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Abstract: Drilling operations are an essential part of furniture from MDF laminated boards required
for product assembly. Faults in the process might introduce adverse effects to the furniture. Inspection
of the drilling quality can be challenging due to a big variety of board surface textures, dust, or
woodchips in the manufacturing process, milling cutouts, and other kinds of defects. Intelligent
computer vision methods can be engaged for global contextual analysis with local information
attention for automated object detection and segmentation. In this paper, we propose blind and
through drilled holes segmentation on textured wooden furniture panel images using the UNet
encoder-decoder modifications enhanced with residual connections, atrous spatial pyramid pooling,
squeeze and excitation module, and CoordConv layers for better segmentation performance. We show
that even a lightweight architecture is capable to perform on a range of complex textures and is able
to distinguish the holes drilling operations’ semantical information from the rest of the furniture
board and conveyor context. The proposed model configurations yield better results in more complex
cases with a not significant or small bump in processing time. Experimental results demonstrate that
our best-proposed solution achieves a Dice score of up to 97.89% compared to the baseline U-Net
model’s Dice score of 94.50%. Statistical, visual, and computational properties of each convolutional
neural network architecture are addressed.

Keywords: CNN (convolutional neural networks); deep learning; image processing; hole detection;
drilling; furniture manufacturing; quality inspection; industry 4.0

1. Introduction

Furniture manufacturing of laminated MDF (Medium-density fiberboard) panels is
a multistage process that consists of many manual or automated steps. It starts with the
production of the chipboard and its lamination. When the designed shape furniture panel
is cut out, the milling and drilling process starts, which is the most crucial in furniture
manufacturing. The arrangement of drilled holes is critical for successful final product
assembly. Deviation from template corrupts the final product. The faults might appear
due to various reasons: failures or misalignments in drilling machinery template set-up,
wear-off or lose parts, dull or broken drill, and others. Moreover, the manual inspection
itself requires a lot of time due to measurement evaluation and knowledge about the
individual part template. The situation can get even more complicated due to different
sizes of drillings, multiple holes (blind and through), different parts, scobs, and dust, and
other defects. Therefore, this process needs to be automated.

Nowadays inspection of manufacturing processes is an essential part of industry 4.0
standards. Investigating the quality in each step of production might lead to detecting the
flaws in early fabrication stages and reducing materials usage and operations time needed.
In the end, manufacturing costs can be cut down. Besides the obvious results, the risk of
defects appeared at sold production can be decreased as well. A non-invasive check-up,
such as one that is computer vision (CV)-based, might be used in the most observable

Sensors 2021, 21, 3633. https://doi.org/10.3390/s21113633 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-8672-3872
https://orcid.org/0000-0002-5686-0646
https://www.mdpi.com/article/10.3390/s21113633?type=check_update&version=1
https://doi.org/10.3390/s21113633
https://doi.org/10.3390/s21113633
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113633
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3633 2 of 26

cases. As it is mentioned in the review [1], the visual-based approach for defect detection
is one of the most common in the industry. It is complicated to take into consideration a
variety of furniture board processing operations, possible defects, and complicated surface
pattern cases. Moreover, the production quality evaluation factors can be disturbed by
aggressive manufacturing conditions. However, from visual information, a broader context
might be perceived. As mentioned before, the irrelevant parts, such as defects or milling,
might appear along with drilled holes. Therefore, the algorithm should distinguish only
the information that is pertinent for the task. Computer-vision-based methods need to act
as an intelligent sensor for drilling localization.

In this paper, we present a novel, data-driven approach for contextual pixel-level
drilled hole segmentation approach in textured wooden furniture panels from the images.
We use a small architecture U-Net convolutional encoder-decoder network as a baseline and
we are proposing the architectural modifications in a neural network with residual connec-
tions [2], atrous spatial pyramid pooling module [3], squeeze and excitation blocks [4], and
CoordConv layers [5] that improves the standard architectures in Dice score for a pixel-level
segmentation task with a slight computational performance increase. Besides the modi-
fication in models, we address segmentation precision and computational performance.
We compare convolutional neural network results with conventional image processing
methods to show the advantage of higher-level information representation and the ability
to adapt to the context in a wide spectrum of cases. Our neural network implementation,
conventional image processing comparison methods code, and more rendered results can
be found in the GitHub repository [6].

2. Related Work

There can already be found computer-vision-aided approaches for through-hole in-
spection. In researches conducted by Hernandez et al. [7] and Caggiano et al. [8], the
carbon fiber boards are being investigated. In papers, authors proposing segmentation
based on Otsu threshold [9] and segmentation from HSV colormap respectively. Drilled
hole contours can be separated, and the color/texture of boards is always constant. An-
other drilling inspection approach was described by Yu et al. [10]. Researchers have used
multiple image preprocessing techniques and Canny edge [11] to extract holes and a flush
for rivets in aircraft panels. More complicated hole segmentation in textured composites
parts is presented in [12]. Authors were utilizing local binary patterns algorithm [13] in
combination with deep learning segmentation with a lightweight U-Net convolutional
neural network (CNN). Overall, the practical implementation of the proposed research
on the drilled holes segmentation would be very limited. Most of the review articles
are utilizing classical computer vision methods, such as thresholding (Otsu or from HSV
colormap) or edge detection (Canny). Only one [12] of mentioned articles employs a deep
neural network for more complicated hole image data.

Image processing algorithms can be a satisfying solution in a defined number of
cases, however more dynamic inspection conditions or complex manufacturing processes
or production require more advanced and higher-capability solutions. Representing a
problem by strictly formed rules might be a narrow solution or it can get complicated
to cover up states or situations in an extensive dataset. However, this problem can be
overcome by utilizing data-driven solutions, such as deep learning (DL) approaches.
Labeled samples can provide essential information for the chosen algorithm on how to
cope with a particular task. Expert data knowledge and representation can be transferred
to the model during its training process. Even extra-large-scale datasets, for example
ImageNet classification [14], Microsoft COCO [15], and Open Images Dataset [16], are
proven to be solved by engaging deep learning methods [17–19].

There can be found multiple application of artificial-intelligence-aided computer
vision in a variety of automated manufacturing inspection cases, such as steel [20–22],
wood [23–26], and resin/plastic [27–29]. The mentioned investigations utilize deep neural
networks as an algorithm to distinguish defects. Taking into consideration segmentation
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of drilled holes in furniture panels problem complexity, data diversity and industrial
environment working conditions there can be made relations with approaches used for
defects detection and inspection methods used in manufacturing and severe environments.

In most cases, convolutional neural networks (CNN) are employed for image process-
ing. Popular architecture-based solutions can be found in several papers. Gao et al. [23]
proposes ResNet-34 [2] for wood knot detection and classification. Moreover, the authors
are proposing transfer learning (using a pre-trained model backbone) to overcome a lim-
ited number of samples in the used dataset. Yin et al. [30] describe sewer pipes defects
detection techniques from CCTV footage using YOLOv3 [31] object detection model. An-
other single-shot technique for printed circuit board abnormalities search is described
by Adibhatla et al. [32]. Authors of solar panels manufacturing defects detection investi-
gation [33] use Fast RCNN [34] with VGG-16 [35] backbone for defective regions search.
Researchers also propose the Complementary attention network module for features ex-
tracted (from the backbone) feature refinement. Roberts et al. [36] applied U-Net [37]
encoder-decoder with additional dense connection for crystallographic defects in steel
images semantic segmentation. Additionally, from the following papers, it can be seen
that even small architectures can perform well in defect identification tasks. In [21], re-
searchers uses MobileNetV2 [38] backbone for welding classification. Modified versions
with dense connections of mentioned architecture are proposed in [39] for DAGM [40]
defective patterns classification. As authors suggest, introduced adjustment allows cop-
ing better with the multiscale problem. Even smaller convolutional design networks are
described in steel wire defects detection investigation [22]. The solution utilizes three
convolutional layers of neural network for a 3-class classification task. A similar approach
(regarding small neural network architecture) can be found in wood defects detection
and classification investigation [24]. A minimalistic convolutional neural network can
be seen in resin defection research [27], where the LeNet-5-like model is being utilized.
Moreover, light-weight segmentation approaches are investigated by Huang et al. [41],
where only one step of upscaling is employed and another enhancement, atrous spatial
pyramid pooling (ASPP) [3], is utilized. The proposed architecture solution has shown
good results on DAGM [40], Wood defects [42], and NEU [43] datasets. It can be summed
up that deep-learning-based computer vision can give a solution in complicated situations.

3. Methods
3.1. Convention Image Processing

There are multiple computer vision algorithms for feature extraction from visual
information. Most of the statistical methods rely on local intensity differences in the data
without contextual analysis. A classical method such as intensity threshold is more suitable
for static data, which does not alter that much. However, “real-world” scenarios usually
are not fixed in a particular way. Especially manufacturing environments tend to be more
diverse in conditions and production visual complexity might vary. For the mentioned case
there can be found more robust methods that are more adaptive to dynamic. For example,
Sobel [44] or Laplace [45] filters signify changes in visual information intensities. Kernels
of Sobel filter along x and y axes are given in Equations (1) and (2) and the kernel of the
Laplace filter is given in Equation (3).

Gx =

 1 0 −1
2 0 −2
1 0 −1

, (1)

Gy =

 1 2 1
0 0 0
−1 −2 −1

, (2)
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where Gx and Gy are Sobel filters kernel along x- and y-axes, respectively.

D2
xy =

 0 1 0
1 −4 1
0 1 0

, (3)

where D2
xy is the Laplace filter kernel.

Another popular and powerful method for edge segmentation is Canny edge detec-
tor [11]. Firstly, the algorithm utilizes Gaussian filter to reduce the noise in the image, after,
abrupt intensity changes (possible edges) are extracted using Sobel filter along x and y axes.
Subsequently, non-maximum suppression is applied to remove spurious edges and thresh-
olding engaged to remove weak results. After that, edges are processed with hysteresis and
small artifacts that are not connected to “strong” edges are removed. However, even with
these methods, it can be hard to capture specific details when the context is sophisticated:
a variety of possible color combinations, object surface with patterns, similarities between
a significant (desired to extract), and a minor (background) information.

3.2. Baseline U-Net

A more advanced segmentation approach—convolutional encoder-decoder (U-Net)—
might be engaged. A data-driven model can represent features while taking into considera-
tion not only the simple local intensity differences but also the relations between details
and other semantical information. The knowledge presented in labels can be encoded into
a high dimensional feature space and generalized making the U-Net a powerful tool for
information extraction (segmentation) in a complicated context. In this work, as a baseline
segmentation model, we employ a lightweight U-Net [37] convolutional neural network
(Figure 1). The architecture consists of two main parts: encoder and decoder. The first
extracts image features, and the second reconstructs the segmentation map. Opposite layers
in the encoder and decoder are associated with skipped connections that allow transferring
higher-level features from larger dimension layers. In this research, we utilized quite a
small architectural design with three downscales. At the first stage (first layer) 16 feature
maps are employed. After each width and height downscale by two, the number of feature
maps is doubled. In the decoder, reversed operations are performed—dimensions upscale
and feature maps count reduction by two. The output of convolutional encoder–decoder
is 1 × 1 convolution with sigmoid activation which performs as binary classifier between
two classes: drilled hole and background.
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A more detailed illustration of layers structure on opposite sides (encoder and decoder)
is given in Figure 2. Each stage in the encoder consists of two convolutional operations
with 3 × 3 size kernels, with a stride of 1 pixel. Only kernel size exception is applied in
the first layer, where 5 × 5 is engaged. In decoder transposed convolution with 3 × 3
kernel and stride of 2 pixels. It increases the input dimensions by two. Further, it is a
“learnable” approach for enlarged pixels interpolation. After upscale, feature maps from
the previous layer are concatenated with opposite feature maps from the encoder (skipped
connection). Every convolution and transposed convolution operation is followed by batch
normalization [46]. It has trainable mean and variance parameters that help to keep output
from convolution operation normalized. Moreover, it stabilizes the neural network model
and increases training speed. As activation function, parametrized rectified linear unit or
Leaky ReLU is operated. It is shown in the following equation:

f (x) =
{

x, i f x > 0
0.1x, otherwise

, (4)

where x is activation function input.
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Additionally, we investigate the modified versions of U-Net. While an increased
number of feature kernels in convolutional operation might end up in better segmentation
results, it also loads a model with significantly more computational operations and prolongs
execution time. We propose tricks and lightweight enhancements to improve segmentation
efficiency while the impact on computational performance is not significant. Architectural
changes are described more briefly in the following subsections.

3.3. Residual Connections

Residual layers are proposed in ResNet [2]. The branch connected in parallel skips
convolutional operation. Residual connections help to maintain information flow through
the whole network, without a possible degradation in series of operations conducted in
a neural network. Moreover, this block increases model accuracy and might cope with
the vanishing gradient problem. Residual layers are used in popular architectures, such
as SqueezeNext [47], DeepLab [48], and Inception [49]. The implementation used in this
research is shown in Figure 3. We utilize 1 × 1 convolution to make the number of feature
maps the same before the addition operation.
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3.4. Squeeze-and-Excitation

A light-weight solution proposed by Hu et al. [4] adaptively adjusts individual feature
map weight. Squeeze and excitation (SE) block average each feature map to trainable fully
connected neuron layers (Figure 4). After the second layer, sigmoid activation is applied
that outputs values in the range [0.0,1.0]. Each value is a scalar for each feature map matrix.
They recalibrate the significance channel-wise, taking into consideration dependencies
between feature maps. In the mentioned research [4], squeeze and excitation enhanced
convolutional neural network shown image classification accuracy boost on ImageNet [14],
while not adding a lot computations to model (ResNet-50–top-1 error 24.8% (3.86 GFLOPs),
ResNet-50-SE–top-1 error 23.29% (3.87 GFLOPs)).
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3.5. Atrous Spatial Pyramid Pooling

Convolutional operations with different dilation rates might extract multi-scale con-
textual information better than regular convolutions (with a dilated rate equal to 1). Atrous
or dilated convolutions in the parallel idea was proposed by Chen et al. [3]. An expanded
convolutional kernel can better respond to different resolution features. In our research,
we used three parallel branches with three different dilation rates: 1, 2, and 4 (Figure 5).
However, some papers utilize bigger rates. Even in the previously mentioned research, the
authors used 6, 12, and 18 dilation rates in convolutional kernels. In another research [50],
the authors conducted multiple experiments with various rates, which yielded different re-
sults. Our dilation rates were chosen with the motivation of not severe changes in the data
view scale. Additionally, we added another branch in parallel with the average pooling
of individual feature maps and upscaling to capture global information in the particular
feature channel. This idea is inspired by ParseNet [51] approach.
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3.6. CoordConv

An interesting approach by encoding position coordinates to cope with the data
transition invariance problem was proposed by Liu et al. [5]. The authors suggested an
idea to boost the prediction performance by introducing additional information in feature
maps. CoordConv practices in convolutional neural networks have shown improvements in
prediction [52–54]. For two-dimensional information, the authors propose two additional
channels with a row index along the y-axis and a column index along the x-axis (Figure 6a).
In this research, CoordConv operation is joined with other feature maps before convolutional
operations (Figure 6b).
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4. Data
4.1. Image Capture Setup

Wooden furniture panels are scanned with a linear camera from an industrial conveyor.
The image data acquisition stand (laboratory) is shown in Figure 7. The main parts of
the visual inspection setup are a linear monochromatic camera with a scan width of up
to 6144 pixels, an industrial LED light source, and a conveyor. The camera is attached
1.1 m above the conveyor belt. Its capture area (line) collides with an industrial LED light
directional normal at the same line. Only the area around the camera scanning line is
illuminated at a particular moment. Furniture panels are moved by a conveyor belt driven
by the electrical motor. This motor is equipped with an encoder that triggers a scan of the
linear camera. The start of capturing is invoked by a separate laser sensor that gives a high
output signal when the furniture panel approaches the scanning area. The image capturing
continues until the laser sensor signal is high or until the set image height is scanned.
The mentioned links result in the system synchronization-camera scanning is triggered
according to conveyor rotation (start and continues line scan). The equipment used for
data grabbing is given in Table 1. The image capture setup is separate from the whole
production line. Before furniture panels reach the visual inspection conveyor, they are
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directed by correcting the alignment. The object on the conveyor is always perpendicular
to the scanning line. The physical orientation error does not exceed the 2◦ angle.
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Table 1. Capturing set components.

Component Model

Linear camera raL6144-16 gm-Basler racer [55]
Camera optics NIKON AF Nikkor 24 mm f/2.8D [56]

Encoder (on the motor) Autonics E40S6-1500-3-T-24 [57]
Industrial LED lamp EBAR-1125-WHI-7 TPL-Vision [58]

4.2. Wooden Furniture Panels Image Data

The size of furniture panels varies significantly. Depending on the manufactured
product, the dimensions of the part can be as small as 0.13 m × 0.4 m (front panel of a table
drawer) and as big as 0.9 m × 2.0 m (side of a cupboard) (Figure 8a–c). While there is a
big diversity between panels size, there is no need to constrain the image size to be the
same for all parts. Smaller furniture panels do not occupy the whole scanning area and it is
pointless to analyze the rest of the conveyor context (outside the furniture part boundaries).
As the information is not relevant for the analysis, the scanning range in width (as well as
height) is adjusted. The image dimensions used in this research vary in width from 1000 to
6144 and height from 900 to 12,384 pixels. The biggest (consisting of two joined frames)
image is 6144 × 12,384 pixels.

Additionally, to the furniture panels’ dimension and image size variety, there are
big alterations in production exterior texture and colors. A few samples can be seen
in Figure 8a—white, Figure 8b—wood pattern imitation, Figure 8c—black. For better
details extraction and enhancement, different exposure rates are set for image capture. It
ranges from 100 to 500 nanoseconds. In the case of white laminate on the furniture panel
(Figure 8a), a smaller value can be applied. Hole and cutouts made by drilling or milling
are easier to distinguish from the rest of a board context. Nonetheless, it gets complicated
on the other samples (Figure 8b,c). In the darker color furniture panels, it is harder to extract
details with a lower exposure rate. However, increasing this parameter strengthens other
non-desirable details, such as the visible bottom of the drilling (light and dark wooden
pattern), dust, prints on the furniture panel. In addition, manufacturing defects might
appear, the drilled hole might be covered with woodchips, or surface laminate might be
ripped up. Moreover, one side of the drilled hole might get more illuminated than the
other (Figure 8b,c), and also cutouts might be made in particular parts.
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Overall, there is a great change in conditions: furniture panels dimensions, appearance,
visual defects, and cutouts. These factors are taken into consideration for the unified drilled
hole segmentation solution.

4.3. Data Preparation

In this research, we utilized a variety of images. As is mentioned in the previous
subsection, the dimensions of data samples are changing severely. Further, most of the
pictures are extremely large—exceeding 72 megapixels. Moreover, only the board context
is useful for possible hole drilling segmentation. Taking into consideration the hardware
limitation with model resources in video memory on the graphical processing unit (GPU),
the dimensions of the data sample fed to the convolutional neural network cannot be
relatively large. We utilize the tiles technique when the whole image is cropped into desired
size regions with overlap. In this investigation, we divided the picture into 320 pixels width
and 320 pixels height regions with 80 pixels overlap. A few samples (image and label) are
shown in Figure 9. In this research, we also used not positioned data (not perpendicular to
camera scan line as it is mentioned in the previous subsection) because parts of training
data are grabbed by placing furniture panels on the conveyor by hand while skipping the
orientation adjusting step (Figure 9b).
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Before image crop to tiles, we augmented the picture by rotating by 90◦ four times,
resizing to 90% and 110% of original sample size, random brightness correction in the range
[−10;10] (considering image intensity range [0;255]), random Gaussian noise and gamma
correction. In this research, we used 189 images divided into 151 for training and 38 for
testing. The drilled hole area is relatively small compared with the rest of the background.
As the result, there might be not a lot of positive samples. We considered it randomly
(with a 50% possibility) taking out region tiles that do not contain marked hole pixels.
Moreover, regions with an average intensity of 5 and less there added only with a 10%
possibility. These regions are conveyor belt regions, that occupied a lot of area in the picture
with small furniture panel. By reducing negative samples, we increase the size of more
contextually essential data—regions with drilled holes. The augmented training dataset
contained 86,180 grayscale 320 × 320 pixels images and annotations. Labeled holes’ pixels
distribution through the image can be seen in Figure 10. Every place in the prepared data is
covered at least in 0.46% of samples and the maximum covered area is in 1.09% of samples.
More signified places of hole labels are given in Figure 10b,c. The most annotated regions
in the augmented dataset are near corners and along vertical and horizontal center lines.
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5. Experiments and Evaluation

The convolutional neural network architectures were written in Python (v3.7.9) using
Keras abstraction layer [59] on Tensorflow 2.4.0 [60] backend. Experiments were conducted
on desktop and laptop computers with parameters given in Table 2. Model training and
testing were done in Windows 10 environment. Models trained on the desktop computer.

Table 2. Computer parameters.

Computer CPU RAM GPU OS

Desktop AMD Ryzen 5 3600 16 GB Nvidia 2070S Windows 10
Laptop Intel i5 8300H 16 GB Nvidia 1050Ti Windows 10

In this paper, specific modification’s influence on prediction precision and computa-
tional performance are investigated. We trained and analyzed eight different convolutional
encoder–decoder architectures:

• UNet;
• UNet with a squeeze and excitation (UNet + SE);
• UNet with CoordConv (UNet + CoordConv);
• UNet with a squeeze and excitation and CoordConv (UNet + SE + CoordConv);
• UNet with residual connections and atrous spatial pyramid pooling (UNet + Res + ASPP);
• UNet with residual connections, atrous spatial pyramid pooling, and squeeze and

excitation (UNet + Res + ASPP + SE);
• UNet with residual connections, atrous spatial pyramid pooling, and CoordConv

(UNet + Res + ASPP + CoordConv);
• UNet with residual connection, atrous spatial pyramid pooling, squeeze and excitation,

and CoordConv (UNet + Res + ASPP + SE + CoordConv).

We chose a combined loss function consisting of cross-entropy (Equation (5)) and Dice
loss (Dice score—Equation (6), and Dice loss—Equation (7)). The first part, cross-entropy,
is quite often used loss function that describes the likelihood or probability distribution
between two sets. By default, it can be found in popular machine learning frameworks.
Cross-entropy loss is X value related to

.
X value in the following expression:

LCE = −∑N
i=1 xi· log

( .
xi
)

N
, (5)
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where LCE—cross-entropy loss, xi—i pixel value in label matrix X,
.
xi—i pixel value in

neural network prediction matrix
.
X, and N—a total number of pixels.

The second loss function is Dice [61] loss. Dice loss evaluates the similarity of two
datasets by overlap that is measured in the range from 0.0 to 1.0. In image segmentation,
Dice score describes the overlap of sets—label and prediction.

Dscore =

2·
∣∣∣∣X ∩ ·

X
∣∣∣∣

|X|+
∣∣∣∣ ·X∣∣∣∣ , (6)

LD = 1− Dscore, (7)

where Dscore—Dice score, X—label matrix,
.
X—predicted matrix, LD—Dice loss.

The loss function used in this research is expressed in the following Equation (8):

L = 0.5LD + 0.5LCE, (8)

where L—loss function, LD—Dice loss, LCE—cross-entropy loss.
Each convolutional neural network architecture trained for 15 epochs, by reducing

the learning rate by half every 3 epochs (scheduled reduction). Starting rate was set to be
0.001. Adam optimizer [62] was employed in the training process. The data mini-batch was
set to eight samples. The whole dataset (86,180 augmented regions images) is covered by
10,770 steps/iterations in every epoch. The model is tested at the end of every epoch. The
evaluation was conducted on 38 test images dividing them into 320 × 320 pixel regions
(same as training data) with 160 pixels overlap. The best performing solution (according to
Dice score) from every training has been evaluated with the Accuracy, Recall, Precision, Dice
score (same Formula (12) can be expressed as in Equation (6)) and IoU measures:

Accuracy =
TP + TN

TP + TN + FP + FN
, (9)

Recall =
TP

TP + FN
, (10)

Precision =
TP

TP + FP
, (11)

Dscore =
2 ∗ Precision ∗ Recall

Precision + Recall
, (12)

IoU =
GroundTruth ∩ Prediction
GroundTruth ∪ Prediction

, (13)

where TP is true positive (correspond to correct detection of pixels that belong to the
labeled defect area), TN is true negative (are the non-defective “background” pixels that
are correctly recognized by the detector), FP is false positive (are wrongly detected defect
pixels), FN is false negative (are the defect pixels that have been undetected by the detector),
GroundTruth are labeled image pixels. The Precision measure indicates the proportion of
false alarms; the Recall refers to the proportion of not detected defect pixels; and Dscore is
Dice score or harmonic mean of Precision and Recall.

6. Results
6.1. Conventional Image Processing Methods

In contrast to data-driven approaches using a convolutional encoder–decoder, we
also compared traditional image processing methods results on drilled furniture data.
We tested furniture board images with different surface patterns with Sobel filter (3 × 3
along X and Y axes), Laplace filter, and Canny edge detector. Visual results are given
in Figure 11. It can be seen that filtering by local intensity tends to extract the edges
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(higher difference in neighbor pixel values). Sobel filter (Figure 11a2–d2) segments the
boundaries the best among all compared conventional methods although it gets harder
to distinguish the changes when the surface is complicated (Figure 11b2). Further, the
Sobel filter is prone to reacting to the surface patterns even when these are insignificantly
changing in surface colors. Moreover, in the case where drilled hole (blind) bottom is
illuminated (Figure 11a2,d2), the transitions between wood chips are signified even more.
The images processed with the Laplace filter (Figure 11a4–d4) give weaker features of
edges after drilling and milling. It gets hard to distinguish the boundaries in the images
shown in Figure 11a4,d4. Canny edge detector produces visually defined hole drilling
edges, although some of them are not entirely closed or inside the drilling method tends to
extract the pattern differences in wood chips of fiberboard (Figure 11a6,d6). Sobel, Laplace,
and Canny edge filter segmented the milling gap shown in Figure 11c0. All conventional
methods signify the differences in any pixel intensity changes. They do not carry out
the ability to represent higher-level information or needs an additional step to perform
data filtering. Moreover, methods tend to react to the pattern and require post-processing
to finalize output prediction. We thresholded 50% of max processed (with filter) image
intensity and clustered [63] edges points with a max distance of 5 pixels between neighbor
pixels. Each cluster was closed with a convex hull [64], because edges tend to be open.
Moreover, too small (5 pixels area) and too big (more than 20% of image 320 × 320 size)
were filtered out. Post-processed results of Sobel filter are shown in Figure 11a3–d3, Laplace
filter in Figure 11a5–d5, and Canny edge detector in Figure 11a7–d7. Even after edges
contours clusterization, and additional filters, it is hard to define the drilling boundaries.
The drilled hole shown in Figure 11b0 is being not fully extracted by all image processing
algorithms and Laplace filter and Canny edge detector algorithm is tends to react to surface
noise in Figure 11a5,a7 respectively. All methods extracted cutout from Figure 11c0 and
board edge from Figure 11b0,c0. Due to the maximum size contour, filter edges from
Figure 11a0,d0 are filtered out. The performance results of discussed image processing
algorithms are given in Table 3. Considering a small hole area in the image (as shown in
data overlay maps in the image in Figure 10), algorithms yielded high accuracy because the
most of background predicted correctly. However, Precision, IoU, and Dice scores reveal that
the performance of drilling segmentation is not as high. Along with investigated image
processing algorithms, it can be seen that the Canny edge detected performs best.

The edge cases where conventional methods fail to deliver satisfactory results can
be seen in cases with a darker board surface pattern (Figure 12d–i filtered and clustered).
Comparing with U-Net convolutional neural networks produced results (Figure 12c), it
can be seen the differences between the data-driven and traditional methods capabilities in
data dynamics. Even the shallow baseline U-Net model architecture captures the context
with lightning variations (taking into consideration the precision around drilling edges).

Table 3. Image processing methods performance results.

Method Accuracy Recall Precision IoU Dice

Sobel filter 0.996943 0.919077 0.637585 0.580435 0.590472
Laplace filter 0.959769 0.931860 0.651680 0.607032 0.614552
Canny edge

detector 0.934371 0.978507 0.693433 0.677103 0.685342
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6.2. Convolutional Neural Network Results

Each convolutional neural network architecture’s best-performing weights are picked
according to the best Dice score on the test dataset. The results are given in Table 4. Any
additional block to “baseline” UNet increased most of the overall results. A minimal
0.8504% increase in the Dice score can be seen by only enhancing the model with the
squeeze and excitation blocks (UNet + SE). A more noticeable score increase can be seen by
any other (CoordConv, Res + ASPP, etc.) addition to the original UNet model. The biggest
Dice score is produced by encoder-decoder architecture with residual connections, atrous
spatial pyramid pooling module, squeeze and excitation blocks (UNet + Res + ASPP + SE).
It surpasses “baseline” by 3.3905% (in Dice score). Moreover, the particular solution yielded
the highest Recall score. The top result in precision is produced by UNet with squeeze and
excitation and CoordConv (UNet + SE + CoordConv2D). The same solution gave the highest
intersection over union (IoU) score. Comprehensively, the accuracy measurement in this
data case is not relevant, because it does not reflect the actual prediction performance
accurately properly label-wise. The hole annotation is small and it takes a relatively small
area compared with the background. The true negatives (TN is the right prediction on the
background) make the biggest influence area-wise on the overall Accuracy, while the true
positive (TP is right-predicted drilled hole pixels) might not make a significant impact on
the score. This can also be seen in Table 4, where the differences in Accuracy measurements
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along models are indistinguishable and severely saturated due to precise predictions along
most of the image context.

Table 4. Each model’s best-performing weights results.

CNN Architecture Accuracy Recall Precision IoU Dice

UNet 0.999485 0.959081 0.958613 0.955272 0.944966
UNet + SE 0.998978 0.936343 0.978481 0.979132 0.953470

UNet + CoordConv2D 0.999390 0.961770 0.975089 0.973536 0.965975
UNet + SE + CoordConv2D 0.999102 0.949620 0.983831 0.980100 0.962330

UNet + Res + ASPP 0.999475 0.959433 0.973082 0.970765 0.961194
UNet + Res + ASPP + SE 0.999681 0.982027 0.977736 0.975958 0.978871

UNet + Res + ASPP + CoordConv2D 0.999548 0.967609 0.977881 0.974820 0.969476
UNet + Res + ASPP + SE + CoordConv2D 0.999414 0.962808 0.977196 0.974946 0.968346

Each model’s output on four different test set samples is given in Figure 13. We show
results on the same data samples processed by conventional image processing methods
(Figure 11). All architectures performing well on more common drilling samples, such
as the left side of Figure 13a0 or the left side of 13c0. Moreover, all models are able
to detect holes and separate them from another furniture panel processing, the milling
cutout (Figure 13c0), despite the same wood chip pattern below the surface lamination. In
drilling segmentation, even baseline UNet delivers visually appropriate results. Although,
according to Precision (Table 4), the architecture yields more false-alarm predictions. The
difference between convolutional neural networks might be more significant around the
drilled hole edges and in more arduous samples. Figure 13a0,b0 have wider drilled
holes. Additionally, there are drilled holes sides that are contrary illuminated—the lower
part is more saturated. Sample in Figure 13a0 is handled better; however, UNet + SE +
CoordConv2D is not as capable to segment the right side of the drilled hole (Figure 13a5).
The same solution produces a small gap in Figure 13b5. Slight variations in prediction
output can be seen between UNet + SE (Figure 13b3), UNet + RES + ASPP (Figure 13b6)
and UNet + RES + ASPP + CoordConv (Figure 13b8) around the lower saturated hole edge—
dilated or eroded edge. A rarer case with shallow drilling is given in Figure 13d0. A smaller
diameter hole is entirely lit up and also the bottom part of the drilling might be similar to
the top lamination (color- and texture-wise). Models enhanced with residual connections
and atrous spatial pyramid pooling are able to capture the bigger context of the drilling.
Interestingly enough, even “baseline” UNet segments a similar area of the hole. However,
mentioned model’s drawback can be highlighted on the same image (Figure 13d0) centered
drilling. In Figure 13d2, the “visual roundness” of the extraction is not as good as from
models with RES and ASPP. However, architecture configuration CoordConv and squeeze
and excitation modules (Figure 13d5) yields even worse output.
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network predictions (a2–d9).

Despite the models’ output precision benchmarks and visual evaluation, the computa-
tional performance aspect needs to be taken into consideration. Prediction speed is also
critical in the best solution selection because the drilling visual analysis time is limited.
The tradeoff between the speed and precision needs to be taken into comparison. While
there are a lot of enhancements to the “baseline” UNet, there can be a noticeable increase
in parameters. As it is given in Figure 14, solutions with residual connections and atrous
spatial pyramid pooling modules double the number of neural network parameters. The
minimal difference can be seen in architectures with CoordConv and slightly bigger in
modifications with the squeeze and excitation blocks.
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However, the number of parameters does not directly correlate with computational
speed. As it can be seen in Figure 15, the architectures with the biggest number of param-
eters (enhanced with residual connections and atrous spatial pyramid pooling) are not
increasing prediction time significantly.
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Figure 15. Each convolutional encoder–decoder performance prediction speed on Nvidia GTX1050Ti
mobile (laptop) and Nvidia RTX2070 Super (desktop) GPUs. Tensorflow 2.4.0 prebuild from Python
PIP package manager is used. Each time is averaged from 1000 forward image passes through the
individual model.

Comparing UNet and UNet + RES + ASPP computational speed, there is only a 7.61%
increase in the system with Nvidia RTX 2070 Super and 8.33% in Nvidia GTX 1050 Ti laptop
GPU. Even smaller prediction time increases can be seen in solution with a squeeze and
excitation blocks (UNet + SE)—2.66% and 5.20% in desktop and laptop GPUs, respectively.
In this particular case, computational speed decrease is more noticeable in mobile GTX
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1050Ti. The biggest prediction time bump is noticeable in every solution with CoordConv—
33.26% and 40.10%, respectively, in desktop and laptop machines. However, it is not a
native Tensorflow 2.4.0 library layer and the results might be improved. Further, the speed
might vary on implementation. The best-performing solution according to Dice score (UNet
+ RES + ASPP + SE) takes 12.59% and 12.73% more time or 3.51 and 7.88 milliseconds longer,
respectively, in investigated desktop and laptop computers. The time for multiple image
processing can be reduced by passing multiple images at once. For example, processing
of input consisting of 16 images (shape (16, 320, 320, 1)) took 148.11ms on RTX2070S with
UNet + Res + ASPP + SE model.

7. Discussion

In this work, we proposed a computer-vision-based approach for drilled blind and
through-hole segmentation in wood chip furniture panels using convolutional neural
networks. We also conducted experiments with Sobel, Laplace filters and Canny edge
detector for comparison. The conventional image processing methods tend to segment
simple samples; however, even with post-processing and edges filtering it was hard to
fully distinguish the edges of the drilling in complicated cases. Moreover, methods reacted
to the intensity differences on the board edges and complicated board surfaces. The best
performing solution with image processing—Canny edge detector produced a 0.685342
Dice score, which significantly fell behind the baseline UNet solution with 0.944966.

On the samples containing a large variety of different surface lamination textures,
milling cuts, and other faults appearing in the production, deep-learning-based models
performed well. It was shown that despite the complexity in images, even a lightweight
UNet model is able to generalize and segment drilled holes. This research revealed that
more advanced modules and layers increased the model’s segmentation accuracy. Differ-
ences might be more distinguishable in more complicated samples. As the main subject
of the investigation, UNet architecture was enhanced with squeeze and excitation block,
CoordConv layers, residual connections, and atrous spatial pyramid pooling modules and
inspected in segmentation and computational performance. All proposed model architec-
tures with modifications yield results with a higher Dice score, compared with “baseline”
architecture. Neural network models induced with squeeze and excitation (UNet + SE)
raised Dice results by the minimum 0.8504%, while significantly better composition with
CoordConv (UNet + CoordConv) boosted by 2.1009%. However, the combination of these two
mentioned modules with “baseline” UNet (UNet + SE + CoordConv) did not give a better
solution. From the images, it can be seen that it outputs significantly worse results in more
rare cases. The best-proposed neural network configuration employed in this research was
UNet with residual connection, atrous spatial pyramid pooling, and squeeze and excitation
blocks (UNet + RES + ASPP + SE). It increased Dice score by 3.3905% (comparing with
“baseline” UNet), scoring 0.978871 on 320 × 320 pixel image in 31.38 and 69.8 milliseconds
(taking 3.51 and 7.88 milliseconds more than “baseline” solution) on desktop RTX 2070S
and laptop GTX 1050Ti. Enhancing this architecture with CoordConv resulted in poorer
segmentation. Moreover, in all cases, the mentioned layer resulted in a significantly bigger
computation time −33.26% and 40.10% in desktop and laptop systems, respectively, com-
paring to the base model. On the other hand, it was the custom CoordConv implementation
that was not a part of the deep learning framework. The overall time of analysis can be
reduced by passing bigger input formed from multiple images to the model. The input of
16 images (16, 320, 320, 1) took 148.11ms to process and the input of one image (1, 320, 320,
1) took 31.38ms on RTX2070S with UNet + RES + ASPP + SE model.

The proposed neural network model or modifications can be engaged in problems
such as remote image segmentation [65,66], medicine [67,68], faults detection [69,70],
and others.
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8. Integration and Future Work

Drilled hole segmentation from the whole furniture panel can be a huge overhead for
inspection timewise, taking into consideration huge image dimensions (the maximum size
of the image is 6144 × 12384 pixels). Moreover, not all the panel’s area needs to be drilled.
Therefore, knowing the place in the panel where drilling should be, only certain regions
might be fed into the drilled hole segmentation neural network. Identified reference point
in all particular model furniture panels can be assigned as coordinates system. From this
point, all the drilling, according to the furniture template, needs to be located in the same
places. The top-left point of the panel can be taken as the reference for the coordinate
system. By extracting the panel from the conveyor belt and calculating the intersection
between the top and the left side (panel’s edge) extrapolated lines, the coordinate system’s
start could be found. Moreover, the part rotation can be evaluated from found edge lines.
The idea of hole region search is shown in Figure 16.
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Figure 16. Furniture panel reference point and coordinate systems. The rotation of the object is
evaluated and the coordinates system is turned accordingly. The hole drilling segmentation region is
offset from the reference point by the given distance.

The quality of the segmented drilled hole can be determined based on the Dice score
or area differences between the template board and processed board. Further, the drilled
hole position, according to its mass center point, can be evaluated. The drilled hole center
point distance from the reference system start should be the same or diverge with the
allowed error.

Real inspection system implementation is given in Figure 17. A camera is placed
near the ground and the LED light source is directed upwards (towards camera sensors
direction). It is a different configuration than given in Figure 7. The camera (Figure 17a)
is placed inside an additional metal safety cover with transparent windows that is blown
by compressed air to remove the dust. Scanning is made through the gap between two
conveyors. The camera is triggered by the encoder mounted on the roller that presses
down the furniture board (Figure 17b), preventing it from shaking. Further, the rollers are
covered with rubber to provide the grip with the board for precise movement detection
(with encoder) that gives proper camera trigger. The whole image analysis system is
covered to block outside light interference with separate analysis system lightning.
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Figure 17. Image capture setup: (a) vision inspection box, (b) board scanning place. The camera is triggered with an encoder
that is rotated by a roller that pushes down the furniture board.

Visual wooden furniture panels surface inspection might take a different kind of
algorithm than the proposed drilled holes segmentation method. However, the drilling
regions should not be taken into consideration with regular (without drilling) areas in the
furniture panel surface, or the drilled holes might be taken out from these regions and the
rest of the region area could be considered as a regular surface and processed with surface
defects detection algorithms.

In future work, we are considering utilizing a more advanced algorithm for surface
defect inspection and edge inspection. The defects, such as faulty gluing and deficiency
in paint coverage, appear in the lamination process. Moreover, surface damages might
appear in any stage of manufacturing. Therefore, the inspection can be made from the
same visual data.
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