
applied
sciences

Article

Synchronized Motion Profiles for Inverse-Dynamics-Based
Online Control of Three Inextensible Segments of Trunk-Type
Robot Actuators

Mindaugas Matukaitis 1, Renaldas Urniezius 1,2,* , Deividas Masaitis 1,2, Lukas Zlatkus 1, Benas Kemesis 1,2 and
Gintaras Dervinis 1

����������
�������

Citation: Matukaitis, M.; Urniezius,

R.; Masaitis, D.; Zlatkus, L.; Kemesis,

B.; Dervinis, G. Synchronized Motion

Profiles for Inverse-Dynamics-Based

Online Control of Three Inextensible

Segments of Trunk-Type Robot

Actuators. Appl. Sci. 2021, 11, 2946.

https://doi.org/10.3390/app11072946

Academic Editor: Angelo Davalli

Received: 28 February 2021

Accepted: 23 March 2021

Published: 25 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Automation, Kaunas University of Technology, LT-51367 Kaunas, Lithuania;
mindaugas.matukaitis@ktu.lt (M.M.); deividas.masaitis@ktu.lt (D.M.); lukas.zlatkus@ktu.lt (L.Z.);
benas.kemesis@ktu.lt (B.K.); gintaras.dervinis@ktu.lt (G.D.)

2 Cumulatis, Ringaudai, LT-53331 Kaunas County, Lithuania
* Correspondence: renaldas.urniezius@ktu.lt

Abstract: This study proposes a novel method for the positioning and spatial orientation control of
three inextensible segments of trunk-type robots. The suggested algorithm imposes a soft constraint
assumption for the end-effector’s endpoint and a mandatory constraint on its direction. Simultane-
ously, the algorithm by-design enforces nonholonomic features on the robot segments in the form
of arcs. An approximate robot spine curve is the key to the final robot state configuration based on
the given conditions. The numeric simulation showed acceptable (less than 1 s) performance for
single-core processing tasks. The parametric method finds the best proximate robot state solution
and represents the gray box model in addition to existing learning or black-box inverse dynamics ap-
proaches. This study also shows that a multiple inverse kinematics answer constructs a single inverse
dynamics solution that defines the robot actuators’ motion profiles, synchronized in time. Finally,
this text presents rotational expressions and their outlines for controlling the manipulator’s tendons.

Keywords: inverse dynamics; inextensible segments; online control; synchronized motion profiles;
trunk-type robot

1. Introduction

As robotics technology advances, there are more and more efforts to create and control
continuum robots that excel in kinematic redundancy. These robots are agile and flexible
because of their backbone-less structure, which the biological world has inspired [1,2].
Such robots are called elephant’s trunk or snake-arm robots. This study focuses on three
inextensible segments of trunk-type robot’s position and orientation control. Most trunk-
type robots are currently used for robotically assisted surgery [3,4], specifically in minimally
invasive surgery [5,6]. In the mentioned surgery area, trunk-type robot pose control is
crucial, while the continuum robot has to move along a narrow path. This paper presents
a control method for trunk-type robots that are more dedicated to tasks requiring robot
end-effector spatial control while holding the end-effector position as close as possible to
the target. For instance, the authors state that such a concept has the potential to apply
continuum robots that are used in urban search and rescue tasks [7], bomb disposal [8],
and inspection and repair of aero-engines [9,10]. Continuum robot flexibility and mobility
features encourage scientists to look for new kinds of robot-type structure designs and
control to adapt robots to other applications.

A continuum robot consists of flexible segments, which, in principle, have a bending
motion [1,2]. This bending motion gives two degrees of freedom (DOF) for one section [11].
However, depending on the robot segment type, some segments can also have a linear
motion, adding one more DOF. According to this continuum, the robot segment can
either have two or three DOF, depending on its type [11,12]. Adding more degrees of

Appl. Sci. 2021, 11, 2946. https://doi.org/10.3390/app11072946 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-8095-890X
https://doi.org/10.3390/app11072946
https://doi.org/10.3390/app11072946
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11072946
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11072946?type=check_update&version=2

Appl. Sci. 2021, 11, 2946 2 of 28

freedom to the robot requires additional sections stacked on top of each other. The soft and
continuous backbone structure is the main reason why such a multisegment robot is called
the continuum. Additionally, continuum robot DOF perfectly describes robot flexibility.
For example, it shows that three-segment continuum robots can have between six and nine
DOF, which is more than enough for various tasks.

Continuum robots, according to their structure, are divided into three main groups:
concentric tube continuum robots [13], pneumatically or hydraulically actuated continuum
robots [14], and tendon-driven continuum robots [15]. The concentric tube continuum
robot consists of elastic tubes with different diameters. According to their diameter, each
elastic tube shoves into the other (starting from the minor tube diameter to the most
prominent tube diameter). Pulling these tubes’ ends controls the motion of such a robot.
Concentric tube continuum robots primarily operate in surgery because of their small-
diameter segments. Pneumatically or hydraulically actuated continuum robots are made of
plastic pipes, which usually resemble corrugated pipes in terms of their shape. Compressed
air—pneumatic energy, rather than compressed fluid—is the source for these robot types.
Pneumatically or hydraulically actuated continuum robots are often used in urban search
and rescue tasks. Tendon-driven continuum robot segments consist of spacer disks laid
out on the segment elastic backbone (elastic tube). “Tendons” are made of metallic wires
and control segments. Tendon-driven continuum robots are utilized primarily in surgery
because of the beneficial features of wire usage. However, this specific structure can be
adapted not only for the maintenance and repair of aero-engines but also to aid people
living with disabilities in completing daily living activities, like an assistive robot [16]. The
tendon continuum robot group differs from other continuum robot groups. Its more robust
and rigid segment construction gives the continuum robot other technical opportunities to
execute particular tasks, such as painting [17].

There are two main segment design variants for the tendon-driven continuum robot:
extensible [18,19] and inextensible [20,21]. This study presents the latter. The robot structure
designer must know what task a continuum robot is created for and decide how many
degrees of freedom a robot needs and how many robot segments there should be. For
painting activities, usually, six DOF is enough. Therefore, if continuum robot segments are
extensible, the robot has to have at least two segments. In the case of inextensible segments,
at least three segments should form a robot. At first glance, it looks like a continuum
robot with extensible segments should be a suitable option for painting tasks because this
kind of robot will demand fewer materials for robot construction. However, there are
other essential characteristics for painting duties, such as robustness and payload. That is
why we believe that continuum robots with inextensible segments are preferable to robots
with extensible segments. Urniezius’ research showed that the maximum relative entropy
principle [22–24] could produce closed-form expressions that automatically enforce certain
optimization constraints. This study uses numeric application of similar closed-form
expressions for an indirect solution to inverse dynamics tasks [25] for a tendon-driven
continuum robot. The authors view it as a beneficial tool in black-box-driven inverse
dynamics solutions in the future [26].

Now that there is a known continuum robot structure type for painting tasks, a
tendon-driven continuum robot with inextensible three segments, the robot actuator control
problem emerges. The robot section motors and synchronous actuator motion profiles for
the selected robot configuration are discussed towards the end of this study and are the
authors’ primary motivation for suggesting trunk-type tendon-driven robot implementation.

The contents of this research paper are as follows. Section 2 is a short review of trunk-
type robot kinematics and motion control methods. Section 3 explains the entire approach
of a trunk-type robot with three inextensible segments, with an inverse kinematics solution
for the imposed end-effector state. This section also discusses tendon length computation,
which is necessary for the inverse dynamics part. In Section 4, the simulation results
represent the various bending situations of a three-segment continuum robot with end-
effector position and orientation errors from the desired target. Section 5 includes robot

Appl. Sci. 2021, 11, 2946 3 of 28

segments’ motion from the initial position to the target position figures and the electric
motor motion profile diagrams.

2. Related Work

The trunk-type tendon robot’s control differs from traditional industrial robots, like
Cartesian, cylindrical, polar, and SCARA robots, and from robotic arms or parallel delta
robots. The main reason trunk-type tendon control differs from traditional industrial robot
control lies in the robot segment construction and motion constraints. While conventional
industrial robots utilize rigid links, which move in spatial space with inextensible joints [27],
the trunk-type robot does not have rigid links [1,2] but uses a connecting disk (Figure 1).
As mentioned before, a trunk-type tendon robot segment spine is usually flexible, and the
connecting disk between adjacent segments neither directly causes bending the section nor
is used for segment motion. Joints, in this case, serve as connecting pieces in series to get
one continuum robot spine (Figure 1).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 29

of a trunk-type robot with three inextensible segments, with an inverse kinematics solu-
tion for the imposed end-effector state. This section also discusses tendon length compu-
tation, which is necessary for the inverse dynamics part. In Section 4, the simulation re-
sults represent the various bending situations of a three-segment continuum robot with
end-effector position and orientation errors from the desired target. Section 5 includes
robot segments’ motion from the initial position to the target position figures and the elec-
tric motor motion profile diagrams.

2. Related Work
The trunk-type tendon robot’s control differs from traditional industrial robots, like

Cartesian, cylindrical, polar, and SCARA robots, and from robotic arms or parallel delta
robots. The main reason trunk-type tendon control differs from traditional industrial ro-
bot control lies in the robot segment construction and motion constraints. While conven-
tional industrial robots utilize rigid links, which move in spatial space with inextensible
joints [27], the trunk-type robot does not have rigid links [1,2] but uses a connecting disk
(Figure 1). As mentioned before, a trunk-type tendon robot segment spine is usually flex-
ible, and the connecting disk between adjacent segments neither directly causes bending
the section nor is used for segment motion. Joints, in this case, serve as connecting pieces
in series to get one continuum robot spine (Figure 1).

Figure 1. Three-segment trunk-type tendon robot structure illustration.

The only way to control this trunk-type robot is to bend robot segments. Each of the
robot segments’ motion is like the arc of a circle, in which the radius is continuously
changing while the section is being bent (Figure 2a,b). Knowing this and having a clear
view of the robot segment structure sheds light on trunk-type robot design approaches.
Some methods implement robot control by using forward kinematics solutions. One ex-
ample is an operator that directly controls robot actuators via an open-loop user interface
[16]. The following example is a robot actuator torque closed-loop control system [28].
Here, the idea is that a robot is used mainly for grasping the object. The robot segment
bends around the object and stops when robot actuators produce the same torque as the
opposing load torque.

Figure 1. Three-segment trunk-type tendon robot structure illustration.

The only way to control this trunk-type robot is to bend robot segments. Each of
the robot segments’ motion is like the arc of a circle, in which the radius is continuously
changing while the section is being bent (Figure 2a,b). Knowing this and having a clear view
of the robot segment structure sheds light on trunk-type robot design approaches. Some
methods implement robot control by using forward kinematics solutions. One example
is an operator that directly controls robot actuators via an open-loop user interface [16].
The following example is a robot actuator torque closed-loop control system [28]. Here,
the idea is that a robot is used mainly for grasping the object. The robot segment bends
around the object and stops when robot actuators produce the same torque as the opposing
load torque.

However, there are more trunk-type robot control approaches with inverse kinematics
solutions. One proposal is to analyze the trunk-type robot kinematic characteristics with
a computer program when the robot’s trajectory end-moving platform is assigned [29].
Then, from model parameters using the spatial backbone modal method, the robot’s
kinematic model is established. Nevertheless, the latter method is only valid for hyper-
redundant trunk-type robot control. There are also trunk-type robot control techniques
where researchers delve into motion planning. One example is the motion planning
method for solving the inverse kinematic problems of endoscopic operations of continuum
manipulators [30]. The proposed method suggests robot control in a predefined complex
environment. Another strategy has the operator control the surgical continuum robot on
an arbitrary path in real time and not via a predefined path [31]. The latter paper proposes
two-path generation algorithms. One of those algorithms represents an optimization

Appl. Sci. 2021, 11, 2946 4 of 28

method with sequential quadratic programming. The other algorithm uses differential
kinematics with a PID (Proportional Integral Derivative) control algorithm. The robot
inverse kinematic model from the joint space to the wire-length space is the basis for these
algorithms’ operation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 29

(a)

(b)

Figure 2. Continuum robot one-segment bending motion: (a) robot segment in a vertical position; (b) the robot segment is
bent.

However, there are more trunk-type robot control approaches with inverse kinemat-
ics solutions. One proposal is to analyze the trunk-type robot kinematic characteristics
with a computer program when the robot’s trajectory end-moving platform is assigned
[29]. Then, from model parameters using the spatial backbone modal method, the robot’s
kinematic model is established. Nevertheless, the latter method is only valid for hyper-
redundant trunk-type robot control. There are also trunk-type robot control techniques
where researchers delve into motion planning. One example is the motion planning
method for solving the inverse kinematic problems of endoscopic operations of contin-
uum manipulators [30]. The proposed method suggests robot control in a predefined com-
plex environment. Another strategy has the operator control the surgical continuum robot
on an arbitrary path in real time and not via a predefined path [31]. The latter paper pro-
poses two-path generation algorithms. One of those algorithms represents an optimiza-
tion method with sequential quadratic programming. The other algorithm uses differen-
tial kinematics with a PID (Proportional Integral Derivative) control algorithm. The robot
inverse kinematic model from the joint space to the wire-length space is the basis for these
algorithms’ operation.

There is a robot inverse dynamics approach with Euler‒Lagrange equations, specifi-
cally for trunk-type robots with spherical piezoelectric actuators [32]. In [32], the research-
ers compared the Euler‒Lagrange dynamics method with the analytical potential method.
The authors conclude that the latter method is more accurate and efficient than the former.

One of the inverse kinematics methods implements robot control using the modified
Denavit‒Hartenberg procedure (modified D‒H table) and Jacobian matrices using this D‒
H table [33]. This method relies on the idea that the trunk-type robot segment “is bending
with constant curvature”. Consequently, parameters that define each of the robot seg-
ments are an outcome of circle arc parameters (the arc length is ܮ; the curvature is ݇) and
one angle ߮, which defines segment orientation around the z-axis (Figure 3a). To improve
the D‒H method, researchers propose adaptive fuzzy-based fault-tolerant control, as in
[6]. The authors claim that their proposed solution significantly reduces position error and
increases the robot control reliability.

Figure 2. Continuum robot one-segment bending motion: (a) robot segment in a vertical position; (b) the robot segment is bent.

There is a robot inverse dynamics approach with Euler-Lagrange equations, specifi-
cally for trunk-type robots with spherical piezoelectric actuators [32]. In [32], the researchers
compared the Euler-Lagrange dynamics method with the analytical potential method. The
authors conclude that the latter method is more accurate and efficient than the former.

One of the inverse kinematics methods implements robot control using the modified
Denavit-Hartenberg procedure (modified D–H table) and Jacobian matrices using this D–H
table [33]. This method relies on the idea that the trunk-type robot segment “is bending
with constant curvature”. Consequently, parameters that define each of the robot segments
are an outcome of circle arc parameters (the arc length is L; the curvature is k) and one
angle ϕ, which defines segment orientation around the z-axis (Figure 3a). To improve the
D–H method, researchers propose adaptive fuzzy-based fault-tolerant control, as in [6].
The authors claim that their proposed solution significantly reduces position error and
increases the robot control reliability.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 29

(a)

(b)

Figure 3. Continuum robot n-th segment parameters: (a) Robot n-th segment main parameters; (b) robot cables (tendons)
view in one segment, robot cables lengths are ݈ଵ, ݈ଶ,	݈ଷ.

The circle arc assumption on the robot segment influences most control methods for
trunk-type robots [34–36]. The main distinctions between these methods are the control
approach, the number of sections used, and priorities between end-effector position con-
straint or end-effector orientation constraint. The latter prioritization is crucial because
control algorithms might not necessarily enforce both restrictions due to nonholonomic
and dynamics constraints. In this text, the represented method suits a tendon-driven robot
orientation with three inextensible segments, and is predefined with determined vector
and robot-end positioning control, predefined with point coordinates.

3. Approximate Inverse Kinematics Solution for Imposed End-Effector State
The proposed control method for the position and orientation of a trunk-type robot

with three inextensible segments consists of four main steps:
1. Trunk-type robot bent spine curve approximation in the 3D Cartesian coordinate sys-

tem.
2. The bending angles ߠ௡ calculation for each robot segment.
3. Segments’ endpoints’ x, y, and z coordinates in the Cartesian coordinate system, and

sections’ endpoint orientation computation.
4. Robot metal wire (tendon) lengths’ calculation according to robot spine curvature

and segments’ orientations.
Sections 3.1‒3.4 explain the above steps in more detail. In the first part, the primary

purpose is to get a curve in 3D space such that its length would be equal to the robot spine
length, which is predefined and fixed. Here, the soft constraint condition is the goal posi-
tion, and the mandatory constraint condition is the orientation. The approximate curve
endpoint’s orientation must be the same as the preset orientation (as a unit vector). How-
ever, the curve endpoint must be as close as possible to the predefined robot’s end-effector
point. Then, further calculations will involve estimation of the approximate target posi-
tion and mandatory target orientation.

In the second and third steps, the top hard constraint condition is that the robot seg-
ment shape has to consist of a regular circle arc form. The approximate robot spine will
be the prerequisite for the next curve composed of arcs connected in series in these sec-
tions. Figure 3a depicts bending angles ߠ௡, segments endpoints ௡ܲ, and segments orien-
tation ܛො୭୰୧ୣ୬௡ unit vectors found in this approach.

Figure 3. Continuum robot n-th segment parameters: (a) Robot n-th segment main parameters;
(b) robot cables (tendons) view in one segment, robot cables lengths are l1, l2, l3.

The circle arc assumption on the robot segment influences most control methods for
trunk-type robots [34–36]. The main distinctions between these methods are the control

Appl. Sci. 2021, 11, 2946 5 of 28

approach, the number of sections used, and priorities between end-effector position con-
straint or end-effector orientation constraint. The latter prioritization is crucial because
control algorithms might not necessarily enforce both restrictions due to nonholonomic
and dynamics constraints. In this text, the represented method suits a tendon-driven robot
orientation with three inextensible segments, and is predefined with determined vector
and robot-end positioning control, predefined with point coordinates.

3. Approximate Inverse Kinematics Solution for Imposed End-Effector State

The proposed control method for the position and orientation of a trunk-type robot
with three inextensible segments consists of four main steps:

1. Trunk-type robot bent spine curve approximation in the 3D Cartesian coordinate
system.

2. The bending angles θn calculation for each robot segment.
3. Segments’ endpoints’ x, y, and z coordinates in the Cartesian coordinate system, and

sections’ endpoint orientation computation.
4. Robot metal wire (tendon) lengths’ calculation according to robot spine curvature and

segments’ orientations.

Sections 3.1–3.4 explain the above steps in more detail. In the first part, the primary
purpose is to get a curve in 3D space such that its length would be equal to the robot
spine length, which is predefined and fixed. Here, the soft constraint condition is the
goal position, and the mandatory constraint condition is the orientation. The approximate
curve endpoint’s orientation must be the same as the preset orientation (as a unit vector).
However, the curve endpoint must be as close as possible to the predefined robot’s end-
effector point. Then, further calculations will involve estimation of the approximate target
position and mandatory target orientation.

In the second and third steps, the top hard constraint condition is that the robot
segment shape has to consist of a regular circle arc form. The approximate robot spine will
be the prerequisite for the next curve composed of arcs connected in series in these sections.
Figure 3a depicts bending angles θn, segments endpoints Pn, and segments orientation
^
sorienn unit vectors found in this approach.

In the final step, the second and third steps’ expressions lead to the estimation of the
final segment cables’ lengths. Computed robot tendon lengths are necessary for the robot
segment position and orientation control (Figure 3b).

3.1. Determination of Approximate Robot Spine State Configuration

The solution of the three inextensible segments for the continuum robot starts with a
consideration of initial conditions. First, the definition of continuum robot spine full-length
lr is necessary. lr is the sum of all three segments’ lengths Ln (Figure 3a). The three segments’
lengths. L1, L2, and L3, explicitly define the full robot spine length. Point G in 3D space

represents the target point that the robot end-effector has to reach. Furthermore,
^
or. defines

the desired robot end-effector orientation at the point G. Figure 4 depicts all the necessary
initial conditions and state.

The robot spine’s length is a fixed-length estimate and should match lr because the
robot segments are inextensible. Knowing this and having information about the preset

target point G and orientation
^
or parametric curve equations are necessary. First, the

authors propose an empiric tuning parameter λa and its expression (1) that will play in
final spine state expressions:

λa =
5
6

−lr +

√
kr

(
l2
r

(
o2

rx + o2
ry + (1 + orz)

2
)
− 24lr

(
orxxg + oryyg + zg + orzzg

)
+ 144 ||g ||2

)
kr

. (1)

Appl. Sci. 2021, 11, 2946 6 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 29

In the final step, the second and third steps’ expressions lead to the estimation of the
final segment cables’ lengths. Computed robot tendon lengths are necessary for the robot
segment position and orientation control (Figure 3b).

3.1. Determination of Approximate Robot Spine State Configuration
The solution of the three inextensible segments for the continuum robot starts with a

consideration of initial conditions. First, the definition of continuum robot spine full-
length ݈୰ is necessary. ݈୰ is the sum of all three segments’ lengths ܮ௡ (Figure 3a). The
three segments’ lengths. ܮଵ, ܮଶ, and	ܮଷ, explicitly define the full robot spine length. Point ܩ in 3D space represents the target point that the robot end-effector has to reach. Further-
more, ܗෝ௥ defines the desired robot end-effector orientation at the point ܩ. Figure 4 de-
picts all the necessary initial conditions and state.

Figure 4. Three segments of full-length spine ݈୰ (the robot is in the initial position), goal point ܩ,
and orientation vector ܗ௥	, defined as initial conditions.

The robot spine’s length is a fixed-length estimate and should match ݈୰ because the
robot segments are inextensible. Knowing this and having information about the preset
target point ܩ and orientation ܗෝ௥ parametric curve equations are necessary. First, the
authors propose an empiric tuning parameter ߣୟ and its expression (1) that will play in
final spine state expressions:

ୟߣ = ୰݈−ۇۉ56 +
ට݇୰൫݈୰ଶ൫݋௥୶ଶ + ୰୷ଶ݋ + (1 + ୰୸)ଶ൯݋ − 24݈୰൫	݋୰୶ݔ୥ + ୥ݕ୰୷݋ + ୥ݖ + ୥൯ݖ୰୸݋ + ଶ൯݇୰‖܏‖144 (1) .ۊی

Here, ݇୰ = −31 + ݒ120 + ୰୶ଶ݋ + ୰୷ଶ݋ + ୰୸(10݋ + ܩ ୰୸). The target point is݋ = ,୥ݔ) ,୥ݕ (୥ݖ
(in the Cartesian coordinate system). ܗෝ௥ = ,୰୶݋) ,୰୷݋ ୰୸) is the unit vector, which defines݋
the robot’s third segment endpoint’s direction. ݒ is a theoretic speed constant (ݒ	 = 	1).
The trunk-type robot spine’s full length is ݈୰, which equals the sum of all three segments’
lengths. The closed-form expressions for coordinates of point ܲୣ ଷ are contingent upon
tuning the coefficient ߣୟ expression in Equation (1). Point ܲୣ ଷ expresses the estimated
robot spine’s endpoint. The latter point is the closest solution to the target point ܩ. Point ܲୣ ଷ coordinates’ equations are necessary for creating estimated robot spine curve para-
metric equations as functions of time:

Figure 4. Three segments of full-length spine lr (the robot is in the initial position), goal point G, and
orientation vector or , defined as initial conditions.

Here, kr = −31+ 120v+ o2
rx + o2

ry + orz(10 + orz). The target point is G =
(
xg, yg, zg

)
(in the Cartesian coordinate system).

^
or =

(
orx, ory, orz

)
is the unit vector, which defines

the robot’s third segment endpoint’s direction. v is a theoretic speed constant (v = 1).
The trunk-type robot spine’s full length is lr, which equals the sum of all three segments’
lengths. The closed-form expressions for coordinates of point Pe3 are contingent upon
tuning the coefficient λa expression in Equation (1). Point Pe3 expresses the estimated robot
spine’s endpoint. The latter point is the closest solution to the target point G. Point Pe3
coordinates’ equations are necessary for creating estimated robot spine curve parametric
equations as functions of time:

xe3 =
λa lr orx + 10 lr xg

12 λa + 10 lr
, (2)

ye3 =
λa lr ory + 10 lr yg

12 λa + 10 lr
, (3)

ze3 =
lr
(
λa + λa orz + 10 zg

)
2 (6 λa + 5 lr)

, (4)

Pe3 = (xe3, ye3, ze3). (5)

Finally, Equations (6)–(8) define robot spine curve parametric equations as a function
of time, which will define the spine’s curvature:

x̂ec(t) =
t2(xe3(−2t + 3lr) + (t− lr)lrorx)

l3
r

, (6)

ŷec(t) =
t2(ye3(−2t + 3lr) + (t− lr)lrory

)
l3
r

, (7)

ẑec(t) =
t(ze3t(−2t + 3lr) + lr(−t + lr)(lr − t(1 + orz)))

l3
r

, (8)

P̂ec(t) = (x̂ec(t), ŷec(t), ẑec(t)), (9)

Appl. Sci. 2021, 11, 2946 7 of 28

where t represents the time variable, which expresses the spine curve’s trajectory in 3D
space (in a 3D Cartesian coordinate system), because curve speed is a constant and is preset
to v = 1. Equations (10)–(12) represent the robot segment endpoints on a curve as follows:

P̂ec(t)
t=L1→ P̂ec1 = (x̂ec1, ŷec1, ẑec1), (10)

P̂ec(t)
t=L1+L2→ P̂ec2 = (x̂ec2, ŷec2, ẑec2), (11)

P̂ec(t)
t=L1+L2+L3→ P̂ec3 = (x̂ec3, ŷec3, ẑec3), (12)

where the n-th segment length is Ln (in this case, all robot segments are of the same length).
The calculated points from Equations (10)–(12) are shown in Figure 5a–c. Point P̂ec3,
retrieved using Equation (12), is equal to point Pe3, which originates from Equations (2)–(4).
Point P̂ec3 is the robot curve endpoint near target point G. Figure 5c represents the robot
spine curve’s solution.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 29

ଷୣݔ = λୟ	݈୰	݋୰୶ 	+ 	10	݈୰	ݔ୥12	λୟ 	+ 	10	݈୰ , (2)

yୣଷ = λୟ	݈୰	݋୰୷ 	+ 	10	݈୰	ݕ୥12	λୟ 	+ 	10	݈୰ , (3)

zୣଷ = ݈୰	(λୟ 	+	λୟ	݋୰୸ 	+ λୟ	(6	୥)2ݖ	10	 	+ 	5	݈୰) , (4)

ܲୣ ଷ = ,ଷୣݔ) ,ଷୣݕ (5)	ଷ).ୣݖ

Finally, Equations (6)–(8) define robot spine curve parametric equations as a function
of time, which will define the spine’s curvature: ݔොୣୡ(ݐ) = ݐଶ(xୣଷ(−2ݐ + 3݈୰) + ݐ) − ݈୰)݈୰݋୰୶)݈୰ଷ , (6)

ොୣݕ ୡ(ݐ) = ݐଶ൫yୣଷ(−2ݐ + 3݈୰) + ݐ) − ݈୰)݈୰݋୰୷൯݈୰ଷ ,	 (7)

(ݐ)ୡୣݖ̂ = ݐ ቀzୣଷݐ2−)ݐ + 3݈୰) + ݈୰(−ݐ + ݈୰)൫݈୰ − 1)ݐ + ୰୸)൯ቁ݈୰ଷ݋ ,	 (8)

෠ܲୣ ୡ(ݐ) = ൫ݔොୣୡ(ݐ), ොୣݕ ୡ(ݐ), 	,൯(ݐ)ୡୣݖ̂ (9)

where ݐ represents the time variable, which expresses the spine curve’s trajectory in 3D
space (in a 3D Cartesian coordinate system), because curve speed is a constant and is pre-
set to ݒ	 = 	1. Equations (10)‒(12) represent the robot segment endpoints on a curve as
follows: ෠ܲୣ ୡ(ݐ) ௧ୀ௅భሱۛ ሮ ෠ܲୣ ୡଵ = ,ොୣୡଵݔ) ,ොୣୡଵݕ 	,(ୡଵୣݖ̂ (10)

෠ܲୣ ୡ(ݐ) ௧ୀ௅భା௅మሱۛ ۛۛ ሮۛ ෠ܲୣ ୡଶ = ,ොୣୡଶݔ) ,ොୣୡଶݕ 	,(ୡଶୣݖ̂ (11)

෠ܲୣ ୡ(ݐ) ௧ୀ௅భା௅మା௅యሱۛ ۛۛ ۛۛ ۛۛ ሮ ෠ܲୣ ୡଷ = ,ොୣୡଷݔ) ,ොୣୡଷݕ 	,(ୡଷୣݖ̂ (12)

where the n-th segment length is ܮ௡ (in this case, all robot segments are of the same
length). The calculated points from Equations (10)‒(12) are shown in Figure 5a‒c. Point ෠ܲୣ ୡଷ, retrieved using Equation (12), is equal to point ܲୣ ଷ, which originates from Equations
(2)–(4). Point ෠ܲୣ ୡଷ is the robot curve endpoint near target point ܩ. Figure 5c represents
the robot spine curve’s solution.

(a)

(b)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 29

(c)

Figure 5. Approximate bent robot spine curve that reaches goal point ܩ and is in vector ܗ௥ orientation: (a) Preliminary
bent robot spine curve first segment; (b) preliminary bent robot spine curve first and second segments; (c) preliminary
bent robot spine curve—first, second, and third segments.

3.2. Segment’s Bending Angles ߠ௡ Calculation
Computation of an approximate spine curve in Section 3.1 allows for further estima-

tion of each segment’s bending angle. First of all, spine curve parametric equations ݔොୣୡ(ݐ), ොୣݕ ୡ(ݐ), -as in Equations (6)‒(8), have first and second function derivatives. Ap ,(ݐ)ୡୣݖ̂
pendix A gives detailed expressions of the computation formulas for ݔሶୣୡ, ݕሶୣ ୡ, ݖሶୣୡ, ݔሷୣୡ, ݕሷୣ ୡ, and ݖሷୣୡ. According to [37], Equations (A1)–(A6) are necessary for the evaluation of
arc curvature ݇. Equation (13) provides an expression of arc curvature ݇ for a paramet-
rically defined space curve in three dimensions (Cartesian coordinates):

݇ = ඥ(ݖሷୣୡݕሶୣ ୡ − ሷୣݕ ୡݖሶୣୡ)ଶ + ሶୣୡݖሷୣୡݔ) − ሶୣୡ)ଶݔሷୣୡݖ + ሷୣݕ) ୡݔሶୣୡ − ሶୣݕሷୣୡݔ ୡ)ଶ൫ݔሶୣୡଶ + ሶୣݕ ୡଶ + ሶୣୡଶ൯ଷଶݖ . (13)

Inserting Equation (13) into the expression of arc ߠ௡ = ௡ returns average bendingܮ݇
angles ߠ௡ for any segment based on curvature representations:

௡ߠ = ׬ ௅଴(ݐ)ߠ ௚ݐ ఏ←௞௅೙ሯልልሰන 	݇ ௅೙଴ݐ݀ .	 (14)

The average bending angle ߠ௡ of the n-th segment is one of the main parameters
represented in Figure 3a. The following section will present the approach for finding the
remaining parameters of the robot segments.

3.3. Calculation of Arc Segments’ Endpoints and Orientations
All three segments’ bending angles ߠ௡ (Equation (14)) and endpoints (Equations

(10)‒(12)) on the curve allow for finding actual segments’ endpoint coordinates in the Car-
tesian system. The further derivation will consider robot segments’ shape in an arc form,
similar to the ellipse arc seen in the spine curve (Figure 5c). Arc geometry in the x‒z plane
2D workspace (Figure 6) allows for obtaining the z coordinates of all three robot segments
endpoints ௡ܲ.

Figure 5. Approximate bent robot spine curve that reaches goal point G and is in vector or orientation:
(a) Preliminary bent robot spine curve first segment; (b) preliminary bent robot spine curve first and
second segments; (c) preliminary bent robot spine curve—first, second, and third segments.

3.2. Segment’s Bending Angles θn Calculation

Computation of an approximate spine curve in Section 3.1 allows for further esti-
mation of each segment’s bending angle. First of all, spine curve parametric equations
x̂ec(t), ŷec(t), ẑec(t), as in Equations (6)–(8), have first and second function derivatives.
Appendix A gives detailed expressions of the computation formulas for

.
xec,

.
yec,

.
zec,

..
xec,

..
yec, and

..
zec. According to [37], Equations (A1)–(A6) are necessary for the evaluation of arc

Appl. Sci. 2021, 11, 2946 8 of 28

curvature k. Equation (13) provides an expression of arc curvature k for a parametrically
defined space curve in three dimensions (Cartesian coordinates):

k =

√(..
zec

.
yec −

..
yec

.
zec
)2

+
(..

xec
.
zec −

..
zec

.
xec
)2

+
(..
yec

.
xec −

..
xec

.
yec
)2(.

xec2 +
.
yec

2 +
.
zec2

) 3
2

. (13)

Inserting Equation (13) into the expression of arc θn = kLn returns average bending
angles θn for any segment based on curvature representations:

θn =

∫ L
0 θ(t)

tg

θ←kLn⇔
∫ Ln

0
kdt. (14)

The average bending angle θn of the n-th segment is one of the main parameters
represented in Figure 3a. The following section will present the approach for finding the
remaining parameters of the robot segments.

3.3. Calculation of Arc Segments’ Endpoints and Orientations

All three segments’ bending angles θn (Equation (14)) and endpoints (Equations (10)–(12))
on the curve allow for finding actual segments’ endpoint coordinates in the Cartesian
system. The further derivation will consider robot segments’ shape in an arc form, similar
to the ellipse arc seen in the spine curve (Figure 5c). Arc geometry in the x-z plane 2D
workspace (Figure 6) allows for obtaining the z coordinates of all three robot segments
endpoints Pn.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 29

Figure 6. Robot segment in the 2D workspace x‒z plane (the segment form is in a regular circle arc
shape). ݀௡—chord length (݊—segment number); ݎ௡—arc radius (݊—segment number); ܮ—circle
arc length; ܱ—arc start point; ௡ܲ—arc endpoint (݊—segment number); ܥ௡—circle center point
(݊—segment number); ܣ௡—middle point of the ܱ ௡ܲ straight line (݊—segment number); ߙ௡—
angle between ܘ௡ and ܋௡ vectors (݊—segment number); ߠ௡—arc angle (݊—segment number).

As seen in Figure 6, the triangle ∆ܱܤ௡ ௡ܲ will express the coordinate ݖ௡, defining a
segment endpoint’s z coordinate. Before that, the arc chord length requires determination,
for which the formula is ݀௡ = ௡ݎ2 sin ൬ߠ௡2 ൰ . (15)

Based on circle arc, ݎ௡ is equal to ݎ௡ = ௡. (16)ߠܮ

Then, the chord length can be expressed as follows: ݀௡ = ௡ߠܮ2 ∙ sin ൬ߠ௡2 ൰.	 (17)

Triangle ∆ܱ ௡ܲܥ௡ (Figure 6) serves for determination of the angle ߙ௡ that lies be-
tween vectors ܘ௡ and ܋௡: ߙ௡ = ߨ − 2ߠ = 2ߨ − ௡2ߠ .	 (18)

From triangle ∆ܱܤ௡ ௡ܲ, sin(ߙ௡) = ‖௡ܘ‖‖௡܍‖ = 	,௡݀௡ݖ ௡ݖ(19) = ݀௡sin(ߙ௡).	 (20)

Substituting ݀௡ and ߙ௡ from Equations (17) and (18) into Equation (20), its simpli-
fication produces ݖ௡

௡ݖ = 	ܮ2 cos ቀߠ௡2 ቁ sin ቀߠ௡2 ቁ	ߠ௡ = 	ܮ	 sin(ߠ௡)	ߠ௡ .	 (21)

Figure 6. Robot segment in the 2D workspace x-z plane (the segment form is in a regular circle arc
shape). dn—chord length (n —segment number); rn —arc radius (n —segment number); L —circle
arc length; O —arc start point; Pn —arc endpoint (n —segment number); Cn —circle center point
(n —segment number); An —middle point of the OPn straight line (n —segment number); αn —angle
between pn and cn vectors (n —segment number); θn —arc angle (n —segment number).

As seen in Figure 6, the triangle ∆OBnPn will express the coordinate zn, defining a
segment endpoint’s z coordinate. Before that, the arc chord length requires determination,
for which the formula is

dn = 2rn sin
(

θn

2

)
. (15)

Appl. Sci. 2021, 11, 2946 9 of 28

Based on circle arc, rn is equal to

rn =
L
θn

. (16)

Then, the chord length can be expressed as follows:

dn =
2L
θn
· sin

(
θn

2

)
. (17)

Triangle ∆OPnCn (Figure 6) serves for determination of the angle αn that lies between
vectors pn and cn:

αn =
π − θ

2
=

π

2
− θn

2
. (18)

From triangle ∆OBnPn,

sin(αn) =
||en ||
||pn ||

=
zn

dn
, (19)

zn = dn sin(αn). (20)

Substituting dn and αn from Equations (17) and (18) into Equation (20), its simplifica-
tion produces zn

zn =
2L cos

(
θn
2

)
sin
(

θn
2

)
θn

=
L sin(θn)

θn
. (21)

Equations (15)–(21) help to estimate coordinates zn of robot 1, 2, 3 segment endpoints
Pn. On the other hand, point Pn coordinates xn, yn can be found similarly to coordinates zn.
In this case, all coordinate xn, yn computations are in the first robot segment coordinate
system, around point O, (Figure 6). Calculations begin with the estimation of the first
segment endpoint’s P1 coordinates, x1, y1.

First of all, vector pec1 (point P̂ec1 has coordinate estimates based on Equation (10))
has to be normalized so that its magnitude is equal to chord length dn (Equation (17)).
According to [38], the general formula for vector normalization and scaling with a given
length is

up =
lvvp

||v || , (22)

where the output vector length is lv, the output vector coordinate is up (p stands for x, y,
or z), the input vector is v, and the input vector coordinate is vp (p stands for x, y, or z).
According to the generic normalization and scaling formula (Equation (22)),

x1Norm =
x̂ec1 d1

||pec1 ||
, (23)

y1Norm =
ŷec1 d1

||pec1 ||
, (24)

z1Norm =
ẑec1 d1

||pec1 ||
, (25)

where the first robot segment chord length is d1. Figure 7, based on Equations (23)–(25),
represents a new vector, pNec1. The magnitude of the calculated new vector pNec1 is equal
to chord length d1. However, the direction in the workspace is the same as the vector’s pec1
direction:

pNec1 = (x1Norm, y1Norm, z1Norm). (26)

Appl. Sci. 2021, 11, 2946 10 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 29

Equations (15)‒(21) help to estimate coordinates ݖ௡ of robot 1, 2, 3 segment end-
points ௡ܲ. On the other hand, point ௡ܲ coordinates ݔ௡, ݕ௡ can be found similarly to co-
ordinates ݖ௡. In this case, all coordinate ݔ௡, ݕ௡ computations are in the first robot seg-
ment coordinate system, around point ܱ, (Figure 6). Calculations begin with the estima-
tion of the first segment endpoint’s ଵܲ coordinates, ݔଵ, ݕଵ.

First of all, vector ୣܘୡଵ (point ෠ܲୣ ୡଵ has coordinate estimates based on Equation (10))
has to be normalized so that its magnitude is equal to chord length ݀௡ (Equation (17)).
According to [38], the general formula for vector normalization and scaling with a given
length is ݑ୮ = ݈௩ݒ୮‖ܞ‖,	 (22)

where the output vector length is ݈୴, the output vector coordinate is ݑ୮ (p stands for x, y,
or z), the input vector is ܞ, and the input vector coordinate is ݒ୮ (p stands for x, y, or z).
According to the generic normalization and scaling formula (Equation (22)), ݔଵ୒୭୰୫ = 	,‖ୡଵୣܘ‖݀ଵ	ොୣୡଵݔ (23)

ଵ୒୭୰୫ݕ = 	,‖ୡଵୣܘ‖݀ଵ	ොୣୡଵݕ (24)

ଵ୒୭୰୫ݖ = 	,‖ୡଵୣܘ‖݀ଵ	ୡଵୣݖ̂ (25)

where the first robot segment chord length is ݀ଵ. Figure 7, based on Equations (23)‒(25),
represents a new vector, ܘ୒ୣୡଵ . The magnitude of the calculated new vector ܘ୒ୣୡଵ is
equal to chord length ݀ଵ. However, the direction in the workspace is the same as the vec-
tor’s ୣܘୡଵ direction: ܘ୒ୣୡଵ = ,ଵ୒୭୰୫ݔ) ,ଵ୒୭୰୫ݕ ଵ୒୭୰୫). (26)ݖ

Figure 7. The first segment vector ୣܘୡଵ normalization and scaling to the new vector ܘ୒ୣୡଵ: (a) vectors ୣܘୡଵ and ܘ୒ୣୡଵ
with approximate bent robot spine curve view; (b) vectors ୣܘୡଵ and ܘ୒ୣୡଵ endpoints, zoomed in.

Vector ܘ୒ୣୡଵ gets new values for its coordinates ݔଵ୒୭୰୫ and ݕଵ୒୭୰୫. Length-invari-
ant direction adaptation of the scaled vector ܘ୒ୣୡଵ is still necessary. It should rotate in the
x‒y plane to a new vector ܘଵ, which defines the final first robot segment endpoint (Figure
8). To do so, triangle ∆ܱܤଵ ଵܲ returns the magnitude of ܊ଵ, as in Figure 6:

Figure 7. The first segment vector pec1 normalization and scaling to the new vector pNec1: (a) vectors pec1 and pNec1 with
approximate bent robot spine curve view; (b) vectors pec1 and pNec1 endpoints, zoomed in.

Vector pNec1 gets new values for its coordinates x1Norm and y1Norm. Length-invariant
direction adaptation of the scaled vector pNec1 is still necessary. It should rotate in the x-y
plane to a new vector p1, which defines the final first robot segment endpoint (Figure 8).
To do so, triangle ∆OB1P1 returns the magnitude of b1, as in Figure 6:

cos(α1) =
||b1 ||
||p1 ||

=
||b1 ||

d1
, (27)

||b1|| = d1 cos(α1). (28)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 29

cos(ߙଵ) = ‖ଵܘ‖‖ଵ܊‖ = ଵ‖݀ଵ܊‖ ,	 ‖ଵ܊‖(27) = ݀ଵcos(ߙଵ).	 (28)

Substituting Equations (17) and (18) into Equation (28) and simplifying ‖܊ଵ‖ yields

‖ଵ܊‖ = 	ܮ2 cos ቀπ − ௡2ߠ ቁ sin ቀߠ௡2 ቁ	ߠ௡ = ܮ	 − 	ܮ cos(ߠ௡)	ߠ௡ .	 (29)

Normalization of ܘ୒ୣୡଵ and scaling it to the magnitude ‖܊ଵ‖ produces new ݔଵ ଵݔ :ଵvaluesݕ , = 	‖୒ୣୡଵ܎‖ଵ୒୭୰୫ݔ ‖ଵ܊‖ = 	 ܮ)ଵ୒୭୰୫ݔ − 	ܮ cos(ߠଵ))ඥݔଵ୒୭୰୫ଶ + 	,ଵߠ	ଵ୒୭୰୫ଶݕ (30)

ଵݕ = 	‖୒ୣୡଵ܎‖ଵ୒୭୰୫ݕ ‖ଵ܊‖ = 	 ܮ)ଵ୒୭୰୫ݕ − 	ܮ cos(ߠଵ))ඥݔଵ୒୭୰୫ଶ + 	.ଵߠ	ଵ୒୭୰୫ଶݕ (31)

Combining coordinates ݔଵ, ݕଵ, ݖଵ enables the expression of the first segment end-
point ଵܲ. Then, the segment is in a standard arc form, as follows:

ଵܲ = ,ଵݔ) ,ଵݕ ଵ). (32)ݖ

Figure 8. Robot first segment, when a segment’s form is an arc, endpoint ଵܲ representation: (a) the point ଵܲ with approx-
imate spine curve view; (b) points ଵܲ and ෠ܲୣ ୡଵ, zoomed in.

The first segment endpoint’s ଵܲ coordinates have already been obtained. Point ଵܲ
and bending angle ߠଵ fully express the robot’s first segment. The segment rotation angle ߮ଵ around the z-axis in Figure 3a is unnecessary. The approach of finding the parameters
of the second and third segments will use the quaternion technique. This method requires
knowledge of the orientation of the previous segment. In this case, the retrieval of the
second segment’s parameters requires knowledge of the first segment’s orientation. Ini-
tially, for the calculation of the first segment arc center point ܥଵ (Figure 8a), there is a
need to define the circle arc radius with the formula ݎଵ = ଵ. (33)ߠଵܮ

Then, point ܥଵ coordinates estimation yields

Figure 8. Robot first segment, when a segment’s form is an arc, endpoint P1 representation: (a) the point P1 with approximate
spine curve view; (b) points P1 and P̂ec1, zoomed in.

Substituting Equations (17) and (18) into Equation (28) and simplifying b1 yields

||b1|| =
2L cos

(
π−θn

2

)
sin
(

θn
2

)
θn

=
L− L cos(θn)

θn
. (29)

Appl. Sci. 2021, 11, 2946 11 of 28

Normalization of pNec1 and scaling it to the magnitude b1 produces new x1, y1 values:

x1 =
x1Norm

||fNec1||
||b1|| =

x1Norm(L− L cos(θ1))√
x1Norm

2 + y1Norm
2 θ1

, (30)

y1 =
y1Norm

||fNec1||
||b1|| =

y1Norm(L− L cos(θ1))√
x1Norm

2 + y1Norm
2 θ1

. (31)

Combining coordinates x1, y1, z1 enables the expression of the first segment endpoint
P1. Then, the segment is in a standard arc form, as follows:

P1 = (x1, y1, z1). (32)

The first segment endpoint’s P1 coordinates have already been obtained. Point P1 and
bending angle θ1 fully express the robot’s first segment. The segment rotation angle ϕ1
around the z-axis in Figure 3a is unnecessary. The approach of finding the parameters of
the second and third segments will use the quaternion technique. This method requires
knowledge of the orientation of the previous segment. In this case, the retrieval of the
second segment’s parameters requires knowledge of the first segment’s orientation. Initially,
for the calculation of the first segment arc center point C1 (Figure 8a), there is a need to
define the circle arc radius with the formula

r1 =
L1

θ1
. (33)

Then, point C1 coordinates estimation yields

xc1 =
x1

||f1||
r1 =

x1r1√
x1

2 + y1
2

, (34)

yc1 =
y1

||f1||
r1 =

y1r1√
x1

2 + y1
2

, (35)

zc1 = 0, (36)

where zc1 = 0, because the first segment arc’s center must lie on the x-y axis plane. In
Equations (34)–(36), the coordinates all denote

C1 = (xc1, yc1, zc1). (37)

Quaternions will allow for estimation of the first segment’s orientation. The calculation
starts with finding an axis around which a unit vector defines the first segment orientation
rotation. To get this, arc center point C1 needs to be rotated around the z-axis 90◦ counter-
clockwise (Figure 9). The definition of the quaternion’s axis vector is as follows:

cr1 = (−yc1, xc1, zc1) = (xrc1, yrc1, zrc1). (38)

By using vector normalization and scaling, as in Equation (22), the vector cr1 magni-

tude yields a unit vector
^
cr1

^
cr1 = (xurc1, yurc1, zurc1). (39)

Quaternion q expresses rotation around the unit vector axis
→

OCum1 through the angle
θ1, with

q = cos
θn

2
+ xurcn sin

θn

2
i + yurcn sin

θn

2
j + zurcn sin

θn

2
k = qr + qini + qjn j + qknk. (40)

Appl. Sci. 2021, 11, 2946 12 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 29

ୡଵݔ = 	‖ଵ܎‖ଵݔ ଵݎ = 	 ଵଶݔଵඥݎଵݔ + 	,	ଵଶݕ (34)

ୡଵݕ = 	‖ଵ܎‖ଵݕ ଵݎ = 	 ଵଶݔଵඥݎଵݕ + 	,	ଵଶݕ (35)

ୡଵݖ = 0,	 (36)

where ݖୡଵ = 0, because the first segment arc’s center must lie on the x‒y axis plane. In
Equations (34)‒(36), the coordinates all denote ܥଵ = ,ୡଵݔ) ,ୡଵݕ ୡଵ). (37)ݖ

Quaternions will allow for estimation of the first segment’s orientation. The calcula-
tion starts with finding an axis around which a unit vector defines the first segment ori-
entation rotation. To get this, arc center point ܥଵ needs to be rotated around the z-axis 90°
counter-clockwise (Figure 9). The definition of the quaternion’s axis vector is as follows: ܋୰ଵ = ,ୡଵݕ−) ,ୡଵݔ (ୡଵݖ = ,୰ୡଵݔ) ,୰ୡଵݕ 	.(୰ୡଵݖ (38)

Figure 9. First segment vector ܋ଵ rotated around z-axis 90° counter-clockwise.

By using vector normalization and scaling, as in Equation (22), the vector ܋୰ଵ mag-
nitude yields a unit vector ̂܋୰ଵ ̂܋୰ଵ = ,୳୰ୡଵݔ) ,୳୰ୡଵݕ ୳୰ୡଵ). (39)ݖ

Quaternion ݍ expresses rotation around the unit vector axis ܱܥሬሬሬሬሬԦ௨௠ଵ through the an-
gle ߠଵ, with ݍ = cosߠ௡2 + ୳୰ୡ௡ݔ sin ௡2ߠ ݅ + ୳୰ୡ௡ݕ sin ௡2ߠ ݆ + ୳୰ୡ௡ݖ sin ௡2ߠ ݇ = ୰ݍ + ௜௡݅ݍ + ௝௡݆ݍ + 	.௞௡݇ݍ (40)

For any unit vector that will express first segment orientation and rotation, a rotation
matrix ܀௡ exists. This rotation matrix rotates any vector by an angle ߠ௡ counter-clock-
wise (right-hand rule) by using

௡܀ = ൦ 1 − ௝௡ଶݍ)ݏ2 + ௞௡ଶݍ) ௝௡ݍ௜௡ݍ)ݏ2 − (௥௡ݍ௞௡ݍ ௞௡ݍ௜௡ݍ)ݏ2 + ௝௡ݍ௜௡ݍ)ݏ௥௡)2ݍ௝௡ݍ + (௥௡ݍ௞௡ݍ 1 − ௜௡ଶݍ)ݏ2 + ௞௡ଶݍ) ௞௡ݍ௝௡ݍ)ݏ2 − ௞௡ݍ௜௡ݍ)ݏ௥௡)2ݍ௜௡ݍ − (௥௡ݍ௝௡ݍ ௞௡ݍ௝௡ݍ)ݏ2 + (௥௡ݍ௜௡ݍ 1 − ௜௡ଶݍ)ݏ2 + ௝௡ଶݍ) ൪,	 (41)

Figure 9. First segment vector c1 rotated around z-axis 90◦ counter-clockwise.

For any unit vector that will express first segment orientation and rotation, a rotation
matrix Rn exists. This rotation matrix rotates any vector by an angle θn counter-clockwise
(right-hand rule) by using

Rn =


1− 2s

(
q2

jn + q2
kn

)
2s
(
qinqjn − qknqrn

)
2s
(
qinqkn + qjnqrn

)
2s
(
qinqjn + qknqrn

)
1− 2s

(
q2

in + q2
kn
)

2s
(
qjnqkn − qinqrn

)
2s
(
qinqkn − qjnqrn

)
2s
(
qjnqkn + qinqrn

)
1− 2s

(
q2

in + q2
jn

)
, (41)

where the vector’s scalar/real part is s, that is s = ||q ||−2. The quaternion will only rotate
the unit vector; therefore, s = 1. For clockwise rotation around the same axis by an angle
θn, the quaternion rotation matrix is as follows:

Raltn =


1− 2s

(
q2

jn + q2
kn

)
2s
(
qinqjn + qknqrn

)
2s
(
qinqkn − qjnqrn

)
2s
(
qinqjn − qknqrn

)
1− 2s

(
q2

in + q2
kn
)

2s
(
qjnqkn + qinqrn

)
2s
(
qinqkn + qjnqrn

)
2s
(
qjnqkn − qinqrn

)
1− 2s

(
q2

in + q2
jn

)
, (42)

The quaternion formula for vector rotation is

vr2 = qvr1q′ = Rnvr1, (43)

where the output vector is vr2 and the input vector is vr1. If vr1 = (0, 0, 1) then the first
segment’s orientation vector is

^
sorien1 = R1 pr1. (44)

The sum of vector
^
sorien1 coordinates and point P1 coordinates is equal to Sorien1. The

vector sorienN1 represents the first segment orientation vector (Figure 10). sorienN1 continues
from point P1 to point SorienN1, while the vector sorienN1 magnitude (Figure 10) is scaled up
for illustration purposes.

Appl. Sci. 2021, 11, 2946 13 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 29

where the vector’s scalar/real part is ݏ, that is ݏ = ଶ. The quaternion will only rotateି‖ݍ‖
the unit vector; therefore, ݏ = 1. For clockwise rotation around the same axis by an angle ߠ௡, the quaternion rotation matrix is as follows:

ୟ୪୲௡܀ = ൦ 1 − ௝௡ଶݍ)ݏ2 + ௞௡ଶݍ) ௝௡ݍ௜௡ݍ)ݏ2 + (௥௡ݍ௞௡ݍ ௞௡ݍ௜௡ݍ)ݏ2 − ௝௡ݍ௜௡ݍ)ݏ௥௡)2ݍ௝௡ݍ − (௥௡ݍ௞௡ݍ 1 − ௜௡ଶݍ)ݏ2 + ௞௡ଶݍ) ௞௡ݍ௝௡ݍ)ݏ2 + ௞௡ݍ௜௡ݍ)ݏ௥௡)2ݍ௜௡ݍ + (௥௡ݍ௝௡ݍ ௞௡ݍ௝௡ݍ)ݏ2 − (௥௡ݍ௜௡ݍ 1 − ௜௡ଶݍ)ݏ2 + ௝௡ଶݍ) ൪.	 (42)

The quaternion formula for vector rotation is ܞ୰ଶ = ᇱݍ୰ଵܞݍ = 	,୰ଵܞ௡܀ (43)

where the output vector is ܞ୰ଶ and the input vector is ܞ୰ଵ. If ܞ୰ଵ = (0,0,1) then the first
segment’s orientation vector is ܛො୭୰୧ୣ୬ଵ = 	.௥ଵ݌ଵ܀ (44)

The sum of vector ܛො୭୰୧ୣ୬ଵ coordinates and point ଵܲ coordinates is equal to ܵ୭୰୧ୣ୬ଵ.
The vector ܛ୭୰୧ୣ୬୒ଵ represents the first segment orientation vector (Figure 10). ܛ୭୰୧ୣ୬୒ଵ
continues from point ଵܲ to point ܵ୭୰୧ୣ୬୒ଵ, while the vector ܛ୭୰୧ୣ୬୒ଵ magnitude (Figure
10) is scaled up for illustration purposes.

Figure 10. First segment with segment endpoint ଵܲ and with segment’s orientation vector ܛ୭୰୧ୣ୬୒ଵ.

To calculate the second segment endpoint’s ଶܲ coordinates and orientation vector’s ܛ୭୰୧ୣ୬ଶ coordinates, the first segment calculations from Equation (22) to Equation (44) are
still valid. However, the second segment vector ୣܘୡଵଶ (from point ෠ܲୣ ୡଵ to point ෠ܲୣ ୡଶ, Fig-
ure 5c), from the second segment coordinate system, needs to be transformed into a first
segment coordinate system. Therefore, vector ୣܘୡଵ reduces vector ୣܘୡଶ to get ܘୱୣୡଵଶ ,
which starts from point ܱ = ୱୣୡଵଶܘ :(0,0,0) = ୡଶୣܘ − ୡଵୣܘ = ොୣୡଶݔ) − ,ොୣୡଵݔ ොୣୡଶݕ − ,ොୣୡଵݕ ୡଶୣݖ̂ − 	.(ୡଵୣݖ̂ (45)

Vector ܘୱୣୡଵଶ needs to be rotated clockwise with the first segment quaternion rota-
tion matrix ܀ୟ୪୲ଵ in Equation (42) and using the quaternion rotation formula in Equation
ୡଶ୘ୣܘ :(43) = 	.ୱୣୡଵଶܘ	ୟ୪୲ଵࡾ (46)

Vector ୣܘୡଶ୘ is a result of the translation to the first segment coordinate system. Fig-
ure 11 depicts the ୣܘୡଶ୘ vector. Now the second segment chord length ݀ଶ allows for
scaling vector ୣܘୡଶ୘:

Figure 10. First segment with segment endpoint P1 and with segment’s orientation vector sorienN1.

To calculate the second segment endpoint’s P2 coordinates and orientation vector’s
sorien2 coordinates, the first segment calculations from Equation (22) to Equation (44) are still
valid. However, the second segment vector pec12 (from point P̂ec1 to point P̂ec2, Figure 5c),
from the second segment coordinate system, needs to be transformed into a first segment
coordinate system. Therefore, vector pec1 reduces vector pec2 to get psec 12, which starts
from point O = (0, 0, 0):

psec 12 = pec2 − pec1 = (x̂ec2 − x̂ec1, ŷec2 − ŷec1, ẑec2 − ẑec1). (45)

Vector psec 12 needs to be rotated clockwise with the first segment quaternion rotation
matrix Ralt1 in Equation (42) and using the quaternion rotation formula in Equation (43):

pec2
T = Ralt1 psec 12. (46)

Vector pec2
T is a result of the translation to the first segment coordinate system.

Figure 11 depicts the pec2
T vector. Now the second segment chord length d2 allows for

scaling vector pec2
T:

pNec2
T =

d2pec2
T

||pec2
T || . (47)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 29

୒ୣୡଶ୘ܘ = ݀ଶୣܘୡଶ୘‖ୣܘୡଶ୘‖.	 (47)

Figure 11. Second segment vector ୣܘୡଶ୘ calculation representation.

The estimated vector ܘ୒ୣୡଶ୘ lies in the first segment coordinate system. Getting the
x‒y coordinates requires applying Equations (22)‒(44) similarly for the second section. The
estimated second segment’s endpoint and its endpoint’s orientation vector exist in the first
segment coordinate system (Figure 12).

Figure 12. Second segment endpoint ଶܲ୘ and orientation vector ܛ୭୰୧ୣ୬୒ଶ୘ in the first segment’s
coordinate system.

Translation of the second robot segment endpoint ଶܲ୘, arc center point ܥଶ୘, and ori-
entation vector ܛ୭୰୧ୣ୬ଶ୘ back to the second segment coordination system requires their
rotation according to the first segment counter-clockwise quaternion rotation matrix in
Equation (41). After that, ଶܲ୘, ܥଶ୘ and ܛ୭୰୧ୣ୬୒ଶ୘ add to the first segment endpoint ଵܲ.

Figure 11. Second segment vector pec2
T calculation representation.

Appl. Sci. 2021, 11, 2946 14 of 28

The estimated vector pNec2
T lies in the first segment coordinate system. Getting the

x-y coordinates requires applying Equations (22)–(44) similarly for the second section. The
estimated second segment’s endpoint and its endpoint’s orientation vector exist in the first
segment coordinate system (Figure 12).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 29

୒ୣୡଶ୘ܘ = ݀ଶୣܘୡଶ୘‖ୣܘୡଶ୘‖.	 (47)

Figure 11. Second segment vector ୣܘୡଶ୘ calculation representation.

The estimated vector ܘ୒ୣୡଶ୘ lies in the first segment coordinate system. Getting the
x‒y coordinates requires applying Equations (22)‒(44) similarly for the second section. The
estimated second segment’s endpoint and its endpoint’s orientation vector exist in the first
segment coordinate system (Figure 12).

Figure 12. Second segment endpoint ଶܲ୘ and orientation vector ܛ୭୰୧ୣ୬୒ଶ୘ in the first segment’s
coordinate system.

Translation of the second robot segment endpoint ଶܲ୘, arc center point ܥଶ୘, and ori-
entation vector ܛ୭୰୧ୣ୬ଶ୘ back to the second segment coordination system requires their
rotation according to the first segment counter-clockwise quaternion rotation matrix in
Equation (41). After that, ଶܲ୘, ܥଶ୘ and ܛ୭୰୧ୣ୬୒ଶ୘ add to the first segment endpoint ଵܲ.

Figure 12. Second segment endpoint P2
T and orientation vector sorienN2

T in the first segment’s
coordinate system.

Translation of the second robot segment endpoint P2
T, arc center point C2

T, and
orientation vector sorien2

T back to the second segment coordination system requires their
rotation according to the first segment counter-clockwise quaternion rotation matrix in
Equation (41). After that, P2

T, C2
T and sorienN2

T add to the first segment endpoint P1.
The second robot arc-like segment’s position and orientation are evaluated in the second
segment coordinate system (Figure 13).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 29

The second robot arc-like segment’s position and orientation are evaluated in the second
segment coordinate system (Figure 13).

Figure 13. Second segment endpoint ଶܲ and orientation vector ܛ୭୰୧ୣ୬୒ଶ in second segment’s coor-
dination system.

These second segment calculations apply similarly to the third robot segment. The
only difference in this situation is that, in the beginning, vector ୣܘୡଶ needs to reduce vec-
tor ୣܘୡଷ to get ୣܘୡଶଷ (ܘୱୣୡଶଷ), which starts from point ܱ = (0,0,0). Then, ܘୱୣୡଶଷ needs to
be rotated clockwise with the first segment quaternion rotation matrix ܀ୟ୪୲ଵ and then
with the second segment quaternion rotation matrix ܀ୟ୪୲ଶ. For this purpose, similar cal-
culations using Equations (22)‒(44) are necessary.

The transposition of the third robot segment endpoint ଷܲ୘, arc center point ܥଷ୘, and
orientation vector ܛ୭୰୧ୣ୬ଷ୘ (Figure 14) back to the third segment coordination system is
then necessary. These points need to be rotated first with the second segment counter-
clockwise quaternion rotation matrix and then with the first segment counter-clockwise
quaternion rotation matrix. The third segment endpoint ଷܲ, arc center ܥଷ point, and ori-
entation vector ܛ୭୰୧ୣ୬୒ଷ add up to the second segment endpoint ଶܲ. The third robot seg-
ment or robot end-effector position and orientation endpoint vector lie in the third seg-
ment coordinate system, as shown in Figure 15.

Figure 13. Second segment endpoint P2 and orientation vector sorienN2 in second segment’s coordi-
nation system.

Appl. Sci. 2021, 11, 2946 15 of 28

These second segment calculations apply similarly to the third robot segment. The
only difference in this situation is that, in the beginning, vector pec2 needs to reduce vector
pec3 to get pec23 (psec 23), which starts from point O = (0, 0, 0). Then, psec 23 needs to be
rotated clockwise with the first segment quaternion rotation matrix Ralt1 and then with the
second segment quaternion rotation matrix Ralt2. For this purpose, similar calculations
using Equations (22)–(44) are necessary.

The transposition of the third robot segment endpoint P3
T, arc center point C3

T, and
orientation vector sorien3

T (Figure 14) back to the third segment coordination system is then
necessary. These points need to be rotated first with the second segment counter-clockwise
quaternion rotation matrix and then with the first segment counter-clockwise quaternion
rotation matrix. The third segment endpoint P3, arc center C3 point, and orientation vector
sorienN3 add up to the second segment endpoint P2. The third robot segment or robot
end-effector position and orientation endpoint vector lie in the third segment coordinate
system, as shown in Figure 15.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 29

Figure 14. Third segment endpoint ଷܲ୘ and orientation vector ܛ୭୰୧ୣ୬୒ଷ୘ in the first segment’s
coordination system.

Figure 15. Third segment endpoint ଷܲ and orientation vector ܛ୭୰୧ୣ୬୒ଷ in second segment’s coordi-
nation system.

3.4. Robot Cables’ (Tendons’) Length Calculation According to the Robot Spine Curvature
The key to controlling the shape of a trunk-type robot is cabling (tendons). One trunk-

type robot segment can have three or four (or more) tendons dedicated to control. This
section will discuss the robot segments’ options with only three cables for the control of
each segment. Each segment will have equations for three robot cable lengths ݈௡௜ (n—
segment number, i—cable number).

Some of the cable length formulas originate from [33]. The authors adjusted these
equations and used them in the robot control approach. The main reason for choosing
these equations was that [33] used robot segment spine curvature and orientation infor-
mation about robot segment construction. In [33], the equations were based on assump-
tions that their cables are in straight lines between the section connecting disks and not in
the arc-like segment spine. However, the authors of [33] assessed the number of cable

Figure 14. Third segment endpoint P3
T and orientation vector sorienN3

T in the first segment’s coordi-
nation system.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 29

Figure 14. Third segment endpoint ଷܲ୘ and orientation vector ܛ୭୰୧ୣ୬୒ଷ୘ in the first segment’s
coordination system.

Figure 15. Third segment endpoint ଷܲ and orientation vector ܛ୭୰୧ୣ୬୒ଷ in second segment’s coordi-
nation system.

3.4. Robot Cables’ (Tendons’) Length Calculation According to the Robot Spine Curvature
The key to controlling the shape of a trunk-type robot is cabling (tendons). One trunk-

type robot segment can have three or four (or more) tendons dedicated to control. This
section will discuss the robot segments’ options with only three cables for the control of
each segment. Each segment will have equations for three robot cable lengths ݈௡௜ (n—
segment number, i—cable number).

Some of the cable length formulas originate from [33]. The authors adjusted these
equations and used them in the robot control approach. The main reason for choosing
these equations was that [33] used robot segment spine curvature and orientation infor-
mation about robot segment construction. In [33], the equations were based on assump-
tions that their cables are in straight lines between the section connecting disks and not in
the arc-like segment spine. However, the authors of [33] assessed the number of cable

Figure 15. Third segment endpoint P3 and orientation vector sorienN3 in second segment’s coordina-
tion system.

Appl. Sci. 2021, 11, 2946 16 of 28

3.4. Robot Cables’ (Tendons’) Length Calculation According to the Robot Spine Curvature

The key to controlling the shape of a trunk-type robot is cabling (tendons). One trunk-
type robot segment can have three or four (or more) tendons dedicated to control. This
section will discuss the robot segments’ options with only three cables for the control of each
segment. Each segment will have equations for three robot cable lengths lni (n—segment
number, i—cable number).

Some of the cable length formulas originate from [33]. The authors adjusted these
equations and used them in the robot control approach. The main reason for choosing these
equations was that [33] used robot segment spine curvature and orientation information
about robot segment construction. In [33], the equations were based on assumptions that
their cables are in straight lines between the section connecting disks and not in the arc-like
segment spine. However, the authors of [33] assessed the number of cable guide connecting
disks in the section (Figure 16), which is essential for accurate robot cable length calculation.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 29

guide connecting disks in the section (Figure 16), which is essential for accurate robot ca-
ble length calculation.

Figure 16. A trunk-type robot with three segments, each having three tendons.

In [33], the equations for the first segment cable length’s calculation are

݈ଵଵ ଵ௞భୀ௥భሱۛ ሮۛ ଵݎ)ଵݍ − ଵܦ sin߮ଵ),	 (48)

݈ଵଶ ଵ௞భୀ௥భሱۛ ሮۛ ଵݍ ቀݎଵ + ଵܦ sin ቀπ3 + ߮ଵቁቁ,	 (49)

݈ଵଷ ଵ௞భୀ௥భሱۛ ሮۛ ଵݍ ቀݎଵ − ଵܦ cos ቀπ6 + ߮ଵቁቁ,	 (50)

where the robot first segment cable lengths are ݈ଵଵ, ݈ଵଶ, ݈ଵଷ; the first segment spine cur-
vature is ݇ଵ; the first segment circle arc radius is ݎଵ; the distance from the robot spine
center point to the robot cable center point on the robot connecting disk plane of the first
segment is ܦଵ; ߮ଵ is the angle between a vector ܛො୭୰୧ୣ୬ଵ and the first segment coordinate
system x-axis on the x‒y plane (the angle around the z-axis). The angle ߮ଵ range is ሾ0,2πሿ
from the x-axis to vector ܛො୭୰୧ୣ୬ଵ on the x‒y plane in a counter-clockwise direction. ݍଵ
comes from this equation:

௡ݍ = 2݉௡ sin ൬݇௡ܮ௡2݉௡൰ ଵ௞೙ୀ௥೙ሱۛ ۛۛሮ 2݉௡ sin ൬ ௡൰ݎ௡2݉௡ܮ ,	 (51)

where the n-th segment length is ܮ௡ and the number of spaces between the connecting
disks of the n-th segment is ݉௡. The first robot cable holes’ positions on the connecting
disks are necessary to determine the cable lengths for the second and third segments of
the robot. Cables conclude three groups: for the first robot segment control ݈ଵଵ, ݈ଵଶ, ݈ଵଷ;
for the second robot segment ݈ଶଵ, ݈ଶଶ, ݈ଶଷ, and for the third robot segment ݈ଷଵ, ݈ଷଶ, ݈ଷଷ.
According to this, nine cable holes have to be on the robot’s first segment connecting disks,
six cable holes have to be on the robot second segment connecting disks, and three cable
holes have to be on the robot third segment disks. Punches used for robot cables from the
same cable group have to be spaced 120° along all connecting disks.

Cable hole positions were first defined in the first segment connecting disks and later
on the second and third segment cable guide disks. The starting robot segment cable hole
on the first segment guide disk is on the y-axis for first segment control cable ݈ଵଵ (Figure
17a). The holes for cables ݈ଵଶ, ݈ଵଷ are placed correspondingly. Disk holes for cables ݈ଶଵ,

Figure 16. A trunk-type robot with three segments, each having three tendons.

In [33], the equations for the first segment cable length’s calculation are

l11

1
k1
=r1
→ q1(r1 − D1 sin ϕ1), (48)

l12

1
k1
=r1
→ q1

(
r1 + D1 sin

(π
3
+ ϕ1

))
, (49)

l13

1
k1
=r1
→ q1

(
r1 − D1 cos

(π
6
+ ϕ1

))
, (50)

where the robot first segment cable lengths are l11, l12, l13; the first segment spine curvature
is k1; the first segment circle arc radius is r1; the distance from the robot spine center point
to the robot cable center point on the robot connecting disk plane of the first segment is D1;

ϕ1 is the angle between a vector
^
sorien1 and the first segment coordinate system x-axis on

the x-y plane (the angle around the z-axis). The angle ϕ1 range is [0, 2π] from the x-axis to

vector
^
sorien1 on the x-y plane in a counter-clockwise direction. q1 comes from this equation:

qn = 2mn sin
(

knLn

2mn

) 1
kn

=rn
→ 2mn sin

(
Ln

2mnrn

)
, (51)

where the n-th segment length is Ln and the number of spaces between the connecting
disks of the n-th segment is mn. The first robot cable holes’ positions on the connecting
disks are necessary to determine the cable lengths for the second and third segments of the
robot. Cables conclude three groups: for the first robot segment control l11, l12, l13; for the

Appl. Sci. 2021, 11, 2946 17 of 28

second robot segment l21, l22, l23, and for the third robot segment l31, l32, l33. According
to this, nine cable holes have to be on the robot’s first segment connecting disks, six cable
holes have to be on the robot second segment connecting disks, and three cable holes have
to be on the robot third segment disks. Punches used for robot cables from the same cable
group have to be spaced 120◦ along all connecting disks.

Cable hole positions were first defined in the first segment connecting disks and later
on the second and third segment cable guide disks. The starting robot segment cable
hole on the first segment guide disk is on the y-axis for first segment control cable l11
(Figure 17a). The holes for cables l12, l13 are placed correspondingly. Disk holes for cables
l21, l22, l23 on the first segment are simply the cable l11, l12, l13 holes rotated 40◦ clockwise
around point O. Furthermore, the cable l31, l32, l33 holes were rotated the same way as l21,
l22, l23 but by 80◦. Figure 17a–c depicts all cable hole positions.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 29

݈ଶଶ, ݈ଶଷ on the first segment are simply the cable ݈ଵଵ, ݈ଵଶ, ݈ଵଷ holes rotated 40° clock-
wise around point ܱ. Furthermore, the cable ݈ଷଵ, ݈ଷଶ, ݈ଷଷ holes were rotated the same
way as ݈ଶଵ, ݈ଶଶ, ݈ଶଷ but by 80°. Figure 17a‒c depicts all cable hole positions.

(a)

(b)

(c)

Figure 17. Robot cables’ hole positions on the connecting disks: (a) Cables’ hole positions on the first segment connecting
disk in the first segment coordinate system; (b) cables’ hole positions on the second segment connecting disk in the second
segment coordinate system; (c) cables’ hole positions on the third segment connecting disk in the third segment coordinate
system.

Based on the specified hole positions on all robot cable guide disks and Equations
(48)‒(51) from [36], Equations (52)‒(57) for ݈ଶଵ, ݈ଶଶ, ݈ଶଷ and for ݈ଷଵ, ݈ଷଶ, ݈ଷଷ cable length
expressions are ݈ଶଵ = ଵݎଵݍ + ଶݎଶݍ − ൬ܦଵݍଵ sin ൬߮ଵ + 2π9 ൰൰ − ଶݍଶܦ) sin߮ଶ),	 (52)

݈ଶଶ = ଵݎଵݍ + ଶݎଶݍ + ൬ܦଵݍଵ sin ൬߮ଵ + 5π9 ൰൰ + ቀܦଶݍଶ sin ቀ߮ଶ + π3ቁቁ,	 (53)

݈ଶଷ = ଵݎଵݍ + ଶݎଶݍ − ൬ܦଵݍଵ cos ൬߮ଵ + 7π18൰൰ − ቀܦଶݍଶ cos ቀ߮ଶ + π6ቁቁ,	 (54)

݈ଷଵ = ଵݎଵݍ + ଶݎଶݍ + ଷݎଷݍ − ൬ܦଵݍଵ sin ൬߮ଵ + 4π9 ൰൰ − ൬ܦଶݍଶ sin ൬߮ଶ + 2π9 ൰൰ − ଷݍଷܦ) sin߮ଷ),	 (55)

Figure 17. Robot cables’ hole positions on the connecting disks: (a) Cables’ hole positions on the first segment connecting
disk in the first segment coordinate system; (b) cables’ hole positions on the second segment connecting disk in the
second segment coordinate system; (c) cables’ hole positions on the third segment connecting disk in the third segment
coordinate system.

Based on the specified hole positions on all robot cable guide disks and Equations (48)–(51)
from [36], Equations (52)–(57) for l21, l22, l23 and for l31, l32, l33 cable length expressions are

l21 = q1r1 + q2r2 −
(

D1q1 sin
(

ϕ1 +
2π
9

))
− (D2q2 sin ϕ2), (52)

Appl. Sci. 2021, 11, 2946 18 of 28

l22 = q1r1 + q2r2 +

(
D1q1 sin

(
ϕ1 +

5π
9

))
+
(

D2q2 sin
(

ϕ2 +
π

3

))
, (53)

l23 = q1r1 + q2r2 −
(

D1q1 cos
(

ϕ1 +
7π
18

))
−
(

D2q2 cos
(

ϕ2 +
π

6

))
, (54)

l31 = q1r1 + q2r2 + q3r3 −
(

D1q1 sin
(

ϕ1 +
4π
9

))
−
(

D2q2 sin
(

ϕ2 +
2π
9

))
− (D3q3 sin ϕ3), (55)

l32 = q1r1 + q2r2 + q3r3 +

(
D1q1 sin

(
ϕ1 +

7π
9

))
+

(
D2q2 sin

(
ϕ2 +

5π
9

))
+
(

D3q3 sin
(

ϕ3 +
π

3

))
, (56)

l33 = q1r1 + q2r2 + q3r3 −
(

D1q1 cos
(

ϕ1 +
11π
18

))
−
(

D2q2 cos
(

ϕ2 +
7π
18

))
−
(

D3q3 cos
(

ϕ3 +
π

6

))
. (57)

Here, the robot second segment cable lengths are l21, l22, l23, and the third segment
cable lengths are l31, l32, l33. The first, second, and third segments’ circle arc radii are r1, r2,
and r3. The distances from the robot spine center point to the robot cable center point on
the robot connecting disk plane of the three segments are D1, D2, and D3. The angle ϕn is

between vector
^
sorienn and the n-th segment coordinate system x-axis on the x-y plane (the

angle around the z-axis).

4. Robot Bending Simulation Results

The authors implemented the represented method equations for a trunk-type tendon-
driven robot with three inextensible segments in Wolfram Mathematica (Champaign,
IL, USA). Figures 18–21 depict the numeric simulation results for multiple simulation
scenarios at distinct goal points and robot orientation vectors. Table 1 presents trunk-type
robot technical specifications that are necessary for simulation execution. The presented
robot specifications match the actual robot, which is already in the experimental-practical
validation stage.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 29

reach the robot end effector’s target position exceeded the robot’s configuration space.
Second, the position error is noticeable because the robot position is soft-constrained,
while the primary condition is orientation. Figures 18‒21 show that reaching the desired
locations is possible in most simulations but not with the desired robot end orientations.
This is the main reason for the substantial position errors in some cases.

Table 2. Robot orientations and position errors as in the simulations in Figures 18‒21.

Simulation No Target Point ࡳ Reached Point ࡼ૜
Position Error ܘࢋ (cm) Desired Orientation ܗෝܚ Reached Orientation ܛොۼܖ܍ܑܚܗ૜

Orientation
Error ܗࢋ (°)

1 (87.30, −25, 49.81) (85.79, −24.33, 51.33) 2.242 (0.94, 0, −0.342) (0.938, 0.015, −0.346) 0.91
2 (87.30, 25, 49.81) (85.79, 24.33, 51.33) 2.242 (0.94, 0, −0.342) (0.938, 0.015, −0.346) 0.9101
3 (−80.30, 27.5, 55.81) (−82.54, 28.24, 60.01) 4.817 (−0.913, 0.365, −0.183) (−0.914, 0.362, −0.183) 0.2195
4 (−74.19, −29.46, 67.64) (−72.67, −31.09, 64.44) 3.903 (−0.549, −0.768, −0.329) (−0.567, −0.753, −0.334) 1.3826
5 (50, 0, 63) (67.21, −1.35, 83.795) 27.028 (0.254, −0.889, 0.381) (0.289, −0.858, 0.424) 3.617
6 (0, 0, 100) (5.08, 17.79, 97.99) 18.613 (0.254, 0.889, −0.381) (0.254, 0.888, −0.382) 0.08424
7 (50, −33, 110) (47.20, −31.15, 102.41) 8.298 (0, 0, 1) (0.119, −0.079, 0.99) 8.146
8 (94, −54, 20) (85.29, −48.46, 26.44) 12.168 (0.651, −0.651, −0.391) (0.66, −0.634, −0.403) 1.278
9 (55, −55, 80) (42.36, −42.36, 84.06) 18.325 (−0.615, 0.615, 0.492) (−0.539, 0.539, 0.647) 10.658
10 (40, 40, 40) (53, 53, 37.04) 18.624 (0, 0, −1) (0, 0, −1) 0

Third, position error results from multiple connected arcs that approximately replace
the estimated bent robot spine curve. In most simulations, the spine curve endpoint is
closer to the desired goal point, but robot configuration requires arcs as section shapes.
Therefore, a minor drift of the spine endpoint is acceptable to impose the segment shape
nonholonomic constraint. During this recalculation process, the first task is to get average
bending angles ߠ௡ for each arc segment. We assume that the angles ߠ௡ resulting from
curvature integration (Equation (14)) must match similar arc sections’ curvature.

Additionally, the lengths of both arc and elliptical curves are the same. However, the
chord lengths of arc and elliptical angles are different. The latter explains why position
errors between estimated robot spine curves and calculated robot segments arcs end-
points occur in all cases. Only when ߠ௡ → 0 does this position error between the arc and
elliptical curve vanish to a minimum.

(a)

(b)

Figure 18. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and the calculated robot segment arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (87.3016, −25,49.8118) and ܗෝ୰ = (0.9397,0, −0.342);
(b) robot spine view when ܩ = (87.3016,25,49.8118)and ܗෝ୰ = (0.9397,0, −0.342).

Figure 18. Bent spine views with different endpoint direction unit vector
^
or (purple vector) and G goal point (redpoint)

coordinates’ representation. The light blue curve is an estimated robot spine curve, and the calculated robot segment arc

curves are in blue, red, and green: (a) robot spine view when G = (87.3016,−25, 49.8118) and
^
or = (0.9397, 0,−0.342); (b)

robot spine view when G = (87.3016, 25, 49.8118) and
^
or = (0.9397, 0,−0.342).

Appl. Sci. 2021, 11, 2946 19 of 28
Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 29

(a)

(b)

Figure 19. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segments arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (−80.3016, 27.5, 55.8118) and ܗෝ୰ =(−0.9129, 0.3652, −0.1825) ; (b) robot spine view when ܩ = (−74.187, −29.4561, 67.6422) and ܗෝ୰ =(−0.5488,−0.7684, −0.3293).

(a)

(b)

Figure 20. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segment arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (50, 0,63) and ܗෝ୰ = (0.254, −0.889,0.381); (b) robot
spine view when ܩ = (0, 0, 100) and ܗෝ୰ = (0.254, 0.889, −0.381).

(a)

(b)

Figure 19. Bent spine views with different endpoint direction unit vector
^
or (purple vector) and G goal point (redpoint)

coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segments arc curves

are in blue, red, and green: (a) robot spine view when G = (−80.3016, 27.5, 55.8118) and
^
or = (−0.9129, 0.3652, −0.1825);

(b) robot spine view when G = (−74.187, −29.4561, 67.6422) and
^
or = (−0.5488, −0.7684, −0.3293).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 29

(a)

(b)

Figure 19. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segments arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (−80.3016, 27.5, 55.8118) and ܗෝ୰ =(−0.9129, 0.3652, −0.1825) ; (b) robot spine view when ܩ = (−74.187, −29.4561, 67.6422) and ܗෝ୰ =(−0.5488,−0.7684, −0.3293).

(a)

(b)

Figure 20. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segment arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (50, 0,63) and ܗෝ୰ = (0.254, −0.889,0.381); (b) robot
spine view when ܩ = (0, 0, 100) and ܗෝ୰ = (0.254, 0.889, −0.381).

(a)

(b)

Figure 20. Bent spine views with different endpoint direction unit vector
^
or (purple vector) and G goal point (redpoint)

coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segment arc curves

are in blue, red, and green: (a) robot spine view when G = (50, 0, 63) and
^
or = (0.254, −0.889, 0.381); (b) robot spine view

when G = (0, 0, 100) and
^
or = (0.254, 0.889, −0.381).

Table 1. Robot technical specifications during the simulations.

Specification Segment 1 Segment 2 Segment 3

Segment length Ln (cm) 40 40 40
Distance from robot spine to the tendon on connecting disk Dn (cm) 5 5 5

In this paper, the simulations’ goal is to evaluate the developed method’s efficiency
and accuracy. In this case, robot position and orientation errors will express the accuracy
of the method. Position error is essentially the scalar Euclidean distance for the robot
pose [39]:

ep = ||P3 − G|| =
√(

x3 − xg
)2

+
(
y3 − yg

)2
+
(
z3 − zg

)2. (58)

Appl. Sci. 2021, 11, 2946 20 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 21 of 29

(a)

(b)

Figure 19. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segments arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (−80.3016, 27.5, 55.8118) and ܗෝ୰ =(−0.9129, 0.3652, −0.1825) ; (b) robot spine view when ܩ = (−74.187, −29.4561, 67.6422) and ܗෝ୰ =(−0.5488,−0.7684, −0.3293).

(a)

(b)

Figure 20. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segment arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (50, 0,63) and ܗෝ୰ = (0.254, −0.889,0.381); (b) robot
spine view when ܩ = (0, 0, 100) and ܗෝ୰ = (0.254, 0.889, −0.381).

(a)

(b)

Appl. Sci. 2021, 11, x FOR PEER REVIEW 22 of 29

(c)

(d)

Figure 21. Bent spine views with different endpoint direction unit vector ܗෝ୰ (purple vector) and ܩ goal point (redpoint)
coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segments arc
curves are in blue, red, and green: (a) robot spine view when ܩ = (50,−33,100) and ܗෝ୰ = (0, 0, 1); (b) robot spine view
when ܩ = (94,−54,20) and ܗෝ୰ = (0.6509,−0.6509, −0.3906) ; (c) robot spine view when ܩ = (55,−55,80) and ܗෝ୰ =(−0.6155, 0.6155, 0.4924); (d) robot spine view when ܩ = (40, 40, 40) and ܗෝ୰ = (0, 0, −1).

The authors verified the study routine’s scalability when inverse dynamics problems
affect the planning of all robot actuators’ synchronous motion. For this purpose, the au-
thors transformed mathematical scripts into a C program and visually inspected the po-
tential benefits of applying the routines for solving inverse dynamics tasks. A single state
(a single target endpoint) spine estimation, (Figures 18‒21) lasted 200‒300 ms on a single
core, where the processor had 1.80 GHz, and the RAM was 4 GB. Therefore, the robot
control method presented herein is acceptable for both online and offline scenarios. Cur-
rently, experimental‒practical validation of the three-segment trunk-type tendon robot is
ongoing. The authors will reveal research results in the future.

5. Electric Motor Speed Control Profiles
Frequently, an electric motor controls tendon lengths [1,2,5], and such a drive repre-

sents a typical actuator. More specifically, electric motors can control trunk-type robot
metal wires (tendons) by using Equations (48)‒(57) for all three robot segments. Such
open-loop (prediction/planning) motion profiles will automatically impose final rigid
body motion that practically solves the inverse dynamic problem. That is why this section
further elaborates on simulation results dedicated to motor speed control profiles.

First, this study presents angular speed profiles for any generic electric motor instal-
lation with or without a gearbox. The only customization parameter value is the radius of
a motor rotor or a gear. The parameter helps translate rotational mechanical motion to
longitudinal motion, which directly controls a tendon. Accordingly, the speed motion pro-
files and the kit radii provide an opportunity to plan torque profiles for electric motors
and their gearboxes, if any, in the future.

Next, an expression for tendon lengths’ rate of change is necessary to arrive at the
angular speed contours. Based on Equations (48)‒(57), the approximation of the first-order
derivative of cable lengths, as a function of time (Figure 22), is as follows: ݒ௖௟௡௠௜ = =ݐ∆݈∆ ݈௡௠,௜ − ݈௡௠,௜ିଵ∆ݐ ,	 (61)

Figure 21. Bent spine views with different endpoint direction unit vector
^
or (purple vector) and G goal point (redpoint)

coordinates’ representation. The light blue curve is an estimated robot spine curve, and calculated robot segments arc

curves are in blue, red, and green: (a) robot spine view when G = (50, −33, 100) and
^
or = (0, 0, 1); (b) robot spine

view when G = (94, −54, 20) and
^
or = (0.6509, −0.6509, −0.3906); (c) robot spine view when G = (55, −55, 80) and

^
or = (−0.6155, 0.6155, 0.4924); (d) robot spine view when G = (40, 40, 40) and

^
or = (0, 0, −1).

Here, the robot third segment endpoint found with the proposed method is P3. The
target point that the robot end-effector has to reach is G. According to the authors’ decision,

the dot product of the third segment orientation
^
sorienN3 and predefined orientation

^
or,

at the target point G, will determine the orientation error. Lipschutz et al. [40] give the
mentioned dot product between the two vectors:

a·b = ||a|| ||b|| cos θ, (59)

Appl. Sci. 2021, 11, 2946 21 of 28

where the first vector is a and the second vector b is the angle θ between them. Redesigning
the dot product via Equation (59) produces the orientation error expression:

eo = cos−1
^
sorienN3 ·

^
or

||^sorienN3|| ||
^
or ||

. (60)

Table 2 exposes orientation errors between vectors
^
or and sorienN3 and position errors

between goal point G and bent robot third segment endpoint P3. From Table 2, it is clear
that the algorithm imposes both constraint conditions: soft for segment goal point and hard
for robot end orientation. However, substantial position errors, defined as the distance
between desired and achieved robot endpoints, can be seen in some situations, Table 2.
For example, the fifth simulation results contain a 27.0281 cm position error. Three main
concerns affect the bent robot position accuracy. First, some goal points that have to reach
the robot end effector’s target position exceeded the robot’s configuration space. Second,
the position error is noticeable because the robot position is soft-constrained, while the
primary condition is orientation. Figures 18–21 show that reaching the desired locations is
possible in most simulations but not with the desired robot end orientations. This is the
main reason for the substantial position errors in some cases.

Table 2. Robot orientations and position errors as in the simulations in Figures 18–21.

Simulation No Target Point G Reached Point P3
Position Error

ep(cm) Desired Orientation
^
or

Reached Orientation
^
sorienN3

Orientation
Error eo(◦)

1 (87.30, −25, 49.81) (85.79, −24.33, 51.33) 2.242 (0.94, 0, −0.342) (0.938, 0.015, −0.346) 0.91
2 (87.30, 25, 49.81) (85.79, 24.33, 51.33) 2.242 (0.94, 0, −0.342) (0.938, 0.015, −0.346) 0.9101
3 (−80.30, 27.5, 55.81) (−82.54, 28.24, 60.01) 4.817 (−0.913, 0.365, −0.183) (−0.914, 0.362, −0.183) 0.2195
4 (−74.19, −29.46, 67.64) (−72.67, −31.09, 64.44) 3.903 (−0.549, −0.768, −0.329) (−0.567, −0.753, −0.334) 1.3826
5 (50, 0, 63) (67.21, −1.35, 83.795) 27.028 (0.254, −0.889, 0.381) (0.289, −0.858, 0.424) 3.617
6 (0, 0, 100) (5.08, 17.79, 97.99) 18.613 (0.254, 0.889, −0.381) (0.254, 0.888, −0.382) 0.08424
7 (50, −33, 110) (47.20, −31.15, 102.41) 8.298 (0, 0, 1) (0.119, −0.079, 0.99) 8.146
8 (94, −54, 20) (85.29, −48.46, 26.44) 12.168 (0.651, −0.651, −0.391) (0.66, −0.634, −0.403) 1.278
9 (55, −55, 80) (42.36, −42.36, 84.06) 18.325 (−0.615, 0.615, 0.492) (−0.539, 0.539, 0.647) 10.658
10 (40, 40, 40) (53, 53, 37.04) 18.624 (0, 0, −1) (0, 0, −1) 0

Third, position error results from multiple connected arcs that approximately replace
the estimated bent robot spine curve. In most simulations, the spine curve endpoint is
closer to the desired goal point, but robot configuration requires arcs as section shapes.
Therefore, a minor drift of the spine endpoint is acceptable to impose the segment shape
nonholonomic constraint. During this recalculation process, the first task is to get average
bending angles θn for each arc segment. We assume that the angles θn resulting from
curvature integration (Equation (14)) must match similar arc sections’ curvature.

Additionally, the lengths of both arc and elliptical curves are the same. However, the
chord lengths of arc and elliptical angles are different. The latter explains why position
errors between estimated robot spine curves and calculated robot segments arcs endpoints
occur in all cases. Only when θn → 0 does this position error between the arc and elliptical
curve vanish to a minimum.

The authors verified the study routine’s scalability when inverse dynamics problems
affect the planning of all robot actuators’ synchronous motion. For this purpose, the authors
transformed mathematical scripts into a C program and visually inspected the potential
benefits of applying the routines for solving inverse dynamics tasks. A single state (a
single target endpoint) spine estimation, (Figures 18–21) lasted 200–300 ms on a single core,
where the processor had 1.80 GHz, and the RAM was 4 GB. Therefore, the robot control
method presented herein is acceptable for both online and offline scenarios. Currently,
experimental-practical validation of the three-segment trunk-type tendon robot is ongoing.
The authors will reveal research results in the future.

5. Electric Motor Speed Control Profiles

Frequently, an electric motor controls tendon lengths [1,2,5], and such a drive rep-
resents a typical actuator. More specifically, electric motors can control trunk-type robot

Appl. Sci. 2021, 11, 2946 22 of 28

metal wires (tendons) by using Equations (48)–(57) for all three robot segments. Such
open-loop (prediction/planning) motion profiles will automatically impose final rigid
body motion that practically solves the inverse dynamic problem. That is why this section
further elaborates on simulation results dedicated to motor speed control profiles.

First, this study presents angular speed profiles for any generic electric motor instal-
lation with or without a gearbox. The only customization parameter value is the radius
of a motor rotor or a gear. The parameter helps translate rotational mechanical motion
to longitudinal motion, which directly controls a tendon. Accordingly, the speed motion
profiles and the kit radii provide an opportunity to plan torque profiles for electric motors
and their gearboxes, if any, in the future.

Next, an expression for tendon lengths’ rate of change is necessary to arrive at the
angular speed contours. Based on Equations (48)–(57), the approximation of the first-order
derivative of cable lengths, as a function of time (Figure 22), is as follows:

vclnmi =
∆l
∆t

=
lnm,i − lnm,i−1

∆t
, (61)

where a cable length lnm belongs to the robot’s n-th segment and its m-th cable, the obser-
vation’s discrete-time index is i, and ∆t is the sampling interval in seconds. Calculating the
robot cable length longitudinal speed motor angular speed is then done as follows:

ωnm =
vclnmi
rms

, (62)

where the motor rotor or gear radius is rms. Motor shaft angular speed also involves the
representation of rotational speed:

ωnm = nnm

(
2π
60

)
, (63)

where motor or gear rotational speed is nnm, which belongs to the n-th segment and its
m-th cable. Combining and simplifying Equations (62) and (63) produces the robot motor
shaft rotational speed as follows:

nnm =
30vclnmi

rmsπ
. (64)Appl. Sci. 2021, 11, x FOR PEER REVIEW 23 of 29

Figure 22. Tendon lengths’ rate of change profiles for robot segments motion (situation represented in Figure 23) from the
initial position to the target position.

where a cable length ݈௡௠ belongs to the robot’s n-th segment and its m-th cable, the ob-
servation’s discrete-time index is i, and ∆ݐ is the sampling interval in seconds. Calculat-
ing the robot cable length longitudinal speed motor angular speed is then done as follows: ߱௡௠ = ୫ୱݎ௖௟௡௠௜࢜ ,	 (62)

where the motor rotor or gear radius is ݎ୫ୱ. Motor shaft angular speed also involves the
representation of rotational speed: ߱௡௠ = ݊௡௠ ൬2π60൰,	 (63)

where motor or gear rotational speed is ݊௡௠, which belongs to the n-th segment and its
m-th cable. Combining and simplifying Equations (62) and (63) produces the robot motor
shaft rotational speed as follows: ݊௡௠ = ୫ୱπݎ௖௟௡௠௜࢜30 .	 (64)

The solution of inverse dynamics requires the robot’s end-effector initial state and
target state set. The fifth robot simulation (Figure 20a) presents the target ܩ and robot
end-effector orientation unit vector ܗෝ௥. There are two scenarios discussed that differ in
their initial state. The first scenario corresponds to a vertically straight form of the manip-
ulator. The second case will circumscribe the robot as initially bent. Figures 23 and 24
show both situations and their corresponding discrete surfaces that practically represent
the inverse dynamics’ numeric solution.

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.00 1.02 1.95 2.89 3.83 4.77 5.70 6.64 7.58 8.52 9.45

,݈݅݉݊ܿ࢜
cm/s

time, s

Segment 1
tendon 1
tendon 2
tendon 3

Segment 2
tendon 1
tendon 2
tendon 3

Segment 3
tendon 1
tendon 2
tendon 3

Figure 22. Tendon lengths’ rate of change profiles for robot segments motion (situation represented in Figure 23) from the
initial position to the target position.

Appl. Sci. 2021, 11, 2946 23 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 24 of 29

(a)

(b)

Figure 23. Robot segments’ motion from the initial position to the target position. The light blue
curve illustrates the robot spine curve. The calculated robot segment arc curves are blue, red, and
green: (a) robot motion side view when the robot is straight in the initial position; (b) robot motion
top view when the robot is initially vertically straight.

Figure 23. Robot segments’ motion from the initial position to the target position. The light blue
curve illustrates the robot spine curve. The calculated robot segment arc curves are blue, red, and
green: (a) robot motion side view when the robot is straight in the initial position; (b) robot motion
top view when the robot is initially vertically straight.

The solution of inverse dynamics requires the robot’s end-effector initial state and
target state set. The fifth robot simulation (Figure 20a) presents the target G and robot

end-effector orientation unit vector
^
or. There are two scenarios discussed that differ in their

initial state. The first scenario corresponds to a vertically straight form of the manipulator.
The second case will circumscribe the robot as initially bent. Figures 23 and 24 show both
situations and their corresponding discrete surfaces that practically represent the inverse
dynamics’ numeric solution.

Appl. Sci. 2021, 11, 2946 24 of 28

Appl. Sci. 2021, 11, x FOR PEER REVIEW 25 of 29

(a)

(b)

Figure 24. Robot segments motion from the initial position to the target position. The light blue
curve illustrates the robot spine curve. The calculated robot segment arc curves are blue, red, and
green: (a) robot motion side-view, when the robot is bent in the initial position; (b) robot motion
top-view, when the robot is initially bent.

Equations (61)‒(64) allow for estimations of speed control profiles in both scenarios
(Figures 23 and 24). Simulations involved a radius value of 1 cm for all actuators. The total
modeling time for the robot to reach the target position from its initial state was 10 s.
Figure 25a,b gives final rotational diagrams of both scenarios that match the cases in Fig-
ures 23 and 24.

Figure 24. Robot segments motion from the initial position to the target position. The light blue
curve illustrates the robot spine curve. The calculated robot segment arc curves are blue, red, and
green: (a) robot motion side-view, when the robot is bent in the initial position; (b) robot motion
top-view, when the robot is initially bent.

Equations (61)–(64) allow for estimations of speed control profiles in both scenarios
(Figures 23 and 24). Simulations involved a radius value of 1 cm for all actuators. The
total modeling time for the robot to reach the target position from its initial state was

Appl. Sci. 2021, 11, 2946 25 of 28

10 s. Figure 25a,b gives final rotational diagrams of both scenarios that match the cases in
Figures 23 and 24.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 26 of 29

(a)

(b)

Figure 25. Motor rotational profile diagrams: (a) Motors’ speed profiles when the robot was straight in the initial position,
scenario 1; (b) motors’ speed profiles, scenario 2.

As in Figure 25, the profile information brings future opportunities for online and
offline robot motion planning and prediction when obstacles are present and different
trajectory surface configurations come into effect. Simultaneously, these profiles are syn-
chronous, i.e., their open-loop execution will result in final experimental trajectories close
to the theoretical solutions proposed by this study.

6. Conclusions
This study proposes an approach for finding synchronized actuator profiles that (by

design) solve inverse dynamics problems for a trunk-type robot manipulator consisting
of three segments. The intention of the method is the spatial control of the three inexten-
sible segments’ positions and orientations. The technique imposed the soft constraint as-
sumption for the segment’s goal point and the mandatory constraint condition for the
end-effector’s alignment. The method’s principle is to obtain an approximate curve of the
spatial spine that meets the listed position and orientation conditions. Then, a robot is
“built” around the estimated backbone by using circular arcs. The calculated final robot
configuration determines all segments’ spatial positions and orientations. The obtained
robot configuration also presents all lengths of the corresponding tendons so that their

-11

-6

-1

4

9

0.00 1.02 1.95 2.89 3.83 4.77 5.70 6.64 7.58 8.52 9.45

݊݊݉,
rpm

time, s

Segment 1
motor 1
motor 2
motor 3

Segment 2
motor 1
motor 2
motor 3

Segment 3
motor 1
motor 2
motor 3

-950

-750

-550

-350

-150

50

250

450

650

850

0.00 1.02 1.95 2.89 3.83 4.77 5.70 6.64 7.58 8.52 9.45

݊݊݉,
rpm

time, s

Segment 1
motor 1
motor 2
motor 3

Segment 2
motor 1
motor 2
motor 3

Segment 3
motor 1
motor 2
motor 3

Figure 25. Motor rotational profile diagrams: (a) Motors’ speed profiles when the robot was straight in the initial position,
scenario 1; (b) motors’ speed profiles, scenario 2.

As in Figure 25, the profile information brings future opportunities for online and
offline robot motion planning and prediction when obstacles are present and different
trajectory surface configurations come into effect. Simultaneously, these profiles are syn-
chronous, i.e., their open-loop execution will result in final experimental trajectories close
to the theoretical solutions proposed by this study.

6. Conclusions

This study proposes an approach for finding synchronized actuator profiles that (by
design) solve inverse dynamics problems for a trunk-type robot manipulator consisting
of three segments. The intention of the method is the spatial control of the three inex-
tensible segments’ positions and orientations. The technique imposed the soft constraint
assumption for the segment’s goal point and the mandatory constraint condition for the
end-effector’s alignment. The method’s principle is to obtain an approximate curve of the
spatial spine that meets the listed position and orientation conditions. Then, a robot is

Appl. Sci. 2021, 11, 2946 26 of 28

“built” around the estimated backbone by using circular arcs. The calculated final robot
configuration determines all segments’ spatial positions and orientations. The obtained
robot configuration also presents all lengths of the corresponding tendons so that their
motion implicitly is synchronous. The average time of the code execution varied between
200 and 300 ms.

This study shows that, depending on the specified target point and orientation, the
end-effector orientation simulation error ranged from 0◦ to 10◦. Since the robot’s position
was not the highest priority in this study, the maximum recorded position error was
27.028 cm and the lowest was 2.242 cm. The total length of the robot’s spine during
the simulations was 120 cm. When estimating the error, it is necessary to consider that
the authors provide the error statistics regardless of the robot workspace. However, the
described method suggested finding the best robot configuration under defined conditions
with closed-form expressions, avoiding neural networks [41] or robot motion learning [42]
techniques. However, as this work clarifies, the accuracy of the end-effector’s state is the
main trade-off.

The approach also presents an approximate discrete inverse dynamics solution rele-
vant for online and offline trunk-type robot motion planning and navigation tasks. This
text discusses the rotational profile diagrams for two scenarios. Since the provided motor
speed profiles are synchronized, the manipulator’s motion would result in trajectories close
to those shown in Figures 23 and 24. The experimental research on a three-segment tendon
robot with similar technical specifications to the robot in the simulations is ongoing. The
results of this research will appear in the future.

Author Contributions: Conceptualization, R.U.; methodology, R.U.; software, R.U., M.M. and L.Z.;
validation, R.U., M.M. and B.K.; formal analysis, D.M., B.K. and G.D.; investigation, R.U., M.M.
and L.Z.; resources, R.U., D.M. and G.D.; data curation, M.M. and L.Z.; writing—original draft
preparation, M.M.; writing—review and editing, R.U. and M.M.; visualization, M.M., B.K. and D.M.;
supervision, G.D.; project administration, G.D. and R.U.; funding acquisition, G.D. and R.U. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to the authors’ preference.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The first and second function derivatives of the spine curve parametric equations
x̂ec(t), ŷec(t), ẑec(t) from Equations (6)–(8) have the expressions

.
xec =

t2(−2xe3 + lrorx)

l3
r

+
2t(xe3(−2t + 3lr) + (t− lr)lrorx)

l3
r

, (A1)

.
yec =

t2(−2ye3 + lrory
)

l3
r

+
2t
(
ye3(−2t + 3lr) + (t− lr)lrory

)
l3
r

, (A2)

..
Zec =

t(−2ze3t+ze3(−2t+3lr)−lr(−t+lr)(1+orz)−lr(t(1+orz)))

l3
r

+ ze3t(−2t+3lr)+lr(−t+lr)(lr−t(1+orz))

l3
r

, (A3)

..
xec =

4t(−2xe3 + lrorx)

l3
r

+
2(xe3(−2t + 3lr) + (t− lr)lrorx)

l3
r

, (A4)

..
yec =

4t
(
−2ye3 + lrory

)
l3
r

+
2
(
ye3(−2t + 3lr) + (t− lr)lrory

)
l3
r

, (A5)

Appl. Sci. 2021, 11, 2946 27 of 28

..
zec =

t(−4ze3 + 2lr(1 + orz))

l3
r

+
2(−2ze3t + ze3(−2t + 3lr)− lr(−t + lr)(1 + orz)− lr(lr − t(1 + orz)))

l3
r

, (A6)

Here, the trunk-type robot spine full length is lr. The unit vector that defines the robot’s

third segment end direction is
^
or =

(
orx, ory, orz

)
. Point Pe3 = (xe3, ye3, ze3) expresses the

estimated robot spine endpoint.

References
1. Li, M.; Kang, R.; Geng, S.; Guglielmino, E. Design and Control of a Tendon-Driven Continuum Robot. Trans. Inst. Meas. Control

2018, 40, 3263–3272. [CrossRef]
2. Neppalli, S.; Jones, B.A. Design, Construction, and Analysis of a Continuum Robot. In Proceedings of the 2007 IEEE/RSJ

International Conference on Intelligent Robots and Systems, San Diego, CA, USA, 29 October–2 November 2007; pp. 1503–1507.
[CrossRef]

3. Runciman, M.; Darzi, A.; Mylonas, G.P. Soft Robotics in Minimally Invasive Surgery. Soft Robot. 2019, 6, 423–443. [CrossRef]
[PubMed]

4. Jha, M.; Ram Chauhan, N. A Review on Snake-like Continuum Robots for Medical Surgeries. IOP Conf. Ser. Mater. Sci. Eng. 2019,
691, 012093. [CrossRef]

5. Ouyang, B.; Liu, Y.; Sun, D. Design of a Three-Segment Continuum Robot for Minimally Invasive Surgery. Robot. Biomim. 2016, 3,
2. [CrossRef] [PubMed]

6. Piltan, F.; Kim, C.-H.; Kim, J.-M. Adaptive Fuzzy-Based Fault-Tolerant Control of a Continuum Robotic System for Maxillary
Sinus Surgery. Appl. Sci. 2019, 9, 2490. [CrossRef]

7. Meng, G.Z.; Yuan, G.M.; Liu, Z.; Zhang, J. Forward and Inverse Kinematic of Continuum Robot for Search and Rescue. AMR
2013, 712–715, 2290–2295. [CrossRef]

8. Domenech, D.M. New Technologies and Emerging Spaces of Care; ROUTLEDGE: MiltonPark, UK, 2016; ISBN 978-1-138-25006-2.
9. Dong, X.; Axinte, D.; Palmer, D.; Cobos, S.; Raffles, M.; Rabani, A.; Kell, J. Development of a Slender Continuum Robotic System

for On-Wing Inspection/Repair of Gas Turbine Engines. Robot. Comput. Integr. Manuf. 2017, 44, 218–229. [CrossRef]
10. Wang, M.; Dong, X.; Ba, W.; Mohammad, A.; Axinte, D.; Norton, A. Design, Modelling and Validation of a Novel Extra Slender

Continuum Robot for In-Situ Inspection and Repair in Aeroengine. arXiv 2019, arXiv:1910.04572. [CrossRef]
11. Amouri, A.; Mahfoudi, C.; Zaatri, A. Dynamic Modeling of a Spatial Cable-Driven Continuum Robot Using Euler-Lagrange

Method. Int. J. Eng. Technol. Innov. 2020, 10, 60–74. [CrossRef]
12. Kang, R.; Guo, Y.; Chen, L.; Branson, D.T.; Dai, J.S. Design of a Pneumatic Muscle Based Continuum Robot with Embedded

Tendons. IEEE ASME Trans. Mechatron. 2017, 22, 751–761. [CrossRef]
13. Webster, R.J.; Romano, J.M.; Cowan, N.J. Mechanics of Precurved-Tube Continuum Robots. IEEE Trans. Robot. 2009, 25, 67–78.

[CrossRef]
14. Kang, R.; Branson, D.T.; Zheng, T.; Guglielmino, E.; Caldwell, D.G. Design, Modeling and Control of a Pneumatically Actuated

Manipulator Inspired by Biological Continuum Structures. Bioinspir. Biomim. 2013, 8, 036008. [CrossRef]
15. Camarillo, D.B.; Milne, C.F.; Carlson, C.R.; Zinn, M.R.; Salisbury, J.K. Mechanics Modeling of Tendon-Driven Continuum

Manipulators. IEEE Trans. Robot. 2008, 24, 1262–1273. [CrossRef]
16. Coulson, R.; Robinson, M.; Kirkpatrick, M.; Berg, D.R. Design and Preliminary Testing of a Continuum Assistive Robotic

Manipulator. Robotics 2019, 8, 84. [CrossRef]
17. Webster, R.J.; Jones, B.A. Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review. Int. J. Robot. Res.

2010, 29, 1661–1683. [CrossRef]
18. Frazelle, C.G.; Kapadia, A.; Walker, I. Developing a Kinematically Similar Master Device for Extensible Continuum Robot

Manipulators. J. Mech. Robot. 2018, 10, 025005. [CrossRef]
19. Nguyen, T.-D.; Burgner-Kahrs, J. A Tendon-Driven Continuum Robot with Extensible Sections. In Proceedings of the 2015

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015;
pp. 2130–2135. [CrossRef]

20. Yeshmukhametov, A.; Koganezawa, K.; Yamamoto, Y. A Novel Discrete Wire-Driven Continuum Robot Arm with Passive Sliding
Disc: Design, Kinematics and Passive Tension Control. Robotics 2019, 8, 51. [CrossRef]

21. Georgilas, I.; Tourassis, V. From the Human Spine to Hyperredundant Robots: The ERMIS Mechanism. ISRN Robot. 2013, 2013,
1–9. [CrossRef]

22. Giffin, A.; Urniezius, R. The Kalman Filter Revisited Using Maximum Relative Entropy. Entropy 2014, 16, 1047–1069. [CrossRef]
23. Giffin, A.; Urniezius, R. Simultaneous State and Parameter Estimation Using Maximum Relative Entropy with Nonhomogenous

Differential Equation Constraints. Entropy 2014, 16, 4974–4991. [CrossRef]
24. Urniežius, R.; Mohammad-Djafari, A.; Bercher, J.-F.; Bessiére, P. Online Robot Dead Reckoning Localization Using Maximum Relative

Entropy Optimization with Model Constraints; American Institute of Physics: Chamonix, France, 2011; pp. 274–283. [CrossRef]

http://doi.org/10.1177/0142331216685607
http://doi.org/10.1109/IROS.2007.4399275
http://doi.org/10.1089/soro.2018.0136
http://www.ncbi.nlm.nih.gov/pubmed/30920355
http://doi.org/10.1088/1757-899X/691/1/012093
http://doi.org/10.1186/s40638-016-0035-1
http://www.ncbi.nlm.nih.gov/pubmed/27073750
http://doi.org/10.3390/app9122490
http://doi.org/10.4028/www.scientific.net/AMR.712-715.2290
http://doi.org/10.1016/j.rcim.2016.09.004
http://doi.org/10.1016/j.rcim.2020.102054
http://doi.org/10.46604/ijeti.2020.4422
http://doi.org/10.1109/TMECH.2016.2636199
http://doi.org/10.1109/TRO.2008.2006868
http://doi.org/10.1088/1748-3182/8/3/036008
http://doi.org/10.1109/TRO.2008.2002311
http://doi.org/10.3390/robotics8040084
http://doi.org/10.1177/0278364910368147
http://doi.org/10.1115/1.4039075
http://doi.org/10.1109/IROS.2015.7353661
http://doi.org/10.3390/robotics8030051
http://doi.org/10.5402/2013/890609
http://doi.org/10.3390/e16021047
http://doi.org/10.3390/e16094974
http://doi.org/10.1063/1.3573627

Appl. Sci. 2021, 11, 2946 28 of 28

25. Muller, A. An O(n) -Algorithm for the Higher-Order Kinematics and Inverse Dynamics of Serial Manipulators Using Spatial
Representation of Twists. IEEE Robot. Autom. Lett. 2021, 6, 397–404. [CrossRef]

26. Watkins-Valls, D.; Xu, J.; Waytowich, N.; Allen, P. Learning Your Way Without Map or Compass: Panoramic Target Driven Visual
Navigation. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas,
NV, USA, 24 October 2020–24 January 2021; pp. 5816–5823.

27. Norberto Pires, J. Industrial Robots Programming; Springer: Boston, MA, USA, 2007; ISBN 978-0-387-23325-3.
28. Liu, Y.; Ge, Z.; Yang, S.; Walker, I.D.; Ju, Z. Elephant’s Trunk Robot: An Extremely Versatile Under-Actuated Continuum Robot

Driven by a Single Motor. J. Mech. Robot. 2019, 11, 051008. [CrossRef]
29. Zhao, Y.; Song, X.; Zhang, X.; Lu, X. A Hyper-Redundant Elephant’s Trunk Robot with an Open Structure: Design, Kinematics,

Control and Prototype. Chin. J. Mech. Eng. 2020, 33, 96. [CrossRef]
30. He, G. Motion Planning and Control for Endoscopic Operations of Continuum Manipulators. Intell. Serv. Robot. 2019, 12, 159–166.

[CrossRef]
31. Jin, S.; Lee, S.K.; Lee, J.; Han, S. Kinematic Model and Real-Time Path Generator for a Wire-Driven Surgical Robot Arm with

Articulated Joint Structure. Appl. Sci. 2019, 9, 4114. [CrossRef]
32. Augustaitis, A.; Jurėnas, V. Dynamics of Trunk Type Robot with Spherical Piezoelectric Actuators. IJRA 2020, 9, 113. [CrossRef]
33. Jones, B.A.; Walker, I.D. Kinematics for Multisection Continuum Robots. IEEE Trans. Robot. 2006, 22, 43–55. [CrossRef]
34. Garriga-Casanovas, A.; Rodriguez y Baena, F. Kinematics of Continuum Robots with Constant Curvature Bending and Extension

Capabilities. J. Mech. Robot. 2019, 11, 011010. [CrossRef]
35. Neppalli, S.; Csencsits, M.A.; Jones, B.A.; Walker, I. A Geometrical Approach to Inverse Kinematics for Continuum Manipulators.

In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September
2008; pp. 3565–3570. [CrossRef]

36. Wang, C.; Wagner, J.; Frazelle, C.G.; Walker, I.D. Continuum Robot Control Based on Virtual Discrete-Jointed Robot Models. In
Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23
October 2018; pp. 2508–2515. [CrossRef]

37. Gray, A.; Abbena, E.; Salamon, S. Modern Differential Geometry of Curves and Surfaces with Mathematica, 3rd ed.; Studies in advanced
mathematics; Chapman & Hall CRC: Boca Raton, FL, USA, 2006; ISBN 978-1-58488-448-4.

38. Urniezius, R.; Giffin, A. Iteration Free Vector Orientation Using Maximum Relative Entropy with Observational Priors. AIP Conf.
Proc. 2012, 1443, 182–189. [CrossRef]

39. Cohen, D.; Lee, T.; Sklar, D. Precalculus: A Problems-Oriented Approach, 6th ed.; Thomson-Brooks/Cole: Belmont, CA, USA, 2005;
ISBN 978-0-534-40212-9.

40. Lipschutz, S.; Spiegel, M.R.; Lipschutz, S.; Spellman, D. Vector Analysis and an Introduction to Tensor Analysis, 2nd ed.; Schaum’s
outline series; McGraw-Hill: New York, NY, USA, 2009; ISBN 978-0-07-161545-7.

41. Wang, Z.; Wang, T.; Zhao, B.; He, Y.; Hu, Y.; Li, B.; Zhang, P.; Meng, M.Q.-H. Hybrid Adaptive Control Strategy for Continuum
Surgical Robot Under External Load. IEEE Robot. Autom. Lett. 2021, 6, 1407–1414. [CrossRef]

42. Root, K.; Urniezius, R. Research and Development of a Gesture-Controlled Robot Manipulator System. In Proceedings of the
2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), Baden-Baden, Germany,
19–21 September 2016; pp. 353–358. [CrossRef]

http://doi.org/10.1109/LRA.2020.3044028
http://doi.org/10.1115/1.4043923
http://doi.org/10.1186/s10033-020-00509-4
http://doi.org/10.1007/s11370-018-00269-0
http://doi.org/10.3390/app9194114
http://doi.org/10.11591/ijra.v9i2.pp113-122
http://doi.org/10.1109/TRO.2005.861458
http://doi.org/10.1115/1.4041739
http://doi.org/10.1109/IROS.2008.4651125
http://doi.org/10.1109/IECON.2018.8591387
http://doi.org/10.1063/1.3703634
http://doi.org/10.1109/LRA.2021.3057558
http://doi.org/10.1109/MFI.2016.7849513

	Introduction
	Related Work
	Approximate Inverse Kinematics Solution for Imposed End-Effector State
	Determination of Approximate Robot Spine State Configuration
	Segment’s Bending Angles n Calculation
	Calculation of Arc Segments’ Endpoints and Orientations
	Robot Cables’ (Tendons’) Length Calculation According to the Robot Spine Curvature

	Robot Bending Simulation Results
	Electric Motor Speed Control Profiles
	Conclusions
	
	References

