the Nvidia Jetson Nano board.

6. The following step is to test the trained network by running detections on pictures of PCBs that it
had not seen before.

7. The localization results of the sockets and holes will later be used for stereo rectification to
measure the depth of the holtite socket pressed into the PCB holes.
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START

Capture images Capture images
from the right from the left
camera camera

Label images using annotation
tool

XML files are generated representing
the bounding boxes to localize the

5 . : sockets and holes
Trained file is exported into onnex format to be inferred

with Nvidia jetson nano
train the network Withthe labelled images and xml files

Pictures are taken of 3 different PCB
using both cameras

Run detection network to classify and localize sockets
and holes using the trained dataset

Detected pictures are saved and their
localization co-ordinates are used for
rectification procedure

END

Fig. 25. Flowchart for implementing deep learning-based object detection

2.2.Hyperparameters and tuning

The stochastic gradient descent with Nesterov momentum was used as the optimization function,
which showed good detection results with the CIFR-10 dataset, as shown in the literature review. The
momentum value was set to 0.9, which is a standard momentum value used with Nesterov. The
implementation of this is shown in Fig. 26. Moreover, the learning rate was initially set to 0.01 to
speed up the training process. However, not all detections were precise. Therefore, the learning rate
was later modified to a slower learning rate of 0.005. As a result, a more precise localization of the
bounding box and classification of the object was obtained. The difference can be visualized in Fig.
27 and Fig. 28

# Params for SGD
parser.add_argument('--1r', '--learning-rate', default=0.01, type=float,
help="initial learning rate')
parser.add_argument('--momentum’', default=0.9, type=float,
help="Momentum value for optim')
parser.add_argument('--weight-decay', default=5e-4, type=float,
help="Weight decay for SGD')
parser.add_argument('--gamma', default=0.1, type=float,
help="'Gamma update for SGD')
parser.add_argument('--base-net-1r', default=0.001, type=float,
help="initial learning rate for base net, or Mone to use --1r'")
parser.add_argument('--extra-layers-1r', default=None, type=float,
help="initial learning rate for the layers not in base net and prediction heads.')

Fig. 26. Implementation of Nesterov SGD optimization function in the code
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Fig. 28. Improved detections with a learning rate of 0.005
2.3.Training and validation

The labelling of the images was done using the MakeSense Al annotation tool, where images were
uploaded to the tool, and the tool allowed for drawing rectangles around the object classes, which in
this case were the holtite socket and PCB hole. The labelled files were then exported to pascal VOC
dataset format, which assigns a class ID to the socket, for example, Class ID 1 and another ID to the
hole, e.g. Class ID 2. Moreover, the coordinates of the bounding box, which are the rectangles shown
in yellow and green, are the localization coordinates of each object. The number of epochs was 20.
Epochs are simply iterations executed by the network where the loss function is calculated, and the
weights are updated to reduce the error of the network, as discussed previously in the literature review.
The dataset used for training was carried out in the following manner:

— 70 % of the dataset was used for training

— 20 % of the dataset were used for validation. The network tries to predict the results of the
validation dataset, and according to the predictions, the weights are updated to improve the
predictions.

— 10 % of the dataset were used for testing, where the network tries to detect those images
according to what it learned through the training phase when it sees the test dataset for the
first time.
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on/training/detection/ssds python3 train_ssd.py --dat ype=voc --data=data/h_s_5 --model-dir=nodels/h

bat

rs learning rate: 6.685.

arning

d, please use reduction="sun' instead.

Fig. 29. Training the network

The iterations taken during training are shown in Fig. 30. 104 pictured were trained with a batch size
of 2. The reason for such number was due to having 2 PCB samples where each had 32 sockets and
holes. Moreover, 10 measurements were taken later where those sockets and holes were not used for
training the network. They were only used for the detections in order to accurately test the network’s
performance. Moreover, the losses of the network are the sum of both classification and regression
errors of the network. The losses were seen to decrease as the number of epochs was increasing. In
Fig. 30, the number of epochs (iterations) is plotted against the network loss. The network loss
consists of the regression loss and the classification loss. The classification loss is the loss in
classifying the object, in this context, classifying whether the object is a PCB socket or a PCB hole.

Moreover, the regression loss is the loss of the network with regards to localizing the object. That is
the loss in calculating the accurate bounding coordinates of the objects. It can be seen that the
relationship is not linear, where increasing the number of iterations reduces the loss. Oscillations
occur such that at higher numbers of iterations, the losses start to increase again. However, at epoch
19, representing the twentieth iteration, the losses started to stabilize and reduce. Especially for the
regression loss, which was almost constant from the seventeenth to the nineteenth iteration. The
results are reflected in the samples shown in Fig. 28, where the sockets and holes are detected with
good accuracy.

Moreover, the bounding boxes drawn around them are precise, which proves the success of the
network. However, one problem is that not many sockets and holes can be detected at once with this
network. The reason is that the network operates with image sizes of 300 x 300 pixels. This means
that each input image is resized to 300 x 300 before the images are either trained or detected. When
having many holes and sockets in one image and then resizing the entire image into a 300 x 300 pixel-
sized image, the detection becomes very hard and inaccurate. One solution to overcome this problem
would be to ensure that not many sockets and holes are in the field of view of the cameras and
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microscopes. Another solution would be to use a slower detection network that resizes images to
bigger pixeled image sizes.

Iterations vs Network Loss

6 7 8 9 10 11 12 13 14 15 16 17 18 19
EPOCHS

AVG LOSS AVG REGRESSION LOSS e A\/G Classificaion loss

Fig. 30. Network Loss vs number of epochs

The following figure shows the time taken for detecting the number of sockets in both the left and
right images shown in Fig. 57. The detection time taken for the left image containing two sockets and
two holes is 87.5 ms and the detection time taken for the right image which contains four sockets and
four holes is 65.8 ms.

-~

root@ahmed-desktop: finitial_recog

detected 4 objects in image

[OpenGL] glDisplay -- set the window size to 716x540

[OpenGL] creating 716x540 texture (GL_RGB8 format, 1159920 bytes)

[cuda] registered openGL texture for interop access (716x540, GL_RGB8, 1159920
bytes)

[image] saved '/[initial_recog/rectified/rect_out_©.jpg' (716x540, 3 channels)

[TRT]

[TRT] Timing R

[TRT]

[TRT] Pre-Process .11932ms  CUDA .57698ms
[TRT] Network B7.54333ms CUDA 85.94422ms
[TRT] Post-Process 1.10585ms CUDA 1.10318ms
[TRT] Visualize B.94146ms CUDA 29.29615ms
[TRT] 117. CUDA 117.

[image] loaded '/initial_recog/rectified/rec_2.jpg' (716x540, 3 channels)
detected 8 objects in image
[image] saved '/initial_recog/rectified/rect_out_1.jpg' (716x540, 3 channels)

[TRT]

[TRT] Timing R

[TRT]

[TRT] Pre-Process 0.08693ms CUDA 1.34859ms
[TRT] Network 65.84052ms CUDA 48771ms
[TRT] Post-Process 1.28724ms CUDA 1.28588ms
[TRT] Visualize 0.42094ms CUDA 4.37870ms
[TRT] 67.63563ms CUDA 71.50089ms
[TRT]

root@ahmed-desktop: /initial_recog# I

Fig. 31. Time taken for detecting sockets and holes in left and right images of a rectified stereo pair.
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3. Mechanical design of the system

In the following section, a mechanical design developed to implement the stereo vision depth
measurement system will be introduced to the reader. To better understand the final design of such a
system, it is necessary to understand some of the issues that needed to be tackled to develop an
assembly that would perform accurately and avoid failures within its parts. In the early stages of the
design, three main concerns were identified and solved:

— Electrostatic discharge, which would affect the camera electronic board, had to be avoided
and housing the cameras needed to be designed carefully.

— Deformations occurring onto the camera board due to the weight of the microscopes,
influencing the accuracy of the stereo rectification and depth measurements, which lead to the
design of a support system that would sustain the weight of the mentioned components.

— Translation along all three spatial axes, which is deemed necessary to allow the stereo vision
system to detect and analyse all the sockets within the PCB. Moreover, when needed,
correction allows for a correction of the distance between the cameras and the PCB itself to
correct the focus.

Given the time limitations of the project, the whole assembly was built using additive manufacturing
3D FDM technologies, which allowed for a prototype of the design to be manufactured and assembled
in a short amount of time and provide flexibility to the system. For example, the convergence angle,
the angle at which the cameras are tilted and changing the baseline. Such modifications can be
implemented easily and quickly. Additionally, utilizing plastics to print all the different components
allowed the costs of the prototype to be contained, which would have been increased if, instead,
aluminium or steel alloys were used.

Table 4. Prusa PLA mechanical properties [26]

Property Value
Poisson’s Ratio 0.33
Shear Modulus, MPa 2400
Density, g/cm3 1.24
Young’s Modulus, GPa 2.2
Tensile Strength, MPa 42
Yield Strength, MPa 50.8

At the end of the design process, through the use of Autodesk Inventor software's stress analysis
simulation tool, the final assembly proved to be rigid enough to withstand the stresses and ensure that
no deformation of the camera board would occur during the experiments.

Prusa PLA plastic was used for all the printed parts, and its mechanical properties can be observed in
Table 4. Such parts include:

— Housing for the camera and its integrated PCB
— Supports for the microscopic lenses
— Support for the PCB to be inspected
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3.1.Design components

For the stress analysis, being such material not included within the software, a custom material had
to be created, and its mechanical properties were inserted as shown in Fig. 32

Material Editor: Prusa PLA n

Identity | Appearance T [Physxca\ 2|

P Information
¥ Basic Thermal
Thermal Conductivity |1,000E-02 W/(m-K)
Specific Heat (0,100 J/(g-C)
Thermal Expansion Coefficient 0,100 um/(m-°C)

¥ Mechanical
Behavior | Isotropic
Young's Modulus 2,200 GPa
Poisson’s Ratio 0,33
Shear Modulus ' 2400,000 MPa
Density 1,240 g/cm?®

¥ Strength
Yield Strength 50,800 MPa
Tensile Strength 42,000 MPa

Fig. 32. PLA custom material in Autodesk Inventor creation

For standard additional parts, such as the screws used to assemble the components, steel is included
within the Autodesk Inventor material library. The microscopic lenses and the lens mounted used
manufactured with aluminium alloy, and the T-6061 alloy was assigned as the material for them in
inventor. Moreover, for the PCB of the cameras, polyethene material was assigned to it, as it is one
of the usually used materials in manufacturing PCBs. For the stress simulations, the geometries of
both microscopes and cameras were reproduced in detail, such as determining the mass of each
component with accuracy. The software calculates the weight knowing the density of the material
used and the model’s volume Fig. 33.

Body Properties
Name
Solid1

General Properties
Center of Gravity
Mass | 0,520 kg (Relative Errc. B X | -73,489 mm (Relative Et

Area | 36963,979 mm~2 (Rel Y | -0,000 mm (Relative Ert }/
Volume | 192617,329 mm~3 (R\ @  Zz | 0,000 mm (Relative Errc

Body Appearance

As Part
[ Clear Al Overrides

& oK Cancel
-
Fig. 33. Mass of the microscope in inventor

The system's final design is presented in Fig. 34, where It can be observed that the cameras with
microscopes were mounted on top of the x-y table, such as facilitating the displacement to inspect the
different sockets and holes. Moreover, it allows for correcting the distance between the lenses and
the inspected PCB to focus the obtained images. In the following part, details for each of the
components used within the assembling are provided.
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Fig. 34. Full assembly, right view (top left), top view (bottom left), and front view (right)

The first component to be analysed is the housing developed to mount the camera into the x-y table
Fig. 35. As mentioned at the beginning of the chapter, an electrostatic discharge and bending induced
by the weight of the microscopic lenses generated a considerable amount of concerns. The solution
employed to counter the first issue was to house the camera, yellow in the figure, within two covers,
the top cover is represented in black, separated from the camera through the use of spacers, to ensure
that the electronic components would have no contact area with the plastic material it the top cover
IS manufactured.

Sensor protective ~ Camera

frame \ ;’CB

™
A\

Spacers

I

Camera

. cover
Lens fixture ring

Fig. 35. Exploded view of the camera assembly

The bottom cover, red in the figure, however, did not require such measures to be taken, since no
electronic components were present on the side of the PCB, therefore being in contact with the
camera, to avoid any bending which could have occurred if spacers or other components were used,
due to the weight of the microscopes connected to it.
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fixture to X-Y table

14 deg rotation of camera support

Fig. 36. Camera attachment to the x-y table

In Fig. 36, the attachment used to fix the cameras, covers, and lenses onto the x-y tables is shown. It
was designed to constrain the components to the x-y table while providing an orientation angle of 14
degrees. The angle chosen is low due to the length of the microscopes, as they could hit each other if
the baseline is not big enough. Moreover, the baseline which is the horizontal distance between the
two camera sensors, is constrained to the length of the camera cables. Therefore, the chosen angle is
relatively small. Moreover, due to the simple design, short printing time, and low material
consumption, it could be easily modified if necessary to change the angles at which the lenses are
tilted towards each other and thus change the convergence angle of the stereo vision setup. The
baseline is shown in Fig. 37, to be 112.520 mm as a result of the system setup.

112,520 m

Fig. 37. Baseline measured from the setup

The PCB was mounted onto a one-axis translational stage, as shown Fig. 39, which was already
available within the university. Such travel stage had a travel range of 15 mm. The PCB sample used
for inspection had the following dimensions shown in Fig. 38, where the width of the PCB is 19 mm,
thus this translational stage can be used for inspecting one PCB/

{1,15)

Fig. 38. PCB dimensions
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a) One-axis motorized translational stage b) Linear bearings provided by IGUS

¢) Linear bearing plastic carraige d) Stage mounted to linear bearing

Fig. 39. Z-axis assembly
3.2.Stress analysis

It is now possible to move to the performed simulations, used to verify the capabilities of the design,
ensuring negligible deformations would occur on the board of the camera and that the PLA material
used would provide enough rigidity to support the whole assembly. One camera assembly was used
for the stress analysis. The camera assembly undergoing the stress analysis with the analysis
conditions is shown in Fig. 40.

Fig. 40. Added pin constraints (white) and gravity load (yellow arrow)
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To simulate the screws which would fix the components onto each other and the total assembly to the
X-y table, pin constraints were applied. They are shown as the white components in the figure. while
for the applied load, the weight of the microscopic lens was used since no additional loads would act
on the assembly. Through the previously mentioned calculations performed by Autodesk Inventor to
determine the weight of the lens, the gravity load of such components was added into the simulation,
weighing 520 grams according to the model, while in reality weighs 500 grams.

Fig. 41. Meshing of the assembly

Afterwards, adaptable meshing techniques were applied to ensure that, in areas affected by high
stresses and where the higher values of deformation would be expected, the meshes would be refined,
while in less significant and affected areas of the assembly, the meshes would be coarse, as shown in
Fig. 41.

Convergence Rate: 0,000%

3,259e-04 -

2,852e-04

2,444e-04

2,037e-04 -

1,630e-04;-#

Fig. 42. Results convergence graph for displacement
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Afterwards, the analysis was performed, with an analysis terminating criteria set to be reached either
after 20 total iterations or when the difference in value between the von mises stress of the previous
iteration becomes smaller than 1%. It is possible to observe in Fig. 42, that the convergence for the
displacement’s simulation was obtained within the 4™ step. In fact, after a great initial difference
between the first and second iteration, the value obtained stabilized, reaching the required 1%
difference at the fifth iteration, not requiring the software to perform the total twenty iterations.

Convergence Rate: 0,026%

0,520

0,402

0,285

0,168

0,050 -#

Fig. 43. Results convergence graph for von mises stress

When calculating the stresses acting on the assembly, however, as shown in Fig. 43, it is possible to
observe how the software required more iterations to reach a solution difference of 1%. In fact, from
iteration one through iteration ten, the solution of the calculation oscillated, reaching, finally,
convergence at the eleventh iteration.

Type: Displacement

Unit: mm

2021-05-09, 02:59:59
3,253e-04 Max

L] 2,602¢-04

|| 1,952e-04

|| 1,301e04

6,505¢-05

I 5,288e-10 Min

Fig. 44. Displacement’s results

Having performed the calculations and reached a convergence, it is now possible to analyse the results
obtained.
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Type: Von Mises Stress

Unit: MPa

2021-05-09, 02:53:56
0,4832 Max

|| 03886

L 0,2809

I 0,1933
i 0,0966
0 Min

The displacement results from Fig. 44 show how the highest displacements values were registered at
the loose end of the microscopic lenses with values reaching the 0.325 micrometres, with the holder
designed purposely to sustain the lenses absorbing the weight of it, experiencing a maximum
deformation of 0.13 micrometres. The bending experienced by the camera board itself and the
attachment to the x-y table reach negligible values, achieving one of the primary objectives of the
assembly.

Fig. 45. Von Mises stresses results

Fig. 46. Principal stresses developed on the camera PCB

According to Fig. 45, the stresses experienced by the assembly as a whole with the applied loads and
constraints. It can be observed how the stresses experienced by it are entirely negligible, verifying
that the designed structure can withstand the weight of the microscopic lens.

The maximum value of von mises stress is about 0.48 MPa, and this value occurs around the
aluminium fixture onto which the lenses are fixed. For the plastic parts, the maximum principal stress,
which is the used criteria for brittle material, shows negligible stress values around the camera’s PCB
in Fig. 46.
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4. Set up and implementation of stereo vision
4.1.System setup

The setup of the stereo vision system plays a crucial role in the measurement accuracy provided. At
first, the cameras and their respective sensors are chosen. After that, the lens is selected based on
several factors such as focal length, angle of view, the field of view, and the range of distance the
lens can view with good imaging focus. Having chosen the camera and lens, other system parameters
are calculated and tuned to obtain the best possible theoretical depth measurement accuracy based on
the provided constraints. Lightning conditions play a crucial role for the deep learning-based object
detection algorithm and, consequently, the depth measurement accuracy. Once the setup is achieved,
the implementation of the system for depth measurement is discussed.

4.2.Camera selection

The two most significant criteria for selecting the camera would be its performance and price and
how it influences the overall cost of the system. One of the main aims of the thesis is to provide a
cost-effective solution for the construction of an automated VI system. Therefore, various camera
technologies were compared in the literature review, and subsequently, MIPI CSI-2 interface-type
cameras were selected due to their low cost, small size, and high-performance capabilities. An
essential requirement in selecting the cameras is to mount the lens on a camera supporting
interchangeable lenses. To improve the accuracy of the stereo vision system, the focal length is an
essential parameter in reducing the error, as shown previously in Equation 1.17. Therefore, the
constructed system should be flexible in using different lenses which have different focal lengths.
Moreover, the lenses are shown in the following section, in this section, it is important to keep in
mind that the selected cameras to be compatible with using interchangeable lenses and not a fixed
lens camera.

Furthermore, according to Equation 1.17, disparity error depends on the quality of the camera sensor,
its pixel size, and the accuracy of the matching algorithm. The smaller the pixel size of the camera,
also the less the disparity error. Therefore, another key parameter to search for is looking for cameras
with a relatively small pixel size sensor. A comparison is made below in Table 5. Furthermore, a
comparison was conducted between two brand new MIPI CSI cameras, namely, the raspberry pi HQ
camera released in April 2020 and the e-con systems e-CAM131_CUNX - 4K camera, which was
released in December 2020. Both cameras are compatible with Nvidia Jetson Nano. Moreover, a
relatively cheap GigE vision industrial camera was included in the comparison to see the difference
in performance capabilities between GigE vision and MIPI interface-based cameras.

Table 5. Camera selection [27, 28]

Criteria Camera
Raspberry pi HQ E-con systems Daheng imaging MER-500-
e-CAM131_CUNX 14GM
Resolution (MP) 12.3 (4056 x 3040) 13 MP (4208 x 3120) 5 MP (2592x 1944)
Max frame rate (FPS) 13 FPS at 4K 15 FPS at 4k 14 FPS at 5 MP
30 FPS at5 MP 65 FPS at Full HD
60 FPS at Full HD
Colour Colour Colour Monochromatic
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Sensor

1:2.3” Sony IMX477R
CMOS

1/3.2” AR1335 CMOS

1/2.5” onsemi MT9P031
CMOS

Sensor size (mm) 6.29 x 4.72 4.54 x 3.42 5.76 x 4.29
Crop factor 5.6 7.61 5.97

Pixel size (um) 1.55 1.10 2.2

Lens mount type CICS S C

Camera interface method MIPI CSI-2 MIPI CSI-2 GigE vision
Total price (incl shipping 125 107 217

cost, VAT, €)

Standard delivery time 7 working days Up to 4 weeks 4-6 weeks

Supplier, shipping location

Hitech chain, Sweden

E-con systems, USA

Get-cameras, China

©

bundle)

Manufacturer Arducam E-con systems DAHENG IMAGING
Delivery cost Free 30 49
Synchronization required for | synchronization bundle | Yes Yes
stereovision released in November
2020
Total Price of a stereo-setup | 240 (synchronized 282 532

The comparison shows that MIPI interface-based cameras are cheaper than the relatively cheap GigE
vision-based camera by a factor of two. Moreover, the resolution, frame rates, and pixel size of the
MIPI cameras are smaller than the GigE vision-based camera. Since the choice would be between the
raspberry pi HQ camera and the e-con e-cam131, the specifications of both cameras are quite similar.
The difference is that the e-con camera has a smaller pixel-sized sensor. However, the delivery time
is long. For that reason, the raspberry pi HQ camera was chosen to have enough time for making a
prototype to investigate the accuracy of the proposed system.

a) Raspberry pi HQ synchronized stereo kit

4.3.Selection of lenses

b) E-con e-cam131 camera module

Fig. 47. MIPI interface-based cameras

Having chosen the cameras needed for the system, the following step is to choose the lenses needed.
The main requirements of the chosen lens are:

— Lenses should have a good build quality

— Telephoto type lens with a high focal length to increase the system’s depth measurement

accuracy
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— Mount type should be C or CS to ensure compatibility with the raspberry pi HQ camera.

Referring to [12], the focal length of the used lens was 25 mm. Therefore, the chosen lens for this
proposed system needs to have a higher focal length of that system to improve the depth measurement
accuracy and other discussed factors. The lenses compared are manufactured by Seeed Studio
company as lenses designed for raspberry pi HQ camera, which are relatively cheap. Moreover, the
following table compares three lenses that could be used with the chosen camera.

The camera uses an IMX477 Sony sensor which has the following characteristics:
— Sensor width of 6.287 mm
— An aspect ratio of 1.33
— Sensor diagonal length of 7.857 mm

Table 6. Lens selection [29]

A circle of confusion of 5 um

Criteria

Lens

35 mm telephoto lens

50 mm telephoto lens

300 x microscopic lens

Focal length (mm)

35

50

Up to 300 mm

Aperture F1.7-16 F1.4-F16 Image is darker by 3 f-
stops at maximum
magnification

Angle of view 14.3° x 10.7° 14.5° x 10.9° magnification factor and
focal length dependant

Minimum object distance | 350 500 100-185

(mm)

Depth of field (mm) 1.7-16 1.4-16 pum range

Obijective lens None None 0.7-45

magnification factor

Eyepiece magnification None None 0.5

factor

Price (€) 37 35 62

Standard delivery time 5 working days 2-4 weeks 5 working days

Supplier, shipping location

Mouser (Germany)

Seeed Studio (USA)

Mouser (Germany)

Delivery cost (€)

0

30

0

Total price for 2 lenses (€)

74

100

124

Fig. 48. Chosen microscopic lens
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According to the comparison, the microscopic lens would be the best option with regards to having a
high focal length that is adjustable, unlike the fixed focal length lenses. Moreover, the minimum
object distance is much less for the microscopic lens, which is more suitable for mounting the system
assembly on the translational stage available in the university. Another important factor to consider
is the depth of field. The depth of field is simply the distance range between the object viewed under
the microscope and the surroundings where the surrounding can still be viewed in focus. This is
illustrated in Fig. 49. In other words, the depth of field should be enough for the microscope to view
both the holtite socket and the PCB in focus. Referring to the tolerance value of £100 um of depth
difference between the holtite socket and the PCB hole, the depth of field of the microscopic lens
should be bigger than that. The datasheet of the lenses does not provide values for the numerical
aperture, which is used to calculate the depth of field, and hence it is unknown whether the depth of
field of the lens can focus both the holtite socket and PCB surface. Thus, during the design of the
stereo vision system, this factor is to be taken into consideration, where a magnification factor
ensuring a depth of field that focuses both the hole and socket would be chosen.

-— Objective lens - —
N

D/2

D br2 [ ¥ Focus plane D
o2 [ ! (Best focus) ! I
D/2
o . Sample
Fig. 49. Depth of field

4.3.1. Focal length

The microscope's objective lens has a range of zoom ratios, and thus the focal length changes as the
magnification ratio of the objective lenses do. At maximum magnification, the focal length is 300
mm; however, the focal length value is not provided by the manufacturer for different magnification
factors. Moreover, the focal length value is shown for the microscopic lens according to the size of
the eyepiece and not the camera sensor. The eyepiece lens has a measured circular diameter of 14
mm; however, the camera sensor has a width of 6.287 mm, as shown in Table 5. This means the focal
length of the microscopic lens when integrated with the camera would be reduced. When the
microscope is integrated with the camera, the focal length of the total system is calculated below.
From the manufacturer, the minimum working distance which is required at maximum magnification
is 100 mm. Thus, the following data is given:

— Eyepiece magnification of 0.5

— Objective lens magnification of 4.5

— Total magnification (m) is thus 2.25

— Working distance of 100 mm between the microscope and the object to be viewed.
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Where:

FOV

Fig. 50. Focal length and working distance relationship [30]

Fov, = =227 _ 279 mm (4.3.1)
b= m 2.25
tot -
f= m, X w,; =225 X100 = 225 mm (4.3.2)
Fov 2.8 4.3.3
a, = 2xtan~! L~ 2xtan™? =1.6° (4.33)
2 x w, 2 x 100

FQOV is the horizontal field of view of the microscope.
H is the width of the camera sensor.

The total magnification is denoted by m, which is the multiplication of the objective
magnification and the eyepiece's magnification.
The focal length (f) of the lens.

The horizontal « is angle of view.

The working distance wy is the distance where the object viewed will be at the sharpest focus.

The vertical field of view and the vertical angular of view is calculated by dividing the horizontal
field of view and angle of view by the aspect ratio of the camera sensor.

The calculations presented above were calculated for the maximum objective lens magnification of
4.5. When the microscope was acquired, the working distances at different magnification factors were
measured, and thus the fields of view, the focal length, and the angles of view were calculated and
are shown below in Table 7.

Table 7. Calculated specifications for chosen microscope

Eye piece magnification 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Objective magnification 4.5 4.0 3.5 3.0 2.0 15 1 0.7
Total magnification 225 |2 1.75 15 1 0.75 0.50 0.35
Working distance (mm) 100 102 103 105 110 115 125 165
Sensor width (mm) 6.287

Aspect ratio 1.33

Horizontal field of view (mm) 2.79 | 3.14 3.59 4.19 6.29 | 8.38 1257 | 17.96
Focal length (mm) 225 204 180.25 | 157.5 | 110 86.25 | 62.5 57.75
Vertical field of view (mm) 2.1 2.36 2.69 3.14 4.72 | 6.29 9.43 13.47
Horizontal angular field of view (°) | 1.6 1.77 2 2.29 3.27 | 417 5.76 6.23
Vertical angular field of view (°) 1.2 1.32 15 1.72 246 | 3.13 4.32 4.67
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4.4.0Other system parameters
4.4.1. Baseline and convergence angle

Setting a baseline for the system is constrained by the length of the camera cables which connect it
to the synchronization board. This can be seen from Fig. 47. Each flex cable had a length of 150 mm.
The baseline was found from the CAD design to be 112.52 mm, as shown in Fig. 37. Since the angle
at which the microscopes are tilted towards each other is 14° degrees, they both converge at an angle
of 28° as shown in Fig.50. The combination of the baseline and convergence angle provides a distance
from the object to the microscopic lens at the required working distance of the microscope at the
selected 1X objective lens zoom. It is crucial to ensure that the PCBs are placed at a distance
equivalent to the working distance of the microscope at 1X objective zoom. This ensures that the
PCB will be in focus.

Fig. 51. Stereo system setup showing the baseline, focal length and convergence angle

Moreover, for sockets that have a large clearance of fit to the PCB holes, this would be noticeable.
The common field of view for both microscopes at 1X zoom was measured to be around 2 mm, where
both cameras view the same scene; this can be seen from Fig. 54. It can also be seen how the depth
of field is not large, meaning that at even higher zoom ratios, focusing on both images will not be
possible

4.4.2. light conditions and isolation

As concluded in the literature review, active stereo vision systems have improved accuracy over
passive ones. Therefore, a light source was used for white light illumination. The room was dark,
where only the light source was used. The light source was mounted on the x-y table and directed at
the PCB to reduce the reflections caused by the shiny surface of both the PCB sockets and holes. The
system setup is shown in Fig. 52.
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Fig. 52. System setup

4.5.Stereo rectification

In order to rectify the images, that is to have them both projected on two planes, where they will be
aligned horizontally. The concept of image rectification is shown in Fig. 53. Horizontal alignment
allows the objects in the images to have a horizontal shift of the points in the two camera frames,

right and left respectively, this is known as disparity as shown in Fig. 16.
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Fig. 53. Image rectification and epipolar geometry [31]

It is shown in Fig. 54, where a stereo pair of images is taken by both cameras, that the hole and socket
in region Al in the left image are the same hole and socket denoted as B1 in the right image. Similarly,
the socket and hole pair A2 are the same as the socket and hole pair B2. It is also clear that the
unrectified pairs have a vertical shift in their point positions when viewed by each camera and thus
are not aligned. The horizontal shift is the disparity, which can only be calculated once both images
are aligned vertically, which is known as image rectification.
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Fig. 54. Unrectified images

The rectification process of the images incorporated the use of stereoRectifyUncalibrated function in
OpenCV. To rectify the images, the same feature points are required to be matched in both images.
The traditional techniques use feature matching algorithms to scan for critical points in both images
and matches the corresponding ones. Those matched points are then fed into a fundamental matrix
used by the stereoRectifyUncalibrated function to calculate the transforms necessary to project both
images onto a common plane where both images would become horizontally aligned. This function
rectifies images taken by cameras that are not calibrated. The algorithm used for estimating the
fundamental matrix is the FM_RANSAC algorithm which needs a minimum of 7 points in each image
to be matched with the corresponding 7 points in the other image. Traditionally a Scale-invariant
feature transform (SIFT) detector or other feature matching detectors are used to detect key points in
both images and matching the best 7 points [32]. By incorporating deep learning-based object
detection neural network, the points matching step can be avoided and instead, the co-ordinates of
the bounding boxes of the detected sockets can be input into the RANSAC algorithm as the matching
points. Moreover, for this specific application, feature matching detectors could face problems
identifying the matching points in both images. The reason is that due to the light conditions and
reflections of the shiny surfaces of the PCB holes and sockets, the pixel values of the same points in
both images can change and thus it becomes difficult for the detector to know which points are the
same in both images. However, with a deep learning-based object detection approach when the neural
network is trained with enough pictures of different light intensities, it can adapt to various light
conditions and successfully detect and localize the sockets and holes. Furthermore, traditional
matching algorithms match only pixel values, however with DL approach, the localization
coordinates have subpixel values and thus subpixel disparities can be calculated to obtain accurate
depth measurement. This is important in this application, where the measured depth is in the range of
micrometres. The deep learning-based object detection carried out on the unrectified images is shown
in Fig. 55.
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Fig. 55. DNN object detection of unrectified stereo image pair (left and right frames)
Stereo cameras calibration is usually done for the following reasons:

1. To obtain the camera's intrinsic parameters: its focal length and the location of the camera
principal centres.

2. To obtain the translation and rotation vectors of each camera in order to know the tilt angles
between each camera in a stereo setup

3. To remove lens distortion which usually occurs for wide angle lenses. The microscopic lenses
have negligible distortion as lens distortion is usually significant in wide-angle lenses.

Moreover, calibrating the lenses was challenging because the checkerboard pattern used to calibrate
cameras was not sharp when viewed by the microscope. The ink on the printed paper was magnified
enough where the pattern was not consistent, and any form of dirt is picked up as noise by the cameras.
Furthermore, due to the microscopic magnification, the edges of the checkboard pattern are magnified
enough that they appear as distorted lines and not simple edge points this would lead to inaccurate
calibration results that will significantly influence the measurement results. The difference between
an appropriate checkerboard pattern for calibration and the pattern viewed by the microscope is
shown in Fig. 56. Moreover, due to the mentioned reasons uncalibrated rectification was performed.

Fig. 56. Checkerboard pattern viewed by the microscopic lens (left) vs an ideal checkerboard pattern for
accurate calibration (right)

The rectification results are shown in Fig. 57, where the images have become aligned, and thus, the
disparity would only be the difference in the x-coordinate value of the matching points.
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Fig. 57. Rectified images

After rectifying the images, a second network detection is proceeded where the localization
coordinates can now be used to calculate the disparity. Since the sockets and holes have become
aligned and are both on similar planes, the disparity for socket in the region denoted as Al can simply
be the difference in the x-coordinate value between a point on the socket in the left image and the
corresponding point on the same socket in the right image. The same way the disparity can be
computed for a hole in the region Al by knowing its x-coordinate value in the left image frame and
the same hole in the region B1 by knowing its x-coordinate value in the right image frame.
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Fig. 58. Object detection performed on rectified images.

The algorithm for calculating the depth of press of a socket into its corresponding PCB hole is shown
in the block diagram presented in Fig. 59.
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Fig. 59. Block diagram for pressed socket’s depth calculation
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4.5.1. Depth calculation

To calculate the distance from the cameras to the socket and hole, the equation can be written as
follows [17]:

fB B

Z:—:

d xL _XR (41)

— xL and xR are the horizontal coordinates of the same point in the left and right camera frames.

— The focal length in mm for 1X zoom was calculated to be 62.5 mm in Table 7.

— The baseline was 112.52 mm as found from the setup

— The focal length in pixels is 7118 pixels and is derived from the formula below

—  Wimg is the width of the image in pixels and is 716 pixels

—  Weensor 1S the width of the camera sensor which is 6.287 mm

— The disparity value obtained after the DL detection applied on the rectified images was
432.148 pixels for the measured hole and 432.156 for the socket.

 foum X Wimg 62,5 % 716

i = = = 7118 pixel
fplxels VVsensor 6.287 pilxeLs (4.2)
Thus, the depth of the socket pressed into the PCB hole is calculated below as follows:
fB fB 7118 x 112.52 7118 x 112.52
Az = — - — = 34.31 pm
dhote  Asocket 432.148 432.156 (4.3)

10 sockets and their corresponding holes into which they were pressed, have had their depths
measured and returned the values shown in Table 8.

Table 8. Socket’s measured depth of fit from the PCB holes

socket number 1 2 3 4 5 6 7 8 9 10
depth measurement (um) | 34.31 | 35.2 | 46.3 |328 |341 |469 |568 |426 |3L2 |294

4.6.Comparing the results to high precision topography system

A topography microscopic high precision system POLYTEC microsystem analyser was used to take
depth measurement between the socket and the hole to have a reference to compare the results taken
by the proposed system with. The same holes and sockets measured by the proposed system were
measured by this high precision system. The setup is shown in Fig.60.

Fig. 60. High precision system setup
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Fig. 61. Depth measurement of one socket using the POLYTEC system

The results of the measurements are shown in the table below:

Table 9 results taken by high precision system for reference

socket number

1 2 3 4

5 6 7 8

9

10

depth measurement (pum)

2432 | 20.14 | 28.32 | 23.41

21.32 | 30.24 | 38.92 | 34.65

23.41

15.18

33804m
4793 4m
1413 m

251
21804m
2432ym

The following graph shows the error difference between the measured depth through the POLYTEC
system and the proposed stereovision deep learning-based system. The maximum error of the ten
taken measurements was found to be 18 um. Few reasons may arise to having such error:

— Uncalibrated cameras could influence the stereo rectification process.
— The deep neural network’s detection localization accuracy can influence some of the taken

measurements.

— Mechanical setup may have had minute alignment issues that could also impact the
measurement accuracy.
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Fig. 62. Measurement comparison between proposed system and POLYTEC microsystem analyser

55



5. 3D printing and cost calculation
5.1.Print settings

in order to 3D print the designed parts, the Prusa 13 MK3S FDM 3D printer was used. The printing
process consisted of 3 main parts: pre-processing, printing and postprocessing. One part, which is the
camera housing, is used as an example to show the procedures of optimizing the print settings in order
to print it in a smooth manner that ensures the camera’s PCB would not be in contact with rough
plastic edges, which could affect the PCB’s copper traces and increase the risk of exposing the
camera’s PCB to electrostatic discharge.

5.1.1. Pre-processing

Pre-processing the parts consisted of converting the CAD model generated in Autodesk Inventor of
each designed part into STL format. The 3D printing software uses STL format to interpret the
geometry of the part to be printed. The STL file should have a good mesh in order for the printer to
interpret the part’s geometry smoothly. For example, for circular shapes, a rough mesh would be hard
to approximate a circular shape, and it could become more of a hexagonal shape. Another reason for
having a smooth mesh is avoiding electrostatic discharge, as mentioned above. Before converting the
model to an STL file, the aspect ratio of the mesh is chosen to be low with a value of one, and the
maximum edge length is chosen to be 0.5 % of the total object’s length. This increases the number of
polygons that the mesh consists of and thus increases the smoothness and approximation of the model.
The number of polygons constituting the mesh is known as the Facets, which is 138 782 due to
choosing a small edge length. The parameters are illustrated in Fig. 63. and Fig. 64.

STL File Save As Options n

Format
(@) Binary () ascn
units Structure
millimeter v One File
Resolution
) High () Medium (Clow
(®) Custom () Brep
Surface Deviation: 0,005000 Mo

0% 100%
Normal Deviation: 10,000000

0 41
Max Edge Length: 0,500000 %

0% 100%
Aspect Ratio: 1,000000

[i} 21.5

Fig. 63. STL mesh settings

L) |1 xnew_cam_support | [ ffP | STL Files (*.stl) v Close Facets | 138 782

Fig. 64. Number of Facets generated
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Fig. 65. Resulting smooth mesh

The generated mesh shown above is very smooth, and thus, the following step proceeds. Orienting
and slicing the model is the following step where Prusa Slicer software is used to achieve that. The
orientation is chosen such that the surface onto which the cameras electronic board is mounted is
printed smoothly without rough edges and surfaces. Moreover, the print orientation is shown in Fig.
66 and Fig. 67, where the camera mounting surface is a final layer, and the cover is supported from
the bottom. This orientation increases the printing time and material consumption and, as a result, the
production cost. However, it is crucial to have the camera’s board mounted onto a smooth surface,
where if the mounting surface were supported, the printing time and costs would be reduced, but the
surface would be very rough. The infill density for the print was chosen to be 50 % with a cubic infill
pattern. The cubic pattern provides strength in three dimensions and is also the fastest three-
dimensional pattern to print.

Moreover, the infill density is relatively high to ensure enough material is in contact with the fasteners
that fix the cover to other design parts. After the model is sliced, the G-codes are generated, and the
second step, which is the printing step, is executed. The total printing time for this part is 5 hours and
41 minutes. After the part has finished printing, postprocessing work is required to remove the
supports and grinding sharp edges.

Fig. 66. Print orientation for the camera cover
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Fig. 67. Print slicing

5.2.System cost calculation
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It is necessary to evaluate the costs of the individually 3D printed parts in this project for the necessary
attachments for the HQ Raspberry Pi camera, microscopic lens, and the PCBs.

5.2.1. Manufacturing time calculations

The manufacturing time consists of the following:

1. Preparation for printing (adjusting of print parameters and setting, preheating the bed

and setting up the actual printer)
2. Actual printing time.

3. Post-processing works (removal of the model from the plate, removal of support.)

5.2.2. Manufacturing (printing) price calculations:

Production costs

It was assumed that pre-processing and post-processing work for 30 mins regardless of parts printing
time. The equations for calculating the manufacturing costs are as shown below.

The production costs consist of material costs as well as manufacturing costs. Where manufacturing
costs include the machine hourly rate which considers fixed costs, variable costs and labour costs.
Fixed costs are depreciation costs, interest costs, and occupancy costs. Variable costs are energy costs,

maintenance costs and tool costs.

Production costs = Manufacturing costs + Material costs

Manufacturing costs = Printing time X MHR

Where MHR is the hourly machine rate and is calculated as follows [33]:

(5.1)

(5.2)
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MHR
MWT

(5.3)

In order to calculate the machine hourly rate, the following parameters are found according to the
following references [ 34, 35, 36, 37]:

The machine’s price is 1000 Eur.

Depreciation of the machine is over five years of service life.

Interest is assumed to be 8 %.

The space cost rate is 16 euros per month per square meter in Lithuania.

Assuming an office area of 10 square meters

Machine dimensions (250 x 250 x 210 mm).

Space requirements of one printer is 0,3 square meters.

Power is 0,12 kW.

Efficiency 90 %.

The energy cost is 0,134 Eur/kwWh.

Machine working time is approximately 1500 hours (8hrs shift a day, 5 days a week, 9 months
a year).

Employee costs per hour in Lithuania is 6 euros.

Effective working time for the employer for pre-printing, post-printing and checking print is
approximated to be 30 minutes regardless of the printing time of the model.

The employee effectively works with the print for 30 minutes with 6 euros per hour.
Employee costs are added separately and are not included in the machine hourly rate
calculation as the employee does not work while the printing process is occurring.

procurement value 1000

S = - — €200 5.4
4P~ service life inyears 5 4

2 , 2
Sint= 3 xprocurement value Xinterest %= 3 x1000x0.08=€54 (5.5)
S.re= Space cost rate X12 Xoccupancy area (m?)= 16x12x0.3=€57.6 (5.6)

Sene=max machine power X efficiency Xenergy costs xMWT=0.12 x0.9

x0.134 x 1500 = €21.708 (5.7)

One part of the design is considered as an example of calculating the manufacturing costs. The part
is shown in Fig. 68, where its printing time and filament length used and consequently the mass to
calculate the price are presented. The calculations are shown below. Moreover, the cost of other parts
of the assembly are calculated the same way.

HRe 200+54+57.6+21.71
- 1500

=€0,22 (5.8)
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Fig. 68. microscope holder printing time and filament used

Thus, the manufacturing costs of the holder of the microscope is calculated as shown below:

Manufacturing cost=printing time X MHR + employee working time X wage per hour
(5.9
=(2.5x0.22) + (0.5x 6) =€3.55

Calculating material costs:

One kilogram of PLA material costs 25 euros, and therefore, the price of the printed part based on its
mass is calculated below.

Table 10. Material cost of the microcope holder

Part Material Mass(g) Price (€)
microscope holder Prusa PLA 29.98 0,75
Total production cost = 3.55+0.75=€4.3 (6)

Thus, the total production costs of the microscope holder are about €4.3. Finally, the total production
costs of all the 3D printed parts are shown in Table 11, where the total production cost of all parts is
estimated to be €44.1.

Table 11. Total production costs of the manufactured components.

Part Names | No. | Printing | Filament Machine Hourly Manufacturing cost Total Production
of time mass (g) Rate (€) ®© cost (€)
parts | (h,m)

Microscope- | 2 2hr23 m | 29.98 0.22 7.1 8.6

holder

Z-Bracket 1 Ohr51m | 11.92 0.22 6.37 6.96

Camera 2 5hr41m | 58.8 0.22 8.5 11.44

support

Camera 2 lhr18m | 21.1 0.22 6.59 7.64

adapter

Actuator 1 3hr 13 39.93 0.22 7.43 9.43

adapter
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The total system prototype costs, including the prices of the standard parts (including delivery costs
and VAT) and the manufactured 3D printed parts, are summarized in Table 12.

Table 12. Total production costs of the system setup

Part name No. of item Cost (€)
Nvidia Jetson Nano board 1 100
Microscopic lenses 2 74
Stereo vision camera setup 1 240

3D printed parts 5 44.1
Total price 1 458.1

The total system’s production costs are estimated to be 459 euros, where the manufactured parts
account for only 9.6 % of the total production costs.

Production Costs for systems components

m £44,10

€414,00

cost of standard components ® cost of FDM 3D printed components

Fig. 69. Estimated production costs for the proposed system
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Conclusions

A stereo vision-based depth measurement system has been developed. The system incorporates deep
learning-based object detection neural network. The network used was SSD MobileNet V2, which is
the fastest network to run on the embedded device Nvidia Jetson Nano. The DNN is used to classify
and localize both the sockets and holes. The network is incorporated because the sockets can deform
after pressing and lose their regular circular shape. Therefore, traditional image processing techniques
used for classifying shapes would have problems identifying and localizing the sockets. The network
is also used to simplify the correspondence matching process used for stereo images rectification.
Furthermore, the system provides a cost-effective solution of incorporating relatively low-cost
cameras, the Raspberry Pl HQ cameras, which were released in 2020.

1. Adeep learning-based object detection network based on SSD MobileNet V2 was used to classify
and localize the PCB holes and holtite sockets. The network had a detection time of 65 ms per
images containing two pairs of holtite sockets and holes.

2. A mechanical design was executed to set up the proposed system, where the design relied on
additive manufacturing FDM 3D printing technique that was rigid enough for the proposed
system. The stress values were negligible, and the maximum deformation of the assembly
components was 0.35 pm.

3. Stereo vision depth measurement was developed with the integration of deep learning-based
object detection. According to the samples measured, the system’s measurement accuracy had a
maximum error of 18 um for the measurement sample taken of 10 measurements. The error is
obtained by comparing the measured values to those measured by the high precision POLYTEC
microsystem analyser.

4. The total system cost is around €500, which is subject to an increase with further development.
However, it is relatively cheaper than similar depth measurement systems incorporating industrial
cameras and high precision microsystem analysers.
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Appendices

Programming Code

1. Camera initialization and taking stereo images

# —-*- coding: utf-8 —-*-

Created on Sun Mar 10 23:23:00 2021

@author: Ahmed Elatroush

import cv2

import numpy as np

def gstreamer pipeline (
capture width=4032,
capture height=3040,
display width=1432,
display height=540,
framerate=13,
flip method=2,

return (
"nvarguscamerasrc ! "
"video/x-raw (memory:NVMM) , "
"width=(int) %d, height=(int)%d, "
"format=(string)NV12, framerate=(fraction)%d/1 ! "
"nvvidconv flip-method=%d ! "
"video/x-raw, width=(int)%d, height=(int)%d, format=(string)BGRx
"videoconvert ! "
"video/x-raw, format=(string)BGR ! appsink"
5
capture width,
capture height,
framerate,
flip method,
display width,
display height,

)

cam=cv2.VideoCapture (gstreamer pipeline())
while True:

ret, img=cam.read ()

cv2.imshow ('rpi camera',img)

if cv2.waitKey (1) == ord('y")
cv2.imwrite ('imgl.jpg', img)
image = cv2.imread('imgl.jpg')

height, width = image.shape[:2]
x_ start=int (width/2)
x_end=int (width)
y_end=int (height)
#split horizontally
right img = image[0:y end, x start:x end]
left img = image[0:y end, 0:x start]
cv2.imwrite (right img.jpg',right img)
cv2.imwrite (left img.jpg', left img)
break
cam.release ()
cv2.destroyAllWindows ()

"

66



2. Object detection based on the socket and holes model retrained on SSD Mobilenet v2

# —*— coding: utf-8 —*-
import jetson.inference
import jetson.utils

import argparse
import sys

# parse the command 1line
parser = argparse.ArgumentParser (description="Locate objects in a live
camera stream using an object detection DNN.",

formatter class=argparse.RawTextHelpFormatter,

epilog=jetson.inference.detectNet.Usage () +
jetson.utils.videoSource.Usage () +

jetson.utils.videoOutput.Usage () + jetson.utils.logUsage())

parser.add argument ("input URI", type=str, default="", nargs='?', help="URI
of the input stream")

parser.add argument ("output URI", type=str, default="", nargs='?', help="URI
of the output stream")
parser.add argument ("--network", type=str, default="ssd-mobilenet-v2",
help="pre-trained model to load (see below for options)")
parser.add argument ("--overlay", type=str, default="box,labels,conft",
help="detection overlay flags (e.g. --overlay=box,labels,conf)\nvalid
combinations are: 'box', 'labels', 'conf', 'none'")
parser.add argument ("--threshold", type=float, default=0.5, help="minimum
detection threshold to use")
parser.add argument ("--rect", type=str, default="", help="rectification
flag") B
is headless = ["--headless"] if sys.argv[0].find('console.py') != -1 else [""]
try:

opt = parser.parse known args () [0]
except: B B

print ("")

parser.print help()

sys.exit(0)

# load the object detection network
net = jetson.inference.detectNet (opt.network, sys.argv, opt.threshold)

# create video sources & outputs
input = jetson.utils.videoSource (opt.input URI, argv=sys.argv)
output = jetson.utils.videoOutput (opt.output URI, argv=sys.argv+is headless)

# flag to indication if detection is for rectified or unrectified images.
rectification =opt.rect
# process frames until the user exits
open ("detect rectified.txt", "w").close ()
open ("detect unrectified.txt", "w") .close ()
while True:
# capture the next image
img = input.Capture ()

# detect objects in the image (with overlay)
detections = net.Detect (img, overlay=opt.overlay)
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# print the detections
print ("detected {:d} objects in image".format (len (detections)))

if rectification == "true":
#f = open("detect unrectified.txt", "a")
f = open("detect rectified.txt", "a")
for detection in detections:
f.write (str (detection))
f.close ()
elif rectification == "false":
f = open("detect unrectified.txt", "a")
for detection in detections:
f.write (str (detection))
f.close ()
# render the image
output.Render (img)

# update the title bar
output.SetStatus("{:s} | Network {:.0f} FPS".format (opt.network,
net.GetNetworkFPS ()))

# print out performance info
net.PrintProfilerTimes ()

# exit on input/output EOS
if not input.IsStreaming() or not output.IsStreaming/() :
break

3. Image rectification and depth calculation

# —*- coding: utf-8 -*-

mmn

Created on Sun May 2 28 02:53:57 2021

@author: Ahmed Elatroush

import numpy as np

import cv2 as cv

import matplotlib.pyplot as plt
import re

# stereo setup parameters

#baseline in mm

baseline=112.52

width =1432

#focal length in mm

focal length mm = 62.5

#sensor width in mm

S wW=6.287

# focal length conversion to pixels

focal length pix=((focal length mm *(width/2))/s w)

imgl = cv.imread('left 1.jpg', cv.IMREAD GRAYSCALE)
img2 = cv.imread('right 1.jpg', cv.IMREAD GRAYSCALE)



# bounding box coordinates of one socket obtained from the deep learning
based object detection network

#top, bottom, left and right coordinates of the bounding box.

#The values are manually input from the detection text file for a selected
socket

#This would be parsed automatically, but for the sake of proof of concept,
#The coordinates of one socket are input manually here.

#The detection coordinates file is shown in the appendix.

1s x sp=510.682
ls y sp=37.2002
s x ep=646.352
ls y ep=168.578

rs_x sp=73.9424
rs y sp=131.177
rs x ep=212.443
rs y ep=264.043

# height and width of bounding box, used to obtain 4 mid points to get a
total of 8 points

#for the fundamental matrix FM RANSAC function

1s height=131.378

ls width=135.67

rs height=132.866
rs width=138.5

#mid points for bounding rectangles of the same socket in the left and right
# image frames.

x mid point 1s=1s x sp+(ls width/2)

y mid point ls=ls y sp+(ls height/2)

x mid point rs=rs x sp+(rs width/2)
y mid point rs=rs y sp+(rs height/2)

# coordinates of 8 points of the same socket in the left and right frames ,
# which are used by the fundamental matrix to obtain image rectification.

start point 1s = (ls_x sp,ls y sp)

end point 1s = (ls x ep,ls y ep)

mid point w ls t=(x mid point 1ls,ls y sp)
mid point w 1s b=(x mid point 1ls,ls y ep)
mid point h 1Is t=(ls x sp,y mid point 1s)
mid point h 1s b=(ls x ep,y mid point 1s)
start point shift 1s=(ls x sp,ls y ep)
end point shift 1s=(ls x ep,ls y sp)

start point rs
end point rs =

(rs_x sp,rs_y sp)

S X ep,rs_y ep)

(x_ mid point rs,rs y sp
(

(

(

s

b

(
mid point w rs t )
mid point w rs b=(x mid point rs,rs y ep)
mid point h rs t=(rs x sp,y mid point rs)
)

mid point h rs b=(rs x ep,y mid point rs
start point shift rs=(rs x sp,rs_y ep)
end point shift rs=(rs x ep,rs_y sp)

# store the points in the mp ls and mp rs arrays to be used by the
fundamental
# matrix for image rectification.
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# Compare unrectified images
fig, axes = plt.subplots(l, 2, figsize= (15, 10))
axes[0] .imshow (imgl, cmap="plasma")

axes[1l] .imshow (img2, cmap="plasma")
axes[0] .axhline (250)
axes[1l] .axhline (250)
axes[0] .axhline (120)

axes[1l].axhline (120)
plt.suptitle ("Original images")
plt.savefig("original images.jpg")

plt.show ()

# same socket's matching points in both left and right images

mp ls=[(start point 1s), (end point 1s), (mid point w 1s t), (mid point w 1ls b)
, (mid point h 1s t), (mid point h 1s b), (start point shift 1s), (end point shi
ft 1s)]

mp_rs=[ (start point rs), (end point rs), (mid point w rs t), (mid point w rs b)
, (mid point h rs t), (mid point h rs b), (start point shift rs), (end point shi
ft rs)]

# Calculate the fundamental matrix for the cameras

mp ls = np.int32 (mp 1ls)
mp rs = np.int32 (mp rs)

fundamental matrix, inliers = cv.findFundamentalMat (mp ls, mp rs,
cv.FM RANSAC)

# uncalibrated Stereo rectification using the fundamental matrix and matchin
points
hl, wl = imgl.shape
h2, w2 = img2.shape
_, H1, H2 = cv.stereoRectifyUncalibrated/(
np.float32 (mp ls), np.float32 (mp rs), fundamental matrix, imgSize=(wl,
hl)
)

# Undistort the images and save them

imgl rectified cv.warpPerspective (imgl, H1, (wl, hl)
img2 rectified = cv.warpPerspective (img2, H2, (w2, h2)
cv.imwrite ("rectified h 1.jpg", imgl rectified)
cv.imwrite ("rectified h 2.jpg", img2 rectified)

)
)

# concatenating the left and right images into one to show the rectification
results

combined img = cv.hconcat ([imgl rectified, img2 rectified])

cv.imwrite ("opencv_rect h.jpg", combined img)

cv.imshow ('opencv_Rect', combined img)

height, width = imgl rectified.shape[:2]

# Draw the combined rectified images
fig, axes = plt.subplots(l, 2, figsize=(15, 10))

axes[0] .imshow (imgl rectified, cmap="plasma")
axes[1].imshow (img2 rectified, cmap="plasma")
axes[0] .axhline (131)
axes[1l].axhline (131)
axes[0] .axhline (265)
axes[1l].axhline (265)
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axes[0] .axhline (111)
axes[1l].axhline (111)
axes[0] .axhline (131)
axes[1l] .axhline (131)
axes[0] .axhline (283)
axes[1l] .axhline (283)

plt.suptitle ("Rectified images")
plt.savefig("rectified images.jpg")
plt.show ()

# measure the disparity directly from the second detections coordinates
# again manually input from the detection text files.

disp h=432.148

disp s=432.156

# calculate the depth of the pressed socket into the hole

# depth into which the socket is pressed into the hole converted from mm to

micrometers

depth of press= 1000* (((focal length pix*baseline)/disp h)-
((focal length pix*baseline)/disp s))

print ("depth of press of socket into hole", depth of press)

cv.waitKey ()
cv.destroyAllWindows ()
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