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A B S T R A C T   

Objective: A model for simulating motion-induced artifacts in the wrist photoplethysmogram (PPG) is proposed 
for the purpose to improve realism of PPG models. 
Methods: The database of day-long PPGs, acquired during cardiac rehabilitation, is used to extract artifact 
characteristics, which further serve as a basis for modeling artifacts in simulated PPGs with life-threatening 
arrhythmias. 
Results: Depending on the recording, 14–49% of the PPG duration is corrupted by artifacts, mostly due to device 
displacement, forearm and hand motion. The artifact type influence on the performance of a life-threatening 
arrhythmia detector shows that the sensitivity drops by 45–48% for extreme bradycardia and by 13–32% for 
ventricular tachycardia. Poor contact causes 2–4 times more false alarms of ventricular tachycardia compared to 
the other artifact types under investigation. 
Conclusion: Simulation of realistic artifacts encountered in activities of daily living allows to comprehensively 
investigate arrhythmia detectors and understand the artifact types most negatively affecting detection 
performance. 
Significance: The proposed PPG artifact model is of importance for developing and testing artifact-robust 
arrhythmia detectors.   

1. Introduction 

Sudden cardiac death accounts for 15–20% of all deaths [1]. In 
general, ventricular tachycardia, evolving to ventricular fibrillation, 
often precedes sudden cardiac death [2]. Also, a recent research shows 
that extreme bradycardia can be a common cause in certain populations, 
e.g., in patients with chronic kidney disease [3]. Patients at risk of 
sudden cardiac death due to life-threatening arrhythmias could poten
tially benefit from implantation of a cardiac pacemaker or a cardioverter 
defibrillator [4]. However, to initiate a proper treatment and careful 
supervision of these patients, monitoring for the detection of initial 
arrhythmia episodes is needed. 

The existing electrocardiogram (ECG) equipment for noninvasive 
arrhythmia monitoring is uncomfortable to wear for extended periods of 
time because of frequent skin irritation, difficulty of use, and distur
bance to patient’s daily activities [5]. Even ECG patch monitors, praised 
for high patient compliance, are limited to 14-day recording [6]. 
Therefore, smartwatches with embedded optical sensors are being 

considered as convenient means to initial cardiac arrhythmia detection, 
which may precede and instigate comprehensive medical examination 
and timely clinical intervention [7,8]. Recently, detection of atrial 
fibrillation in a photoplethysmogram (PPG) has demonstrated encour
aging results and received wide-scale research attention [9–13]. Likely, 
the tremendous potential of smartwatches capable of detecting atrial 
fibrillation will spawn the development of other type arrhythmia de
tectors. However, thus far only a single attempt to detect life-threatening 
arrhythmias in a PPG has been published [14]. 

Susceptibility to artifacts hinders the application of a wrist PPG in 
activities of daily living since artifacts often result in missed arrhythmia 
episodes and false alarms. Efforts have been made to reduce motion 
artifacts using accelerometer and gyroscope signals [15–21], whereas 
finer hand motions, which do not reflect in biomechanical data, can be 
dealt by using different PPG wavelengths and a piezoelectric transducer 
[22–24]. Signal processing techniques have also been invoked for PPG 
quality estimation [25] and motion artifact reduction [26]. Yet, none of 
these approaches to artifact suppression have been applied for cardiac 
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arrhythmia detection. 
A common way to deal with artifact-corrupted PPGs, and thus 

improve the reliability of arrhythmia detectors, is to exclude segments of 
poor signal quality [10,27,28] as well as accelerometer-identified mo
tion [11–13,27–30]. Although segment removal conceals the true 
detection performance, it is not a major problem in case of atrial 
fibrillation which often lasts for hours without being dangerous [31]. In 
contrast, even short episodes of extreme bradycardia and ventricular 
tachycardia can be life-threatening requiring immediate intervention. 
Moreover, identification of target patients for collection of signal data
bases is markedly facilitated when dealing with an often long-lasting 
arrhythmia, such as atrial fibrillation, thus making detector develop
ment and validation less complicated. 

Detectors are usually tested in a controlled environment, thus of
fering incomplete insight into the feasibility to detect arrhythmias in 
free-living activities [32]. Accordingly, such algorithms cannot claim 
robustness without considering artifact influence on the performance. 
However, to analyze the detector performance in long-term PPGs, ar
rhythmias must be annotated, which is time-consuming and costly. 
Another impeding factor is that annotations must rely on a simulta
neously acquired ECG due to the absence of guidelines for a PPG-based 
arrhythmia diagnosis. Apparently, all these restrictions have a large 
impact on the lack of available databases, containing PPGs with anno
tated arrhythmia episodes. The problem can be mitigated by developing 
and testing arrhythmia detectors on modeled PPGs, thanks to the 
available model that allows to convert annotated ECG databases to PPG 
equivalents [33,34]. Unfortunately, only a stationary artifact compo
nent can be simulated by the model without considering various artifact 
types which may have different influence on the detection performance. 

To build a realistic PPG artifact model, quantitative characteristics, 
such as artifact duration, amplitude, and spectral content, have to be 
accounted for [35,36]. In this study, different-type artifacts are quanti
tatively assessed from ambulatory PPGs and their characteristics are 
invoked to develop an artifact model.1 The paper is organized as follows. 
Section 2 describes artifact identification, extraction, classification, and 
characterization. Section 3 introduces artifact modeling. Section 4 de
scribes databases used for model development and for testing a 
life-threatening arrhythmia detector. Section 5 presents the quantitative 
artifact analysis as well as the results on the model application to testing 
detector performance. The paper finishes with a discussion of the results. 

2. Artifact analysis 

Artifact analysis is implemented in four steps: identification, 
extraction, classification, and characterization, see Fig. 1. Artifact- 
corrupted PPG segments are identified relying on a signal quality 
index (SQI) proposed in [10]. Then, the artifacts are extracted by 
canceling the modeled pulsatile PPG component, and classified into four 
types characterized by a transition probability, an artifact duration, a 
spectral slope, and a normalized root mean square (RMS) amplitude. 

2.1. Artifact identification 

Artifacts in a PPG are identified using an SQI on a pulse-to-pulse basis 
[10]. Before applying the SQI, the PPG is filtered with a low-pass infinite 
impulse response filter with a cut-off frequency of 6 Hz. Baseline wander 
is removed using a fifth-order least mean squares adaptive filter. The 
occurrence times of the PPG pulses are determined using a peak detector 
similar to the one described in [37]. 

The signal quality of the kth pulse xk(n), k = 1, …, is assessed by 
correlating it to a template pulse gk(n) at different time shifts θk, using 
the sample correlation coefficient. Before correlating, xk(n) and gk(n) are 

standardized, and gk(n) is resampled to the width of xk(n). The signal 
quality is considered acceptable when the maximum correlation coef
ficient ̂cmax,k exceeds the threshold ηc, i.e., the binary SQI sk is defined by 

sk =

{
1, ĉmax,k ≥ ηc,

0, otherwise. (1) 

The initial template pulse g1(n) is a predefined PPG pulse h(n) with a 
dicrotic notch [38]. The subsequent templates gk+1(n) are determined by 
the preceding pulse xk(n) if ĉmax,k exceeds the threshold ξc and θ̂k is 
contained in the time interval [θmin, θmax]; if not, gk+1(n) is reinitialized by 
h(n), i.e., 

gk+1(n) =
{

xk(n), ĉmax,k ≥ ξc & θ̂k ∈ [θmin, θmax],

h(n), otherwise,
(2)  

where ξc is set to 0.95 and [θmin, θmax] are set to [ − 0.05,0.05] s. The 
threshold ηc is set to 0.7 based on the findings of the previous study, in 
which the PPG pulses with maximum correlation coefficient ̂cmax,k below 
0.7 were considered to be of poor quality [10]. 

By inspecting PPGs acquired in free-living activities, high-amplitude 
artifacts similar to PPG pulses, which exceed the threshold ηc = 0.7, 
have been observed. Taking this into account, pulses with a peak-to- 
peak amplitude higher than 95th percentile of all pulses in the entire 
recording, also satisfying ĉmax,k < 0.9, are considered of poor quality. 
Adjacent poor-quality pulses, as well as those separated by a single good- 
quality pulse, are assumed to constitute a single continuous artifact- 
corrupted PPG segment. 

2.2. Artifact extraction 

An unprocessed PPG is a subject to artifact extraction, only with a 
slow-changing component below 0.5 Hz eliminated. Then, it is assumed 
that the remaining PPG consists of heart contraction-related pulsations 
and artifacts. An artifact-free pulsatile component is generated using a 
PPG simulation model described in [33,34], which uses RR intervals of 
the synchronously acquired ECG as an input. The lth artifact νl(n), l = 1,
…, is extracted by canceling the modeled component from the PPG using 
a least-mean squares adaptive filter. It should be noted that artifacts 
cannot be extracted when ECG of sufficient quality for obtaining RR 
intervals is unavailable. 

2.3. Artifact classification 

The extracted artifacts are classified into four types: device 
displacement, forearm motion, hand motion, and poor contact (Fig. 2). 
The classification of the lth artifact νl(n) is based on three features ob
tained from a synchronously acquired accelerometer signal and the 
artifact itself. 

The mean absolute acceleration ul, quantified from the accelerometer 
signal, is used to identify device displacement and forearm motion, and 
is defined by 

ul =
1
Nl

∑Nl

n=1

( ⃒
⃒ax(n)| + |ay(n)| + |az(n)|

)
, (3)  

where Nl determines the number of samples in the lth artifact, whereas 
ax, ay, az represent a high-pass filtered accelerometer signal in g units 
from x, y, and z directions. 

The adjusted amplitude vl represents the largest amplitude difference 
within the artifact, and is defined by 

vl =
max1<n<Nl νl(n) − min1<n<Nl νl(n)

iqrν
, (4)  

where iqrν is the interquartile range of amplitude values in all extracted 
artifacts over the entire recording. 

1 Note: the code for test signal generation will be made available at PhysioNet 
upon manuscript publication. 
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The spectral flatness wl expresses the resemblance of artifact spectral 
properties to those of white noise, and is calculated as a ratio between 
geometric and arithmetic means of the power spectral density (PSD) of 
the extracted artifact 

wl =

exp

(

1
M

∑M− 1
m=0 lnP̂l(m)

)

1
M

∑M− 1
m=0 P̂l(m)

, (5)  

where P̂l(m) is a non-parametric PSD estimate at each frequency bin m, 
and M is the number of frequency bins. 

Artifacts are classified by comparing ul, vl, and wl with the predefined 
thresholds ηu, ηv, and ηw. The type of the artifact νl(n) is determined 
according to the following rules: 

device displacement, if ul > ηu & vl > ηv,

forearm motion, if ul > ηu & vl ≤ ηv,

hand motion, if ul ≤ ηu & wl ≤ ηw,

poor contact, if ul ≤ ηu & wl > ηw.

Given that even very brief artifacts, lasting just few seconds, are also 
likely, the minimal artifact duration dmin has to be determined to in
crease feature robustness. 

2.4. Artifact characterization 

The transition probability p0i from an artifact-free interval to an arti
fact is estimated as 

p̂0i =
Ri

∑4
i=1Ri

, (6)  

where Ri is the number of artifacts classified as a type i. The index i equal 
to 1 indicates device displacement, 2 – forearm motion, 3 – hand motion, 
and 4 – poor contact. 

The duration di of the extracted artifacts can be described by an 
exponential distribution 

f (di|λi) =

{
λie− λidi , di ≥ 0,

0, di < 0, (7)  

where λi is the rate parameter equal to the reciprocal of the mean. An 
estimate of the rate parameter λ̂i is obtained using maximum likelihood 
estimation. The duration of artifact-free intervals is described in the 
same way with an estimate of the rate parameter denoted by λ̂0. 

The spectral slope ρi, which depends on artifact spectral characteris
tics, is estimated from the average PSD calculated as 

Pi(m) =
10
∑Ri

ri=1Nri log10 P̂ri (m)
∑Ri

ri=1Nri

, (8)  

where P̂ri (m) is a non-parametric PSD estimate of the rth standardized 
artifact of a type i, whereas Nri is the number of samples in the artifact. 
Then, the spectral slope ρ̂i is estimated in each recording by fitting a line 
to Pi(m) within a frequency range from 0.5 to 50 Hz. The spectral slope 
ρ̂i can be described by a Gaussian distribution with mean μ̂i and stan
dard deviation σ̂ i. 

The normalized RMS amplitude zi of the type i artifact is estimated in 1- 
s segments as the RMS of the extracted artifact normalized by the RMS of 
the pulsatile component at the output of the adaptive filter described in 
Section 2.2. The normalized RMS amplitude zi can be described by a 
gamma distribution with estimated shape α̂i and rate β̂ i parameters. 

3. Artifact modeling 

The transitions between artifact-free intervals and artifacts are 
modeled by a five-state continuous-time Markov chain, where the state 
0 represents an artifact-free interval and the states from 1 to 4 corre
spond to ith-type artifacts. The transition from the artifact-free interval 
to all four artifact types is possible; however, only the transition to the 
artifact-free interval is allowed from the artifact. The generator matrix of 
the described Markov process is defined by 

Q =

⎡

⎢
⎢
⎢
⎢
⎣

− λ0 λ0p01 λ0p02 λ0p03 λ0p04
λ1 − λ1 0 0 0
λ2 0 − λ2 0 0
λ3 0 0 − λ3 0
λ4 0 0 0 − λ4

⎤

⎥
⎥
⎥
⎥
⎦

(9) 

The type i artifact is generated by filtering white noise with a 250th 
order finite impulse response filter designed so that its arbitrary shape 
frequency response is determined by the spectral slope taken from the 
Gaussian distribution with the parameters μ̂i and σ̂ i. The amplitude of 
the generated artifact is scaled by the normalized RMS amplitude taken 
from the gamma distribution with the parameters α̂ i and β̂ i. Finally, the 
connected signal of artifacts and artifact-free intervals is added to the 
modeled pulsatile component to produce a PPG with life-threatening 
arrhythmias and artifacts as shown Fig. 3. 

Fig. 1. Block diagram of artifact analysis consisting of artifact identification, extraction, classification, and characterization.  

Fig. 2. Examples of common artifacts encountered in the wrist PPG: (a) device 
displacement, (b) forearm motion, (c) hand motion, and (d) poor contact. The 
modeled pulsatile PPG component is canceled. 
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4. Databases 

Three databases were used in this work. The standardized artifact 
database, created by performing artifact-inducing activities, was 
employed to determine the thresholds for artifact classification into four 
distinct types. The ambulatory database, collected at cardiac rehabili
tation hospital, was used to analyze artifact characteristics. The ECG 
arrhythmia database served as a basis to simulate equivalent PPGs with 
life-threatening arrhythmia episodes and demonstrate the application of 
the artifact model to testing an arrhythmia detector. 

4.1. Standardized artifact database 

The standardized artifact database consists of signals from ten 
healthy participants (five females), with age 27.1 ± 2.3 years and body- 
mass index 22.3 ± 2.5kg/m2, gathered at the Biomedical Engineering 
Institute (Kaunas, Lithuania) on a voluntary basis. The database was 
collected using a wrist-worn device capable of synchronously acquiring 
PPG (green light-emitting diode) and three-axis accelerometer signals, 
sampled at 100 Hz, and a single-lead ECG, sampled at 500 Hz [39]. The 
database was collected according to the following protocol in which the 
participants had to [23]:  

1) remain still for 1 min with the properly attached wrist-worn device;  
2) perform four different periodic hand motions (index finger tapping, 

fist opening and closing, radial and ulnar deviation, wrist extension 
and flexion) for 50 s with 10-s rest period in between;  

3) perform three different periodic forearm motions (horizontal hand 
waving, vertical hand shaking, running arm swing) for 50 s with 10 s 
of rest in between and 50 s of intensive haphazard forearm motion 
with 10 s of rest;  

4) move the device intentionally with the other hand for 1 min to 
imitate device displacement;  

5) remain still for 1 min with the loosely attached device to imitate poor 
contact. 

The periodic motions were performed at a frequency of 0.5 Hz using a 
metronome. 

Twenty-five 2-s artifacts of each type were extracted for each 
participant resulting in a balanced dataset containing 1000 artifacts in 
total. To investigate the influence of the minimal artifact duration dmin 

on the classification performance, two additional datasets of 4-s and 6-s 
artifacts were also constructed. The classification performance was 
assessed by accuracy defined as the number of correctly identified ar
tifacts divided by the total number of artifacts [40]. 

4.2. Ambulatory database 

The ambulatory database was collected at Kulautuva Rehabilitation 
Hospital of Kaunas Clinics (Kaunas, Lithuania), with approval by the 
Kaunas Region Biomedical Research Ethics Committee (No. BE-2-20). 
Thirty-two patients (six females), 70.5 ± 9.4 years old, with body-mass 
index 28.0 ± 5.2kg/m2, were enrolled. The total monitoring time was 
686.1 h (21.4 ± 3.4 h per patient). The database was gathered during 
cardiac rehabilitation after myocardial infarction, thus the patients were 
physically active for several hours during the monitoring period, 
including participation in guided workout sessions. 

4.3. Arrhythmia database 

The developed PPG artifact model was applied to illustrate the in
fluence of artifacts on the detection of life-threatening arrhythmias. 
ECGs from the PhysioNet/CinC Challenge 2015 database training set 
were used to simulate PPGs with extreme bradycardia and ventricular 
tachycardia [41]. Only those recordings with underlying sinus rhythm 
and the episodes of extreme bradycardia and ventricular tachycardia, 
with at least one ECG lead eligible for R-peak detection, were included. 
The subset consists of 16 recordings with extreme bradycardia and 39 
with ventricular tachycardia, see Table 1. 

The recordings of the database were originally reviewed by expert 
annotators who confirmed that each recording contains episodes of life- 
threatening arrhythmia without providing details on the onset and end. 
Therefore, the boundaries of arrhythmia episodes were manually iden
tified according to the following rules: An episode was annotated as 
extreme bradycardia if heart rate dropped below 40 bpm for at least 5 
consecutive beats, and as ventricular tachycardia if heart rate exceeded 
120 bpm for at least 5 consecutive beats. Episodes were considered as 
individual if separated by at least 3 beats with no arrhythmia. 

Taking into account that the duration of the PhysioNet/CinC Chal
lenge 2015 recordings is only 5 min, which is too short to properly 
imitate arrhythmia detection in long-term recordings, the RR intervals 
were replicated and concatenated to form a 1-h-long RR interval series. 
By using the series as an input to the model described in [33,34], a 1-h 
pulsatile PPG component was generated and contaminated with artifacts 
of the desired properties. A Dawber’s pulse Type 3 was chosen for 
simulating PPGs since it is a predominant pulse type among older in
dividuals [38]. In total, the dataset consists of 227 episodes of extreme 
bradycardia with median length of 5 beats (ranging from 5 to 19) and 
492 episodes of ventricular tachycardia with median length of 7 beats 
(ranging from 5 to 25). 

The application of the artifact model to testing a life-threatening 
arrhythmia detector was demonstrated by implementing a basic 
threshold-based detector [14]. The same definitions of the 
life-threatening arrhythmias were invoked for the detection as described 
above. The detection performance was investigated in terms of sensi
tivity, defined as the number of correctly detected arrhythmia episodes 
divided by the total number of arrhythmia episodes, as well as, the 
number of false alarms per hour, and positive predictive value, defined 
as the number of correctly detected arrhythmia episodes divided by the 

Fig. 3. Block diagram for modeling of the PPG signal with life-threatening 
arrhythmias and artifacts. 

Table 1 
The subset of the selected recordings from the PhysioNet/CinC Challenge 2015 
database containing extreme bradycardia and ventricular tachycardia.  

Extreme bradycardia Ventricular tachycardia 

b220s b515l v131l v309l v632s v733l v803l 
b227l b516s v132s v368s v635l v748s v806s 
b228s b517l v206s v369l v648s v758s v815l 
b229l b656s v253l v404s v696s v769l v818s 
b265l b764s v254s v471l v701l v772s v828s 
b299l b794s v255l v574s v714s v773l v831l 
b455l b838s v275l v628s v726s v788s v837l 
b456s b839l v290s v630s v729l v797l   
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total number of detected episodes. 

5. Results 

5.1. Parameter settings for artifact classification 

Fig. 4 shows artifact classification accuracy as a function of threshold 
values. When the minimal artifact duration dmin is set to either 4 s or 6 s, 
similar classification accuracy is obtained, however, slightly better for 6 
s. As a trade-off, 4-s minimal artifact duration is chosen to ensure that 
short artifacts are not overlooked. For dmin = 4 s, the highest classifica
tion accuracy is obtained for the threshold values ηu = 0.08 g, ηv = 11 
and ηw = 0.015. This threshold set yields the average classification ac
curacy of 0.98. 

5.2. Artifact characteristics in the ambulatory database 

Analysis of the ambulatory database shows that 26.8% of the total 
PPG duration is artifact-corrupted, covering from 13.6% to 48.6% 
depending on the recording (Fig. 5). Most of the artifacts were identified 
as device displacement, forearm motion, and hand motion, corrupting 
6.4%, 6.2%, and 6.0%, whereas only 1.8% was assigned to poor contact. 
In addition, 6.4% of the PPG duration was flagged by the SQI as con
taining artifacts, but was not attributed to any type due to the artifact 
duration shorter than 4 s or unavailability of a good-quality reference 
ECG. 

The percentage of the artifact-corrupted PPG within the day is given 
in Fig. 6. On average, at least a quarter of the PPG duration contains 
artifacts from 06:00 to 22:00 and drops markedly outside this period, 
which coincides well with the most active period of the day. Based on 
this finding, PPGs from the ambulatory database are subdivided to the 
periods of day- (06:00–22:00) and night-time (22:00–06:00). By using 
such subdivision, 37.0% of the total PPG duration is attributed to arti
facts for day-time, and 8.8% for night-time. 

The estimated transition probabilities from an artifact-free interval 
to each artifact type for day- and night-time periods are given in Table 2. 
The probabilities of having the device displacement and forearm motion 
artifacts are lower during night-time due to reduced movement, and vice 
versa during day-time. 

Fig. 7 shows that the histograms of the duration of different-type 
artifacts and artifact-free intervals resemble an exponential distribu
tion. Artifact-free intervals prolong during night-time as supported by 
the decreased rate parameter ̂λ0. This finding coincides with the fact that 
all types of artifacts are less frequent and usually shorter during night- 
time. 

Fig. 8 presents the weighted average PSDs and the estimated slopes 

of different-type artifacts. The PSDs of hand motion and poor contact are 
apparently flatter because the spectral power is moved toward high 
frequencies, suggesting that artifacts are more noise-like. 

The normalized RMS amplitude of different-type artifacts follows a 

Fig. 4. Artifact classification accuracy as a function of a classification threshold 
for a different minimal artifact duration. (a) Classification accuracy between 
two groups of artifacts of which one group contains device displacement and 
forearm motion, and the other contains hand motion and poor contact. (b) 
Classification accuracy between device displacement and forearm motion. (c) 
Classification accuracy between hand motion and poor contact. 

Fig. 5. Duration of different-type artifacts and artifact-free PPG intervals for all 
recordings of the ambulatory database. Data are sorted in descending order 
according to the total artifact duration. 

Fig. 6. Stacked diagram of the percentage of different-type artifacts occurring 
within the day. The artifact percentage is calculated in 10-min non-overlapping 
windows for the entire ambulatory database. 

Table 2 
Estimated transition probabilities from an artifact-free interval to a particular 
artifact type.   

Device 
displacement, p̂01  

Forearm 
motion, p̂02  

Hand 
motion, p̂03  

Poor 
contact, p̂04  

Day-time 0.23 0.37 0.31 0.09 
Night-time 0.16 0.24 0.45 0.15  
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gamma distribution, see Fig. 9. Device displacement, on average, causes 
the largest artifact amplitude which is 22 times larger than that of the 
pulsatile PPG component. This proportion is considerably smaller for 
other artifact types. 

5.3. Testing of an arrhythmia detector 

Table 3 presents the arrhythmia detection performance for different 
types of artifacts. Irrespective of the artifact type, the sensitivity of 
extreme bradycardia detection drops nearly twice compared to the 
perfect sensitivity achieved for an artifact-free PPG. This can be 
explained by artifact-induced additional PPG pulses, which increase 

Fig. 7. Histograms of the day- and night-time duration of (a) artifact-free intervals, (b) device displacement, (c) forearm motion, (d) hand motion, and (e) poor 
contact artifacts. The histograms start at 4-s bin because of the chosen minimal artifact duration. Solid lines show the fitted exponential models with the estimated 
rate parameters λ̂i given above. 

Fig. 8. Average PSDs and their estimated slopes of (a) device displacement, (b) 
forearm motion, (c) hand motion, and (d) poor contact artifacts for each 
recording of the ambulatory database. The PSDs up to 0.5 Hz are suppressed 
due to the removed slow-changing PPG component. Solid black line stands for 
the fitted PSD slope. Error bars show mean μ̂i ± standard deviation σ̂ i. 

Fig. 9. Histograms of the normalized RMS amplitude in 1-s segments of (a) 
device displacement, (b) forearm motion, (c) hand motion, and (d) poor contact 
artifacts. The fitted gamma models are plotted as solid lines with the estimated 
shape α̂i and rate β̂i parameters given above. The ratio α̂ i/β̂i yields the mean of 
the distribution. 
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pulse rate and mask episodes of extreme bradycardia, but have less in
fluence on the sensitivity of ventricular tachycardia detection. For the 
same reason, artifacts cause almost no false alarms of extreme brady
cardia, resulting in nearly perfect positive predictive value, but 
adversely affect false alarm rate of ventricular tachycardia. 

Interestingly, poor contact causes 2–4 times more false alarms compared 
to the other artifact types. This can be explained by poor contact being 
the most difficult type to distinguish from the pulsatile PPG component. 

Fig. 10 demonstrates the arrhythmia detection performance as a 
function of the percentage of the artifact-corrupted PPG, which is 

Table 3 
Performance of a life-threatening arrhythmia detector when a quarter of the PPG duration is contaminated with different types of artifacts.   

Artifact-free Device displacement Forearm motion Hand motion Poor contact Mixture 

Detection of extreme bradycardia 

Sensitivity 1.00 0.52 0.53 0.55 0.55 0.55 
Positive predictive value 1.00 1.00 1.00 1.00 1.00 0.99 
False alarms (1/h) 0.00 0.00 0.00 0.00 0.00 0.02 

Detection of ventricular tachycardia 

Sensitivity 0.92 0.62 0.72 0.71 0.80 0.67 
Positive predictive value 1.00 0.56 0.49 0.39 0.26 0.45 
False alarms (1/h) 0.00 4.27 6.49 9.80 19.62 7.39  

Fig. 10. The performance of life-threatening arrhythmia detection as a function of rate parameter λ0 for different SQI threshold ηc. The functions are obtained for 
artifacts of (a) device displacement, (b) forearm motion, (c) hand motion, (d) poor contact, and (e) mixture of all artifact types. When only a single-type artifact is 
generated, the rate parameters determining the duration of each artifact are set to 0.2. For a mixture of all artifact types, the following estimated day-time values are 
used: λ̂1 = 0.10, λ̂2 = 0.22, λ̂3 = 0.18 and λ̂4 = 0.17. Shaded areas show mean ± standard deviation. Almost no false alarms are observed when detecting extreme 
bradycardia, and therefore positive predictive value is always close or equal to 1 (not shown). 
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governed by the rate parameter λ0. By increasing λ0 from 0.01 to 0.15, 
the average percentage of the artifact-corrupted PPG increased from 5% 
to 45%. 

By applying the SQI, the amount of remaining artifacts is reduced 
with the expense of the duration of analyzable PPG. The use of the SQI 
has only a slight influence on the reduction in the detection sensitivity of 
both extreme bradycardia and ventricular tachycardia. However, the 
number of false alarms of ventricular tachycardia reduces markedly and 
the positive predictive value approaches 1. To nearly eliminate false 
alarms, a higher SQI threshold, e.g., ηc = 0.8, should be preferred, 
obviously at the expense of undetected arrhythmia episodes. 

6. Discussion 

The goal of this work is to develop a model for simulating artifacts in 
the wrist PPG. The PPG simulation model with realistic artifact 
component is of importance for developing and testing detectors for 
ambulatory arrhythmia monitoring. Albeit ECG will obviously remain a 
gold standard for arrhythmia detection, PPG-based devices show po
tential to become beneficial for prolonged monitoring of target pop
ulations and selection of individuals for comprehensive medical 
examination [7,8]. 

While the field of model application is definitely broader, this work 
focuses on the detection of life-threatening arrhythmias which often 
lead to sudden cardiac death. Such monitoring would be particularly 
valuable for end-stage kidney disease patients on hemodialysis who may 
experience life-threatening arrhythmias during the long interdialytic 
period when they are at home [42–45]. PPG-based detection of initial 
arrhythmia episodes could facilitate individual assessment of the 
risk–benefit ratio to guide decisions regarding cardiac device therapy, 
since hemodialysis patients are predisposed to post-implantation com
plications [46]. Another target population for the prolonged monitoring 
for the detection of life-threatening arrhythmias may be post-myocardial 
infarction patients who are at danger of sudden cardiac death during the 
first months after the event [47]. 

The proposed artifact model is developed by analyzing PPGs ac
quired during cardiac rehabilitation, thus provides insights into the 
quality of the wrist PPG encountered in free-living activities. In line with 
recent findings [48], our study shows that the percentage of the 
artifact-corrupted PPG markedly increases during day-time, mostly due 
to device displacement and forearm motion. This result supports a 
common observation that a substantial part of the day-time PPG is of 
insufficient quality for use in health monitoring applications [48]. 

In the ambulatory database, a quarter of the PPG duration was 
identified as corrupted by artifacts, which is higher than 10.8% reported 
in [10], but much lower than 44% in [12] and 65.2% in [48]. Possibly, 
the discrepancy between the studies arose from different conditions to 
acquire a PPG. Also, varying signal quality requirements, which often 
depend on the application, may have a substantial impact. Even slight 
PPG disturbance can be intolerable when PPG morphology is a subject to 
analysis, but may have a negligible effect on heart rate estimation. By 
applying a criterion of successful pulse detection, 42.4% of the total PPG 
duration was excluded in [13]. However, the percentage of unanalyz
able PPG reached 76.0% by also accounting for the 
accelerometer-identified movement. 

The identification of artifacts in the PPG depends on the chosen 
approach to PPG quality assessment. The most prevalent PPG artifacts 
are movement-related; therefore, a common practice is to involve an 
accelerometer for artifact identification [11–13,27–30]. Such approach 
may be ineffective in certain situations since artifacts may arise from 
other sources as well, e.g., poor contact and fine hand movements, 
which do not reflect in the accelerometer signals [23,27]. On the other 
hand, accelerometer-identified motion will not necessarily be a sign of 
the artifacts in the PPG. Relying solely on the accelerometer, a one-sixth 
of PPG pulses were falsely assigned to artifact-corrupted or artifact-free 
classes in the ambulatory database. That is, 8.3% of pulses were 

considered as artifact-free using the SQI, although flagged as artifacts by 
analyzing the accelerometer signals. Contrarily, 8.3% of 
artifact-corrupted pulses, identified by the SQI, were not reflected in the 
accelerometer signal. In the present study, pulse-to-pulse instead of a 
fixed-window SQI is preferred to achieve finer time resolution. Out of 
several pulse-to-pulse SQIs [10,49–51], only the one in [10] has been 
tested in long-term wrist PPGs acquired outside the laboratory setting 
and was therefore implemented in this study. 

PPG artifacts have already been studied in a context of finger ox
imetry and neck photoplethysmography [52,53]. Nevertheless, these 
artifact characteristics cannot be straightforwardly transferred to 
simulating the wrist PPG since distinct body locations have different 
tissue optical properties for different wavelengths and are prone to 
specific interference [54]. In this study, artifact characteristics were 
obtained from a green-light PPG which is often used in commercial 
smartwatches to acquire pulse rate. Green is preferred to red and 
infrared since this wavelength does not penetrate deep into tissue 
causing fewer artifacts from a non-pulsatile slow-changing component 
[55]. In another study, the quality of a long-term green-light PPG, ac
quired using a smartwatch was investigated [48]. Yet, no artifact 
type-specific characteristics valuable for the model development were 
given. 

The developed artifact model relies on the characteristics estimated 
from PPGs acquired during cardiac rehabilitation. Therefore, we assume 
that similar artifacts can be encountered in real-life PPGs. To ensure 
model flexibility, a transition probability from artifact-free interval to 
artifact, as well as an artifact duration, are free to be tuned to produce a 
desirable amount of artifacts. Such an approach excels other PPG sim
ulators which generated stationary artifacts based on the characteristics 
of a single real artifact [33] or represented them as additive harmonic 
signals [56]. 

This study shows that the performance of the life-threatening 
arrhythmia detector is affected differently by different artifact types. 
Although device displacement substantially distorts the PPG, it is easily 
identified by the SQI due to the largest amplitude. On the other hand, 
poor contact disturbs the PPG so that additional pulses are produced 
making the identification of artifacts problematic. For this reason, 
additional pulses often lead to undetected extreme bradycardia, whereas 
have little effect on the detection of ventricular tachycardia. 

The present study takes the first step toward investigating artifact 
influence on the detection of life-threatening arrhythmias in the PPG. 
Investigation of an atrial fibrillation detector showed that the specificity 
and the positive predictive value decrease with an increasing amount of 
artifacts [13]. The interesting finding of that study is the increase of the 
sensitivity proportional to the amount of the excluded artifact-corrupted 
PPG parts [13]. Our study shows contradictory results, i.e., the decrease 
in the sensitivity of ventricular tachycardia detection and no change in 
the sensitivity of extreme bradycardia detection for the increasing 
amount of the excluded PPGs. The contradiction arises since the sensi
tivity was calculated by including all arrhythmia episodes in our study, 
whereas only those episodes remaining after the exclusion of the 
artifact-corrupted PPG parts were included in [13]. This emphasizes the 
importance of using modeled PPGs to reveal the true detection perfor
mance taking into account arrhythmia episodes excluded together with 
poor-quality signals. 

A limitation of the present study is that the developed model is 
restricted to simulating artifacts mostly caused by movement and device 
attachment. However, the intrinsic PPG disturbances originating from 
physiological processes, such as respiration, vasoconstriction due to 
temperature changes or stress [57], have not been considered. 

7. Conclusions 

The proposed PPG artifact simulation model is designed to facilitate 
the development and testing of wrist PPG-based arrhythmia detectors. 
Various artifact properties can be controlled by the model, including the 
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artifact type, the transition probabilities and the amount of artifact- 
corrupted PPG. Simulation of realistic artifacts encountered in activ
ities of daily living allows to comprehensively investigate arrhythmia 
detectors and understand artifact types most negatively affecting 
detection performance. 
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