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1. INTRODUCTION 

1.1. The importance of the work 

It is well known that speech recognition-based interfaces could have great value 

in many applications. 

This is particularly true for applications oriented towards telecommunication 

users. A speech input interface based on speech recognition, also called a Voice User 

Interface (VUI), has already been used in many applications. This can be particularly 

beneficial for use by disabled people, as automatic speech recognition (ASR) is 

potentially of enormous benefit to people with severe physical disabilities. The 

tremendous richness of human speech gives the user many degrees of freedom for 

control and input. The speed of speech recognition also gives it a potential advantage 

over other input methods commonly employed by physically disabled people (1). 

In recent years, speech recognition technologies have been widely applied 

throughout information technologies. Therefore, the application of speech recognition 

in information technologies is an extensively explored area. Systems for the 

recognition of the spoken language are applied in various areas. In the automobile 

industry, for example, speech recognition is used in hands-free equipment, the 

management of navigation and multimedia devices, and smart phone connectivity. 

Successful research in the area of speech recognition requires significant financial 

resources and a large amount of data covering the complexity of voice commands. 

Naturally, large companies such as Google successfully conduct studies in the area of 

speech recognition, which are based on the principle of Hidden Markov Models 

(HMMs), and produce surprising results even in the recognition of languages that are 

not widely used. Google’s success is determined by a large number of collected speech 

corpora that are used for the training of recognition systems. 

 The Lithuanian language is not one of the more widely used languages in the 

world, and other countries therefore do not prioritize its study nor the application of 

speech recognition to it. However, this does not stop Lithuanian scientists and 

researchers from implementing this idea of adapting existing products for speech 

recognition in their own studies.  

 

1.2. The relevance of the problem  

The main problem of the recognition of disease names was defined during the 

project “Hybrid Recognition Technology for Voice Interface INFOBALSAS” 

(hereinafter – the INFOBALSAS project), which ended in 2013. The main goal of the 

project was to develop hybrid voice command recognition technology and implement 

it in the first practical informative service that used the recognition of Lithuanian voice 

commands. The Lithuanian medical information system that was developed was able 

to recognize the names of the most commonly encountered diseases, the most 

common pharmaceuticals, and the most frequent complaints in the medical practice. 

The total number of voice commands implemented in the system was approximately 

1,000.  



16 

The list of diseases approved by the Ministry of Health contains approximately 

15,000 diseases and disorders. So far, we have not been able to well recognize such 

an extensive list of diseases. The solution to the problem of disease recognition is to 

use codes from the International Classification of Diseases (ICD-10-CM) to recognize 

codes containing several letters and digits. This technique also allows for the 

recognition of digit names and letters for application with other types of codes.  

 

1.3. The goal of the work 

The goal of this thesis is to create a hybrid recognition technology for Lithuanian 

voice commands that connects two or more speech recognizers. It is expected that, as 

a result of connecting different recognizers, if one recognizer makes a mistake then 

another/others will make the correct decision.  

 

1.4. The tasks of the work 

1. To collect Lithuanian digit names and names starting with the 26 letters of the 

Latin alphabet to form a speech corpus appropriate for identifying codes 

consisting of digits and Latin letters. 

2. To adapt the non-native language recognizer for the recognition of Lithuanian 

voice commands. 

3. To create two Lithuanian recognizers using word-based and phoneme-based 

HMMs. 

4. To connect two or more recognizers using machine learning methods. 

5. To compare the results of the accuracy of recognition with the results of similar 

research carried out in Lithuania. 

 

1.5. The methods and tools of research 

The Lithuanian recognizer was modeled with the HTK toolkit of word-based, 

phoneme-based, and contextual phoneme-based HMMs. The MFCC features of the 

HMMs were selected to ensure strong results in the recognition of isolated word 

commands. The freely distributed Windows 7 and Windows 8 (8.0 (Spanish-US)) 

Spanish language recognizer was selected as the non-native recognizer. The Spanish 

language recognizer (9.0 for MSS (Spanish-US)) of Microsoft’s Speech Server 

(MSS’2007) was selected for telephone applications. The freely distributed WEKA 

packet was selected for the connection of recognizers. 

The techniques for selection of Lithuanian names were prepared based on the 

results of an investigation into the Spanish language 8.0 recognizer’s recognition of 

Lithuanian names. 

 

1.6. The scientific novelty of the work 

 A selection technique of names and words that is appropriate for the 

identification of Latin letters by recognizing proposed names or words was 

created. This technique ensures over 30% increased accuracy in the 

identification of Latin letters compared to the NATO alphabet. 
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 The technique of the connection of recognizers was created using machine 

learning methods. It operates by combining features obtained from 

recognizers with additional features which depend on the recognized word. 

 This methodology was tested in the following ways:  

- by combining the recognition results of five different speech corpora or their 

fragments:  

a) two speech corpora containing digit names (30 speakers, 10 digits, 20 

pronunciations each; and 50 speakers, 10 digits, 1 pronunciation each); 

b) a speech corpus of names (21 speakers, 26 names or words, 20 

pronunciations); 

c) a speech corpus of medical terms (12 speakers, 731 phrases or words, 20 

pronunciations each); 

d) a speech corpus of phrases and words (143 speakers, 18 phrases, 8 words, 

1 pronunciation each); 

- by combining the recognition results of the names speech corpus using 

different engines (Microsoft and Baidu); 

- by combining the recognition results of the names speech corpus with a 

signal:noise ratio of 5 dB; 

- by combining the recognition results of the digit names speech corpus using 

a telephone format (8 kHz, 8 bits). 

Three packages were used in the recognition studies: HTK, Kaldi, and 

TensorFlow. 

 

1.7. The practical significance of work results 

The results of this research could be applied and used in the development of 

ASR systems for applications involving the recognition of codes.  

One of these applications could be the recognition of disease names according 

to their codes (using ICD-10-CM), consisting of one letter and several digits. 

Examples of codes containing only digits that could be recognized include PIN, 

personal identification codes, etc. Major attention is paid to the recognition of digits 

because the use of digits is dominant in codes, and very high digit recognition 

accuracy is required. In order to reach a recognition accuracy of approximately 90% 

in a 10-digit sequence, a recognizer should recognize individual digits with 99% 

accuracy. 

Another potential application is the recognition of codes containing only digits 

through the telephone.  

The proposed method of connecting recognizers was implemented in the new 

hybrid recognition technology created and demonstrated during the INFOBALSAS 

project. 

 

1.8. Defensive statements 

1. The proposed technique for the selection of names and words is appropriate for 

the identification of Latin letters. It ensures over 30% increased accuracy in the 

recognition of the names and words speech corpus (21 speakers, 26 names and 
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words, 20 utterances) compared to the recognition accuracy of the NATO 

alphabet speech corpus (2 speakers, 26 words, 50 utterances). 

2. The proposed technique for the connection of several recognizers involved using 

the machine learning method and combining features obtained from the 

recognizers and additional features which depended on the recognized word. 

This enabled the improvement of the recognition accuracy of all speech corpora 

used in the recognition experiments. The main aspects of this proposed 

technique were: 

- the features, extracted from all speech corpus, were used in the process of 

classification. This was the main difference compared to the other methods 

of connecting several recognizers; 

- some additional features (sp_supp, lt_delta_prob, gender, lt_a, …, lt_ž, 

sp_a, ..., sp_ž) were used. They were produced by speech experts either 

manually or by using the outputs of recognizers. Such features increased 

classification accuracy in all cases compared to features produced by the 

outputs of recognizers alone; 

- the results of research involving the connection of two or three recognizers, 

using the abovementioned speech corpora, showed that the suggested 

method improved the accuracy of the hybrid recognizer in all cases; 

- the proposed technique for the connection of several recognizers was tested 

using the medical speech corpus, consisting of isolated words and phrases. 

The RIPPER classifier and proposed hybrid recognizer decreased 

recognition error by 24% compared with the HTK-based Lithuanian 

recognizer alone. 

 

1.9. The author’s participation in the project 

The author participated in the 2011–2013 High Technology Development 

Program in the INFOBALSAS project. 

 

1.10. The approbation of work results 

The following articles were published in journals indexed in the Web of Science 

with Impact Factor: 

1. Bartišiūtė, Gintarė; Ratkevičius, Kastytis. Speech server based Lithuanian voice 

commands recognition // Electronics and electrical engineering. Kaunas: KTU. 

2012, Vol. 18, no. 10, p. 53–56.  

2. Rudžionis, Vytautas Evaldas; Raškinis, Gailius; Maskeliūnas, Rytis; Rudžionis, 

Algimantas Aleksandras; Ratkevičius, Kastytis; Bartišiūtė, Gintarė. Web 

services based hybrid recognizer of Lithuanian voice commands // Electronics 

and electrical engineering. Kaunas: KTU. 2014, Vol. 20, no. 9, p. 50–53.  

3. Bartišiūtė, Gintarė; Paškauskaitė, Gintarė; Ratkevičius, Kastytis. Advanced 

Recognition of Lithuanian Digit Names Using Hybrid Approach // Electronics 

and electrical engineering. Kaunas: KTU. 2018. (Accepted for publication) 
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The following publications appear in other international databases and were 

presented at 6 scientific conferences in Lithuania and abroad: 

1. Bartišiūtė, Gintarė; Ratkevičius, Kastytis. Investigation of Lithuanian digit 

names recignition accuracy // Electrical and control technologies: proceedings 

of the 8th international conference on electrical and control technologies ECT 

2013, May 2–3, 2013, Kaunas, Lithuania / Kaunas University of Technology, 

Technologija. 2013, p. 9–12.  

2. Rudžionis, Vytautas; Raškinis, Gailius; Ratkevičius, Kastytis; Rudžionis, 

Algimantas Aleksandras; Bartišiūtė, Gintarė. Medical – pharmaceutical 

information system with recognition of Lithuanian voice commands // Human 

language technologies – the Baltic perspective: proceedings of the 6th 

international conference, Baltic HLT 2014, Kaunas, IOS Press. (Frontiers in 

artificial intelligence and applications, vol. 268, p. 40–45.  

3. Bartišiūtė, Gintarė; Paškauskaitė, Gintarė; Ratkevičius, Kastytis. Investigation 

of disease codes recognition accuracy // Proceedings of the 9th international 

conference on Electrical and Control Technologies, ECT 2014 / Kaunas 

University of Technology, Kaunas: Technologija. 2014, p. 60–63.  

4. Bartišiūtė, Gintarė; Ratkevičius, Kastytis; Paškauskaitė, Gintarė. Hybrid 

recognition technology for isolated voice commands // Information systems 

architecture and technology: Proceedings of 36th international conference on 

information systems architecture and technology, ISAT 2015, (Springer, 2016, 

Advances in intelligent systems and computing, vol. 432, p. 207–216.  

5. Bartišiūtė, Gintarė; Paškauskaitė, Gintarė. Šnekos atpažintuvų sujungimo 

galimybių tyrimas // E2TA-2015: Elektronika, elektra, telekomunikacijos, 

automatika: 12th student scientific conference on electronics, energy, 

telecommunications and automation. Kaunas: Kaunas University of 

Technology, 2015. p. 20–23.  

6. Ratkevičius, Kastytis; Paškauskaitė, Gintarė; Bartišiūtė, Gintarė. Recognition of 

ICD-10 codes by combining two recognizers // Frontiers in artificial intelligence 

and applications: Human language technologies – the Baltic perspective: 

proceedings of the seventh international conference Baltic HLT 2016, vol. 289, 

p. 51–58. 

 

1.12. The structure of the dissertation 

This dissertation consists of six sections, a literature list (174 references), and 

six annexes.  

The introduction discusses the importance of the work, the relevance of the 

problem, the tasks of the work, the methods and tools of research, the scientific 

novelty, the practical significance of the results obtained, defensive statements, the 

author’s participation in projects, the approbation of the work, the structure of the 

work, and the contents. 

The second section provides an overview of speech recognition technology, 

involving a discussion of hidden Markov chains, dynamic correction of the time axis, 

and neural networks. Hybrid technology and classifiers are examined, and the speech 

corpora are overviewed. 
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The third section describes the methods for the formation of Lithuanian voice 

command transcriptions. The algorithms for the selection of names and words, and 

the methods for the connection of recognizers are provided. The speech corpora used 

in the research and software are also described. 

The fourth section describes recognition studies with different recognizers using 

the speech corpora of digits and names, and results and conclusions are presented. 

The fifth section presents research on the connection of two or three recognizers 

using the digits, names, and medical speech corpora, and the LIEPA speech corpus. 

In the final conclusions section, the summarized results of the dissertation are 

presented. 
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2. OVERVIEW AND ANALYSIS OF SPEECH RECOGNITION 

TECHNOLOGY 

For most of human history, speech has been and remains the main instrument 

for communication between humans, and is widely used for information exchange, 

negotiation, etc. Research in the processing and recognition of speech, for the most 

part, has been motivated by people’s desire to build machines or mechanical models 

that can emulate the actions and verbal communication abilities of humans. The key 

moment in this endeavor was the appearance of the first computers, and with them 

artificial intelligence. The rapid development of information technologies demanded 

a natural language-based user interface to accompany the hardware. Today, radios, 

TVs, telephones, transport systems, computers, and satellite technology all play a key 

role in our daily lives. They also break down the walls between countries and bring 

people together via new platforms of communication. This creates access to various 

sources of information – whether sounds, images, texts, or otherwise – from anywhere 

in the world. In some countries, the functionality to book tickets by voice, ask for the 

train schedule via telephone (2), receive tourist information, or use automatic 

translation services (3) already exists. 

However, as yet no voice dialogue systems which are able to talk with anyone 

about anything exist. The most advanced form of speech technology is still limited to 

natural spoken-language answers to specific questions. More commonly, speech 

recognition technology applications are emerging in contact center systems or various 

mobile devices – for example, in smart phones (4), spectacles (5), hearing aids (6), or 

cochlear implants (7). For many people with disabilities, speech is perhaps their only 

source of communication. Websites and programs with expanded voice dialogue 

opportunities allow these people to surf the internet and manage information on 

compatible devices via the use of spoken commands (8). IT industry giants such as 

Microsoft and IBM have already delivered speech applications for their own software 

platforms – Microsoft Speech Server (MSS) and IBM Websphere Voice Server, 

respectively. The following overview provides an examination of the development of 

the most significant speech recognition technologies, both around the world and in 

Lithuania. 

 

2.1. Recognition problems 

Speech recognition requires a lot of time and effort. A variety of methods have 

been developed and a lot of systems have been realized, some of which have been 

applied already, yet still a lot of difficulties and unanswered questions remain when 

realizing precise, noise-resistant detection systems. These difficulties can be 

characterized by several problems, one of which is the variability of speech signals – 

i.e., the impossibility of realizing two completely identical examples of the same 

linguistic unit. Put simply, it is impossible to pronounce the same word in the same 

way – even if one were to attempt to do so indefinitely, pronunciation will differ in 

pace, energy level, or any other temporal or spectral characteristics. There are two 

types of variability of speech: internal and external. Internal variability occurs within 
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the instability of the speaker’s speech, and one of the reasons for this variability is the 

speaker’s manner of speaking. A speaker can express their thoughts with a raised tone, 

shouting, whispering, trying to conceal their accent, and so on. In addition, speech is 

influenced by subjective factors such as the speaker’s posture, mood, health condition, 

age, or attitude to the topic of conversation. Due to these reasons, even words 

pronounced by the same person will differ, and these differences will increase as time 

passes. The natural features of language (co-articulation, the intervention of 

meaningless sounds, variations in speech tempo etc.) contribute to the 

abovementioned reasons for internal variability. Between speakers of different sexes 

and different ages, acoustic differences are especially prevalent. Speech variability 

can be solved in two ways: the first way is the adaptation of the speaker; the second 

way is the use of a system with speaker-resistant features.  

The second problem is characterized by the features of natural speech. One 

phenomenon of natural speech is co-articulation: a fusion of adjacent sounds. Fused 

sounds become difficult to separate, or even acquire the sound of a completely 

different phonetic unit (for example, the word “čia” we hear as “če,” and only 

grammar dictates that we write it correctly). Non-linguistic sounds are also 

characteristic of natural speech (a cough, for example, or a “hmmmm” when in doubt), 

and can fill pauses, intervene into a word, or even prevent its occurrence entirely. 

Human perception easily distinguishes these sounds as non-linguistic, while a 

recognition system can understand them as a word or a part thereof (especially if the 

results of acoustic analysis present the sound in such a way). In some cases, the 

absence of boundaries between words may be relevant. These issues should be solved 

at the linguistic level by using speech models and applying additional knowledge of 

grammar, semantics, and pragmatics. Therefore, in addition to processing the signals 

of acoustic speech, the need for linguistic processing occurs. Dictionaries of 

recognition systems are another source of problems in recognition – large dictionaries 

are confusing, as they often contain a lot of acoustically similar examples. Some state 

that the difficulty of the speech recognition task increases logarithmically to the 

increase in the size of the dictionary (9). One possible solution to this problem is the 

use of a context (i.e., one that is designed for a specific subject) dictionary.  

The problem of words that are absent from a dictionary is even more difficult to 

solve. Any system will eventually face a word that is absent from a dictionary. In such 

a case, there are two different solutions: reject the word as unrecognized; or include it 

into the system’s dictionary. The second solution leads to a set of issues that have 

hardly been resolved: how to guarantee that the unrecognized example is linguistically 

meaningful; how to generate the required transcription; how to distinguish an example 

from extraneous noise, etc. As yet, there are no effective procedures that exist to 

address these issues and, as a result, unrecognized examples are simply ignored.  

The fourth problem is the influence of signal acoustics and environmental 

spread on a signal. Any noise present at the signal generation, spread, and reception 

stages can and will influence the signal. Sources of noise can include: the speaker 

themselves (exhalation, the mechanical noises of organs of speech), environmental 

spread (background noise, echoes), input device (electrical noise of the microphone, 

nonlinear distortions), transmission channel (reflections, nonlinear distortions of 
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channel), and receiving device (electrical noise, nonlinear distortions, quantization 

noise). The result of all of these factors is a noisy signal that, whilst easily 

understandable to humans, is sometimes totally unacceptable for a technical system. 

In addition, each device has its own individual spectral characteristics (limited 

bandwidth, for example) which also influence the processed signal and therefore the 

algorithm’s analysis of the qualitative characteristics of the speech. As such, the 

impact of the various technical characteristics (different purposes, different 

manufacturers) of a signal can vary. A system trained with one (perfectly operational) 

microphone can completely lose its properties if the microphone is replaced (in this 

case, the efficiency of the system depends on equipment). This problem should be 

resolved by searching for noise-tolerant systems. 

In summary, it could be said that automatic recognition systems are not 

comparable to human speech perception due to the abovementioned problems, 

amongst others. A person does not limit themselves in communication with acoustic 

analysis. Instead, when communicating, they use their knowledge of phonetics, 

phonology, lexicon, syntax, semantics, pragmatics, as well as the contextual data of 

the conversation. They also acquire additional information transmitted by gestures, 

facial expressions, posture, perhaps even their intuition, and other intangible sources 

of information which cannot be realized with a technique due to ignorance, 

complexity, or our own prior assumptions. 

 

2.2. Speech recognition technology 

Before discussing the future of ASR systems, it is important to ascertain what 

has already been achieved in this area, which technologies and methods are most 

common, and to identify the possible practical problems of their application. In this 

and subsequent sections, the classification of speech recognition systems, the basics 

of their operation, and an analysis of scientific research conducted by both Lithuanian 

and international authors in this field are presented. 

It should first be highlighted that a speech signal is not stationary. The spectral 

density of speech changes in time depending on the position of the glottis signals (e.g., 

by influencing the main tone) and speech organs (tongue, lips, etc.). For example, 

such a signal can be modeled based on HMMs as a sequence of certain stationary 

random events. In the first stage of signal processing, most ASRs analyze a short 

fragment of the signal, according to which the stationary speech is determined. For 

the analysis of the signal, various filters are widely used alongside a cepstral analysis 

that looks for specific features. Compensation for the influence of noise may be 

carried out at several levels, including: processing the speech signal; training models 

using the speech corpora alongside noisy records; treating the noise as the missing 

information that can be removed in statistical models; or evaluating parametric 

distributions between noise and speech. Even in well-articulated speech, the acoustic 

realization of certain phonemes depends on the constant movement of articulators, 

which is itself dependent on past and future phonemes. Analyzing the influence of 

coarticulation and pronunciation, spectral characteristics, and the gender of the 

speaker are distinguished as yet more essential dimensions of speech change. Figure 

2.1 shows how certain factors influence recognition systems. 
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Figure 2.1. The process of speech recognition 

The first block is composed of the acoustic environment and transmission 

equipment (microphone, signal amplifier, filter, etc.). Their quality can significantly 

affect the subsequent processes. The second block (the subsystem involving the 

receipt of signs) is projected in order to find acoustic representations and the specific 

features of the speech signal. This takes place in order to qualitatively distinguish 

classes of speech sounds and to effectively reject unnecessary variations. The next 

two blocks illustrate operations for the collation of acoustic features. In almost all 

ASRs, spectral or cepstral reports of the speech signal (features) are calculated at 

certain intervals – 100 times per second, for example. In order to recognize speech, 

the signs obtained are compared with those obtained from the training data using a 

certain measure of similarity or distance. Each of these comparisons represents a local 

measure. The global measure is the search for the best sequence of words, which is 

mostly determined by combining parts of local measures (e.g., an entire word is 

searched for according to a set of phonemes). The local equivalent usually does not 

present the one best choice, but instead offers a group that corresponds to possible 

sounds. Another function of the decoding block is compensation for temporary 

distortions that occur in normal speech. For example, vowels are usually shortened 

when speaking rapidly, whilst consonants remain the same length. 

Signal and ASR systems are influenced by other linguistic variables. A human 

can speak quieter or louder, faster or slower, etc. In addition, certain reflex effects can 

be distinguished, such as speaking louder in a noisy environment. 

Speaking faster or slower also influences the speech signal, influencing both the 

temporal and spectral characteristics of the signal whilst also influencing acoustic 

models. Naturally, in the speech of a person who is speaking quicker, pronunciation 

changes occur quicker and more often. Speech also changes depending on age, 

generation, and for physiological reasons. 

Dictionaries for the training of models are not usually formed of recordings from 

children or elderly people, so recognition errors are expected for these age groups 

when using ASR systems. Emotions also have a significant impact on the quality of 

ASR, as their recognition can allow us to identify the emotional state of the user. The 

abilities of newer systems to recognize spontaneous conversations allow us to 

distinguish the influence of this style of speaking, and to better characterize the 

phenomenon of variations in pronunciation expressed in spontaneous speech. 

 

2.2.1. The classification of speech recognition systems 

Speech recognition systems can be divided into several different classes 

according to how many words they can recognize: 

 1. Recognition systems for voice commands with isolated words. The phrase 

that is recognized can be formed of more than one word (e.g., a sentence), but, when 
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speaking, the user is required to leave a brief pause after each pronouncement, 

similarly to how one might read a telegram (e.g., “open” – STOP – “close”). The 

systems where the user has to wait until a word is recognized are also called isolated 

utterance systems. 

 2. Recognition systems for connected words. Such systems are similar to the 

recognition systems for isolated word commands; however, the silent spaces between 

words are much smaller (often used for the recognition of a sequence of numbers). 

 3. Recognition systems for continuous speech. Such systems allow the user to 

speak almost naturally, and are most commonly applied for the recognition of 

dictation. 

 4. Recognition systems for spontaneous speech, which are capable of 

processing the properties of natural speech – including multiple words being 

pronounced as one, the use of words which have no meaning without context, and 

even stuttering. It is very difficult to recognize such speech, and so most examples of 

this type of ASR are still in the prototype stage. The goal of any ASR system is to 

recognize spoken words as accurately as possible, i.e., theoretically no worse than a 

human does it, regardless of the voice characteristics of the speaker, the size of their 

vocabulary, data transmission conditions, etc. However, most ASRs reach a 

recognition accuracy of over 90% only when there are certain conditions met. For 

example, accuracy in the recognition of some number names using a microphone, a 

small dictionary, and an environment without any background noise. 

The recognition algorithm is usually based on statistical models, and HMMs are 

common. HMMs are generally defined as stochastic finite state automations, and it is 

assumed that they are formed of a finite set of possible states, where each state 

corresponds to a certain distribution of probability (in the case of similarity, the 

function of probability density). Ideally, a separate HMM should be composed for 

each word. However, in practice, this is difficult to implement, and so instead a 

sentence is modeled as a sequence of words. Some ASRs work at the word level, but 

at the level of a larger dictionary they usually use parts of words, thereby reducing the 

number of required parameters and the training data. Each word can be divided into a 

certain group of acoustic units. Usually, it is divided into phonemes, and then into 

vowels – consonants cases are also possible. One or more HMM states are used in 

order to model the phoneme corresponding to the speech segment. Word models 

consist of a chain of phonemic models which are limited by the dictionary, and models 

of sentences consist of a chain of word models which are limited by the rules of 

grammar. 

First, a discredited speech signal is transformed into a set of features at a fixed 

ratio, typically every 10–20 ms. According to these parameters, it then usually looks 

for candidates among the most similar words, introducing acoustic, lexical, and 

speech-model constraints. In this process, the training data are used to determine the 

values of model parameters. At the level of signal representation, certain properties of 

signals independent of the human voice are distinguished, and dependent properties 

are separated. At the acoustic-phonetic level, speech variability is typically modeled 

using statistical techniques for large amounts of data. The impact of linguistic context 

on the acoustic-phonetic level is usually managed by training the individual models 
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of phonemes in various contexts. This method is also called context-dependent 

acoustic modeling. Variations at the word level can be managed using the alternative 

pronunciation of words in a manner similar to pronunciation networks. Typical 

alternative pronunciations of words (and the effects of dialect and accent) are 

processed, with search algorithms directed to look for alternative pronunciation in the 

networks of several phonemes. Statistical speech models that are based on the 

probabilities of the appearance of certain “word” sequences are used to search through 

all possible sequences of words. 

 

2.2.2. Review of the evolution of speech recognition technology  

In this chapter, the aim is to review the major results of research and the practical 

applications of science in the field of speech recognition, influenced by today’s ASR 

systems and their prevalence. 

The earliest attempts to design systems for ASR were made in the 1950s and 

1960s, when various researchers were guided mostly by the theory of acoustic-

phonetics, which describes the phonetic elements of speech (the basic sounds of 

language) and tries to explain how they are acoustically realized in a spoken utterance 

(10). Since signal processing and computer technologies were still very primitive, 

most speech recognition systems were investigated using spectral resonances during 

the vowel region of each utterance, which were extracted from output signals of an 

analogue filter bank and logic circuits (11). 

In 1952, Davis, Biddulph, and Balashek built a system for the isolated digit 

recognition of a single speaker at Bell Laboratories (12), using the formant 

frequencies measured and estimated during the vowel regions of each digit. In other 

early ASR systems of the 1950s, Olson and Belar of RCA Laboratories, USA, tried to 

recognize ten distinct syllables of a single speaker, as embodied in ten monosyllabic 

words (13). In 1959, at University College in England, Fry and Denes tried to build a 

phoneme recognizer to recognize four vowels and nine consonants (14). By 

incorporating statistical information concerning allowable phoneme sequences in 

English, they increased the overall phoneme recognition accuracy for words 

consisting of two or more phonemes. This work marked the first use of statistical 

syntax (at the phoneme level) in ASR. Another notable effort towards recognition in 

this period was achieved at the MIT Lincoln Lab, when Forgie and Forgie built a 

speaker-independent 10-vowel recognizer (15).  

In the 1960s, several Japanese laboratories demonstrated their ability to 

construct purpose-built hardware for performing speech recognition. Most notable 

were the vowel recognizer of Suzuki and Nakata at the Radio Research Lab in Tokyo 

(16), the hardware phoneme recognizer of Sakai and Doshita at Kyoto University, 

which used a hardware speech segmenter and a zero-crossing analysis of different 

regions of input (17), and the digit recognizer at NEC Laboratories (18).  

One problem of speech recognition exists in the nonuniformity of time-scales in 

speech events. In the 1960s, the first efforts were made by Martin and colleagues at 

RCA Laboratories (19), and Vintsyuk in the Soviet Union (20). Martin developed a 

set of elementary time normalization methods, based on the ability to reliably detect 

the start and end points of speech, that significantly increased recognition 



27 

performance (19). Vintsyuk proposed the use of dynamic programming (known as 

dynamic time warping – DTW) for time alignment between two utterances in order to 

derive a meaningful assessment of their similarity (20). Vintsyuk also proposed 

algorithms for connected word recognition.  However, his work was largely unknown 

in other countries until the 1980s. At the same time, Sakoe and Chiba (21) started to 

use a dynamic programming method in speech pattern matching. Since the late 1970s, 

mainly due to the publication of Sakoe and Chiba, dynamic programming, in 

numerous variant forms (including the Viterbi algorithm (22), which came from the 

communication theory community), has become an indispensable technique in ASR.  

In the late 1960s, Atal and Itakura (23, 24) independently formulated the 

fundamental concepts of Linear Predictive Coding (LPC), which greatly simplified 

the estimation of the vocal tract response from speech waveforms. By the mid-1970s, 

the basic ideas of applying fundamental pattern recognition technology to speech 

recognition, based on LPC methods, were proposed by Itakura while working at Bell 

laboratories (25), and by Rabiner and Levinson (26) amongst others. Simultaneously, 

in the late 1960s, Reddy conducted pioneering research at Carnegie Mellon University 

(CMU) in the field of continuous speech recognition using the dynamic tracking of 

phonemes (27). 

Martin ultimately founded one of the first speech recognition companies, 

Threshold Technology, which built, marketed, and sold speech recognition products. 

Their first real ASR product was called the VIP-100 System. The system was only 

used in a few simple application fields, such as television faceplate manufacturing 

companies (for quality control) and FedEx (for package sorting), but its main 

importance was in the way that it influenced the Defense Advanced Research Projects 

Agency (DARPA) of the U.S. Department of Defense to fund the Speech 

Understanding Research (SUR) program, along with many seminal systems and 

technologies (28), during the early 1970s. One of the first demonstrations of speech 

understanding was achieved by CMU in 1973. Their Harpy system (29) was shown 

to be able to recognize speech with reasonable accuracy using a vocabulary of 1,011 

words. One particular contribution from the Harpy system was the concept of graph 

search, where the speech recognition language is represented as a connected network 

derived from lexical representations of words, with syntactical production rules and 

word boundary rules. In the proposed Harpy system, the input speech, after 

undergoing a parametric analysis, was segmented, and the segmented parametric 

sequence of speech was then subjected to phone template matching using the Itakura 

distance (30). Other systems developed under DARPA’s SUR program included 

CMU’s Hearsay II and BBN’s HWIM (Hear What I Mean) systems (31). Neither 

Hearsay-II nor HWIM met the DARPA program’s performance goal at its conclusion 

in 1976. However, the approach proposed by Hearsay II of using parallel 

asynchronous processes that simulate component knowledge sources in a speech 

system was a pioneering concept. The Hearsay II system extended sound identity 

analysis given the detection of lower-level information or evidence, which was 

provided to a global “blackboard” where knowledge from parallel sources was 

integrated to produce the next level of hypotheses. BBN’s HWIM system, on the other 

hand, was known for its interesting ideas – which included a lexical decoding network 
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incorporating sophisticated phonological rules (aimed at phoneme recognition 

accuracy) – its handling of segmentation ambiguity by a lattice of alternative 

hypotheses, and the concept of word verification at the parametric level.  

Another milestone of the 1970s was the beginning of a longstanding, highly 

successful group effort in large vocabulary speech recognition at IBM, in which 

researchers studied three distinct tasks over a period of almost two decades. Namely, 

these tasks included: the New Raleigh language (32) for simple database queries; the 

laser patent text language (33), for transcribing laser patents; and the office 

correspondent tasks called Tangora (34), for the dictation of simple memos. Finally, 

at AT&T Bell Labs, researchers began a series of experiments aimed at making speech 

recognition systems that were truly speaker independent (35). To achieve this goal, a 

wide range of sophisticated clustering algorithms were used to determine the number 

of distinct patterns required to represent all variations of different words across a wide 

user population. This research has been refined over a decade so that the techniques 

for creating speaker independent patterns are now well understood and widely used. 

Research in the field of speech recognition in the 1980s was characterized by a 

shift in technology from the template-based approach to the statistical modeling 

method, most notably the HMM approach (36). The approach of HMM was well 

known and understood in only a select few laboratories, including: IBM, the Institute 

for Defense Analysis (IDA), and Dragon Systems, but it became more widely used in 

the mid-1980s. Today, most practical speech recognition systems are based on the 

statistical framework developed in the 1980s, and their results, with significant 

additional improvements, were achieved in the 1990s. 

Another innovative technology that came into existence in the late 1980s was 

the method of applying a neural network to the problem of speech recognition (37). 

This approach was first introduced in the 1950s, but did not prove useful initially 

because of a number of practical problems (38). 

The 1980s was a decade in which major emphasis was placed by the DARPA 

community on the development of a large vocabulary and a continuous speech 

recognition system. A significant research program was sponsored, which aimed at 

accomplishing high recognition accuracy for a 1,011-word database. Major research 

contributions resulted from efforts at CMU (also known as the SPHINX System) (39), 

which successfully integrated the statistical method of HMM with the network search 

strength of the earlier Harpy system.  

In the 1990s, a number of innovations took place in the field of pattern 

recognition. The problem of pattern recognition, which traditionally followed the 

framework of Bayes and required the estimation of distributions for data, was 

transformed into an optimization problem involving minimization of the empirical 

recognition error (40). This fundamental paradigmatic change was caused by the 

recognition of the fact that the distribution functions for the speech signal could not 

be accurately chosen or defined, and that Bayes’ decision theory becomes inapplicable 

under these circumstances. Fundamentally, the objective of a recognizer design 

should be to achieve the least recognition error, rather than to provide the best fit of a 

distribution function to the given (i.e., known) data set, as advocated by the Bayes 

criterion. The concept of minimum classification or empirical error subsequently 
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spawned a number of techniques, among which discriminative training and kernel-

based methods such as support vector machines (SVMs) have become popular 

subjects of study (41). 

During the 1990s, a key issue in the design and implementation of a speech 

recognition system was how to appropriately select the speech material used to train 

the recognition algorithm (42). A number of human language technology projects 

funded by DARPA in the 1980s and 1990s further enhanced progress in this regard, 

as shown by many papers published in the proceedings of the DARPA Speech and 

Natural Language/Human Language Workshop. These papers describe the 

development of accomplishments for speech recognition that were conducted in the 

1990s (42) at Fujitsu Laboratories Limited. 

In the 1990s, great progress was made in the development of software tools that 

enabled many individual research programs all over the world. As systems became 

more sophisticated (many large vocabulary systems involved tens of thousands of 

phone unit models and millions of parameters), a well-structured baseline software 

system was indispensable for further research and development, allowing for the 

incorporation of new concepts and algorithms. The system that was made available 

by the Cambridge University team (led by Steve Young), called the Hidden Markov 

Model Tool Kit (HTK) (43), was (and remains today) one of the most widely adopted 

software tools for research into ASR. 

In the year 2004, Variational Bayesian (VB) estimation and clustering 

techniques were developed (44). The VB approach was based on a succeeding 

distribution of parameters. In 2005, Richardi (45) developed a technique to solve the 

problem of adaptive learning in ASR, and also proposed an active learning algorithm 

for ASR. In the same year, some improvements to the performance of large 

vocabulary continuous speech recognition systems were developed (46). 

Furui (47) investigated a speech recognition technique that can adapt to speech 

variation using a large number of models, trained based on the clustering technique. 

In 2000, a 5-year national project “Spontaneous Speech: Corpus and Processing 

Technology” (48) was conducted in Japan.  The collected corpus, “Corpus of 

Spontaneous Japanese” (CSJ) consisting of approximately 7 million words and 

corresponding to 700 hours of speech, was built, and various new techniques were 

investigated. These new techniques included flexible acoustic modeling, 

pronunciation modeling, sentence boundary detection, acoustic as well as language 

model adaptation, and automatic speech summarization. 

To further increase the robustness of speech recognition systems, utterance 

verification and confidence measures are being intensively investigated (49). In order 

to have intelligent interactions in dialog applications, it is important to attach a number 

to each recognized event that indicates how confidently the ASR system can accept 

the recognized events.  

In 2007, De Wachter (50) attempted to overcome problems of time dependency 

in speech recognition by using the straight-forward template matching method.  

Sloin et al. (51) presented a discriminative training algorithm that uses SVM to 

improve the classification of discrete and continuous output probability with HMMs. 

The algorithm presented in their paper uses a set of maximum likelihood trained 
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HMMs as a baseline system, and an SVM training scheme to rescore the results of the 

baseline HMMs. Cui et al. (52) proposed techniques for automatically recognizing 

phonemes by using HMMs. The input of features into HMMs are extracted directly 

from a single phoneme rather than from a string of phonemes forming a word. Feature 

extraction techniques are also compared to their performance in phoneme-based 

recognition systems. They additionally describe a pattern recognition approach 

developed for continuous speech recognition. 

 

2.2.3. Current and promising speech recognition technologies 

Most current speech recognition systems use HMMs to deal with the temporal 

variability of speech, and Gaussian mixture models (GMMs) to determine how well 

the state of each HMM fits a frame or a short window of coefficient frames that 

represent the acoustic input. An alternative way to evaluate the fit is to use a feed-

forward neural network that takes several frames of coefficients as input and produces 

posterior probabilities over HMM states as output. Deep neural networks (DNNs) that 

have many hidden layers and are trained using new methods have been shown to 

outperform GMMs on a variety of speech recognition benchmarks, sometimes by a 

large margin. New machine learning algorithms can lead to significant advances in 

ASR (53). 

When neural nets were first used, they were trained discriminatively. Only 

recently have researchers shown that significant gains can be achieved by adding an 

initial stage of generative pre-training that completely ignores the ultimate goal of the 

system. This pre-training is much more helpful in deep neural nets than in shallow 

ones, especially when limited amounts of labeled training data are available. It reduces 

over fitting, and it also reduces the time required for discriminative fine-tuning with 

back propagation, which was one of the main impediments to using DNNs when 

neural networks were first used in place of GMMs in the 1990s. The successes 

achieved using pre-training led to a resurgence of interest in DNNs for acoustic 

modeling. Retrospectively, it is now clear that most of this gain comes from using 

DNNs to exploit information in neighboring frames and from modeling tied context-

dependent states. Pre-training is helpful in reducing over-fitting, and it does reduce 

the time taken for fine-tuning, but similar reductions in training time can be achieved 

with less effort by careful choice of the scales of the initial random weights in each 

layer (53). 

A DNN is a feed-forward, artificial neural network (ANN) that has more than 

one layer of hidden units between its inputs and its outputs. DNNs with many hidden 

layers are hard to optimize. DNNs with many hidden layers and many units per layer 

are very flexible models with a very large number of parameters. This makes them 

capable of modeling extremely complex and highly nonlinear relationships between 

inputs and outputs. This ability is important for high-quality acoustic modeling, but it 

also allows them to model spurious regularities that are an accidental property of the 

particular examples in the training set, which can lead to severe over-fitting. Weight 

penalties or early stopping can reduce over-fitting, but only by removing much of the 

modeling power (53). 
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ANNs trained by back-propagating error derivatives have the potential to much 

better learn models of data that lie on or near a non-linear manifold. In fact, two 

decades ago, researchers achieved some success using ANNs with a single layer of 

nonlinear hidden units to predict HMM states from windows of acoustic coefficients. 

At that time, however, neither the hardware nor the learning algorithms were adequate 

for training neural networks with many hidden layers on large amounts of data, and 

the performance benefits of using neural networks with a single hidden layer were not 

sufficiently large to seriously challenge GMMs. As a result, the main practical 

contribution of neural networks at that time was to provide extra features in tandem 

or bottleneck systems (53). 

Over the last few years, advances in both machine learning algorithms and 

computer hardware have led to more efficient methods for training DNNs that contain 

many layers of non-linear hidden units and a very large output layer. The large output 

layer is required to accommodate the large number of HMM states that arise when 

each phone is modeled by a number of different “triphone” HMMs that take into 

account the phones on either side. Even when many of the states of these triphone 

HMMs are tied together, there can still be thousands of tied states. Using new learning 

methods, several different research groups have shown that DNNs can outperform 

GMMs at acoustic modeling for speech recognition on a variety of data sets including 

large data sets with large vocabularies (53).  

There is a two-stage training procedure that is used for fitting DNNs. In the first 

stage, layers of feature detectors are initialized, one layer at a time, by fitting a stack 

of generative models, each of which has one layer of latent variables. These generative 

models are trained without using any information about the HMM states that the 

acoustic model will need to discriminate. In the second stage, each generative model 

in the stack is used to initialize one layer of hidden units in a DNN, and the whole 

network is then discriminatively fine-tuned to predict the target HMM states. These 

targets are obtained by using a baseline GMM-HMM system to produce a forced 

alignment. 

While both DNNs and GMMs are nonlinear models, the nature of their 

nonlinearity is very different. A DNN has no problem modeling multiple simultaneous 

events within one frame or window because it can use different subsets of its hidden 

units to model different events. By contrast, a GMM assumes that each data point is 

generated by a single component of the mixture, so it has no efficient way of modeling 

multiple simultaneous events. DNNs are also good at exploiting multiple frames of 

input coefficients, whereas GMMs that use diagonal covariance matrices benefit much 

less from multiple frames because they require decorrelated inputs. Finally, DNNs are 

learned using stochastic gradient descent, while GMMs are learned using the EM 

algorithm or its extensions, which makes GMM learning much easier to parallelize on 

a cluster machine. Currently, the biggest disadvantage of DNNs compared with 

GMMs is that it is much harder to make good use of large cluster machines to train 

them on extensive data sets. This is offset by the fact that DNNs make more efficient 

use of data and so do not require as much data to achieve the same performance, but 

better ways of parallelizing the fine-tuning of DNNs is still a major issue (53). 
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Speech analytics is the process of analyzing recorded calls to gather customer 

information to improve communication and future interaction. The Large 

Vocabulary Conversational Speech Recognition (LVCSR) research was performed 

using the Switchboard (54) and CallHome (55) conversational telephone speech 

corpora (56).  

Switchboard is a collection of approximately 2,400 two-sided telephone 

conversations between 543 speakers (302 males and 241 females) from all areas of 

the United States. 

CallHome American English Speech was developed by the Linguistic Data 

Consortium (LDC), and consists of 120 unscripted 30-minute telephone conversations 

between native English speakers.  

First, a HMM-GMM system was built using the Kaldi open source toolkit (57). 

The baseline recognizer had 8,986 sub-phone states and 200K Gaussians trained using 

maximum likelihood. The input features were speaker-adapted MFCCs. Additionally, 

there was a HMM-DNN system built by training a DNN acoustic model using 

maximum likelihood on the alignments produced by our HMM-GMM system (58). 

The Kaldi toolkit provides several example pipelines for different corpora (57). 

The capabilities of these pipelines include linear discriminant analysis and maximum 

likelihood linear transform (LDA+MLLT), speaker adaptive training (SAT), 

maximum likelihood linear regression (MLLR), feature-space MLLR (fMLLR), and 

maximum mutual information (MMI, fMMI). GMMs and subspace GMM are also 

supported. Further, the training of DNN on top of GMMs involves layer-wise pre-

training based on Restricted Boltzmann Machines, per-frame cross-entropy training, 

and sequence-discriminative training using lattice framework and optimizing the State 

Minimum Bayes Risk criterion (59). The training is of high computational expense, 

implementation and pipelines are optimized for parallel computing, and the training 

of DNNs supports the usage of GPUs to significantly speed up processing. 

Comparing to Kaldi, HTK is the more difficult toolkit. Setting up the system 

requires the development of the training pipeline, which is time consuming and error-

prone. The development of techniques, especially those beyond the tutorials provided, 

requires much more knowledge and effort than setting up the Kaldi system. Training 

techniques such as adaptation and discriminative training are possible, but the 

development of the toolchain is nearly impossible without expert knowledge. 

Compared to the other recognizers, the outstanding performance of Kaldi can be seen 

as a revolution in open-source speech recognition technology (60).  

In recent years, some companies have presented very promising results of 

LVCSR systems. An 8.0% word-error rate (WER) on the Switchboard part has been 

presented by Saon et al. (61), and the main factors which influence the error rate are 

indicated in their paper. The performance of the individual networks as well as their 

score fusion combination is shown in Table 2.1 on the Hub5’00 test set (SWBD and 

CH parts). 
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Table 2.1. Comparison of WERs for CE and ST of CNN, DNN, RNN and 

various score fusions on Hub5’00 

Model WER SWBD WER CH 

CE ST CE ST 

CNN 12.6 10.4 18.4 17.9 

DNN 11.7 10.3 18.5 17.0 

RNN 11.5 9.9 17.7 16.3 

DNN+CNN 11.3 9.6 17.4 16.3 

RNN+CNN 11.2 9.4 17.0 16.1 

DNN+RNN+CNN 11.1 9.4 17.1 15.9 

 

Three types of models that differ in functionality and input features were used: 

- regular DNNs with five hidden sigmoid layers; 

- convolutional neural networks with two convolutional layers; 

- partially unfolded recurrent neural networks, where the first hidden layer is 

recurrent and is followed by four non-recurrent layers. 

Two experimental scenarios were considered: the first where cross-entropy (CE) 

training is used; and the second where 20–30 iterations of hessian-free sequence 

discriminative training (ST) were additionally applied (61). After the improved joint 

training of recurrent and convolutional nets, the WER was reduced to 9.3% (WER 

SWBD) and 15.6% (WER CH). The language modeling improvements enabled the 

achievement of the abovementioned 8.0% WER on SWBD and 14.1% WER with the 

CH speech corpus. 

The following year, a collection of acoustic and language modeling techniques 

was presented that lowered the WER of the English conversational telephone LVCSR 

system to a record 6.6% on the Switchboard subset (62). 

Microsoft’s conversational speech recognition system is described by Xiong et 

al. (63), where recent developments in neural-network-based acoustic and language 

modeling were combined to advance the state of the art on the Switchboard 

recognition task. The combined system had an error rate of 6.2%. The main feature of 

this system was an ensemble of two fundamental acoustic model architectures – 

convolutional neural nets (CNNs) and long-short-term-memory nets (LSTMs), with 

multiple variants of each (63). 

In 2017, the IBM research group dropped the WER from 6.6 (62) to 5.5 on the 

SWBD set (64). On the acoustic side, a score fusion of three models were used: one 

LSTM with multiple feature inputs, a second LSTM trained with speaker-adversarial 

multitask learning, and a third residual net (ResNet) with 25 convolutional layers and 

time-dilated convolutions. The training set of acoustic models was increased, and 

consisted of 262 hours of SWBD, 1,698 hours from the Fisher data collection, and 15 

hours of CH audio (64).  

The Microsoft 2016 conversational speech recognition system (63) was also 

updated in 2017: the resulting system reached a 5.1% WER on the 2,000 SWBD 

evaluation set (65). The full 2,000-hour corpus was used for the training of all neural 

networks. The acoustic model was enhanced by adding a CNN-BLSTM system 

(bidirectional LSTM). 
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The DNN method gives us quite precise results for the recognition of continuous 

speech with a large vocabulary, despite the fact that it requires high data resources 

which are complicated for low-resource languages. This idea underlines the need to 

search for an alternative method to DNN, which might be a combination of some 

recognition systems and technologies. 

Artificially intelligent (AI) voice assistants are the new battleground between 

the big US tech companies, and while Google is no stranger – with voice search and 

Google Now having been available on Android smartphones for years – it was beaten 

into US and then UK households by Amazon and its Echo speaker (66). Amazon’s 

Echo voice-controlled smart speaker was one of the first devices to use Amazon’s 

voice assistant – a rival to Apple’s Siri, Google’s Assistant, and Microsoft’s Cortana 

– which allows you to control music playback and more by simply speaking to it. 

Google unveiled a number of new AI-driven products including Google Home 

(67), a voice-activated product that allows users to manage appliances and 

entertainment systems with voice commands, and which draws on the speech 

recognition technology used in its recently announced Google Assistant. 

Cortana, the Microsoft phone assistant now built into Windows 10 (68), 

composes messages, performs searches, and sets calendar events by way of voice 

commands. It has been measured above 90% accuracy – quite an improvement 

considering Windows 95 had an error rate of close to 100%. 

China’s largest search engine, Baidu, has collected thousands of hours of voice-

based data in Mandarin, which was fed into its latest speech recognition engine Deep 

Speech 2 (69). The system independently learned how to translate some Mandarin to 

English (and vice versa) entirely on its own using deep learning algorithms. In 

addition, the system is capable of “hybrid speech,” something that many Mandarin 

speakers use when they combine English and Mandarin. Because the system is 

entirely data-driven, it actually learns to perform hybrid transcription on its own. This 

is a feature that could allow Baidu’s system to transition well when applied across 

languages. 

There has been a growing trend towards developing end-to-end systems which 

attempt to learn the separate components of ASR jointly as a single system over the 

last several years. This is valuable since it simplifies both the training and deployment 

processes. The two main approaches for this are the Connectionist Temporal 

Classification (CTC) and the attention-based sequence to sequence (seq2seq) models. 

CTC is a function that allows an RNN to be trained for sequence transcription tasks 

without requiring any prior alignment between the input and target sequences. Unlike 

CTC-based models, attention-based models do not have conditional-independence 

assumptions, and can learn all of the components of a speech recognizer – including 

the pronunciation, acoustics, and language model – directly. The performance of both 

models on the Hub5’00 benchmark is presented by Battenberg et al. (70). Without 

using a language model, attention models outperformed CTC models trained on the 

same corpus, but it was found that CTC models were significantly more stable, easier 

to train and ensured better recognition results if the language model was used. 
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2.2.4. Works on the recognition of the Lithuanian language 

P. Kemėšis and L. Telksnys initiated investigations of language signals in 

Lithuania in the mid-1970s. Gradually, several groups formed to carry out scientific 

research in the field of language technology at: Kaunas University of Technology 

(KTU), Vilnius University (VU), Vytautas Magnus University (VDU), and the 

Mathematics and Informatics Institute (MII). This section briefly presents the activity 

of these institutions in the field of speech signal recognition along with their more 

significant results. 

 MII scientists realized a recognition system for separately pronounced 

Lithuanian numeral names (71). Using LP coefficients and DTW methods in the 

recognition experiments, a 1.9% word recognition error was achieved independent of 

the announcer, and 0.8% word recognition error for announcer-dependent recognition. 

Later, based on analytical expressions of the DTW method, the “Identification” 

recognition system was created for separate words (72). This was a program designed 

to monitor the recognition of isolated words. The system used the original methods 

for the identification of word boundaries and teaching, which allowed for increased 

recognition accuracy. Recognition studies of words pronounced separately continued, 

using HMM (73) and ANNs (74). In 2005, a modeled hybrid of ANN/HMM, based 

on a recognition system of separately pronounced words in the Lithuanian language 

(75), was presented. In recent years, MII presented the algorithm of speech signal 

segmentation to quasi-phonemes (76). Experimental studies have shown that the 

limits of quasi-phonemes marked by the system differed from those manually marked 

by approximately 23 ms.  

Extensive research in the field of Lithuanian speech recognition has been 

performed by VDU, with much attention paid to HMM (77, 78). G. Raškinis examined 

the impact of various parameters in the HMM speech recognition system on solving 

the task of recognizing isolated words pronounced in the Lithuanian language of 

average volume, independent of the speaker. D. Šilingas examined sets of acoustic 

models and their properties in a recognition system for coherent Lithuanian speech. 

Evaluating the efficiency of Lithuanian phoneme sets, during which sets of graphemes 

and seven phoneme sets were compared, it was found that it is appropriate to include 

diphthongs and accent marks, but not to include information about the softness of 

consonants or to split mixed dialect diphthongs and affricates. 

VDU scientists pay much attention to issues of language segmentation, which 

are based on logical teaching methods and are more present in certain works (79), as 

well as examining opportunities for the discrimination of voiceless explosive 

consonants according to the trajectories of the explosion and the following voice 

formants (80). 

 The KTU laboratory for speech signal study has lately, together with scientists 

from VU, paid a great deal of attention to speech synthesis issues, but previously many 

studies for speech recognition were also conducted. 

Recently, the projection algorithm has been modified in a manner such that the 

standards have been depicted only using their phonetic transcriptions, and 

experiments with recognition of one announcer’s voice command have been carried 

out (81, 82). Two sets of phonetic units for transcriptions were examined. In the first 
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case, 23 phonetic units (a slightly lower number than in the normal text, because 

affricates were identified with fricative sounds) of which 16 were assessed, where all 

the explosive consonants were marked with one symbol. Then, seven options were 

examined for phonetic training which differed by the overlapping of the phonetic 

contexts. Voice commands were selected completely at random. In the best case, 0.9% 

word recognition error was achieved.  

An investigation into the recognition of Lithuanian voice commands based on 

multiple transcriptions was carried out in 2009(83). 

The KTU laboratory for speech signal study paid the most attention to the 

discrimination of phonemes. Since 1985, classifiers (Euclid, Mahalanobis measures, 

and the dichotomous classifier were introduced, together with the optimization of 

feature space) have been compared, and the importance of phonemic discrimination 

in a particular context has been observed (84). Regularized discriminant analysis has 

also been used, in the hope of improving the automatic classification of phonemes. 

The dichotomous classifier, the Fisher classifier, and different features (autoregressive 

cepstral analysis, MFCC, recursive filters) have been used for comparisons. For tests, 

consonants m, n prior to three vowels, a, u, and i were selected, and were dictated by 

20 speakers 10 times in the context of each vowel. At best, a 5.1% classification error 

of m and n phonemes was achieved (85). 

Lately, the Šiauliai University has been involved in the research of Lithuanian 

speech recognition. Daunys (86) describes the features that allow the classification of 

phonemes based on the place of articulation. The possibility of creating methods for 

Lithuanian language segmentation and phoneme recognition is discussed. In another 

work involving the same author (87), the possibility of using visual information for 

speech recognition was examined in terms of creating decision trees and using them 

together with the differential features of phonemes.  

In 2013, the INFOBALSAS project took place (88). High recognition accuracy 

was achieved for voice commands in a medical information system. The system was 

able to recognize the names of the most commonly encountered diseases, 

pharmaceuticals, and complaints in the medical practice by using an annotated speech 

corpus. 

The Lithuanian Speech Managed Services Project (LIEPA) ended in 2015, and 

aimed at developing tools which would open the possibilities of working and 

communicating with computers and smart gadgets using Lithuanian speech, which 

presented numerous specific problems. The services developed are conducive to 

promoting students to use speech technologies, benefit or assist adults in various roles 

by enabling them to talk to computers in Lithuanian, help the disabled, and provide 

people with advice on how to correctly pronounce words in standard Lithuanian. 

In 2015, Google announced a speech recognizer for the Lithuanian language. 

Google uses speech recognition in almost all of its products: Android OS, the Chrome 

browser, its search engine, and so forth. Because of this, languages such as English, 

Japanese, Russian, German, and others are recognized very well, as these languages 

have huge market potential and Google directs a lot of resources towards making their 

recognition better. For under-resourced languages, creating a good speech recognizer 

has limited market potential, and so creating a recognizer from scratch is not in 
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Google’s interest. Perhaps a better way is to adapt acoustic models that have already 

been trained. As predicted, Google has recorded some training data and retrained one 

foreign language recognizer.  

More Lithuanian speech recognition results and research results on the 

connection of recognizers are presented in Table 2.2. 

  

Table 2.2. Speech recognition research results in Lithuania 

 

Author Method Speech corpus Results 

Maskeliūnas 

(83) 

Adapted language 

recognizer (English) 

10 digit names (10 speakers, 20 

utterances each digit)  

RA 92.5% 

 Rasymas,  

Rudžionis 

(89) 

Lithuanian Google 

recognizer 

10 digit names (1,790 voice 

recordings) 

RA 

82.6% 

Sipavičius,  

Maskeliūnas  

(90) 

Lithuanian Google 

recognizer 

Speech corpus of 42,515 voice records 

(238,885 phrases)  

WER 

40.74% 

Laurinciukaite 

(158) 

Word based HMM with 

fixed HMM states and 

number of Gaussian 

mixtures. 

50 commands (31 speakers, 20 

utterances each) phonetically 

annotated speech corpus. 

RA 

97.77% 

Phoneme based HMM   50 commands (31 speakers, 20 

utterances each) phonetically 

annotated speech corpus  

RA 

93.91% 

Contextual phoneme based 

HMM 

LRNO ~10 hours of Lithuanian radio 

broadcasts  

RA  

76% 

Alumäe,  

Tilk (94) 

TimeDelay Deep Neural 

Network 

About 90 hours of Lithuanian tv 

speech recordings 

WER 

14.7% 

Salimbajevas, 

Kapočiūtė-

Dzikienė (95) 

TimeDelay Deep Neural 

Network 

6 hours of utterances from Seimas 

sessions 

WER  

21.3% 

Gales et al. 

(93) 

Triplone based HMM 10 hours of conversational Telephone 

Speech 

WER 

48.3% 

Greibus et al. 

(96) 

Triphone based HMM LIEPA (46.56 hours of speech by 348 

speakers) 

CER 

36.76% 

Lileikytė et al.  

(97) 

Triphone based HMM Telephone speech, 40 hours WER 

42.4% 

Raškinis et al. 

(98) 

Recurrent neural network 

(RNN),  

BLSTM 

50 hours of read speech, 50 speakers  PER 

12.62 

Pipiras et al. 

(99) 

 RNN,  encoder–decoder-

type models 

Part of speech corpus LIEPA Isolated 

commands 

 

Accuracy 

0.993 

RNN,  encoder–decoder-

type models 

Part of speech corpus LIEPA Long 

phases 

 

Accuracy 

0.992 

Connection of several recognizers 

Rasymas,  

Rudžionis 

(131) 

Connection of five 

recognizers: Lithuanian, 

Russian, English, and two 

German, with statistical 

classification methods 

 50 commands (drug names and names 

of diseases), 12 speakers, 20 

pronouncements each (6,000 voice 

recordings)  

RA 

98.16%, 
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During the evaluation of Google’s Lithuanian recognizer, a speech corpus 

containing 10 digit names was used. This corpus was gathered by recording the speech 

of random individuals, and every digit name was pronounced 1,790 times. Of these, 

1,000 recordings were used for training, and 790 recordings were used for testing. The 

recognition accuracy of the Google Lithuanian recognizer was determined to be 

82.6% (89). 

Another experiment concerning the evaluation of Google’s Lithuanian 

recognizer was conducted by Sipavičius and Maskeliūnas (90). This study involved 

42,515 voice recordings (238,885 phrases), and the WER for all speech records that 

were processed by the Google speech recognizer was 40.74%, with a standard 

deviation at 37.70%.  

Lithuanian is one of the development languages within the IARPA BABEL 

research program, and is therefore a test language in many papers that have studied 

low-resource training methods for speech recognition (91, 92, 93). For example, 

Gales, Knill, and Ragni (93) employed a simple approach for building graphemic 

systems for any language written in Unicode. The attributes for graphemes were 

automatically derived using features from the Unicode character descriptions. These 

attributes were then used in the construction of decision trees. This approach was 

examined with the IARPA Babel Option Period 2 languages, including the Lithuanian 

language. For each language, approximately 10 hours of Conversation Telephone 

Speech was distributed. A WER of just 48.3% was received for the Lithuanian 

language speech corpus using the HTK package. 

Alumäe and Tilk (94) described the development of an automatic broadcast data 

transcription system for the Lithuanian language. The system performed fully 

automatic transcription of broadcast media recordings, including speech/non-speech 

detection, speaker diarization, speech-to-text conversion, and automatic punctuation 

restoration. The system was developed in collaboration with the Baltic Media 

Monitoring Group (BMMG). The Lithuanian large-vocabulary ASR system, 

developed by Tilde (95), is similar to this system and outperforms it. 

The influence of the phoneme-set on the accuracy of Lithuanian speech 

command recognition was investigated by Griebus et al. (96). Four phoneme sets were 

discussed, and the LIEPA speech corpus was used for the training of an Acoustic 

Model. The phonetic representation of corpus transcriptions was generated by 

grapheme-to-phoneme transformation rules. Rule-based transformations for the 

Lithuanian language were proposed, and a recognition engine with the CMU 

Pocketsphinx decoder was used. Investigations using a 46-hour training speech corpus 

showed that a set of 36 phonemes showed the bests results – a command error rate 

(CER) of 3.76% using 6.78-hour speech corpus for testing. 

Lileikyte et al. (97) presented a conversational telephone speech recognition 

system for the low-resourced Lithuanian language, developed in the context of the 

IARPA-Babel program. Phoneme-based systems and grapheme-based systems were 

compared to establish whether or not it is necessary to use a phonemic lexicon. 

Experimental results were reported for two conditions: Full Language Pack (FLP) and 

Very Limited Language Pack (VLLP), for which 40 and 3 hours of transcribed 

training data were available, respectively. Grapheme-based systems were shown to 
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give comparable results to phoneme-based ones. Including Web texts improved the 

performance of both the FLP and VLLP system – the best VLLP results, with a WER 

of 42.4%, were achieved using both Web texts and semi-supervised training. 

The Lithuanian large-vocabulary ASR system, developed by Tilde, which is 

based on the open-source Kaldi toolkit (57), was presented by Salimbajevs and 

Kapociute-Dzikiene (95). The phoneme repository consisted of 29 grapheme-based 

phonemes, 1 unified filler-silence model, and 1 model for fragmented and out-of-

vocabulary words. The ASR system used the Kaldi recipe for sequence discriminative 

training of TimeDelay Deep Neural Network (TDNN) acoustic models and iVectors 

for speaker adaptation. For the training of acoustic models, three speech corpora were 

used: a ∼100-hour Lithuanian speech corpus (52 hours of pure speech, 11,000 word 

forms, 61,000 utterances, 360 speakers), a ∼192-hour Seimas corpus (308,000 

utterances), and a ∼20-hour dictated speech corpus (21,000 utterances). The 

developed ASR system for Lithuanian was evaluated using the standard WER metric 

on the following manually annotated test corpora: test_general – a 1-hour “general 

domain” set of audio segments from various radio and TV shows; test_seimas – a 6-

hour set of randomly selected utterances from Seimas sessions; and test_lt_radio – a 

2-hour set of audio segments from Lithuanian radio. A comparison with the Google 

Cloud Speech ASR and Alumäe&Tilk ASR (94) was then performed. The best results 

– 21.3% – were achieved on test_seimas, and the results of the same test for the other 

ASRs were worse: 28.4% for Alumäe&Tilk ASR, and 41% for Google ASR. 

 A survey of the research undertaken during the last 15 years to find an optimum 

mapping for Lithuanian ASR systems was performed by Raškinis et al. (98). This 

study also compared various phoneme- and grapheme-based mappings across a broad 

range of acoustic modeling techniques, including monophone- and triphone-based 

GMMs, speaker adaptively trained GMMs, subspace GMMs, feed-forward time delay 

neural networks (TDNN), and a state-of-the-art “low frame rate bidirectional long 

short-term memory” (LFR BLSTM) recurrent DNN. Experiments were based on a 

50-hour speech corpus consisting of 50 speakers (25 males and 25 females) each 

reading book excerpts for approximately 1 hour. Full leave-one-out (or 50-fold) cross-

validation was costly in terms of computational time, so an approximation was used. 

An open-source Kaldi ASR toolkit (57) was used for training and evaluating all ASR 

systems. Phone Error Rate (PER) criterion was used to compare the performances of 

different ASR setups. The results of speech corpus recognition varied, from 35.31% 

for monophone ASR to 12.62% for LFR BLSTM ASR. The best results were achieved 

using the phone 3-gram language model. 

An ASR system for the Lithuanian language, which is based on deep learning 

methods and can identify spoken words purely from their phoneme sequences, was 

described by Pipiras et al. (99). Two encoder–decoder models were used to solve the 

ASR task: a traditional encoder–decoder model and a model with an attention 

mechanism. The performance of these models was evaluated in an isolated speech 

recognition task (with an accuracy of 0.993%) and a long phrase recognition task (with 

an accuracy of 0.992%), using part of the LIEPA speech corpus. Accuracy was 

calculated by adding the count of true positives and the count of true negatives, and 



40 

then dividing by the sum of the count of true positives, the count of true negatives, the 

count of false positives, and the count of false negatives.  

 

2.3. Speech analysis methods and their characteristics 

This section will discuss the methods for processing speech signals. The primary 

processing of speech signals consists of three stages: the initial filtration, the division 

of signal into frames, and the application of the window function. These three stages 

are used in almost all systems involving the recognition of speech and speaker, and 

many others besides. 

 Before performing the separation of speech features and their calculation, 

preparatory actions for speech signal processing are carried out: discretization of the 

signal, initial filtration, and windowing.   

When performing the discretization of the speech signal, which aims to reduce 

the amount of data necessary for displaying the speech signal, the amplitude of the 

audio signal is measured and recorded many times per second. According to pre-

defined goals, the maximum allowable values of the amplitude are determined. 

Depending on the number of values used for recording, the highest possible integer is 

assigned to the maximum value of the amplitude.  

 

 
Figure 2.2. Analog and discrete signal 

The frequency which is used to conduct measurements of the speech signal’s 

amplitude is called the discretization frequency. Obviously, the higher the 

discretization frequency, the more the digital record of the speech signal corresponds 

to the analog (Figure 2.2). According to the Nyquist theorem, the discretization 

frequency must be at least twice as high as the maximum frequency of the signal 

recorded, in order to not lose important information in the signal. We have the discrete 

speech signal S, where the number of its discrete values is equal to N. 

 

S=s(1), s(2),...,s(n),…s(N).                                  (1) 
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Most of the energy of the speech signal is concentrated within the area of low 

frequencies. As all frequencies are treated equally in the spectral analysis, this results 

in higher finite accuracy errors in further signal processing and, in addition, great 

variance in the estimates of some features. In order to avoid these shortcomings, so-

called initial filtering (preemphasis) is carried out, which aims to remove the nonlinear 

frequentative distortions made during discretization. The aim of the initial filtration is 

to raise components of the higher frequency spectrum in order to increase their 

influence and to improve the quality of attributes used (100). In this way, components 

of the lower frequency spectrum are suppressed, and thus the spectrum is “leveled.”   

In terms of time, the initial filtration is carried out using a low order digital Finite 

impulse response (FIR) filter. The most commonly used first order FIR filter is defined 

as: 

),1()()(
~

 nsnsns                                 (2)                                                                        

here, )(
~

ns  represents the signal filtered, s(n) the primary values of the discrete speech 

signal, and α the coefficient which determines the degree of leveling for the speech 

signal spectrum, selected from the range 0.9 ≤ α ≤ 1.0.   

The filtered signal is broken into the sequence of K overlapping frames 

(windows). The windowing of the signal is defined by two parameters: the length of 

the window and the push, or step, of the window. The choice of length and step of the 

window depends on the methods used in the recognition system, but usually ranges 

(in length) from 10 to 30 ms, and the step of the window (overlapping) from 5 to 15 

ms. This is done because it is assumed that within such a short interval of time the 

parameters of the human vocal tract fail to change (101), i.e., in such a short interval 

of time the human vocal tract can be described using permanent parameters. The 

overlap of the windows is used in order to more effectively use the information 

received from the two adjacent windows.   

Each received window of the signal – in order to evaluate the continuity of the 

signal and the distortions made with the division – is multiplied by a certain window 

function, v: 

 

�̅�(𝑛) = 𝑠(𝑛) ∙ 𝑣(𝑛), 0 ≤ 𝑛 ≤ 𝑁 − 1,                            (3)                                                    

 

where N represents the window size in discrete values.   

There are many potential functions of the window – such as rectangular, Hening, 

etc. – but for the most part the Hamming window (102) is used:  

 

𝑣(𝑛) = {
0.54 − 0.46 cos (

2𝜋𝑛

𝑁
) , 0 ≤ 𝑛 ≤ 𝑁 − 1

0, 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒
.                     (4)                                             

 

The windows of discrete speech signal obtained are then used for the calculation 

of features, describing the analyzed units of the speech signal (words, syllables, 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&sqi=2&ved=0ahUKEwi_zrXah6LUAhVkCZoKHSwSCYEQFggiMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFinite_impulse_response&usg=AFQjCNEVIj1G0xzs6cVcKi1Up3Y42t1Qyg&sig2=oeOir8JwuvrDsQIGOH82BA
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&sqi=2&ved=0ahUKEwi_zrXah6LUAhVkCZoKHSwSCYEQFggiMAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FFinite_impulse_response&usg=AFQjCNEVIj1G0xzs6cVcKi1Up3Y42t1Qyg&sig2=oeOir8JwuvrDsQIGOH82BA
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phonemes, diphones, triphones, etc.). These units are relatively independent of the 

individual properties of the announcer or the environment, and also independent of 

the report content (103). Algorithms are then used for the separation of the features – 

most often standard signal processing technologies such as digital filters, linear 

prediction, and spectral and cepstral analysis. These methods are reliable, and have 

been used for quite some time as they model the speech signal by combining it with 

the human auditory perception system (104). In addition, in the process of recognition, 

additional knowledge about the properties of the human vocal tract and the acoustic 

system are also used, allowing us to increase the accuracy of the speech recognition 

(103). It should be emphasized that there is no universal set of attributes yet 

discovered that would uniquely identify the fragment of the speech signal analyzed. 

All features distinguished have advantages and disadvantages. 

 The following subsections of this section analyze the methods used for the 

calculation of the features of the speech signal. 

 

2.3.1. Linear prediction 

One of the first methods to be used for digital analysis of the speech signals is 

linear prediction (105), during which the features calculated – coefficients of the linear 

prediction – can be used for analysis of the speech signals in speech recognition 

systems. The main idea of the coding method in linear prediction is that speech signal 

Y at moment in time i can be approximated with p speech signal values in the linear 

combination: 

 

𝑠(𝑛) ≈ 𝑎1𝑠(𝑛 − 1) + 𝑎2𝑠(𝑛 − 2) + ⋯ + 𝑎𝑝𝑠(𝑛 − 𝑝),                (5)                                          

 

where the coefficients a1, a2, ... ap in the analyzed window of the speech signal are 

considered stable. By adding the excitation member Gu (i) to the dependency 5 we 

get: 

 

𝑠(𝑛) = ∑ 𝑎𝑗𝑠(𝑛 − 𝑗) + 𝐺𝑢(𝑛)

𝑝

𝑗=1

 

                                  (6)                                                                      

 

where u represents the normalized excitation signal, and G the excitation coefficient. 

The coefficients aj represent linear prediction coefficients, for the calculation of 

which the Levinson–Durbin algorithm may be used (106). The TP method accurately 

models echoing speech signals (102). This is especially clear in quasi-stationary 

speech signal fragments, in which TP performs the accurate approximation of the 

coating in the signal spectrum generated by the vocal tract. In obtuse language 

fragments, the TP method is not so effective. Linear prediction requires fewer 

calculation resources than some other well-known methods (for example, the bank 

model of the digital filters). 



43 

2.3.2. Spectral analysis 

 

The features of the speech signal obtained using spectral analysis are widely 

used. One of the main reasons for the wide prevalence of this method is that by 

performing spectral analysis we can attain important acoustic characteristics of the 

speech signal in various frequency bands. 

 As is already known, the speech signal is not a stationary thing, and the spectral 

analysis of speech signals is based on the assumption that the speech signal can be 

separated into short intervals where the signal becomes stationary or quasi-stationary 

(107). 

For the spectral analysis of short intervals, two methods are used: the method of 

the filter banks, and the Fourier transformation algorithm. 

 Using the method of the filter banks, the speech signal x (n) is passed through 

the bank of filters made of H band filters (Fig. 2.3), which overlaps the range of the 

signal frequencies under study. In this way, the M-1-th band filter – the central 

frequency of which in the exit is the speech signal x(n) energy– and the energies of all 

the H filters approximate the short-term signal spectrum. The most commonly used 

filter banks are Mel or Bark scale, about which others have written extensively (108). 

 

 
Figure 2.3. Multidimensional analysis filter banks 

Another method of spectral analysis is the so-called fast Fourier transformation 

(FFT) (109). Its popularity was determined by the fact that the applications of the 

Fourier algorithm are much more convenient with the use of a computer, and it is 

much more easily realized than filter banks. The calculation of coefficients in the FFT 

is based on the discrete Fourier transformation equation: 

 

𝑆(𝑙) =  
1

𝑁
∑ 𝑠(𝑛)𝑒−𝑗

2𝜋
𝑁

𝑙𝑛

𝑁−1

𝑖=0

, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 0,1 … , 𝑁 − 1 

                                                                                                                                   (7) 
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and the inverse discrete Fourier transformation: 

 

(𝑛) =  
1

𝑁
∑ 𝑆𝑛(𝑙)𝑒𝑗

2𝜋
𝑁

𝑙𝑛

𝑁−1

𝑙=0

, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1 … , 𝑁 − 1  

                                  (8) 

 

Formulas 7 and 8 can be used for the expression of the signal s(n) Fourier 

transformation in a short time interval by using a window function v(n): 

 

𝑆(𝑙) =  
1

𝑁
∑ 𝑠(𝑛)𝑣(𝑛)𝑒−𝑗

2𝜋
𝑁

𝑙𝑛

𝑁−1

𝑖=0

, 𝑤ℎ𝑒𝑟𝑒 𝑙 = 0,1 … , 𝑁 − 1 

                           (9) 

 

The resolution of the spectrum is inversely proportional to the length of the 

window N. Fourier transformation enables the conversion of the signal from the time 

scale into the frequency scale, and vice versa by using the inverse Fourier 

transformation (112). 

 

2.3.3. Cepstral analysis 

Lately, MFC (Mel-frequency cepstrum) features have become among the most 

widely used for speech recognition (110). Cepstral coefficients are used in speech 

recognition for a number of reasons. Firstly, from a theoretical point of view, a speech 

signal can be modeled as a convolution of several sources with different pulse 

characteristics (111). These sources of a signal include the vocal cords, mouth, throat, 

nasal cavity, lips, etc. Cepstral analysis allows us to distinguish these signal sources 

to perform deconvolution. It is assumed that the parameters of the signal sources 

distinguished must accumulate characteristics specific to separate sounds and 

individual speakers. 

 The second advantage is that the cepstral coefficients are less correlated with 

each other, and this greatly simplifies the process of further analysis. 

Currently, the most common cepstral coefficients are calculated using the 

Fourier and discrete cosine transformation. Using this method, so-called Mel-

frequency cepstral coefficients (MFCC) are calculated. The algorithm for MFCC 

calculation is presented in Figure 2.4, which consists of a number of stages. Firstly, 

the FFT is used to convert each frame of N samples from the time domain into the 

frequency domain. The scale of frequency is then converted from the linear to Mel 

scale. Then, the logarithm is taken from the results. In the final step, the log Mel 

spectrum is converted back to the time domain, resulting in the MFCC. 
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Figure 2.4. MFCC extraction and Mel-scale filter bank 

 

First, using formula 9, the Fourier transformation coefficients of the speech 

signal are calculated, and the energy spectrum of the signal is obtained. The spectrum 

obtained is filtered using the Mel-frequency filter bank. 

Other characteristics are also used in forming the vector of the features along 

with the MFCC or other coefficients described. Signal energy is commonly used for 

segmentation of the speech signals (112), when it is necessary to discern the speech 

signal from the noise because the energy of the speech signal is greater than the energy 

of the noise. The energy of the fixed-length discrete time signal can be expressed as: 

 

𝐸 = 𝑙𝑜𝑔 ∑ 𝑠𝑛
2

𝑁

𝑛−1

 

.                     (10) 

 

Often, the vector of features is supplemented by the dynamic cepstral 

coefficients, or so-called delta coefficients, which describe the rate of change of the 

cepstral coefficients. These delta coefficients helped to achieve better results in many 

works on ASR. Delta coefficients are calculated by the formula: 

∆𝑘(𝑙) = 𝑐𝑘(𝑙) − 𝑐𝑘−1(𝑙),                                         (11) 

 

where k represents the window serial number. 

 It is observed that, in some cases, the rate of change of the cepstrum, speed 

coefficients (delta-delta coefficients), or the so-called acceleration coefficients can be 

useful. Delta-delta coefficients are calculated similarly to the delta coefficients, but 

with the subtraction of members of the vector in two adjacent delta coefficient features 

(104). 
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∆∆𝑘(𝑙) = ∆𝑘(𝑙) − ∆𝑘−1(𝑙).                                     (12)                                                                

 

After the analysis of each window and the calculation of the features of the 

speech signal, the vector of the features – which will be used as an entrance for the 

ASR system – can be created from it: 

 

𝑋𝑘 = (𝑐𝑘 ∣ 𝐸𝑘 ∣ ∆𝑘∣ ∆𝐸𝑘 ∣ ∆∆𝑘∣ ∆∆𝐸𝑘).                          (13)                                                        

 

Thus, the vector of the features can be formed of: 

• 12 coefficients or the other cepstral, spectral, or linear prediction coefficients 

(ck); 

• 12 delta coefficients (Δk); 

• 1 speech signal energy (Ek); 

• 1 energy delta coefficient (ΔEk); 

• 12 acceleration coefficients (ΔΔk); 

• 1 energy acceleration coefficient (ΔΔEk). 

 

The number of elements in the feature vector depends on the number of MFCC 

coefficients used. For example, if we use 12 MFCC, then the vector of the features 

consists of 39 elements. 

 

2.4. Methods for language recognition 

Many methods of language recognition have been created, but only a few of 

them have proved worthy of use in recognition systems. We would distinguish three 

groups of language recognition methods: 

 acoustic-phonetic methods; 

 pattern recognition methods; 

 artificial intellect methods. 

 In acoustic-phonetic methods, it is assumed that the language signal is of a finite 

duration, and consists of acoustically different phonetic units which are characterized 

by distinctive, temporal, and frequentative properties. After measuring these 

properties (usually the resonant frequencies, energy and amplitude levels, and zero-

crossing number) and after the application of elementary rules (knowledge in acoustic 

phonetics, threshold values, and decision trees), the language signal is segmented and 

marked (phonetic transcription is assigned) – in this way realizing language 

recognition via the direct decoding of the signal into the transcription. However, 

segmentation is limited in the sense that it does not take into account the co-

articulation phenomenon or the variability of sounds across different versions of 

words. Additionally, their classifications are quite primitive, and therefore acoustic-

phonetic methods are not fit for purpose and are almost unused in modern recognition 

systems. 

In pattern recognition methods, the variability of a language signal is evaluated 

using statistical methods (24). It is assumed that the signal is a random process which 

can be modeled. For the creation of the standards, statistical models are used, and 
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estimates of their parameters are found in the set of data used for training. In the 

recognition stage, the distance between the language signal examined and the 

reference models is evaluated using a statistical classification – usually Bayes’ rule. 

The most common representatives of the statistical methods group are HMMs. 

In artificial intelligence methods, the attempt is to imitate human language 

recognition: additional language skills are incorporated into the recognition process, 

and recognition systems are provided with the ability to adapt and learn. In the early 

methods used in expert systems, along with knowledge of acoustics, lexis, syntax, 

semantics, and even pragmatics were incorporated into the identification process. For 

the introduction of knowledge, the “top-down,” “down-top,” and board methods were 

used. Another group of artificial intelligence methods – indeed the largest – are 

networks of neurons. Networks of neurons imitate the human ability to learn from the 

data obtained by adjusting their perception according to it. 

In the following subsections, the most widespread language recognition 

methods will be analyzed, including: HMMs, DTW, and neural networks.  

 

2.4.1. Hidden Markov Models 

 HMMs are the most popular and among the most effective techniques used for 

speech recognition purposes today. Since their introduction in the 1970s, HMMs have 

been applied to a wide set of speech recognition tasks. Their popularity is caused both 

by the existence of effective training algorithms and by the existence of well-

developed software tools, allowing researchers to quickly adapt them to their own 

tasks and purposes. 

 The HMM approach provides an entire framework, which includes an automatic 

supervised training algorithm with mathematically proven convergence properties 

(the Baum–Welch algorithm) and an efficient decoding scheme for recognition tasks 

(the Viterbi search algorithm). These models have the ability to generalize from large 

amounts of data by making structural assumptions that are reasonable for human 

speech and adjusting model parameters so as to optimize a meaningful objective 

function. The HMM theory is well described in the literature (e.g., 112, 113). 

 

2.4.1.1. Basics and definitions of HMMs 

HMMs are a well-known and widely used statistical method of characterizing 

the spectral properties of the frames of a pattern. These models are also referred to as 

Markov sources or probabilistic functions of Markov chains in the communications 

literature. The underlying assumption of the HMM is that a speech signal can be well 

characterized as a parametric random process, and that the parameters of the stochastic 

process can be determined (estimated) in a precise, well-defined manner. The HMM 

method provides a natural and highly reliable way of recognizing speech for a wide 

range of applications (102,114). 
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Figure 2.5. The Markov generation model 

 

Figure 2.5 shows the typical structure of HMMs used in speech recognition. 

This model is called a left-to-right or a Bakis model, because the underlying state 

sequence associated with the model has a character such that as time increases the 

state index increases – that is, the system states proceed from left to right. Clearly, the 

left-to-right model exhibits a desirable property of being readily able to model speech 

with properties that change over time in a successive manner. 

HMMs can be classified into discrete models or continuous models according 

to whether observable events assigned to each state (or transition) are discrete, such 

as code words after vector quantization, or continuous. Either way, the observation is 

probabilistic – that is, the model is a doubly embedded stochastic process with an 

underlying stochastic process that is not directly observable (it is hidden). Instead, it 

can be seen only through another set of stochastic processes that produce the sequence 

of observations. 

An HMM for discrete symbol observations is characterized by the following: 

O  = {O1, O2, ..., OT  }  = observation sequence (input utterance) T  length 

(duration) of observation sequence; 

Q =  {q1, q2, ..., qN  }  = (hidden) states in the model ; 

N  = number of states; 

V  = {v1, v2, ..., vM  }  = discrete set of possible symbol observations (VQ 

codebook); 

M =  number of observation symbols (VQ codebook size); 

A = {a i j},  a i j  =  Prob(qj at t  +  1| q i  at t) =  state transition probability 

distribution; 

For the ergodic model, a i j  >  0 for all i ,  j .  For the left-to-right model, a i j  >  0 

for i  < j ;  

B  = {b j(k)},  b j(k)  = Prob(vk at t | q j  at t)  = observation symbol probability 

distribution in state j;  

π = {πi}, πi = Prob(qi at t  =  1) = initial state distribution. 
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The compact notation λ = (A, B, π)  is used to represent an HMM. Specifying 

an HMM involves choosing the number of states, N ,  as well as the number of discrete 

symbols, M , and specifying the three probability densities of A , B , and 7r. This 

parameter set is calculated using the training data, and it defines a probability measure 

for O =  (O1  O2  . . .  OT)  –  i.e., Prob (0|λ),  where each observation O t  is one of the 

symbols from V .  

An observation sequence O  is generated as follows: 

Step 1: Set t  =  1. 

Step 2: Choose an initial state, i ,  according to the initial state distribution λ. 

Step 3: Choose O t  according to b i  (k), the symbol probability distribution in 

state i .  

Step 4: Choose j  according to { a i j}  (j  =  1, 2, ... , N), the state transition 

probability distribution for state j .  

Step 5: Set t  ← t+  1. Return to step 3 if t  < T;  otherwise terminate the 

procedure. 

In the training phase, when 100 training utterances are used, 

 

𝑂(𝑛) = {𝑂𝑡
(𝑛)

}
𝑡

𝑇𝑛
 

                                           (14) 

Tn = number of frames are obtained (n = 1, 2, … 100) λ*, which satisfies  

 

𝜆∗ = argmax𝜆 ∏ 𝑃𝑟𝑜𝑏(𝑂(𝑛)|𝜆)100
𝑛=1                              (15) 

 

is determined using the Baum–Welch algorithm (115). Here, Prob(O(n)|λ) indicates 

the conditional probability. 

In the recognition phase for the unknown input, the probability that the observed 

sequence is generated from each HMM is computed, and the model with the highest 

accumulated probability is selected as the correct identification. 

A pair, of model m*  and state sequence q* ,  (m*, q*) ,  which satisfies 

 

(𝑚∗, 𝑞∗) = argmax(𝑚,𝑞)𝑃𝑟𝑜𝑏(𝑂, 𝑞|𝜆𝑚),                           (16) 

is determined using the Viterbi algorithm, where λm is the mth model {m  = 1, 2,..., M; 

M =  vocabulary size), O  = O1, O2 ... OT  is input speech (T  = number of frames), and 

q  is a state sequence (22). Prob(O, q|λm) can be efficiently calculated using a forward-

backward algorithm. These algorithms are precisely explained in the following 

subsections. 

 



50 

2.4.1.2. Three Basic Problems for HMMs 

There are three key problems that must be solved when utilizing a HMM model. 

Problem 1: Evaluation 

Given the observation sequence O  = { O1, O2 ... OT  }  and the model λ = (A, 

B, π) ,  how can the observation sequence probability Prob(O|λ) be computed? 

Problem 2: Uncovering Hidden State Sequence, given the observation sequence 

O = { O1, O2 ... OT  }, how can a state sequence  I= { i1 , i2  . . .  i T},  which is optimal 

in some meaningful sense, be chosen? 

Problem 3: Training 

How can the model parameters λ = (A, B,  π)  be adjusted to maximize 

Prob(O|λ)? 

The principal structure of spoken word recognition systems based on HMMs is 

detailed in Figure 2.6. This structure requires the derivation of solutions to these three 

problems for particular use. The solution to Problem 1 is utilized to score each word 

model based on the given test observation sequence for recognizing an unknown word 

(116). The solution to Problem 2 is used to develop an understanding of the physical 

meaning of the model states. The solution to Problem 3 is employed to optimally 

obtain model parameters for each word model using training utterances. 

 
Figure 2.6. Principal structure of a word recognizer based on a HMM 

Solution to Problem 1—Probability Evaluation 

Prob(O|λ) can be represented as 

1 1 1 2 1

1 2

1

, ,...,

( | ) ( ) ... ( )
T T T

T

i i i i i i i T

i i i

P O b O a a b O 


  .                    (17)                                                       
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The summation in this equation is efficiently computed by the forward-

backward procedure. Consider the forward variable t(i) as: 

 
α t(i)  = Prob(O1, O2 ... OT ,  i t  = q i |λ).                         (18) 

This indicates the probability of the partial observation sequence (until time t)  

and state q i  at time t ,  given model λ. We can solve for αt(i) recursively as follows: 

 

Step 1:                                   α1(i)=π ib i(O1)           (1 ≤ i  ≤ N )              (19)                                          

 

Step 2:                        For T=1,2…T-1     (1  ≤ j  ≤  N ) ,                        

                      

1 1

1

( ) ( ) ( )
N

t t ij j t

i

j i a b O  



 
  
 
 .                               (20)    

                                                                

Step 3:                                            
1

( | ) ( )
N

T

i

P O i 


 .                                       (21)                                                                                       

 

This algorithm can be easily derived by transforming the HMM into a trellis or 

lattice diagram as shown in Figure. 2.7. 

In a similar manner, a backward variable, t(i), is defined as: 

 

1 2( ) ( , ,..., | , )t t t T t ii P O O O i q    .                            (22)                                                      

 
Figure 2.7. Trellis or lattice diagram representing an HMM 

 

This demonstrates the probability of the partial observation sequence from t+  1 

to its conclusion, given state q i  at time t  and model λ. Again, we can solve for t(i) 

recursively as follows: 

( ) 1T i                    (1 ≤  i ≤ N),                                 (23) 
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for t = T-1, T-2 ... 1     (1 ≤   j  ≤ N),                                       

                   

 1 1

1

( ) ( ) ( )
N

t t ij j t

j

i j a b O   



 .                                 (24) 

  Then,    1 1

1

( | ) ( ) ( )
N

i i

i

P O b O i  


 . 

(25) 

Solution to Problem 2—Optimal State Sequence 

Problem 2 can be solved using the Viterbi algorithm. This algorithm is similar 

to the forward-backward procedure, except that maximization over previous states is 

used in place of the summing procedure. The Viterbi algorithm is given as follows: 

Step 1: Initialization 

 

           1 1( ) ( )i ii b O          (1 ≤  i ≤ N)                                     (26)                                                                            

1( ) 0i                                               (27) 

Step 2: Recursion 

 

For 2 < t  < T,  1 < j  < N,  

 

1
1

( ) max ( ) ( )t t ij j t
i N

j i a b O  
 

                                (28)      

                                                                    

1
1

( ) arg max[ ( ) ]t t ij
j N

j i a  
 

                                   (29)                                                                                  

Step 3: Termination 

 

 
*

1
max[ ( )]T

i N
P i

 
                                               (30)       

                                                                                       

*

1

arg max[ ( )]t T
i N

i i
 

                                             (31)      

                                                                                  

Step 4: State sequence backtracking 

For t  = T –  1, T  – 2, … 1,  
* *

1 1( )t t ti i                                               (32) 
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Here, P*  is the maximum likelihood, and indicatesthe maximum likelihood 

state sequence. If one only wishes to compute P* ,   values need not be maintained. 

The Viterbi algorithm is a form of the well-known dynamic programming method. 

In the Viterbi algorithm, the observation probability at each state is usually 

converted to a logarithmic value. Then, the accumulated probability can be quickly 

calculated by using the DP method with only maximum selection and summation 

calculations. That is, for 1 <t<T,  1 <j<N :  

 

1
1

log

max[ ( ) log ( )]

i

t
t ij j t

i N
i a b O




 
 


  


                  (2 ≤ t ≤ T)                 (33) 

is calculated, and finally the log-likelihood: 

  
*'

1
max ( )T

i N
P i

 
                                              (34) 

is obtained. Since the logarithmic values are used, the dynamic range of the 

accumulated values becomes small, and therefore there is no need to be concerned 

about the underflow problem. 

Along with the development of the HMM, the fundamental DP technique is now 

often called the Viterbi algorithm. 

 

Solution to Problem 3—Parameter Estimation 

An iterative procedure, such as the Baum-Welch method, or a gradient 

technique for optimization is used in solving this problem. With the Baum–Welch 

algorithm, ξt(i,j) is first defined as: 

 
1( , ) ( , | , )t t i t ji j P i q i q O    .                                  (35)                                                          

This denotes the probability of a path being in state q i  at time t  and making a 

transition to state q j  at time t  +  1, given observation sequence O  and model λ. ξt(i,j) 

can be written as: 

1 1( ) ( ) ( )
( , )

( | )

t ij j t t

t

i a b O j
i j

P O

 




 
 .                                        (36) 

In the above equation, t(i) accounts for the first t  observations, ending in state 

q j  at time t .  The term aijbj(Ot+1) accounts for the transition to state q j ,  at time t  + 1 

with the occurrence of symbol O t + 1 .  The term t+1(j) accounts for the remainder of 

the observation sequence. Prob(O|λ) is the normalization factor. 

Next, γt(i) is defined as: 

 

( ) ( | , )t t ii P i q O   .                                          (37) 
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This represents the probability of being in state q i  at time t ,  given observation 

sequence O  and model λ. γt(i) can be expressed as: 

( ) ( )
( )

( | )

t t
t

i i
i

P O

 



 .                                                 (38) 

γt(i) can be related to ξt(i,j) by summing ξt(i,j) over j, giving: 

 
1

( ) ( , )
N

t t

j

i i j 


 .                                        (39) 

If γt(i) and ξt(i,j) are each summed over the time index t  (from t  = 1 to t  = T-1), 

quantities are obtained which can be interpreted as: 
1

1

( )
T

t

t

i




 = expected number of transitions made from q i ,  

 
and: 

 
1

1

( , )
T

t

t

i j




 = expected number of transitions from state q i  to state q j .  

 

Using these quantities, the HMM parameter values can be reestimated such that: 

 ~

1( )i i        (1 ≤  i ≤ N),                                            (40)                                                                              

1

~
1

1

1

( , )

( )

T

t

t
ij T

t

t

i j

a

i

















 ,                                               (41) 

~
1,

1

( )

( )

( )

t

T

t

t O k
j T

t

t

j

b k

j





 








.                                             (42) 

 

The reestimation formula for πi corresponds to the probability estimation of 

being in state q i  at t  =  1. The reestimation formula for a i j  represents the ratio of the 

expected number of transitions from state q i ,  to q j  divided by the expected number of 

transitions out of state q i .  Finally, the reestimation formula for b i(k)  is equal to the 

ratio of the expected number of times of being in state j  and observing symbol k ,  

divided by the expected number of times of being in state j .  
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It can be verified that Prob(O|*) ≥ Prob(O|) (*= π*,  A*, B*). Therefore, if * 

is iteratively used in place of  and the above reestimation calculation is repeated, the 

probability of O  being observed from the model can be improved until a limiting point 

is reached. 

The above reestimation algorithm is generally called the EM algorithm, since it 

consists of the iterations of expected value calculation and likelihood maximization. 

 

2.4.1.3. Continuous Observation Densities in HMMs 

All of the discussion thus far have only considered when observations were 

characterized as discrete symbols chosen from a finite alphabet, and therefore a 

discrete probability density within each state of this model can be used. However, 

these observations are usually continuous signals or vectors, with possibly serious 

degradation associated with this discretization. Hence, it would be advantageous to be 

able to use HMMs with continuous observation densities to model continuous signal 

representation directly. 

The most general representation of the model probability density function (pdf), 

for which a reestimation procedure has been formulated, is a finite mixture of the 

form: 

1

( ) ( , , ),
M

j jk jk jk

k

b O c O U


                (1 ≤ j ≤ N)    (43)                                           

where O  is the observation vector being modeled, c j k  is the mixture coefficient for 

the kth mixture in state j, and Ν is any log-concave or elliptically symmetrical density 

(e.g., Gaussian). Usually, a Gaussian with mean vector μ j k  and covariance matrix U j k  

for the Ath mixture component in state j is used as N.  The mixture gains c j k  to satisfy 

the stochastic constraint: 

1

1,
M

jk

k

c


                 (1 ≤ j ≤ N)                             (44) 

c j k  ≤ 0, 1 ≤ j ≤ N, 1 ≤ k ≤ M ,                    (45)                                     
  

so that the pdf is properly normalized, i.e.: 

( ) ) 1,jb O d





                 (1 ≤ j ≤ N).                     (46)                                               

It can be shown that the reestimation formulas for the coefficients of the mixture 

density are of the form: 
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,                   (49)                                                           

where prime denotes vector transpose, and where γt(j,k) is the probability of being in 

state j  at time t  with the kth mixture component accounting for O t ,  i.e.: 

 

1 1

( , , )( ) ( )
( , )

( ) ( ) ( , , )

jk t jk jkt t
t N M

t t jm t jm jm

j m

c O Uj j
j k

j j c O U

 


  
 

   
   
   
        
 

.                      (50)                                                          

 

2.4.2. The Dynamic Time Warping Method 

The DTW classifier is assigned to the group of methods for comparison of 

samples, and uses dynamic programming – i.e., it compares samples, minimizing the 

distance between them (117). 

 Suppose you have a standard A = {a1, a2 ...aR} and the unknown sample T ={t1, 

t2 ...tZ }, where ai is the i-th vector of the standard features and tj the j-th vector of the 

unknown sample. In terms of the geometric interpretation, the indexes of the standard 

and sample vectors are arranged in order to form a grid, the size of which is R x Z. 

Each grid point (i, j) defines the distance d (i, j) between the i-th standard vector and 

the j-th vector of the unknown sample (in our case, Euclidean distance is used). Using 

the grid formed, we can find the warping trajectory W = {w1, w2 …wK }, where wk = 

(ik, jk), and maximum (R, Z) ≤ K ≤ R + Z -1. In order to find the optimal warping 

trajectory (the DTW distance between the samples is examined), the DTW algorithm 

solves the task of minimizing by determining the trajectory that minimizes the 

distance between the considered samples (97): 
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𝑑𝐷𝑇𝑊(𝐴, 𝑇) = 𝑚𝑖𝑛
1

𝐾
∑ 𝑤𝑘

𝐾
𝑘=1 .                              (51) 

By increasing the number of samples examined, the number of possible 

trajectories exponentially increases. Dynamic programming finds an optimal 

trajectory, summing up the distance between the samples examined and the minimum 

distance of the trajectory starting at the point (1,1) and ending at (i, j): 

 

𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + 𝑚𝑖𝑛 {

𝐷(𝑖 − 1, 𝑗 − 1)
𝐷(𝑖 − 1, 𝑗)
𝐷(𝑖, 𝑗 − 1

,                        (52) 

 
where D(i, j) represents the total distance calculated for the trajectory starting at point 

(1,1) and ending at (i, j), and d (i, j) is the distance between the i-th and the j-th vectors 

of the samples examined. The number of possible trajectories is large, so a warping 

trajectory has some key limitations (98): 
1. Monotony and consistency. Trajectory points must be monotonic, as 

transitions are possible only to the next points: 

 

0 ≤ ik – ik -1 ≤1,  0 ≤ jk – jk -1 ≤1.                           (53) 
 

2. Restrictions of the ends. The beginning and the end of a warping trajectory 

are indicated. In the simplest case, the starting point is (1,1) and end (R, Z) – i.e., the 

trajectory begins at the first grid point and ends at the last. 
 3. Local restriction of the direction. The search number of warping trajectories 

can be limited in determining the number of possible movements in one direction. The 

work uses local restriction of the Itakura direction (Fig. 2.8), where P is the sequence 

of possible transitions described with coordinates P→( p1,q1)( p2 ,q2 ) . . .( pR ,qR ). 

 

 

Figure 2.8. Local restriction of the Itakura direction, P1→(1,0) , P2 →(1,1), P3→(1,2). 

Consecutive transitions are not available 

 

4. Global restriction of the direction. In addition, the search number of wiggle 

trajectories can be limited in defining the search area. Limitations of the left and right 

are expressed as (Fig. 2.9): 
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 1 + (D(i) -1) /Qmax ≤ D( j) ≤1+Qmax (D(i) -1),              (54)                                   

Z +Qmax (D(i) – R) ≤ D( j) ≤ Z + (D(i) – R) /Qmax ,         (55)                              

where Qmax is the maximum coefficient of deflection.  

Often, the restriction of the Itakura parallelogram is used with Qmax = 2, see 

Figure 2.9. 

 

 R = Qmax (Z -1) +1,                                      (56) 

Z = Qmax (R -1) +1.                                      (57) 

 

Figure 2.9. Global restriction of the direction of the Itakura parallelogram, Qmax = 2 

 

The complexity of the algorithm in the DTW recognition system is O(R2), (N = 

2R, where N is the number of all vectors). The error of the DTW classification can be 

found by dividing the number of samples which are tested and incorrectly classified, 

E, by the number of total test samples, Z:  

𝐷𝑇𝑊𝐾𝐿 =
𝐸

𝑍
 .                                           (58) 

2.4.3. The method of artificial neural networks 

 The neuron model consists of a number of inputs that are summed by 

multiplying them by certain coefficients, called weights, and are directed to the 

activation function (118, 119). The neuron model is expressed by the following 

formula:  

𝑦 = 𝑓(ℎ) = (∑ 𝑤𝑑𝑥𝑑 + 𝑤0

𝐷

𝑑=1

) 

  (59) 
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where y represents the neuron output value, xd the elements of the input vector, wd the 

elements of the weight vector, w0 the neuron threshold, and f(.) the activation function. 

A zero input of x0 was introduced which is usually constant – i.e., x0 =1 – and which 

uses such activation functions as a threshold, sigmoid, and hyperbolic tangent. 

 The simplest neural network is the perceptron, which is composed of a single 

layer of K neurons connected to the D input. Each perceptron output yk is determined 

by the input x1, x2 ... xD function, which is calculated using the following formula: 

𝑦𝑘 = 𝑓(ℎ𝑘) = 𝑓 (∑ 𝑤𝑘𝑑𝑥𝑑

𝐷

𝑑=0

) , 1 ≤ 𝑘 ≤ 𝐾. 

(60) 
In the perceptron learning process, weights are changed in a manner such that 

the network output vector would be as close as possible to the vector of desired values 

t1, t2  ... tK . The error function is expressed by the formula: 

𝐸𝐹 =
1

2
∑(𝑡𝑘 − 𝑦𝑘)2

𝐾

𝑘=1

 

(61) 

The simplest method for perceptron teaching is the delta rule, which aims to 

minimize perceptron output error: another amendment is performed after each weight 

correction iteration, which is proportional to a derivative of the loss function 

according to all of the weight vector components (120): 

wkd (t +1) = wkd (t) + Δwkd (t),                               (62) 

 

Δwkd (t) =η(tk – yk )xd ,                                      (63) 

where η is the learning speed parameter, using which the perceptron learning speed is 

regulated. The classification error can be found dividing the number of vectors which 

are tested and incorrectly classified, E, by the number of vectors tested, Z: 

𝑇𝐾𝐾𝐿 =
𝐸

𝑍
 .                                           (64) 

 

2.5. Hybrid approach technologies 

The term hybrid approach could be understood to mean the incorporation of 

several different recognition algorithms or methods. The basic assumption underlying 

the hybrid approach is that different recognition methods are able to extract and 

process different kinds of information present in the acoustic signal, and if they were 

used together this could lead to an overall increase in the accuracy and robustness of 

recognition. It should be noted that in many current state-of-the-art speech recognition 

systems, hybrid recognition principles are implemented one way or another. For 

example, some speech recognizers work using features of MFCC, while others work 
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in parallel using features of PLP, and several HMM-based recognizers are used with 

different training and most likely acoustic state search strategies implemented (121).  

In the case of Lithuanian voice command recognition, the hybrid approach is also 

important because it may potentially enable the use of foreign-language-trained 

speech recognition engines, adapted to recognize Lithuanian commands with the 

proprietary Lithuanian speech recognizer. Foreign language recognizers should allow 

for the exploitation of large amounts of acoustic data used to train these recognizers 

(for economic reasons, there is not and probably never will be such an amount of 

Lithuanian acoustic data as would be required to train speech recognizers, and as 

exists for such languages as English or Spanish). Earlier experiences with the 

adaptation of foreign language speech engines to recognize modeling of Lithuanian 

has shown that it is possible to achieve very high recognition accuracy for many 

Lithuanian voice commands using only the appropriate selection of their phonetic 

transcription (88). Such an approach enables us to make the development of limited 

vocabulary applications easier and more economically viable.  

However, it has become clear that not all of the voice commands that are 

necessary for some successful voice-based services can be recognized equally well 

using an adapted recognition engine. Whilst a proprietary Lithuanian speech 

recognizer may potentially better deal with some acoustic situations that are not 

present in other languages, it is necessary to develop specific acoustical models. It is 

also necessary to use a proprietary recognizer to recognize problematic voice 

commands well enough. The need to combine the results provided by two different 

recognizers requires the implementation of the hybrid approach. 

The problem of how to combine different recognizers still remains largely 

unsolved, and requires further research. Various methods have been proposed to 

combine recognition results obtained from different sources. The most popular 

method is the method called heteroscedastic discriminant analysis (122). However, 

before finding the most efficient ways to combine the hypotheses produced by various 

recognizers, a number of other questions should first be resolved. Among those 

problems, some issues remain, such as: the possibility of attaining complementary 

information from different speech recognizers; defining when and in which contexts 

foreign language recognizers could be used, and when it is necessary to use purely 

Lithuanian acoustic models; and finding the limits and possibilities of adapting 

foreign language speech engines to recognize Lithuanian voice commands (123). 

 

2.5.1. The connection of recognition methods  

In order to eliminate the weaknesses of ANNs and HMMs in solving problems 

of speech recognition, some scientists began to integrate them into continuous hybrid 

architecture. The main goal of hybrid systems was to use the positive features of 

HMMs and ANNs to increase the reliability and flexibility of speech recognition 

systems. Many different architectures and new training algorithms were proposed, 

(75, 124) and in this section we will briefly review the main trends in the application 

of these hybrid systems. 

One example of the use of hybrid systems is the use of more efficient training 

algorithms with discrimination characteristics in evaluating the probabilities of HMM 



61 

states (125, 126). Using the vectors of acoustic observations, the neural network is 

trained so that its outputs perform the probability evaluation of nonparametric 

continuous HMM state transitions. The essence of this method is the idea that, instead 

of the standard Viterbi algorithm, the error spreading back algorithm is used, which 

is characterized by stronger discriminatory properties and, therefore, allows us to 

improve the accuracy of the recognition system. 

Neural networks are used in discrete HMMs as the vector quantization 

algorithm. Instead of the standard clustering algorithms, self-organizing neural 

networks can use the much wider and more varied range of means, and thus carry out 

more efficient quantization of vectors. Examples of such hybrid systems can be found 

in a number of papers (127, 128). 

Another area for the use of hybrid systems is the general optimization of the 

recognition system. Generally, both ANNs and HMMs are trained separately, 

although there are works (129) in which training is carried out in parallel for both 

technologies simultaneously. In these works, ANNs are used for transforming the 

vector of acoustic features to more efficient vectors of observations in order to 

optimize the parameters of the hybrid system models. 

There have been attempts to use hybrid ANN/HMM systems in the recognition 

of the Lithuanian language. Filipovičius (75) analyzed the application of the hybrid 

speech recognition method in the recognition of separately pronounced Lithuanian 

language words, taking into account the acoustic properties of the Lithuanian 

language. The recognition system for separately pronounced Lithuanian language 

words was modeled and tested in his research, and a comparison of the efficiency of 

this system with the efficiency of a HMM system was carried out. Although the 

recognition accuracy of both systems was very similar (90.5% for HMM, 90.7% for 

hybrid), the hybrid system used significantly fewer parameters in order to achieve this 

result. 

 

2.5.2. The connection of several recognizers 

The method of combining multiple speech recognizers by using voting and 

language model information with ROVER seeks to reduce WERs for ASR by 

exploiting differences in the nature of the errors made by multiple speech recognizers 

(130). Rover proceeds in two stages: first, the outputs of several speech recognizers 

are aligned and a single word transcription network (WTN) is built. The second stage 

consists of selecting the best scoring word (with the highest number of votes) at each 

node. The decision can also incorporate word confidence scores if these are available 

for all systems.  

An example of the connection of several recognizers is presented the work of 

Rasymas and Rudžionis (131). Attempts were made to adapt several foreign-language 

(English, Russian, and two German) speech recognizers for the recognition of a 

limited Lithuanian vocabulary, and to evaluate some (k-nearest neighbors, linear 

discriminant analysis, quadratic discriminant analysis, logistic regression, and 

maximum likelihood) methods used for the combination of different speech 

recognizers. One native (Lithuanian) recognizer was also used. 

The method to combine recognizers was performed as follows:  
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 the voice command was passed to all speech recognizers in parallel; 

 each recognizer then produced an output; 

 the output of the recognizers formed the hypothesis, i.e., the score of how well the 

audio signal matched the acoustic model; 

 this hypothesis score was then passed to a classification algorithm, which made the 

final decision (131). 

Rasymas and Rudžionis used a speech corpus of 25 drug names and 25 disease 

names, gathered by recording the speech of 12 people (5 females and 7 males). Each 

of these speakers pronounced each command name 20 times at a sampling rate of 16 

kHz in a single session. It should be noted that the corpus used in these experiments 

was part of the larger Lithuanian speech corpus of medical terms. The selection of this 

particular set of voice commands was based on the fact that 25 commands were those 

voice commands which resulted in the highest number of recognition errors using a 

proprietary Lithuanian speech recognizer, while the additional 25 commands were 

selected randomly. 

The results of this study showed that the highest accuracy was obtained when 

the k-nearest neighbors method was used with 15 nearest neighbors. In this case, 

98.16% accuracy was achieved (131). 

In another paper by the same authors (132), the CART classifier was used for 

the combination of speech recognizers. Using this classifier, a 97.58% average 

recognition accuracy was obtained. Comparing the results of this experiment with 

those discussed earlier, (132) it is evident that using the CART classifier produced 

results that were 0.58% less accurate than those produced using the 15-nearest-

neighbor classifier. 

The same authors again conducted another similar experiment for creating a 

hybrid speech recognition system using recognizers from four foreign languages: 

recent Google recognizers in Russian, English, and two in German were used, 

alongside one for the Lithuanian language (133). A main speech corpus containing 10 

names of digits was used. The corpus was gathered by recording the speech of random 

people, and every digit name was pronounced 1,790 times. In total, 1,000 recordings 

were used for training classifiers, and 790 recordings were used for testing. Some 

recordings were not recognized by any recognizer, in which case these recordings 

were omitted from further training and testing (133).  

The highest result of 97.51% accuracy was acquired when all foreign language 

recognizers and the Naïve Bayes classifier was used. The result achieved by using all 

five recognizers alone was 96.69% (133). 

 

2.6. Speech corpus 

One of the most important elements in a voice recognition system is a well-

crafted speech database, or speech corpus. In order to collect a proper speech corpus, 

a number of resources are required. The biggest problem in this regard is one of human 

resources – speakers. In order to have a speech corpus that is versatile, a large number 

of recordings is required from different speakers, and one that is composed of 

individuals of different sexes, with different dialects, from different regions, etc. 
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2.6.1. Corpus development trends 

The first known speech corpus system – TI-DIGITS – was created in the United 

States in 1984, and involved isolated digit names and sequences collected by Texas 

Instruments (134). 

Since that time, a lot of speech corpora have been created, and have come to be 

distinguished by their size, function, and the detail of their annotation. The needs of 

telephony have encouraged the development of speech corpora containing sequences 

of digits or commands. Along with creating mobile-user speech corpora in different 

environments – quiet work offices, standing, moving vehicle environments, etc. – 

specialized speech corpora have also been collected, where speakers follow texts from 

radio and television broadcasting. 

Some speech corpora occupy a lot of storage space, especially those that are 

specialized for the study of certain peculiarities of speech: generic speech and dialects; 

men, women, children; free talk and reading; individual words, teams, and coherent 

text. A universal speech corpus is intended to reveal any general characteristics of 

speech. Speech corpora can be composed of annotated sentences, words, syllables, 

and sounds. 

Some key trends in the development of speech corpora can be noted:  

1) applied purpose speech corpora are steadily increasing in number, as their 

creation is financed by large telephone companies, the automobile industry, and the 

combined forces of science and business;  

2) there is a growing number of national corpora, documenting language as a 

monument to a nation’s social and cultural environment;  

3) speech corpora are increasingly becoming more well-annotated, and designed 

for detailed scientific research work.  

The robustness of a recognition system is heavily influenced by its ability to 

handle the presence of background noise. A first attempt to compare the performance 

of different algorithms was made using the Noisex-92 database (135). This consists 

of recordings from one male and one female speaker – from a vocabulary of English 

digits – that have been distorted by artificially adding background noise at different 

signal-to-noise ratios (SNRs) and in different noise conditions. A database suitable to 

obtain comparable recognition results for the speaker-independent recognition of 

connected words in the presence of additive background noise and for the combination 

of additive and convolutional distortion has been developed by Pearce and Hirsch 

(136). In their work, a selection of eight different real-world noises were added to 

speech over a range of signal to noise ratios. The noise signals were added to the clean 

TIDigits database (137) at SNRs of 20, 15, 10, 5, 0, and −5 dB. Noises were recorded 

in different places: a suburban train; a crowd of people; a car; an exhibition hall; a 

restaurant; a street; an airport; and in a train station. The average degradation of word 

accuracy was more than 25% when SNR was changed from 5 to 0 dB (136) during 

testing using an HTK-based recognizer.  
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2.6.2. The development of a speech corpus in Lithuania 

For the decades that Lithuania has been involved in research on speech 

recognition, researchers have mostly used databases of audio recordings to solve 

small, specific tasks. Most language technology researchers in Lithuania carry out 

their works at Kaunas University of Technology, the Institute of Mathematics and 

Informatics of Vilnius University, and at the Vytautas Magnus University. 

At the Kaunas University of Technology’s Language Research Laboratory, 

ASR research has been carried out since 1980, and the laboratory has developed a 

command sequence and digital speech corpus. In creating Lithuanian computer 

dialogues, the University has accumulated and improved the Lithuanian spoken 

language corpus LTDIGITS (138) to such an extent that it is comparable to the USA 

TI-DIGITS corpus (139). 

Vilnius University’s Institute of Mathematics and Informatics has accumulated 

a Lithuanian news radio corpus – LRNO. The institute, along with partners, is creating 

a program of voice managed services (for example: a Lithuanian language neologisms 

pronouncer, browser, and controller, that allows online information search and the 

management of some computer tasks by voice) in accordance with the Lithuanian 

language information society program for 2009–2013. The institute is also improving 

the technologies and tools of the spoken language, including by developing a text 

reader, a command and phrase recognition engine, and a Lithuanian speech 

recognition engine. 

Vytautas Magnus University has accumulated a universal spoken Lithuanian 

language speech corpus, and research is ongoing into spoken Lithuanian language 

autodivision. Automatic spoken transcription of the Lithuanian language is also being 

created, involving a smaller special corpus collected for language learning – for 

example, the SACODEYL young people spoken language corpus (140). 

 

2.6.3. Annotation of speech corpora 

The transcription of speech recordings at phone-level is a fundamental task in 

phonetics and speech technology research. The identification of phone segments in 

speech material is the starting point for many studies. Typically, this is done manually, 

but an accurate fully-manual approach may require as much as an 800-fold increase 

in real time – i.e., up to 13 hours for a one-minute recording (141). This processing 

time is a major drawback for manual labeling, especially when faced with a very large 

spontaneous speech corpus.  

As was mentioned above, low-resource languages typically have a low presence 

on the internet, with limited textual resources in electronic form and little available 

knowledge regarding the language (142). The Lithuanian language sits among other 

low-resource languages because there is no annotated and transcribed acoustic 

training data for it: the collection, transcription, and annotation of speech data are 

typically expensive and time-consuming tasks (142). The key results of one paper 

which presents a review on ASR for under-resourced languages (143), show that some 

European languages are still considered under-resourced (for speech processing, the 
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following languages are mentioned: Croatian, Icelandic, Latvian, Lithuanian, Maltese, 

and Romanian).  

 

2.7. The specific properties of Lithuanian phonetics  

The main specific properties of phonetics are as follows: a rich set of phonemes, 

including diphthongs, dialect diphthongs, and affricates; the features of the phonemes, 

including the length of vowels, the softness of consonants, and assimilation; and a 

complex accentuation system. We will review each of these in detail below. 

 

2.7.1. The issue of phonemic set  

Typically, the basis of acoustic modeling units in speech recognition systems is 

a set of speech phonemes. Later, specific algorithms based on data can automatically 

create models of contextual phonemes from simple models of phonemes. The set of 

phonemes in the Lithuanian language is significantly larger than that of the English 

language, and even linguists themselves disagree on a defined set of phonemes. Some 

distinguish special phonemes – affricates – whilst others disagree, arguing that an 

affricate is only a combination of two other phonemes. Disputes also arise as to 

whether mixed dialect diphthongs should be modeled as separate phonemes. 

Therefore, research into recognition techniques for Lithuanian speech does not have 

an agreed upon standard of how to select an initial set of phonemes for acoustic 

modeling, and instead often uses different sets of phonemes. This raises a number of 

problems, namely: the failure to reuse trained acoustic models; and the difficulty of 

comparison between the results of experiments carried out independently because it 

is unclear to what extent each was influenced by the set of phonemes used, how many 

signs were selected, and how many detection methods were used.  

Phonemes in Lithuanian language phonetics have the following specific 

characteristics:  

1) specific phonemes are distinguished, i.e., diphthongs and mixed dialect 

diphthongs;  

2) the vowel can be long or short; 

3) each consonant may be hard or soft depending on the vowel following it;  

4) consonants become similar (assimilate) in the junction with other 

consonants. 

The Lithuanian language has many dialect diphthongs in which the two 

phonemes are closely related, and linguists offer to model this how they would a single 

phoneme. The two main classes of dialect diphthongs are: 1) diphthongs, which 

consist of two vowels – ai, au, ei, eu, ie, uo; 2) and mixed dialect diphthongs, which 

consist of combinations between the vowels a, e, i, and u, and the consonants called 

semivowels – 1, m, n, and r. Dialect diphthongs are pronounced as a single unit, and 

are quite different from other pairs of phonemes which do not form dialect diphthongs. 

Another reason why it is suggested to model dialect diphthongs as one phoneme is 

that dialect diphthongs can be stressed, and stress can be short, with a strong start, or 

with a strong end. In the latter case, the stress falls on the consonant, which is a part 

of the dialect diphthong, and individual consonants cannot be stressed. 
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Lithuanian language vowels can be either long or short. The longitude of 

Lithuanian vowels is defined by the following rules: 

if the vowel is accented by right or curly stress, then it is long; 

if the vowel is accented by left stress, then it is short; 

if the vowel is unstressed, then it is short; 

all long and nasal vowels – ą, ę, į, ų, y, ū – are long; 

the vowel ė is always long. 

Consonants in the Lithuanian language are hard or soft, depending on the 

context. The softness of consonants in the Lithuanian language can be described by 

the following rules: 

- if, after the consonant, there is the vowel a, ė, or o, then the consonant is hard.  

- if, after the consonant, there is the vowel e, i, u, or a sign of softness, then the 

consonant becomes softer;  

- if, after the consonant, there is a soft consonant, the consonant become softer –

softness is a transitive property, which is transmitted in reverse; 

- the consonant j is always soft. 

In the phonetics of the Lithuanian language, coarticulation effects are possible, 

the most common of which are: 

 The homogenization (assimilation) of two consonants, for example, atbėgti, 

užsiūti. 

 The connection of two similar consonants at the junction into a single – for 

example, iššokti, užsakyti. 

 The softness or hardness of a consonant is dependent the on vowels that follow 

it – for example, kamana, kaimenė. 

 

2.7.2. The complex system of accentuation 

The Lithuanian language has a specific accentuation system. An accented 

syllable can have an accent of rising frequency called a circumflex, or an accent of 

falling frequency called an acute. The accent of rising frequency can be either short 

or long. Therefore, in the Lithuanian language, three versions of accent are available 

overall. It should also be noted that the accent of changeable parts of speech can jump 

from one syllable to another and change the type of accent, depending on the 

changeable form. For the changeable parts of the language, some stress paradigms are 

distinguished that specify the rules on how the stress changes depending on the 

changeable form. The stress may be the only feature allowing us to distinguish two 

different words, for example, šáuk (šauti – infinitive) and šaũk (šaukti – imperative). 

Therefore, it is necessary to model the stress, and to include it in the sets of phonemes 

and dictionaries for the pronunciation of recognizable words. Since the stress can 

change the forms of words, a tool for automated stressing which could be integrated 

into the speech recognition system is necessary. 

 

2.7.3. Design of Lithuanian SAMPA 

SAMPA (Speech Assessment Methods Phonetic Alphabet) is a machine-

readable phonetic alphabet (144). SAMPA essentially consists of a mapping of the 
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symbols of the International Phonetic Alphabet (IPA) onto ASCII codes in the range 

33–127, the 7-bit printable ASCII characters. Associated with the coding (mapping) 

are guidelines for the transcription of the languages to which SAMPA has been 

applied.  

Lithuanian SAMPA must meet the following requirements (145): 

Phonetic resolution. Phonetic resolution refers to the ability of SAMPA to 

distinguish between and assign different codes to the allophones of the same phoneme. 

The greater the phonetic resolution of an alphabet, the greater the coverage of 

SAMPA’s potential applicability. 

Standard Lithuanian has a few phonological features that are responsible for the 

vast majority of the allophonic variations of Lithuanian phonemes: 

-  Lithuanian consonants may be palatalized or non-palatalized; 

-  Lithuanian vowels may be short or long; 

-  Lithuanian syllables may be stressed in several different ways. 

Traditional phonetic transcription of Lithuanian uses three diacritic marks for 

modeling syllable accentuation: grave (`), acute (´), and circumflex (˜). Grave and 

acute diacritic marks are used for indicating a sharply falling accent. The grave mark 

is traditionally placed over a short-stressed vowel and over the first element of a semi 

diphthong if it represents one of the short vowels. A circumflex diacritic mark 

indicates a smoothly rising accent. 

Readability. Readability refers to how naturally and easily SAMPA-based 

transcriptions can be read by humans. Readability is very important, as phonetic 

transcriptions of speech corpora are manually verified and corrected by humans 

during the iterative corpus validation stages. For best readability, SAMPA codes must 

be kept similar to the symbols used by the traditional Lithuanian spelling. 

Traditional Lithuanian spelling is based on the set of 32 symbols that includes 

9 diacritic symbols: a, ą, b, c, č d, e, ę, ė, f, g, h, i, į, k, l, m, n, o, p, r, s, š, t, u, ū, ų, v, 

z, and ž. Thus, SAMPA must define ASCII codes for substituting diacritic symbols. 

Secondly, Lithuanian orthography is essentially morphphonological – i.e., 

standardized spelling reflects essential phonological changes but tolerates 

phonological inaccuracies as well. There are some Lithuanian sounds represented by 

digraphs – i.e., uo, ch, dz, and dž.  

 

2.8. Speech recognition over the telephone 

Using telephony applications, a user can check their bank balance via telephone 

or receive an automated call from their doctor’s office reminding them of their next 

appointment (146). Speech Server provides tools for developing applications that run 

over the telephone, or telephony applications. Speech Server applications can possess 

the following capabilities: 

 Speech recognition allows users to respond to application prompts; 

 Touch-tone capabilities, called dual-tone multi-frequency (DTMF), let users 

respond to application prompts via the telephone keypad; 

 Text-to-speech (TTS) capabilities allow applications to read and speak written text 

to users; 
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 Speech servers, such as MSS or IBM WebSphere Voice Server, provide ASR and 

TTS resources which are the basis of the speech interface. A special program 

placed in the server runs the dialog between human and computer (147).  

There is quite a large variety of voice telecommunication systems, but, as they 

are already well established, they can be broadly distributed into two groups:  

 Interactive voice response (IVR);  

 Spoken language interface (SLI).  

The IVR system query is performed with the help of the input of dual-tone multi-

frequency (DTMF) tones via keypad, while the response is presented by playing pre-

recorded phrases or by synthesizer (148). 

MSS is an IVR system, integrated with Visual Studio 2005. One of the features 

of MSS’2007 is VoIP support. VoIP essentially allows users to place and receive 

queries over the Internet. Speech servers can accept VoIP queries without any 

additional software or hardware. An effective dialogue is the key component to a 

successful interaction between a voice-only application and a user. A voice-only 

application interacts with the user entirely without visual cues. The dialogue flow 

must be intuitive and natural enough to simulate two humans conversing. It must also 

provide the user with enough context and supporting information to understand the 

next action step at any point in the application. 

Speech servers integrate a whole set of computer interaction means: voice, 

computer, telephony, internet, and databases. It has been noted that, for example, 

MSS’2007 is the basis for thousands of different demo applications. These 

applications have very high efficiency (as the cost of service and transaction time is 

reduced in orders) (149). 

The typical structure of voice dialogue implemented in MSS’2007 involves a 

main or initial prompt that is played on entry, plus a number of other supporting 

prompts that either restate the question or directive in a contextually appropriate way, 

or offer help as the user traverses the state (Fig. 2.10).  

Successful recognitions proceed to the next state. A give-up or failure can either 

send the user back to some predetermined state in the system to try another approach, 

or the system may offer to connect the user to a live operator (149).  

One more feature of MSS’2007 is how it allows barge-ins. This means that users 

can provide their input before the prompt has finished speaking. Experienced users 

will be able to get to the part of the application that they need more quickly, whereas 

new users will find it helpful to say the selection they want as they hear it. By allowing 

barge-ins, users will complete their calls more quickly, saving them time and saving 

the operator resources – as shorter call times mean fewer resources required (149). 
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Figure 2.10. Typical structure of voice dialogue in MSS’2007 

 

It is common in industries that have recently entered the telecommunications 

industry to refer to an automated attendant as an IVR. The terms, however, are distinct, 

and mean different things to traditional telecommunications professionals. Emerging 

telephony and VoIP professionals often use the term IVR as a catch-all to signify any 

kind of telephony menu, even a basic automated attendant; the term voice response 

unit (VRU) is sometimes used as well. MSS’2004 only supported the markup 

language of language applications (speech application language tags – SALT), 

whereas the new version supports three types of projects: 

 SALT W3C standard language for Web and telephony; 

 VoiceXML: VoiceXML and SALT describes the integration of internet, 

telephone, and language technology; 

 Voice Response Workflow: unlike SALT and VoiceXML, this allows for the 

visualization of the progress of queries of applications. 

It also includes a number of new tools: 

 International Grammar Builder and Grammar Design Advisor: the 

Conversational Grammar Builder allows for the quick and easy creation of 

grammar in natural conversation. You can choose to build grammar in 

Grammar XML (GRXML) or the Visual Studio Editor Grammar. The 

Grammar Design Advisor also provides warnings about possible incorrect 

grammar;  

 Lexicon Editor: Allows for adding or changing the pronunciation of words 

(over Conversational Grammar Builder); 
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 Pronunciation Editor: Allows for adding or changing the pronunciation of 

grammar (applies only to the Grammar Editor);  

 Analysis and tuning;  

 Business Intelligence Tools. 

Speech server has two main components: Speech Engine Services, and 

ASP.NET. Speech Engine Services (SES) has two components: the Speech 

Recognizer engine, and the Speech Synthesis Engine (6).  

The speech recognition engine’s semantic markup language (SML) creates an 

XML document, and this document contains words or phrases which are recognized 

by the voice recognition engine. There is also a numerical value that indicates the 

degree of reliability of the user-pronounced word or phrase, as defined in the 

program’s grammar.  

MSS’2007 is an American (US) product, but it can be used to create applications 

for other languages. MSS’2007 fully supports the English (United Kingdom), English 

(United States), French (Canada), German (Germany), and Spanish (United States) 

languages. Unlike the 2004 version, MSS’2007 uses a UPS (Universal Phone Set) 

transcription system (150). 

 

 
Figure 2.11. MSS’s interaction with servers and Visual Studio. 

 

2.9. Chapter summary 

1. The analysis of the literature shows that the most widely applied method for the 

recognition of isolated word commands is the HMM. For the recognition of 
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isolated commands, HMMs that are based on words, phonemes, or contextual 

phonemes are applied. The energy of the signal and cepstral coefficients of the 

Mel scale and their first and second order derivatives are generally used as the 

recognition features. The length of the feature vector is 39. DNNs have an 

advantage over HMMs, but additional resources are required – financing, in 

particular – for their use in Lithuania.  

2. The basic idea behind the hybrid approach is that different recognition methods 

are able to extract and process different kinds of information present in the 

acoustic signal, and their joint use could lead to an overall increase in 

recognition accuracy and robustness. Filipovičius (75) used the hybrid 

recognition system based on the combination of the ANN and HMM methods, 

but the accuracy in recognition of both systems was very similar (HMM – 

90.5%, and hybrid – 90.7%). Rasymas and Rudžionis (131) obtained better 

results by connecting five parallel acting recognizers, (with a recognition 

accuracy of 98.16%), but, in this case, the structure of the recognition system 

became more complex.  

3. One of the most important elements of a voice recognition system is a well-

crafted speech database, or speech corpus. In order to collect a proper speech 

corpus, a number of resources are required. The biggest problem in this regard 

is one of human resources (speakers). In the absence of a speech corpus 

annotated at the phonemic level, a word-based HMM should be applied for the 

recognition of isolated commands, because the straightforward segmentation of 

a speech corpus at the word level is more suitable for HMMs. The set of 

phonemes in the Lithuanian language is significantly higher than in the English 

language. Therefore, research into recognition techniques for Lithuanian speech 

does not have a generally agreed-upon basis for how to select an initial set of 

phonemes for acoustic modeling, and instead uses different sets of phonemes. 

4. Speech servers integrate a whole suite of means of computer interaction, 

including: voice, computer, telephony, internet, and databases. MSS’2007 is an 

IVR system, providing tools for developing applications that run over the 

telephone, or telephony applications. 

5. For the recognition of codes, speech corpora should be collected that consist of 

Lithuanian digits names and Lithuanian names.  

6. A very high digit-recognition accuracy is required to ensure the sufficient 

recognition accuracy of a sequence of digits. In 2015, Google announced a 

speech recognizer for the Lithuanian language, but two experiments with this 

recognizer showed that it does not provide a high recognition accuracy for 

Lithuanian digits names or words. Therefore, new methods of recognition for 

Lithuanian digits names should be created that allow for the attainment of a 

recognition accuracy for digits of above 99%. 
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3. RESEARCH TECHNIQUE AND INSTRUMENTS 

3.1. International Classification of Diseases 

The International Classification of Diseases (ICD) is the international standard 

diagnostic tool for health management, epidemiology, and clinical purposes (151). 

This system is designed as a suite of categories to permit the systematic recording, 

analysis, comparison, and interpretation of morbidity and mortality data collected 

internationally. The ICD is a major project that aims to statistically classify diagnoses 

of diseases, symptoms, complaints, and other health disorders from their medical 

names into an alphanumeric code which permits the retrieval, analysis, and easy 

storage of data. 

The basic ICD is a single-coded list of three-character categories, each of which 

can be further divided into up to 10 four-character subcategories. In place of the purely 

numerical coding system of previous revisions, the Tenth Revision (ICD-10) uses an 

alphanumeric code with a letter in the first position and a number in the second, third, 

and fourth positions. The fourth character follows a decimal point. Possible code 

numbers therefore range from A00.0 to Z99.9 (151). As an example, A69.21 

represents the code for Meningitis due to Lyme disease.  

 

3.2. The use of an adapted language recognizer for Lithuanian voice commands  

Adapted language (multilingual) voice recognition is based on a particular 

language (usually a more commonly used one) which has pre-developed models of 

acoustic phonetic units in the system, thus making it available to use for the 

recognition of another language (usually a less commonly used one) (152). 

Using an adapted language model for Lithuanian language recognition can be 

divided into two tasks: first, establishing principles, such as transcribing target text 

and ensuring that it will be acceptable to the chosen adapted language recognition 

program; secondly, accumulating the resources (speech corpus) and software tools 

necessary in order to secure Lithuanian language recognition research and 

development (153). 

Non-Lithuanian language recognizers (e.g., German, English, Spanish) should 

be compatible with phonetic symbols (e.g., UPS, IPA), by which the same word might 

be written in several different forms (transcription) that are interpreted equally, 

semantically.  

Transcription can be defined as language elements (sounds, phonemes) or 

objective phonetic notes (recording) “specially” written, using artificial tools or 

others. Alphabets take letters and diacritical marks, such as the Lithuanian word 

recording of another language recognizer’s “understandable” SAPI symbols. Multiple 

transcription occurs when the same voice command recognition system uses several 

word (or phrase) transcriptions that have the same semantic meaning. 

So far, the only voice server application for the Lithuanian language is achieved 

by using foreign language transcriptions for Lithuanian words. A very good 

recognition accuracy for Lithuanian digit names was attained by using the Microsoft 

English (U.S.) v6.1 recognizer (99.8% for a female speaker) (147). This led to the 
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conclusion that using speech server for the recognition of Lithuanian digit names 

would achieve high recognition accuracy results. Unfortunately, the results of 

recognition experiments have shown that IPA transcriptions are not suitable for 

speech server (147). Therefore, UPS type transcriptions should be used for MSS’2007 

speech server (150).  

There are examples of a module that was created for one language being applied 

to another (152). For this purpose, linguistic or acoustic experience is used (153). 

Accurate research into English recognizer applications being used for the recognition 

of Lithuanian last names and Lithuanian digit names are presented in multiple sources 

(83, 154). The use of other language recognition tools for the Lithuanian language is 

based on transcribing Lithuanian words or phrases into another language, for example, 

English. By using IPA transcriptions, the Lithuanian word “nulis” could be 

automatically transcribed into English as “n uh l ih s.” Then, these symbols could be 

recognized by English recognizer. 

MSS’2007 was chosen for preparing telephony services, as it performs speech 

recognition, speech synthesis, and telephony control operations. For creating new 

programs, Microsoft Visual Studio 2005 was used. Voice output can be performed 

from the synthesized text, from processed audio files, or may be derived from the 

synthesized files and pre-prepared mixture audio files. MSS’2007 has four language 

recognizers to choose from: German (Microsoft Speech Recognizer 9.0 for MSS 

(German-Germany)), English (Microsoft Speech Recognizer 9.0 for MSS (English-

US)), French (Microsoft Speech Recognizer 9.0 for MSS (French-Canada)), and 

Spanish (Microsoft Speech Recognizer 9.0 for MSS (Spanish-US)). 

The test for measuring the accuracy of the recognition of voice commands was 

prepared in MSS’2007 (Fig. 3.1): the speech dialog component 

“answerCallActivity1” answers an incoming call; “questionAnswerActivity1” asks 

the question and receives the user’s answer; “gotoActivity1” jumps to another 

component; and “disconnectCallActivity1” disconnects an existing call. Such a 

framework is suitable for testing the recognition of Lithuanian voice commands by a 

selected speech recognizer. The prompt, grammar, and target properties of the 

questionAnswerActivity1 and gotoActivity1 speech dialog components should be 

defined before the testing procedure begins. 

In debugging mode, the testing program presents the recognized word 

transcription along with the confidence measure: the word is considered as recognized 

if the confidence measure is above 0.2. 

 

3.3. Speech corpora used in the studies  

In order to investigate recognition accuracy in relation to voice commands, it is 

first necessary to have a properly prepared speech corpus containing Lithuanian 

number and name voice commands from many speakers. Voice commands were 

dictated and recorded using the “inp_sr16.exe” program in the MS DOS operating 

system environment. 

 The speech corpus for Lithuanian digit names was named SKAIC30. This 

speech corpus was formed of utterances from 30 different speakers – 23 females (F) 

and 7 males (M). Each announcer dictated the Lithuanian digit names from zero to 
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nine 20 times at a sampling rate of 16 kHz, 16-bit, saved in WAV format. Dictation 

was performed in a non-isolated room, and no additional signal processing was 

performed. No artificial noise was added to the signal because the main goal of the 

investigation was to assess the hybrid technology. 

The features of the speech corpus used for the recognition of letters are 

presented in Table 3.1. The LETTERS and NATO speech corpora were used to verify 

the possibilities of letter recognition. The LETTERS speech corpus consists of 

Lithuanian letters pronunciations – for example, the letter “m” is pronounced as “em,” 

and so on. The NATO alphabet is the most widely used spelling alphabet (155). The 

final choice of code words for the letters of the NATO alphabet, and for the digits, 

was made after hundreds of thousands of comprehension tests involving 31 

nationalities. The qualifying feature was the likelihood of a code word being 

understood in the context of others (155). 
 

Table 3.1. Features of speech corpora used for letter recognition  

Speech 

corpus 

Number 

of words 

Number of 

speakers 

Number of 

utterances 

LETTERS 26 2 (1M,1F) 50 

NATO 26 2 (1M,1F) 50 

NAMES1 250 2 (1M,1F) 20 

NAMES2 70 10 (5M,5F) 20 

NAMES3 26 21 (9M,12F) 20 

 

The NAMES1 speech corpus consisted of the utterances of approximately 10 

Lithuanian names for each letter, and was used during the first step of the Lithuanian 

name selection procedure which is described in section 3.4. When the best-recognized 

Lithuanian names were determined, the second speech corpus – NAMES2 – was 

prepared, consisting of 2 to 3 Lithuanian names for each letter. The NAMES3 speech 

corpus consisted of utterances of 22 Lithuanian names and 4 words (kju, Wašington, 

iksas, ygrekas), which represent 26 letters used in disease codes. The NAMES3 

speech corpus consists of voice recordings of 21 speakers – 12 females and 9 males. 

The voice commands of both SKAIC30 and NAMES3 were dictated 20 times 

(utterances). The dictations were performed in a quiet environment, but not in 

professional sound recording studio, and digital recording equipment and a 

professional microphone were used. When dictating, it was very important to 

highlight the beginning and the end of the utterance. 

 In order to ensure the quality of sound material recorded, after the dictation of 

all commands repeated checks were carried out to search for records that were 

mistakenly dictated. Any errors were then corrected: noises were eliminated, and 

vaguely pronounced commands were newly dictated. 

The SKAIC30 speech corpus of Lithuanian digit names consists of 6,000 

different voice records, and the NAMES3 speech corpus of names consists of 10,920 

voice records.  

The INFOBALSAS project ended in 2013. The main goal of the project was to 

develop hybrid voice command recognition technology and implement it in the first 
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practical informative service using the recognition of Lithuanian voice commands. 

The informative service was oriented towards the workplace of the 

physician/pharmacist, and sought to support and hasten the search for information in 

a pharmaceutical data base. In total, 731 voice commands from a medical speech 

corpus (complaints and the names of drugs and diseases) were used in the construction 

of a hybrid recognizer. Each voice command was pronounced by 12 different speakers 

20 times, and there were 175,440 commands overall.  Of the complaints – e.g., “pilvo 

skausmas,” “regėjimo sutirikimai,” “žemas kraujo spaudimas” – 81.73% were 

phrases. Disease names were 72.35% phrases (e.g., “gerklės skausmas,” “padažnėjęs 

širdies plakimas”). The names of drugs – e.g., Betalok ZOK, TerraFlu – were mostly 

one-word names, and of all drug names only 17.97% were phrases. Overall, 52.26% 

of commands were phrases, containing two to five words. The MEDIC speech corpus 

is used as an example to show that this methodology can also be used to recognize 

phrases (88).  

The LIEPA project – Services Controlled by Lithuanian Speech – ended in 

August 2015, and produced the LIEPA speech corpus. The LIEPA Lithuanian Speech 

corpus is a phonetically representative database of Lithuanian spoken words adapted 

for scientific research, the development of speech technology, and the provision of 

electronic services.   

The LIEPA corpus consists of two parts: Part 1 – a part of the speech corpus 

designed for speech recognition purposes; and Part 2 – a part of the speech corpus 

designed for speech synthesis purposes. The speech corpus is composed of 100 hours 

of speech data for Part 1, and 13 hours of speech data for Part 2. The quantity of texts 

for Part 1 is 78, 33 of which cover words and phrases, and 45 of which cover 

continuous speech. Speakers had to read 5–6 texts, and the lists of words and phrases 

mostly involved exact commands required by the speech recognition research group. 

The texts of continuous speech spanned descriptions of UNESCO objects, protected 

animals, and food. There were 376 speakers for Part 1: 116 speakers from schools and 

260 from the main site (university students and invited speakers). Of these, 248 were 

female and 128 male. Four speakers were selected for Part 2 (156).   

The basic phoneme set included 92 phonemes: long and short vowels, soft and 

hard consonants, diphthongs (vowel-vowel), and affricates with accent information 

later obtained. This phoneme set reflects the main attributes of the Lithuanian 

language and includes accent information, which is rarely obtained without a tool 

specific to the language. 

The part of the LIEPA speech corpus selected for the investigation of isolated 

commands contains ten digits names from 0 to 9 uttered by 50 speakers (41 women, 

9 men). The exclusive feature of this corpus is that it contains only one utterance of 

each digit by each speaker.  

Another part of the LIEPA speech corpus used for phrase recognition was 

selected from Part 1. This part of the corpus consists of 10 separate sets, marked: 

Z000, Z001, Z020, Z021, Z022, Z023, Z024, Z060, Z061, and Z062. The Z060 part 

of the corpus was selected for testing because it contains many speakers, and more 

than one third of the corpus is composed of phrases. It contains 143 speakers (108 
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women, 35 men) and 26 commands (18 phrases and 8 isolated words). The individual 

specifications of all 10 parts are presented in Table 3.2. 

 

Table 3.2. Speech corpus LIEPA Part 1 specifications 

Corpus part no. Speakers Isolated commands Phrases Overall commands 

Z000 138 56 0 56 

Z001 146 30 0 30 

Z020 142 16 15 31 

Z021 32 21 46 67 

Z022 32 13 48 61 

Z023 32 9 37 46 

Z024 32 9 38 47 

Z060 143 8 18 26 

Z061 30 16 3 19 

Z062 29 280 1 281 

 

For the evaluation of the hybrid approach to connecting recognizers in real 

conditions, we chose a simpler method: adding white noise at an SNR of 5 dB to the 

NAMES3 speech corpus, and using this noisy corpus in the experiment connecting 

two recognizers. The freely distributed Sound eXchange (SoX) program was used for 

adding noise to the speech corpus. 

SoX is a cross-platform (Windows, Linux, MacOS X, etc.) command line utility 

that can convert various formats of computer audio files into other formats. It can also 

apply various effects to these sound files and, as an added bonus, can play and record 

audio files on most platforms. The synth command can be used to generate fixed or 

swept frequency audio tones with various wave shapes, or to generate wide-band noise 

of various “colors.” An example command line for adding white noise to the audio 

file FOMEALB819.wav follows: 

 

sox.exe E:\Noise\FOMEALB819.wav noise.wav synth whitenoise vol 0.1 && 

sox -m E:\Noise\FOMEALB819.wav noise.wav D:\Noise\SNR5\FOMEALB819.wav 

 

3.4. The creation of Lithuanian digit name transcriptions  

The names of ten Lithuanian digits: “nulis,” “vienas,” “du,” “trys,” “keturi,” 

“penki,” “šeši,” “septyni,” “aštuoni,” and “devyni,” were chosen for experimentation 

with German, English, French, and Spanish language recognizers. Firstly, Lithuanian 

digit names were rewritten into transcriptions using “synthesis” – i.e., each Lithuanian 

digit name was synthesized with different language synthesizer using the English, 

German, French, and Spanish UPS Alphabet (150) to prepare the transcriptions of 

Lithuanian digits. The foreign transcriptions most similar to the Lithuanian 

pronunciation of digit names were selected for further testing. The number of 

transcriptions found for each digit was unequal: for a short digit, such as “du,” 7 
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transcriptions were enough, but for longer digits (“septyni,” “aštuoni”) up to 10 

transcriptions were selected. Spanish language digit transcriptions were selected using 

a synthesizer (Table 3.3). Other languages transcription variables are located in Annex 

1. 

 

Table 3.3. Spanish language digit transcription selected using a synthesizer 

Digit Transcriptions 

0 Nulis; Nuhlihs; Nuhlis; Nulihs; Nulejs; Nuljs; Nuls; Nwlis; Nwljs; Nulys. 

1 Vienas; Bjenas; Vihehnahs; Vihehnas; Vihenas; Viehnas; Bienas. 

2 Du; Duh; Duw; Duuw; Duuh; Dw; Dwa; Dwu; Duu. 

3 Trys; Tryis; Tris; Triys; Trris; Trriis; Triis; Tdxis; Tdxiis; Tdxjis; Tdxjjs; Trriiis. 

4 
Keturi; Keturri; Ketudxi; Keturih; Kehtuhrih; Keturii; Kewturi; Keaturi; Keturrii; 

Ketudxrri; Ketury; Kewturih; Keaturih; Keaturii. 

5 Penki; Peanki; Pewnki; Penkih; Penkii; Penkiih; Peankii; Peankiih. 

6 
Sesi; Sheshi; Chechi; Scheschi; Shehschi; Sheschii; Sheaschii; Sheaschiih; 

Shechii; Sheashii; Sheshii; Seasese; Cheasii; Chechii. 

7 
Septyni; Septynii; Septyniih; Septini; Septinii; Septiniih; Seaptinii; Seaptiinii; 

Septiinii. 

8 
Astuoni; Ashtuoni; Achtuoni; Ashtuonii; Astuonii; Achtuonii; Ashtwonii; 

Ashtuonji; Ashtuhohnii; Ashtuhohniih. 

9 
Devyni; Deviinii; Deviiniih; Debini; Dewini; Deaviinii; Deaviiniih; Debjinji; 

Debjinese. 

 

Figure 3.6 illustrates the algorithm for the selection of the initial set of digit 

transcriptions, for which a grammar was generated and uploaded in the Default 

pronunciations pronunciation editor (Fig. 3.5). For each digit and for each different 

language recognizer, selection tests were prepared (40 tests overall). This test was 

performed by one male and one female speaker. A single digit grammar example for 

the selection of transcriptions is shown in Figure 3.1.  
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Figure 3.1. Single digit transcription selection test 

 

Each digit was articulated 100 times through a microphone using MSS’2007 

speech server. The most recognized transcriptions were called “winners,” and used 

for the next step of transcription improvement by adding Custom pronunciations in 

the pronunciation editor (PE). Figure 3.4 presents the algorithm for the creation and 

selection of digit transcriptions. 

Figure 3.2. Pronunciation editor 

Default UPS 

transcriptions  
Custom UPS 

transcriptions  
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Figure 3.3. The algorithm for the selection of the initial set of digit transcriptions 

 

As an example, we can see the most often recognized transcriptions for the digit 

“nulis”:  

 nuhlihs (for German language),  

 nulis (for English language),  

 nouluece (for French language),  

 nuhlihs (for Spanish language).  

If the same digit had more than one recognized transcription, all recognized 
transcriptions were used for further research. 
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Figure 3.4. The algorithm for the creation and selection of digit transcriptions 

 

3.5. The selection of names and words corresponding to Latin letters  

It is obvious that the accuracy of letter recognition could be considerably 

improved by using the appropriate set of words equivalent to the Latin alphabet. The 

average recognition accuracy of the LETTERS speech corpus by the REC_SP 

recognizer was only 25.9%, indicating that spelt-out letters cannot be used for the 

recognition of disease codes. The accuracy of the NATO speech corpus was 67.2% 

(157). Therefore, an appropriate Lithuanian name was chosen for each letter: 
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“Antanas” fort the letter “a”; “Benediktas” for the letter “b”; and so on, using the 

NAMES1 speech corpus (a full list of names is presented in Annex 2). The selection 

of appropriate names was performed experimentally by testing the recognition 

accuracy of ten Lithuanian names for each letter and looking for the most often-

recognized names. The algorithm of vocabulary selection for the name speech corpus 

is presented in Figure 3.5. Name selection was carried out using the adapted Spanish 

language recognizer included in the Windows 7 operating system.  

For speech corpus vocabulary selection, iteration was carried out 3 times. 

Iterations were carried out in alphabetical order – starting with the letter “a” and full 

grammar (PG). 

In each iteration step, recognition testing was executed with the full speech 

corpus of names, starting with the tested letter. Recognition results were calculated as 

follows: if recognition accuracy was 80% or more, then 1, 2, or 3 name transcriptions 

were selected as the best-recognized ones. In the recognition grammar, only the 

selected transcriptions of names were left, as other transcriptions were removed 

(AG_R). A list was created for each letter with tested names, with results presented in 

order of recognition accuracy.  

If, in the second step, names with a recognition accuracy of 80% or more could 

not be found, all names beginning with the tested letter were left for the next iteration, 

except for obviously unrecognizable names (e.g., in the case of the letter “a” – AG_B). 

In cases where the name recognition accuracy was below 80% and the 

recognition results showed that the name was mixed with a name that started with the 

other letters, it was permitted to remove the name from the grammar, unless it was the 

only remaining name starting with that letter. 

In case of an emergency, it was permitted to remove only the last name starting 

with a different letter if it disrupted the recognition of the tested name. However, in 

such a case, another name previously withdrawn based on the recognition accuracy of 

the sequence list was returned to the grammar. This was only used in case of an 

emergency – when the removal of the disrupting name significantly improved the 

recognition accuracy of the tested name, and the disrupting name was the only name 

left for the selected letter. 

Additional requirements were as follows: 

 the final list should not conclude names with similar text fragments (PG_X): 

Daumantas, Eimantas; Mantas, Skirmantas; Gražvydas, Mažvydas; Aleksas, 

Feliksas, Iksas; Florijona, Jonas, Ulijona; 

 at least one name should be assigned to each letter. 
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Figure 3.5. The algorithm of vocabulary preparation for the name speech corpus (one 

iteration) 
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After initial selection, the NAMES2 speech corpus was composed of 70 names. 

The next selection of the final set is presented in Figure 3.6. After this selection, the 

NAMES3 speech corpus was formed, representing the final set containing 26 names 

and words equivalent to Latin letters. In order to select the final set, the recognition 

accuracy of one name (RA_L) alone should be higher than 85%, whilst at the same 

time overall recognition accuracy (RA) should be higher than 95%. 

 

 
Figure 3.6. The selection algorithm of names equivalent to the 26 letters of the Latin 

alphabet. 

 

3.6. Isolated word command recognition using HTK 

HMM technology was used for the creation of the Lithuanian REC_LTp and 

REC_LTw recognizers. For the creation of the acoustic models of the Lithuanian 

recognizers, the HTK v.3.2 open code software toolkit was used (112). The algorithms 

of phoneme-based HMM and word-based HMM recognizers are presented in Figures 

3.7 and 3.8. 

The tools in the HTK framework (112) are designed to perform different tasks 

in building the HMM. Building a speech recognition system on HTK requires tools 

that can implement four stages: data preparation, training, testing, and results analysis, 

as shown in Figure 3.7 for phoneme-based and Figure 3.8 for word-based HMM. 

 

 

 

 



84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 3.7. Stages of building a phoneme-based speech recognizer with HTK 
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Figure 3.8. Stages of building a word-based speech recognizer with HTK 

 

In the data preparation stage, the HCopy tool processes the voice signals 

obtained from the microphone or speech corpus into codebooks (MFCC) according to 

the feature extraction method of a speech recognition system. HLEd produces 

transcriptions to read a list of HMMs and a set of voice accents. Next, at the training 

stage, HTK provides tools to estimate the parameters for the HMM – HcompV and 

HRest – of which HcompV is used to initialize the values of the parameters. HcompV 

calculates the expectation and variance of each Gaussian component in the HMM 

definition to make them almost equal to the expectation and variance of the speech 

training data. HRest estimates the parameters of a data segment using the Baum-

Welch algorithm. In phoneme-based HMMs, new phonemes are introduced in 

training; and in word-based HMMs, the number of states and Gaussian mixtures are 

varied in order to obtain higher recognition accuracy. HHEd is used to create a new 

HMM after parameter adjustment. The result is the creation of HMMs in accordance 

with the dictionary of words to be recognized. There are a number of supportive tools 

in HTK: HParse is used to change a syntax file of the dictionary into a semantic 

network and provides the possibility to arrange the words in order; HCopy is used to 

extract features to identify a word; and the HVite tool applies the Viterbi algorithm 
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for speech recognition based on the constraints of the the HMM model, the 

dictionary, and the grammar structure.  

 
3.7. Isolated command recognition using two different recognizers and a noisy 

speech corpus 

Using the Kaldi package, the acoustic data includes: gender information on the 

speakers (spk2gender), the identifier, and the audio data for each utterance (wav.scp); 

the transcripts for each utterance (text); the mapping between utterances and speakers 

(utt2spk); and the corpus’s transcript (corpus.text) (57). The language data includes the 

lexicon (the list of words and phrases together with transcriptions), and both the non-

silence (the set of Lithuanian phonemes) and silence phone information. The list of all 

words and phrases of the speech corpus was used as a language model. Scripts and 

tools for experiments were used from speech recognition examples, using Kaldi and 

the Wall Street Journal speech corpus presented in kaldi/egs/wsj/s5.  

A CTC-based approach was selected for the connection of two different 

recognition engines for two main reasons: 

 Without using a language model, attention models outperform CTC models trained 

on the same corpus, but it was found that CTC models are significantly more stable, 

easier to train, and ensure better recognition results if a language model is used (the 

performance of both models against the Hub5’00 benchmark is presented by 

Battenberg et al. (70); 

 Though very good recognition results were achieved for part of the LIEPA speech 

corpus using an attention-based model (99), the preparation of data for the model 

and the implementation of the CTC model is simpler compared to the attention-

based model. 

The Deep Speech 2 model (69) was selected as the CTC-based recognition 

model, implemented using the TensorFlow package. TensorFlow is a powerful data 

flow-oriented machine learning library created by Google’s Brain Team, and made 

open source in 2015. It was designed to be easy to use and widely applicable to both 

numerical and neural network-oriented problems, as well as to other domains. 

Deep Speech 2 is an end-to-end DNN for ASR based on a Baidu engine (69). It 

consists of two convolutional layers, five bidirectional RNN layers, and a fully 

connected layer. The feature in use was a linear spectrogram extracted from audio 

input. The network uses CTC as the loss function. 

Preparing data for the Deep Speech 2 model is very simple. Two files should be 

prepared: 

 the name and location of the audio file, the size of the audio file, and the 

transcription of the word or phrase of the audio file; three separate files should 

be prepared for training, evaluation and testing; 

 a vocabulary file consisting of the list of phonemes. 

Due to the small size of the NAMES3 speech corpus, some Deep Speech 2 

parameters were reduced:  

 rnn_hidden_size=256 

 rnn_hidden_layers=3 
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 stride_ms=10 

 window_ms=20 

 batch_size=12 

 train_epochs=10 

 

 The size of the audio files tested was 1/7th of the whole speech corpus, as 7-

time cross-validation was used. For the evaluation set, 30% of the training audio files 

were used. 

 

3.8. Metrics 

The performance of recognition systems was measured by recognition accuracy 
(RA), defined as: 

𝑅𝐴 =
𝑅

𝑛
× 100%,                                          (65) 

where n is the number of words used in the test, and R is the number of correctly 

recognized words.  

A confidence measure was calculated following two patterns: one for the results 

obtained by the cross-validation principle; and another for the results obtained by 

testing one data set. That is to say, calculation of confidence intervals by normal 

distribution, when variance is unknown, and calculation of confidence intervals by 

approximating the binomial distribution to the normal distribution. 

Confidence intervals were calculated with 95% confidence. Intervals were 

calculated following two patterns: one for the results obtained by the cross-validation 

principle; and another for the results obtained by testing one data set. Put simply: 

calculation of confidence intervals by normal distribution, when variance is unknown; 

and calculation of confidence intervals by approximating the binomial distribution to 

normal distribution (158). 

To identify n different sets, the formula for finding the normal distribution 

parameters with unknown variance in the confidence interval was used. According to 

this formula, the accuracy of the estimate of the mathematical hope is the product of 

the ratio of the quantile 𝑡∝
2⁄ ;𝑛−1 and the unshifted value s of the mathematical hope 

to the square root of the sample size n (n is the mean of the recognition results RA). 

𝜀 = 𝑡𝛼
2⁄ ;𝑛−1

𝑠

√𝑛
 ,                                    (66) 

Then, 

                                                      𝑠 = √∑ (𝑙𝑖−𝑙𝑎𝑣)2𝑁
𝑖=1

𝑛−1
 ,                                (67) 

 

where 𝑙𝑖 represents the i-th measurement value, and 𝑙𝑎𝑣 the average of all measured 

values. Quantiles 𝑡∝
2⁄ ;𝑛−1, when α-0.05, are found in Student’s t-distribution tables. 

To identify one test set, the formula for finding the confidence intervals of the 

approximation of the normal distribution by binomial distribution was used. 

According to this formula, the accuracy of the ZT estimate is the product of the 

argument for which the value of the standard normal distribution N (0,1) is equal to 
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the given confidence probability, and the ratio of the standard deviation s to the 

square root of the sample size n. 

𝜀 = 𝑧1−𝛼
𝑠

√𝑛
  ,                                  (68) 

 

Then, 

𝑠 = √𝑅𝐴(1 − 𝑅𝐴)                                  (69) 

 

The Wilcoxon test is a nonparametric test designed to evaluate the difference 

between two treatments or conditions where samples are correlated. This test was used 

to evaluate the connection of two recognizers.  

The Kruskal–Wallis test is a non-parametric alternative to the one-factor 

ANOVA test for independent measures. It relies on the rank-ordering of data rather 

than calculations involving means and variances, and allows for the evaluation of the 

differences between three or more independent samples (treatments). This test was 

used to evaluate the differences in connecting three recognizers. 

 

3.9. Data mining software and classifiers 

 For the connection of several recognizers, suitable software for data mining can 

be chosen from over 600 commercial and open-source systems (158). In the period 

from 2008–2010, a study was carried out during which the users of data mining 

systems indicated which systems they use in ongoing projects (159). It was evident 

that the most commonly used open-source systems are: RapidMiner (160), R (161), 

KNIME (162), Weka (163), and Orange (164). Meanwhile, the often-mentioned Excel 

and MATLAB are used only supplementary – they are commonly used together with 

the more popular previously mentioned open-source data mining systems (159). 

In one detailed overview of six open-source data mining systems, it is stated that 

there is no “best” data mining system, but a choice is offered between four data 

examination packets: RapidMiner, R, Weka, and KNIME (165). Similar results have 

been obtained in other research (166) in which 12 data mining systems were analyzed, 

and YALE (an older version of RapidMiner), KNIME, AlphaMiner, Weka, and 

Orange received the most positive reviews. Nine types of classification objects and 

six types of classifiers were examined in another work (167), where Weka was 

evaluated very favorably. Based on this review, for studies connecting recognizers, 

the Weka packet was selected (163). It is also one of the most widely used pieces of 

open-source data mining software in Lithuania (14). 

 In Weka, several dozen classifiers are introduced, and so it was necessary to 

choose the most efficient classification methods from them. This initial selection was 

based on a review of the literature (168). The most popular are Naive Bayes (NB), K-

Nearest Neighbor (kNN), decision tree, Multilayer Perceptron (MP), and support 

vector machine (SVM). The most popular classifiers of the decision tree type are the 

C4.5 and random forest (RF) classifiers. Other works (166) have examined the OneR 

and ZeroR classifiers alongside the previously mentioned NB, C4.5, SVM, and k-NN 

classifiers. When choosing a classifier, Demšar, Curk, and Erjavec’s (164) overview 

of the 10 the most popular data mining algorithms – including C4.5, NB, k-NN, SVM, 

http://www.thesaurus.com/
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AdaBoost, CART (Classification and Regression Trees) classification algorithms, and 

some algorithms for clustering – can be referred to. If one is to refer to Jovic, Borkic, 

and Bogunovic’s overview (165) and other work by the same authors (169) – together 

with the already mentioned C4.5, RF, and NB classifiers – then we should also 

examine the RIPPER classification algorithm. Weka has no regression CART 

algorithm; instead an MLR (Multinomial Logistic Regression) algorithm and a ZeroR 

classifier was selected over two similar OneR and ZeroR classifiers. 

Random forests are one of the most successful machine learning models for 

classification and regression. Random forests are ensembles of decision trees. They 

combine many decision trees in order to reduce the risk of over fitting (170). Like 

decision trees, random forests handle categorical features, extend to the multiclass 

classification setting, do not require feature scaling, and are able to capture non-

linearities and feature interactions. Random forests train a set of decision trees 

separately, and so the training can be done in parallel. The algorithm injects 

randomness into the training process so that each decision tree is slightly different. 

Combining the predictions from each tree reduces the variance of the predictions, 

improving performance on test data. 

 

3.10. The technique of connecting recognizers 

A hybrid recognizer has the potential to exploit the advantages of several 

recognizers at once. An example structure of a hybrid recognizer is given in Figure 

3.9. In this example, a hybrid recognizer is comprised of the REC_SP (adapted 

Spanish language) recognizer, having an integrated speech boundaries detection unit, 

and the REC_LTw (Lithuanian) recognizer and decision-making unit, which realizes 

the hybrid decision-making rule(s). 

Figure 3.9. Hybrid recognizer REC_SP/REC_LTw structure 

 

The speech signal is primarily directed to the REC_SP recognizer, which 

determines the boundaries of the command and provides a fragment of the signal to 

the REC_LTw recognizer. The REC_LTw recognizer also provides a decision to the 

previously mentioned unit. If the decisions differ, the unit has to decide which of the 

two decisions should be submitted for the user to see as the final answer. 

The parallel use of two recognizers is useful, as when one recognizer provides 

the wrong answer, the other can make the correct decision and vice versa. Non-
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Lithuanian recognizers have advantages that include signal detection, noise 

processing, and the availability of other modules.  

The recordings were segmented into subsets based on the recognition decisions 

provided by recognizers. These subsets reveal, in detail, evidence that the REC_LTw 

and REC_SP recognizers added value to one another – this is described in more detail 

in Table 5.2. 

The task of separating two subsets was formulated, and resolved by using the 

names TF (where the decisions provided by the devices do not match, and REC_LTw 

made the correct decision), or FT (where the decisions provided by the devices do not 

match, and REC_SP made the correct decision). The most important element in a 

hybrid recognizer is a hybrid decision-making unit, made by adapting machine 

learning. The answers used for this learning were chosen specifically when the 

decisions from the recognizers differed. Every object involved in the learning process 

was gathered from the decisions of both recognizers for a specific recording (both TF 

and FT class decisions). 

The benefit of a hybrid recognizer was calculated by using the simple “blind” 

decision rule, which states that “if the decisions of the devices differ, choose the one 

made by the better recognizer” – thereby providing TF/(TF+FT)*100% accuracy. The 

study showed that a result obtained by a new hybrid decision rule was useful only 

when it achieved a higher score than this “blind” rule score. 

Every single study object was defined by attributes, which are explained in 

Table 3.4. The main attributes given in Table 3.4 are “lt_prob” and “sp_prob” – as an 

example, “sp_prob” represents the the measure of confidence in the decision of 

REC_SP, and the closer this number is to 1, the larger the possibility that the 

recognizer has made a correct decision. The attributes “lt_delta_prob” and “sp_supp” 

were created based on the fact that the REC_LTw recognizer provides from 1 to 3 

answers, presenting them in descending order of priority. If the first decision was 

correct, the phrase was considered to have been recognized correctly. 

 

Table 3.4. Description of the features used for the combination of two 

recognizers  

Feature Description 

sp_prob The measure of confidence in the decision of the REC_SP recognizer 

sp_supp The difference between the average logarithmic probabilities of the first, second, or 

third alternatives provided by the REC_LTw recognizer in cases when REC_SP’s 

decision coincides with REC_LTw’s second or third alternative. If the REC_LTw 

recognizer does not provide an alternative decision, this attribute takes a value of 10 

lt_prob The average logarithmic probability of the REC_LTw recognizer’s decision 

lt_delta_prob The difference between the average logarithmic probabilities of the first and second 

alternatives provided by the REC_LTw recognizer. If the recognizer does not 

provide an alternative decision, this attribute takes a value of 10 

gender The speaker’s gender (m, f) 

lt_a, …, lt_ž The proportion of the number of certain letters to the number of all letters in the 

REC_LTw recognizer’s decision, % (for example, if the decision is “du,” then 

lt_u=lt_d=50%). 

sp_a,..., sp_ž The proportion of the number of certain letters to the number of all letters in the 

REC_SP recognizer’s decision, % 
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The number of other features was determined by the number of letters in the 

Lithuanian language. The goal was to create as many attributes as possible, and their 

influence was investigated in further research. The effect of these attributes is 

investigated through a process whereby certain attributes are removed from files with 

the help of the WEKA analysis system, which automatically provides a calculated 

accuracy. This investigation was performed using the 10-times cross-validation 

method, with 90% of objects involved in learning and the left-over 10% in testing. 

 

3.11. The technique of classification with the WEKA package  

After a thorough literature analysis (section 3.8), the WEKA data analysis 

system was chosen for the purpose of achieving the best possible results in the 

connection of two recognizers. This data analysis system has many classifiers, of 

which we were required to choose the most effective. Classifier selection was 

comprised of 10 candidates: kNN, RIPPER, NB, RF, C4.5, ZeroR, SVM, AdaBoost, 

MP, and MLR (171). 

For the connection of recognizers, two different methods were applied: 

1. Ordinary 10-times cross-validation with the graphical WEKA interface. One 

file with the attributes of all speakers was prepared, and then by default WEKA 

randomly distributed the data: 90% for training, 10% for testing. It performed the 

classification 10 times, changing the set of test objects, and then calculated the average 

of the obtained results. This classification method allowed for the prediction of the 

accuracy of the classification (and at the same time, the accuracy of the hybrid 

recognizer) for the “known speaker” (one of the speakers of the speech corpus). 

2. The more complex n-times cross-validation method, with n number of 

speakers. Here, 2*n files were prepared: for training, the features of n-1 speakers are 

taken; and for testing, the features of 1 (unused) announcer. The classification was 

carried out n times through the command line, giving a file with the attributes of n-1 

speakers for training, and a file with the attributes of the unused announcer for testing. 

This was repeated n times by changing the unused announcer, and the results were 

then averaged manually. The results of such a classification allowed for the prediction 

of the classification accuracy (at the same time, the accuracy of the hybrid recognizer) 

for an “unknown speaker.” Due to the high volume of calculations, instead of n times 

cross-validation, n/2, n/3 (and so forth) cross verifications were carried out – as such 

the results were less accurate. 

The effectiveness of the hybrid decision-making rule, using the n-times cross-

validation method, was calculated using the “SimpleCLI” system tool in the WEKA 

data analysis system. In the command line of this tool, data on the classification type, 

classifier, classification training data directory, and test data directory were specified. 

The “learn.arff” and “test.arff” files were used for training and testing, as these 

files contain features of the tested data. Research was then carried out with all of the 

classifiers chosen for the test and with all prepared data files of the speakers, 

specifying different speaker and classifier data files each time. 
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The analysis of hybrid decision-making performance using the 10-times cross-

validation method was conducted using the “Explorer” system tool in the WEKA data 

analysis system. 

 

3.12. Chapter summary 

1. A technique for the selection of names and words which are appropriate for the 

recognition of Latin letters was created. This was based on the creation of a 

speech corpus including a large number of names (up to 10 names per letter), 

and the iterative selection of the most recognizable names/words with the 

adapted language recognizer. 

2. A technique was prepared for the selection of isolated word command 

transcriptions using a voice server lexicon editor, a recognizer for non-native 

language, and UPS, verbal, or mixed transcriptions. 

3. Taking into account the fact that the annotation of an examined speech corpus 

requires a lot of time and human outlay, studies on the recognition of a speech 

corpus with a HTK packet are limited to word-based and phoneme-based 

HMMs, and HMMs of contextual phonemes are only attempted. 

4. A technique was proposed for the recognition of isolated commands by selecting 

the number of HMM states and Gaussian mixtures in a word-based HMM, or 

introducing new monophones to a phoneme-based HMM. 

5. A method was proposed for the connection of several recognizers, using 

machine learning and selecting the most effective classifier with the WEKA 

packet. 
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4. RECOGNITION RESEARCH 

4.1. Research into an adapted language recognizer for Lithuanian voice 

commands 

4.1.1. The recognition of Lithuanian digit names using Microsoft Speech Server 

Four tests were prepared for the names of ten Lithuanian digits (0–9) with 

different grammars for each language recognizer, using UPS and Speech Grammar 

Editor (SGE). The following language recognizers were used: German – Microsoft 

Speech Recognizer 9.0 for MSS (German-Germany); English – Microsoft Speech 

Recognizer 9.0 for MSS (English-US); French – Microsoft Speech Recognizer 9.0 for 

MSS (French-Canada); and Spanish – Microsoft Speech Recognizer 9.0 for MSS 

(Spanish-US). All of the “winning” transcriptions were used in these grammars. Each 

digit was pronounced into a microphone 100 times each by a male and female speaker 

before being exposed to a recognizer. The results then were gathered, analyzed, and 

processed.    

The RA of two different speakers using adapted language recognizers is 

presented in Table 4.1, and the average confidence measure in Table 4.2. 

 

Table 4.1. Lithuanian digit names RA with four adapted language recognizers     

Speaker 
Speech server implemented recognizer RA, % 

German English French Spanish 

KR, male 58.4 76.4 52.8 88.2 

GB, female 51.8 59.0 76.8 98.8 

Average 55.1 67.7 64.8 93.5 

 

The strongest RA results for the 10 Lithuanian digit names were achieved with 

the Spanish recognizer, which produced an average RA for the male speaker of 88.2%, 

and 98.8% for the female speaker. Overall, the average RA of the Spanish recognizer 

was 93.5%. 

 

Table 4.2. Confidence measure of Lithuanian digit recognition for four 

adapted language recognizers  

Speaker 

Speech server implemented recognizer confidence 

measure 

German English French Spanish 

KR, male 0.44 0.48 0.48 0.60 

GB, female 0.42 0.37 0.57 0.77 

Average 0.43 0.43 0.53 0.68 
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The results in Table 4.2 show that the strongest confidence measure was also 

attained using the Spanish language recognizer: 0.6 for the male speaker, and 0.77 for 

the female speaker (the confidence measure may vary from 0 to 1). 

For the next stage of the research, the SKAIC30 speech corpus was used. Since 

speech server requires speech input in a telephony format, this speech corpus was 

adapted by down-sampling the speech corpus from the original 16 kHz to an 8 kHz 

sampling rate. The previous research results show that the Spanish recognizer was the 

most accurate of the four in MSS’2007. It was therefore selected for recognition tests 

using this speech corpus. 

Grammar was prepared using 36 transcriptions. The visual display of the 

grammar window in MSS is presented in Figure 4.1.  

 

 
Figure 4.1. A visual display of voice command recognition grammar 

The average RA of ten Lithuanian digit names using REC_MSS is presented in 

Table 4.3. The Spanish speech engine enabled the achievement of an overall RA of 

99.12±0.88% for ten Lithuanian digit names. This is a significantly higher RA result 
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for the same digits than the 92.5% achieved in the thesis of Maskeliunas (83 p. 111), 

where a speech corpus of 10 speakers, 10 digits, and 20 pronouncements of each digit 

was used with an adapted language recognizer. 

 

Table 4.3. Average RA and confidence measure of ten Lithuanian digit names 

with REC_MSS using the SKAIC30 speech corpus. 

Command Recognition 

accuracy, % 
Confidence measure 

NULIS 99.67±0.22 0.87 

VIENAS 100 0.93 

DU 98.83±0.42 0.90 

TRYS 99.5±0.27 0.87 

KETURI 95.5±0.80 0.74 

PENKI 100 0.92 

SESI 97.83±0.57 0.84 

SEPTYNI 99.83±0.16 0.90 

ASTUONI 100 0.86 

DEVYNI 100 0.87 

Average RA 

% with 95% 

confidence 

level 

99.12±0.88 0.84 

 

As can be seen throughout, a strong confidence measure was achieved for all 

digits. However, the lowest confident measure – a still-modest 0.74 – was obtained 

for the digit “four.” The highest confidence measure was achieved for the digits “one” 

and “five” – 0.93 and 0.91, respectively. The total average confidence measure for all 

ten digits was 0.87. 

 

4.1.2. Lithuanian digit name recognition using the Spanish recognizer 

Earlier experiments revealed that Microsoft Speech Recognizer 8.0 (Spanish-

US) provides significantly better results for Lithuanian digit name recognition 

compared to the other recognizers implemented in the Windows 7 operating system. 

Therefore, the abovementioned recognizer was selected as the adapted foreign 

language recognizer. 

The structure of recognition grammar enables the use of multiple UPS-based or 

word-based transcriptions of commands and synonyms of commands together, 

according to the SRGS grammar specification. As such, UPS-based transcriptions 

prepared using the pronunciation editor in MSS were used by the REC_SP recognizer 

in three forms: 

 UPS transcription in MSS;  

 word-based transcription, obtained from removing spaces between phonemes in the 

UPS transcription; 
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 mixed transcription, obtained by mixing the grammar of the UPS and word-based 

transcriptions. 

Testing experiments using the SKAIC30 speech corpus were carried out with 

the Spanish recognizer 8.0 (Spanish-US), using the same Lithuanian digit name 

transcriptions as in the MSS’2007 speech server research. The average recognition 

accuracy of ten Lithuanian digit names with different profiles is shown in Table 4.4.  

 

Table 4.4. RA of digit names by Spanish recognizer 8.0, with different 

profiles 

 
Command 

 

Profile grammar RA, % 

Default, 

word-based 

Default, 

UPS 

Female,  

word-

based 

Female,  

UPS 

Male,  

word-based 

Male,  

UPS 

Male, 

Mixed 

transcription

s 

NULIS 42.33 61.00 55.00 54.50 70.67 75.67 80.67±1.53 

VIENAS 91.17 93.67 93.33 93.33 96.67 96.33 95.83±0.78 

DU 64.33 67.00 51.67 51.33 73.50 80.00 79.67±1.56 

TRYS 98.00 98.17 96.50 96.50 99.00 99.17 99.00±0.39 

KETURI 53.83 57.83 49.50 48.83 85.83 74.50 86.50±1.33 

PENKI 97.17 95.67 90.67 90.83 98.17 98.67 98.67±0.44 

SESI 97.33 100 98.83 98.83 100 100 100 

SEPTYNI 97.67 98.00 96.17 96.00 99.17 99.50 99.17±0.35 

ASTUONI 95.33 95.67 86.50 87.17 99.67 99.67 99.67±0.22 

DEVYNI 75.50 78.00 80.67 80.67 72.00 86.50 81.33±1.51 

Average 

RA % with 

95% 

confidence 

level 

81.26 

±12.99 

84.81 

±10.60 

79.89 

±12.36 

79.79 

±12.52 

89.48 

±7.88 

91.01 

±6.63 

92.05 

±5.48 

 

Three different profiles were used for this research: the default profile, which 

is initially implemented in the Windows OS, and is not trained; and female and male 

profiles, which were trained by a female and a male speaker, respectively. Before first 

using Windows Speech Recognition, a microphone was set up. Speech Recognition 

uses a unique voice profile to recognize voices and spoken commands. Windows 

comes with a speech training tutorial to help teach the profile used for Speech 

Recognition. The tutorial takes approximately 30 minutes to complete.  

With different profiles, two types of transcriptions are used: word-based and 

UPS. The results in Table 4.5 show that the male profile had better recognition results 

with both word-based and UPS transcriptions than the default or female profiles. A 

decision was made to conjunct the word-based and UPS transcriptions (the type of 

transcription used for a mixed set is highlighted) into one grammar set. After 

conjunction, recognition accuracy results increased to 92.05±5.48%. 
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4.1.3. Name and word recognition using the Spanish recognizer 

The NAMES3 speech corpus consists of utterances of 22 Lithuanian names and 

four words (kju, Wasington, iksas, and ygrekas) which represent the basic Latin 

alphabet, consisting of the 26 letters used in disease codes. This corpus was used for 

name and word recognition research with Microsoft Speech Recognizer 8.0 (Spanish-

US), which was chosen due to earlier research on Lithuanian digit names (section 

4.1.2). Two profiles were trained on Windows OS: male and female, and a third 

default profile was untrained. Three grammars were prepared: word-based, UPS, and 

mixed (using both words-based and UPS transcriptions). The RA results are presented 

in Table 4.5.  

 

Table 4.5. RA of names and words using REC_SP with different profiles 

 

Command 

Profile grammar RA, % 

Female, 

word-based 

transcriptions 

Default, 

word-based 

transcriptions 

Male, 

word-based 

transcriptions 

Male, 

UPS 

transcriptions 

Male, 

Mixed 

transcriptions 

Austėja 90.8 98.7 99.6 99.2 99.6±0.29 

Boleslovas 96.0 97.7 98.9 98.3 98.9±0.48 

Cecilija 96.3 97.1 99.8 99.3 99.8±0.20 

Donatas 98.3 98.7 99.8 99.8 99.8±0.20 

Eimantas 98.9 98.9 97.9 97.9 97.9±0.66 

Faustas 98.7 98.9 98.3 98.7 98.3±0.60 

Gražvydas 95.0 98.9 99.4 98.7 99.4±0.36 

Hansas 98.9 98.9 99.0 100.0 99.0±0.46 

Izaokas 99.4 98.5 98.3 99.2 98.1±0.63 

Jonas 94.0 96.3 97.1 96 97.1±0.78 

Karolis 100.0 100.0 97.9 97.7 97.9±0.66 

Laima 97.9 99.4 98.9 99 98.9±0.48 

Martynas 99.6 98.3 97.7 99.8 97.1±0.78 

Nojus 97.7 98.1 97.1 97.9 97.1±0.78 

Oskaras 99.0 100 100.0 99.4 100 

Patrikas 99.0 99.8 99.8 99.8 99.8±0.20 

Qju  60.1 70.8 86.0 88.1 85.6±1.63 

Ričardas 90.1 93.5 87.9 96.2 91.7±1.28 

Sandra 97.7 99.8 99.4 99.8 99.2±0.41 

Teodoras 95.6 99.8 97.1 97.9 97.1±0.78 

Ulijona 92.3 94.8 96.0 90.4 96.0±0.91 

Vacys 97.7 97.3 96.7 100 98.3±0.60 

Wašington 93.3 96.9 98.5 97.9 98.5±0.56 

Xsas 97.5 95.0 94.6 98.9 95.4±0.97 

Ygrekas 93.1 95.6 96.0 96.2 95.4±0.97 

Zacharijus 94.4 93.1 96.0 29.8 96.0±0.91 

Average 

RA % 

with 95% 

confidence 

intervals 

95.05±2.94 96.72±2.17 97.22±1.29 95.23±4.77 97.38±1.17 

 

https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet
https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet
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The highest RA, 97.38±1.17%, was achieved with the male profile using mixed 

transcriptions. 

The solution of using mixed transcriptions was formed by analyzing the 

correlation between the male profile and the results of word-based transcriptions, as 

well as the correlation between the male profile and the research results of the UPS 

transcriptions. The areas in Table 4.6 that are highlighted in grey indicate that this 

type of transcription was used in mixed transcription research with the male profile. 

 

4.2. Acoustic modeling research 

4.2.1. Lithuanian digit name recognition using a HTK-based Lithuanian 

recognizer  

4.2.1.1. Word-based HMM recognizer research 

HMM acoustic models for Lithuanian digit names were prepared using the 

SKAIC30 speech corpus. The database was randomly divided into two sets: a training 

set consisting of 24 speakers, and a test set consisting of the remaining six speakers 

(the distribution of speakers is presented in Annex 3). Primary investigation was 

performed with 1-FOLD (see Annex 3) to see how important the HMM parameters 

were – i.e., to identify the number of states and the number of Gaussians per state 

required in order to achieve a high RA.  

The accuracy of digit name recognition using the REC_LTw recognizer by 

varying the number of states is presented in Table 4.6 and Figure 4.2.  

 

Table 4.6. RA of Lithuanian digit names by varying number of states 

 Additional number of states added to the number of states in the command, % 

 +1 +2 +3 +4 +5 +6 +7 +8 +10 +16 

NULIS 55.0 69.2 85.0 100 100 100 100 90.8 96.7 87.5 

VIENAS 100 83.3 100 92.5 96.7 99.2 95.8 98.3 99.2 97.5 

DU 0 5.8 23.3 65.0 92.5 97.5 98.3 98.3 99.2 98.3 

TRYS 22.5 44.2 89.2 90.8 95.0 95.0 95.0 95.0 94.2 95.0 

KETURI 91.7 98.3 97.5 97.5 100 97.5 99.2 98.3 96.7 95.8 

PENKI 67.5 73.3 69.2 98.3 99.2 97.5 99.2 96.7 97.5 95.8 

SESI 80.8 84.2 89.2 95.8 97.5 99.2 99.2 99.2 95.8 95.8 

SEPTYNI 100 100 100 100 100 100 100 100 100 99.2 

ASTUONI 97.5 96.7 100 98.3 100 94.2 99.2 91.7 95.0 96.7 

DEVYNI 91.7 90.0 95.0 93.3 86.7 96.7 88.3 95.8 92.5 95.0 

Average 

RA % with 

95% 

confidence 

intervals 

70.67 
± 

21.67 

74.50 

± 

18.23 

84.84 

± 

14.64 

93.15 

± 

6.44 

96.76 

± 

2.70 

97.68 

± 

1.24  

97.42 

± 

2.25 

96.41 

± 

1.93 

96.68 

± 

1.48 

95.66 

± 

 1.98 

 

The average accuracy of Lithuanian digit name recognition using a HTK-based 

recognizer was 70.67±21.67% when the number of states used in the HMMs of digit 

names was equal to the number of letters in the digit name plus 1 additional state (the 

initial state of HMM modelling). The average accuracy increased to 97.68±1.24% 
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when six additional states were used. By adding more than 6 states to the model, the 

recognition accuracy decreased progressively. The lowest RA results were achieved 

for the digit “du,” possibly because of the fact that this digit name contains the lowest 

number of states. 

 

 
Figure 4.2. Average RA of Lithuanian digit names by number of states 

 

By incorporating Gaussian mixtures into the Lithuanian digit name command 

model, recognition accuracy was significantly improved. The results of the REC_LTw 

recognizer by varying number of Gaussians are presented in Table 4.7.  

 

Table 4.7. The accuracy of Lithuanian digit name recognition by varying 

number of Gaussian mixtures 

 2 additional states, % 4 additional states, % 6 additional states, % 

 2 

mix 

3 

mix 

6 

mix 

10 

mix 

2 

mix 

3 

mix 

6 

mix 

10 

mix 

2 

mix 

3 

mix 

6 

mix 

NULIS 86.7  100  100  99.2  100  100  99.2  99.2  100  100  100  

VIENAS 92.5  100  100  100  95  99.2  97.5  99.2  100  97.5  100  

DU 11.7  75  98.3  94.2  97.5  98.3  98.3  98.3  98.3  100  98.3  

TRYS 95  95  95  95  94.2  93.3  93.3  94.2  95  95  95  

KETURI 97.5  100  100  100  95  95  98.3  96.7  99.2  100  96.7  

PENKI 92.5  100  100  100  94.2  99.2  89.2  99.2  100  99.2  100  

SESI 98.3  100  100  100  98.3  100  100  100  99.2  100  100  

SEPTYNI 100  100  100  100  100  100  100  100  100  100  100  

ASTUONI 90.8  100  100  100  88.3  100  100  100  100  100  100  

DEVYNI 90.8  99.2  100  99.2  90.8  98.3  90  93.3  99.2  99.2  99.2  

Average 

RA % 

with 95% 

confidence 

level  

85.58 

±14.42 

96.92 

±3.08 

99.33 

±0.67 

98.76 

±1.24 

95.33 

±2.35 

98.33 

±1.45 

96.58 

±2.59 

98.01 

±1.53 

99.09 

±0.91 

99.09 

±0.91 

98.92 

±1.08 
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 The highest average RA of digit names – 99.33±0.67% – was achieved with 

two additional states and six Gaussians. By adding 10 or more Gaussian mixtures to 

the models a high recognition accuracy was obtained, but this high RA could be 

considered an artificial accuracy because in these cases mixtures are too high. This 

implies a one announcer condition – each speaker establishes their own distribution. 

In this case, the identification process is superficial, because the recognition program 

cannot analyze small details. Also, doubling the number of Gaussians in turn entails 

doubling the demand on memory, and thus doubling the computational expense. An 

axial graph modeling the reliance of the research on the number of Gaussian mixtures 

is presented in Figure 4.3. 

 

 
Figure 4.3. Average RA of Lithuanian digit name recognition by varying number of 

Gaussian mixtures 

 

For further research, 5-times cross-validation was carried out using two 

additional states and six Gaussians, due to the highest RA results having been 

achieved with these acoustic modeling parameters. In each fold, speakers were rotated 

in order to test all speakers (see Annex 3).  

The separate results of each digit in each fold and the individual average 

accuracy of each fold is presented in Table 4.8. 
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Table 4.8. The results of 5-times cross-validation of the RA results of 

Lithuanian digit names, using two additional states and six Gaussians  

 1-Fold 2-Fold 3-Fold 4-Fold 5-Fold 

NULIS 100 100 99.2 100 100 

VIENAS 100 100 100 100 100 

DU 98.3 94.2 96.7 99.2 100 

TRYS 95.0 95.0 95.0 95.0 95.0 

KETURI 100 100 100 100 100 

PENKI 100 100 100 100 100 

SESI 100 100 100 100 98.3 

SEPTYNI 100 100 100 100 100 

ASTUONI 100 100 100 100 100 

DEVYNI 100 100 100 99.2 99.2 

Average RA. % with 

95% confidence level 

99.33 

±0.67 

98.92 

±1.08 

99.09 

±0.91 

99.34 

±0.66 

99.25 

±0.75 

 

 Table 4.9 presents the average recognition accuracy of all 5 folds and each 

command separately. The mean recognition accuracy of all 5 folds was achieved by 

summing up all folds and dividing by 5. The standard deviation is 0.18. 

 

Table 4.9. The average results of the 5-times cross-validation of the RA of 

Lithuanian digit names  

 Average 5-times cross-validation 

RA, % 

NULIS 99.84 

VIENAS 100.0 

DU 97.68 

TRYS 95.0 

KETURI 100.0 

PENKI 100.0 

SESI 99.66 

SEPTYNI 100.0 

ASTUONI 100.0 

DEVYNI 99.68 

Average RA. % with 

95% confidence level 99.19±0.81 

 

Most digit recognition accuracies were above 99%, but a few were lower – most 

notably the digits “du” and “trys” at 97.7% and 95%, respectively. Therefore, hybrid 

recognition technology needs to be further researched. 

The result of the 5-times cross-validation of the RA results can also be compared 

with the one found in the thesis of Laurinciukaite (158 p. 78.), where 50 commands 

(10 speakers, 20 pronouncements each) from a phonetically annotated speech corpus 

achieved a recognition accuracy of 97.77%, with the usage of a word-based HMM 

and fixed values for both HMM states and number of Gaussian mixtures. 
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4.2.1.2. Phoneme-based HMM recognizer research 

Following the technique outlined in Figure 3.8, 24 different sets of phoneme 

tests were established and carried out using the SKAIC30 speech corpus. As in 

previous tests, the entries of 24 speakers were used for the learning process, and the 

remaining six for testing. Some of these phonemes sets are displayed in Table 4.10, 

the rest are placed in Annex 4. 

 

Table 4.10. Lithuanian digit name phoneme sets   

Digit1 Digit2 Digit3 Digit5 Digit9 Digit16 

Number of phonemes 

19 28 (SAMPA) 29 31 31(2) 35 

Phonemes 

v vm vm vm vm vm 

ie ie ie ie - - 

n n n n n n 

a a a a a a 

s s s s s s 

d d d d d d 

u u u u u u 

t tm tm tm tm tm 

r rm rm rm rm rm 

y y y y y y 

k km km km km km 

e e e e e e 

i i i i i i 

p pm pm pm pm pm 

sh shm shm shm shm shm 

uo uo uo uo uo uo 

l lm lm lm lm lm 

sp sil sil sil sil sil 

sil t t t t t 

 ii ii ii ii ii 

 nk nk nk nk nk 

 sh sh sh sh sh 

 nm nm nm nm nm 

 dm dm dm dm dm 

 sm sm sm sm sm 

 sp sp ik ik ik 

 ik ik uk uk ud 

 uk uk ud ud ud 

  ud ish ish ish 

   esh esh esh 

   sp ek ek 

    sp en 

     et 

     ir 

     ri 

     sp 
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The first set, containing 19 phonemes, was the primary set. The Digit2 set, 

containing 28 phonemes, was selected using SAMPA phonemes. Further phoneme 

selection and set expansion was performed as the research progressed. 

In the Digit3 set, a new phoneme – ud – was incorporated for command DU, 

which increased the command recognition of DU and the overall RA of the set from 

87.02±12.98% to 94.08±5.86%. These results are displayed in Table 4.11, and 

detailed phoneme distribution is presented in Annex 4. 

In the Digit5 set, two phonemes – ish and esh – were added to increase the 

command recognition accuracy of SESI. This proved to be useful, as the RA of the 

set increased to 94.50±5.50%. 

In further research (in the Digit9 phoneme set), the phoneme ie was removed 

from the VIENAS command in order to split it into two phonemes – i and ek. This 

helped to increase recognition accuracy to 95.84±3.82%. 

The expanded Digit16 phoneme set, containing 35 phonemes, had the highest 

RA of all 24 phoneme sets that were tested for recognition. During the process, 

additional phonemes (en, et, ir, and ri) were added to the set, which increased RA to 

98.84±1.16%. Tests were carried out on other phoneme sets (Annex A), but these did 

not results in a significant increase in RA. The sets of phonemes tested show that the 

most useful are those sets which, in addition to phonemes, use softness and accent 

marks. 

 

Table 4.11. Average RA results of phoneme sets   

Phoneme set Digit1 Digit2 Digit3 Digit5 Digit9 Digit16 

Number of phonemes in set 
19 

28 

(SAMPA) 
29 31 31(2) 35 

RA with 95% confidence 

intervals (1 Fold), % 

62.07 

±24.72 

87.02 

±12.98 

94.08 

±5.86 

94.50 

±5.50 

95.84 

±3.82 

98.84 

±1.16 

 

From the chart presented in Figure 4.4, we are able to see the reliance of the 

received recognition accuracy on the number of phonemes used in sets containing 

from 19 to 35 phonemes. Recognition accuracy slowly increases by increasing the 

number of phonemes, until the maximum selected number of phonemes is reached. 
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Figure 4.4. Average RA of digit names with different phoneme sets 

 

In order to test the recordings of all speakers, a cross-validation principle (i.e., 

ensuring that the system of distribution of speakers in training and testing is the same 

as in word-based recognition research) test was carried out for the Digit1, Digit2, 

Digit9, and Digit16 phoneme sets. This test was performed in order to see the impact 

on RA of: 

the primary phoneme set; 

the SAMPA phoneme set; 

the phoneme set selected during the process (expanded). 

The abbreviated results are presented in Table 4.12, and more detailed is 

provided in Annex 4. 

 

Table 4.12. Average RA results with the 5-times cross-validation of 

Lithuanian digit name phoneme sets   

Phoneme set Digit1 Digit2 Digit9 Digit16 

Number of phonemes 

in set 
19 

28 

(SAMPA) 
31(2) 35 

Recognition 

accuracy (5-times 

cross-validation), % 

63.05±3.59 84.12±2.44 91.65±2.94 97.1±1.11 

 

After conducting 5-times cross-validation, the highest RA was obtained using 

the Digit16 phoneme set – 97.1±1.11%. This result can be compared with the results 

of Laurinciukaite’s doctoral thesis (158 p. 78), where 50 commands (10 speakers, 20 

pronouncements each) from a phonetically annotated speech corpus achieved an RA 

of 93.91% using phoneme-based HMMs. 

More detailed results of the RA of the Digit16 phoneme set, which achieved the 

highest result of all 24 phoneme sets, are presented in Table 4.13. 
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Table 4.13. The results of the 5-times cross-validation of the RA of the 

Digit16 Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii nk sh nm dm 

sm ik uk ud ish esh ek en et ir ri sp)  

Digit16 

 

Phoneme 

set 

distribution 

RA, % 

1-fold 2-fold 3-fold 4-fold 5-fold 

VIENAS vm i ek n a s 

sp 
100 99.2 100 100 99.2 

DU d ud ud sp 100 90.8 95.8 100 94.2 

TRYS tm rm y s sp 95.0 94.2 95.0 95.0 92.5 

KETURI km et t u ri ir 

sp 
100 91.7 93.3 82.5 86.7 

PENKI pm en nk km 

ik sp 
100 94.2 100 96.7 90.0 

SHESHI shm esh shm 

ish sp 
96.7 97.5 100 100 100 

SEPTYNI sm e pm tm y 

nm ik sp 
96.7 100 98.3 93.3 98.3 

ASHTUONI a sh t uo nm 

ik sp 
100 100 100 100 100 

DEVYNI dm e vm ii 

nm ik sp 
100 98.3 99.2 100 98.3 

NULIS n uk lm i s sp 100 99.2 98.3 96.7 98.3 

AVERAGE RA with 95% 

confidence intervals, % 

98.84 

±1.16 

96.51 

±2.16 

97.99 

±1.51 

96.42 

±3.39 

95.75 

±2.89 

 

Another piece of research was carried out to test whether two transcriptions for 

a single command would increase RA results. Three commands (SEPTYNI, 

ASTUONI, and DEVYNI) were chosen for this task because, when listening to the 

recordings, it was clear that different speakers pronounce these commands differently 

based on their accent. For example, SEPTYNI was pronounced either as SEPTYNI or 

SEPTYNI depending on whether the speaker emphasized the vowel Y or I. The 

distribution of this phenomenon was evaluated, and notice was taken of the 

percentages of each occurrence when testing. Dict files were notated as in the 

following example: 

 
SEPTYNI 0.7 sm e pm tm y nm ik sp 

SEPTYNI 0.3 sm e pm tm yk nm i sp 

 
The detailed results of this are presented in Annex A (Tables 22A–24A), but 

ultimately the RA of the DEVYNI command did not increase above the 99.2% result 

obtained from previous tests, and ASTUONI already had an RA of 100%. The 

command SEPTYNI instead proved that RA could decrease by having two 

transcriptions for one command. 

These results show that command recognition accuracy depends on the proper 

number of phonemic segments, and as such it can be said that the selection of proper 

phonemic segments positively influences voice command recognition accuracy. 
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During the research, the number of phonemes was increased by including new 

phonemes which were believed to better represent obtuse sounds, or cliffs. However, 

increasing the number of phonemes, regardless of the features of the language, can 

greatly degrade RA simply because the recognizer will begin to confuse false sounds 

with correct sounds. Therefore, the formation of phoneme sets is a crucial task that 

requires extensive phonetic and phonological knowledge. 

 

4.2.1.3. Triphone-based HMM recognizer research 

Another piece of research was carried out to test models of contextual phonemes 

(triphones) made from monophones using HTK. Three different phoneme sets were 

used: 

 Digit1 (the primary), containing 19 phonemes; 

 Digit2 (SAMPA), containing 28 phonemes; 

 Digit16 (expanded), containing 35 phonemes. 

 

The results of this are presented in Table 4.14. 

 

Table 4.14. RA of triphone-based HTK models 

Phoneme set Digit1 Digit2  Digit16 

Number of phonemes in set 19 28  35 

Recognition accuracy,% 66.92 85.83 98.17 

 

Only the recognition accuracy of the primary set increased – from 62.08% to 

66.92%. The RA of the other two sets decreased by using triphones due to the fact 

that the speech corpus was not annotated. 

 The early stages of triphone construction, particularly state tying, are best done 

with single Gaussian models (112) – therefore, further research with Gaussian 

mixtures was not carried out. 
 

4.2.2. Lithuanian name and word recognition using a HTK-based Lithuanian 

recognizer  

4.2.2.1. Word-based HMM recognizer research 

HMM acoustic models for Lithuanian names and words were prepared using the 

NAMES3 speech corpus. The database was randomly divided into two sets: a training 

set consisting of 19 speakers, and a test set consisting of the remaining 3 speakers (the 

distribution of speakers is presented in Annex 5). Primary investigation was 

performed with 1-FOLD (see Annex 5) to see how important HMM parameters were 

– i.e., to ascertain the number of states and the number of Gaussians per state required 

in order to achieve a high RA.  

The accuracy of name recognition using the REC_LTw recognizer by varying 

the number of states is presented in Figure 4.5, and the full results are presented in 

Annex 5, Table 3. 
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Figure 4.5. Average RA of names and words by varying number of states 

 

The average RA of names and words using the HTK-based recognizer was 

60.20±14.85% when the number of states used in the HMMs of digit names was equal 

to the number of letters in the name. The average accuracy increased to 88.85±8.85% 

when three additional states were used. By adding more than three states to the model, 

the recognition accuracy decreased progressively.  

By incorporating Gaussian mixtures into the name command model, recognition 

accuracy was significantly improved. The results of the REC_LTw recognizer by 

varying number of Gaussians are presented in Figure 4.6, and the full list of results is 

provided in Annex 5, Table 5. The highest average RA of names was achieved with 

three additional states and two Gaussians – 99.17±0.83%.  

 

 
Figure 4.6. Average RA of names and words by varying number of Gaussian mixtures 
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For further research, 7-times cross-validation was carried out using three 

additional states and two Gaussian mixtures in state, due to the highest RA results 

having been achieved with these acoustic modeling parameters. The separate results 

of each name in each fold and the individual average accuracy of each fold is presented 

in Table 4.15. The average RA of all 7 folds is 96.7±2.45% 

 

Table 4.15. RA results with 7-times cross-validation of names and words  

Name 1-fold 2-fold 3-fold 4-fold 5-fold 6-fold 7-fold 

Austėja 100 100.0 100 100 100 100 100 

Boleslovas 100 100 100 100 100 100 100 

Cecilija 100 100 100 100 100 100 100 

Donatas 100 98.3 100 100 100 100 68.3 

Eimantas 100 100 96.7 100 100 100 91.7 

Fausta 100 96.7 100 100 100 100 98.3 

Gražvydas 100 100 100 100 100 100 88.3 

Hansas 100 100 95.0 96.7 98.3 78.3 90.0 

Izaokas 100 100 100 100 100 100 83.3 

Jonas 100 78.3 98.3 100 100 83.3 95.0 

Karolis 100 100 100 100 100 100 88.3 

Laima 100 100 100 100 100 100 91.7 

Martynas 100 100 100 100 100 100 100 

Nojus 100 71.7 98.3 60.0 96.7 88.3 100 

Oskaras 100 100 100 100 100 100 90.0 

Patrikas 100 93.3 100 98.3 100 100 93.3 

Kju 85.0 95.0 91.7 95.0 93.3 93.3 33.3 

Ričardas 98.3 100 100 100 100 100 98.3 

Sandra 100 100 100 100 96.7 98.3 96.7 

Teodoras 100 95.0 100 100 98.3 100 98.3 

Ulijona 100 100 100 100 100 100 98.3 

Vacys 98.3 100 96.7 98.3 96.7 100 98.3 

Wašington 100 100 100 100 100 100 100 

Xsas 93.3 96.7 95.0 71.7 66.7 76.7 33.3 

Ygrekas 100 98.3 100 100 100 100 95.0 

Zacharijus 100 100 100 100 100 100 100 

Average RA. % 
99.03 

±0.97 

97.05 

±2.63 

98.91 

±0.83 

96.92 

±3.08 

97.95 

±2.05 

96.85 

±2.69 

89.60 

±7.27 



109 

4.3. Chapter summary and results 

1. The RA results of the SKAIC30 Lithuanian digit name speech corpus obtained 

using the REC_MSS recognizer was 99.12±0.88%, and 92.05±5.48% using the 

REC_SP Spanish language recognizer. Both results were obtained using 

transcriptions of the isolated command selection technique and mixed 

transcriptions. 

2. Based on a selection method for names and words appropriate for the 

recognition of Latin letters, a speech corpus of 26 names and words was formed, 

which consisted of 20 utterances of each name or word by 21 speakers. 

3. The RA of the name speech corpus using the REC_SP recognizer was 

97.38±1.17%, obtained using a selection technique of isolated command 

transcriptions and mixed transcriptions. 

4. Using the REC_LTw recognizer, the RA of the Lithuanian digit name speech 

corpus was 99.19±0.81%, and the RA of the names and words corpus was 

96.7±2.45%. These results were obtained by using a technique for the 

recognition of isolated word commands that involved choosing the number of 

HMM states and Gaussian mixtures in a word-based HMM. 

5. The RA of the Lithuanian digit name speech corpus with the REC_LTp 

phoneme-based Lithuanian language recognizer was 97.1±1.11%. This was 

obtained using a technique for the recognition of isolated commands by 

introducing new monophones into a phoneme-based HMM. 
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5. RESEARCH ON A HYBRID SPEECH RECOGNITION SYSTEM  

The hybrid approach would make sense only if the performance of each 

individual approach was uncorrelated (i.e., both recognizers had a high enough 

recognition accuracy but their errors were largely different), or at least their 

performance could help in making a final decision. 

Table 5.1 presents the recognition results of four different types of recognizers 

used for the recognition of Lithuanian digits from 0 to 9 and 26 names and words 

equivalent to the Latin alphabet.  

 

Table 5.1. RAs of different recognizers using speech corpora of digits and 

names  

Recognizer Recognizer’s 

name 

Recognition accuracy, % 

Digits Names 

Adapted Spanish recognizer REC_SP 92.05 97.38 

Word-based Lithuanian 

recognizer (isolated words)  
REC_LTw 99.19 96.7 

Phoneme-based Lithuanian 

recognizer  
REC_LTp 

97.1 

 
- 

Speech server (Spanish) REC_MSS 99.12 - 

 

 Using the Weka data mining package, classification research was carried 

out using four different combinations of recognizers: 

1. REC_LTw/REC_SP (with both the digits and the 26 names and words 

speech corpus)  

2. REC_LTw/REC_LTp (using only the digits speech corpus) 

3. REC_LTw/REC_LTp/REC_SP (using only the digits speech corpus)  

4. REC_LTw/REC_MSS (using only the digits speech corpus)  

Two more pieces of research on classification were carried out using the LIEPA 

speech corpus, with isolated words and phrases using the Kaldi toolkit. Additional 

research was also undertaken with a noisy corpus (NAMES3) and two different 

recognizers (Kaldi and TensorFlow). 

A decision unit (in this case the Weka package) should realize the hybrid 

decision-making rule. This was taught and tested using the cross-validation method 

(unknown speaker).  

A hybrid decision-making rule was also taught and tested using the regular 10-

times cross-validation method, without regard to the interface between training 

objects and speakers. This was taught using 90% of the objects, the accuracy was 

measured using the remaining 10% of the objects, 10 tests were performed, and after 

changing the set of test objects the results were averaged. There were examples of the 

voices of the same speakers in both the training and testing samples. The results of 

this classification are presented in the following sections. 
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5.1. The connection of two recognizers: Spanish and HTK word-based 

The realization of a hybrid recognizer is still an open and somewhat unresolved 

question. This is especially true when combining the results obtained from two 

recognizers that are as different as the adapted foreign language REC_SP engine and 

REC_LTw.  

The most important part of the hybrid solution is the decision-making block. For 

training, we used recordings from the collected corpus when the outputs of adapted 

Spanish and proprietary Lithuanian recognizers differed. Using this data, the task was 

to create two classes (TF and FT). Each data object was formed from the decisions of 

two different recognizers for each utterance. This data set is characterized by 

significant disproportion of the objects in different classes (Tables 5.2 and 5.6). 

 

5.1.1. Digit-name recognition: a hybrid approach   

Table 5.2 summarizes the data set used to construct a decision rule for the 

classification of digit names by REC_LTw (two additional states and six Gaussians) 

and the outputs of the SP recognizer. Class TF contained 335 objects, while class FT 

contained only 43. A simple (“blind”) decision rule – whereby if the outputs of two 

recognizers differ, the output of the “better” recognizer is used, in this case REC_LTw 

– should lead to 335/378*100 = 88.62% accuracy. Hybrid technology is therefore 

useful only if it surpasses this level of accuracy. 

 

Table 5.2. Subsets of data used for decision rule training for the classifications 

of the REC_LTw/REC_SP recognizers  

Subset Description Number of 

phrases 

T=T Both recognizers produce the same hypotheses and both hypotheses are 

correct 

5482 

F=F Both recognizers produce the same hypotheses and both hypotheses are 

incorrect 

- 

T- The REC_LTw recognizer produces a correct decision, while the REC_SP 

recognizer does not produce any decision 

134 

F- The REC_LTw recognizer produces an incorrect decision, while the  

REC_SP recognizer does not produce any decision 

3 

-T The REC_SP recognizer produces a correct decision, while the  REC_LTw 

recognizer does not produce any decision  

- 

-F The REC_SP recognizer produces an incorrect decision, while  the 

REC_LTw recognizer does not produce any decision 

- 

-- Both recognizers do not produce any decision - 

TF Both recognizers produce different hypotheses, and REC_LTw produces a 

correct decision 

335 

FT Both recognizers produce different hypotheses, and REC_SP produces a 

correct decision 

43 

FF Both recognizers produce different hypotheses, and both produce an incorrect 

decision 

3 

Total number of phrases 6000 
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The W-value (from the Wilcoxin signed rank test) was 7. The critical value 

of W for N = 10 at p ≤ 0.05 was 8. Therefore, the result was significant at p ≤ 0.05. 

There was sufficient evidence to suggest that there was a difference between the 

additives. 
The decision-making rule was taught and tested using the 5-times cross-

validation method. This was taught using the data of 24 speakers, while the data of 

the remaining six speakers was used for checking the accuracy of the learned rule 

(later, the results of the five tests were averaged). The results of this experiment are 

presented in Table 5.3.  

A hybrid decision-making rule was also taught and tested using the regular 10-

times cross-validation method, without regard to the interface between training 

objects and speakers. The results of this experiment results are also presented in Table 

5.3.  

 

Table 5.3. Classification accuracy results of the REC_LTw/REC_SP 

recognizers 

Name of classifier 
10-times cross-

validation, % 

5 times cross-

validation, %  

RIPPER 94.71 95.42 

C4.5 96.83 95.31 

Multinominal Logistic 

Regression 
97.09 96.04 

Multilayer Perceptron 96.83 96.88 

ZeroR 88.62 88.22 

AdaBoost 97.35 96.95 

K-Nearest Neighbor (kNN) 96.56 94.77 

RandomForest 98.15 98.26 

Support Vector Machines 95.50 93.45 

NaiveBayes 92.06 85.83 

 

From the analysis of the results provided in Table 5.3, it is evident that the ZeroR 

classifier is inappropriate for the task set due to it having achieved the lowest results. 

The best classification results in both cases were obtained using the RF classifier (100 

trees). After changing the random seed for XVal/%Split from 1 to 40, which specifies 

the random seed used when randomizing the data before it is divided up for evaluation 

purposes, the average classification accuracy with 10-times cross-validation was 

98.15 with standard deviation of 0.24. 

 A hybrid decision-making rule learned with the RF classifier works 

99.79±0.07% of the time when 10-times cross-validation is performed, and 99.78% 

of the time when the speaker is not known and 5-times cross-validation is performed. 

Compared to the REC_LTw recognizer alone, the error percentage of the 10-times 

cross-validation results decreased by 72.84%.  

  Based on the results presented by Jovic and Bogunovic (172), it is appropriate 

to look for the number of trees for the RF classifier that is most efficient in the sense 

of classification accuracy. 
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For this, a 10-times cross-validation experiment was performed using 90% of 

the objects for training, and using the remaining 10% of the objects for testing and 

changing the number of trees of the RF classifier from 1 to 100. The results of this 

classification are presented in Figure 5.1.  

 

 
Figure 5.1. The reliance of classification accuracy on the number of trees in the RF 

classifier  

 

By increasing the number of trees, classification accuracy rises slightly until it 

reaches a maximum of 98.41%, when the number of trees is equal to 28 and 29. 

Further increase in the number of trees does not result in an increase in accuracy, as 

from 30 to 100 tress accuracy remains stable at 98.15%. 

Using the Weka data mining package, an additional test was performed to 

analyze the impact of features such as “REC_LTw_prob,” “REC_SP_prob,” 

“REC_SP_supp,” “REC_LTw_delta,” “letters” (32 letters in the vocabulary of 10 

digit names), and “gender.” For this, a 10-times cross-validation experiment was 

carried out by eliminating certain features and using an RF classifier (28 trees). The 

results of this experiment are presented in Table 5.4. 

 

Table 5.4. The reliance of classification accuracy results on features with the 

RF classifier 

Feature list 
Classification 

accuracy, % 

Full list (REC_LTw_prob, REC_SP _prob, Class, REC_SP _supp, 

REC_LTw_delta, letters, gender) 
98,41 

Full list (no letters) 93.65 

Full list (no gender) 98.15 

Full list (no_REC_LTw_delta) 98.68 

Full list (no REC_SP_supp) 98.41 

Full list (no REC_SP _supp, no_REC_LTw_delta) 96.83 

Full list (no gender, no letters) 94.97 

Full list (no letters, no REC_LTw_delta) 92.59 

Full list (no gender, no_ REC_SP _supp) 98.15 

Full list (no letters, no_ REC_SP _supp) 94.18 

Full list (no gender, no_REC_LTw_delta) 98.41 
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Only REC_LTw_prob, REC_SP _prob, Class 92.06 

Only REC_LTw_prob, REC_SP _prob, Class, letters 98.15 

Only REC_LTw_prob, REC_SP _prob, Class, gender 93.39 

Only REC_LTw_prob, REC_SP _prob, Class, REC_LTw_ delta 94.44 

Only REC_LTw_prob, REC_SP _prob, Class, REC_SP _supp 93.39 

 

The highest classification accuracy results were achieved with the Full list 

(no_REC_LTW_delta) feature set, however the unmodified Full list achieved a lower 

classification accuracy. It can be seen from the results that the “letters” feature has the 

most impact on classification accuracy and the “SP_supp” feature has no impact on 

classification accuracy.  

 

5.1.2. Lithuanian name and word recognition: a hybrid approach   

Two recognizers – REC_LTw (three additional states and two Gaussians) and 

REC_SP – were used for the isolated word command recognition of 26 names and 

words. The results obtained were gathered and systemized for classification, and the 

subsets and number of phrases in each is presented in Table 5.5. The “blind” decision 

rule was also applied which, as subset FT had more objects, in this case means that 

the “better” recognizer would be the REC_SP recognizer, and should lead to an 

accuracy of 314/611*100 = 51.39%. If classification accuracy were to surpass this 

result, then hybrid technology would be useful. 

 

Table 5.5. Subsets of data used for decision rule training for the classifications 

of the REC_LTw/REC_SP recognizers of the NAMES3 speech corpus 

Subset Description 
Number 

of phrases 

T=T Both recognizers produce the same hypotheses and both hypotheses are 

correct 

10,253 

F=F Both recognizers produce the same hypotheses and both hypotheses are 

incorrect 

19 

T- Recognizer REC_LTw produces correct decision while recognizer 

REC_SP does not produce any decision 

1 

F- The REC_LTw recognizer produces an incorrect decision, while the  

REC_SP recognizer does not produce any decision 

1 

-T The REC_SP recognizer produces a correct decision, while the  REC_LTw 

recognizer does not produce any decision  

- 

-F The REC_SP recognizer produces an incorrect decision, while  the 

REC_LTw recognizer does not produce any decision 

- 

-- Both recognizers do not produce any decision - 

TF Both recognizers produce different hypotheses, and REC_LTw produces a 

correct decision 

297 

FT Both recognizers produce different hypotheses, and REC_SP produces a 

correct decision 

314 

FF Both recognizers produce different hypotheses, and both produce an 

incorrect decision 

35 

Total number of phrases 10,920 
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The W-value was 170. The critical value of W for N = 26 at p ≤ 0.05 was 98. 

Therefore, the result was not significant at p ≤ 0.05. 

As in previous classification research, the decision-making rule was taught and 

tested in two ways: the 10-times cross-validation method and the 7-times cross-

validation method. Classification was taught using the data of 18 speakers, while the 

data of the remaining three speakers was used for checking the accuracy of the learned 

rule (later on, the results of seven tests were averaged). These test results are presented 

in Table 5.6.  

 

Table 5.6. Classification accuracy results of the REC_LTw/REC_SP 

recognizers 

Name of classifier 
10-times cross-

validation mean, % 

7-times cross-validation 

mean, %  

RIPPER 95.91 89.25 

C4.5 99.02 90.69 

Multinominal Logistic 

Regression 
93.45 85.39 

Multilayer Perceptron 97.71 90.32 

ZeroR 51.39 42.21 

AdaBoost 93.78 90.37 

K-Nearest Neighbor 

(kNN) 
96.07 86.67 

Random Forest 99.02 95.26 

Support Vector 

Machines 
96.07 87.07 

NaiveBayes 85.11 83.81 

 

The random forest classifier managed to achieve the highest accuracy of the ten 

classifiers listed. After changing the random seed for XVal/%Split from 1 to 40, the 

average classification accuracy with 10-times cross-validation was 98.93% with a 

standard deviation of 0.27. 

A hybrid decision-making rule learned by an RF classifier works with 

99.44±0.09% accuracy when a speaker is known, and 99.23% when a speaker is not 

known. Compared to the REC_LTw recognizer alone, the error percentage of the 

results decreased by 70.61%. 

The number of trees used at testing was 100. Therefore, research was carried out 

to evaluate the dependency on the number of trees in the RF classifier. The results of 

this are presented in Figure 5.2. 
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Figure 5.2. The reliance of classification accuracy on the number of trees in the RF 

classifier 

Depending on the varying number of trees in the RF classifier, accuracy 

fluctuated from 98.85 with 46 trees, to 98.19 with 48 trees, and then recovering to a 

stable 99.02 with 100–150 trees. 

Further research was carried out to evaluate the reliance of classification 

accuracy on the features of the names vocabulary, using the RF classifier with 46 

trees. The number of features used for the research was 62, depending mostly on the 

number of letters distributed in commands. The results obtained are presented in Table 

5.7. 

 

Table 5.7. The reliance of classification accuracy results on features with the 

RF classifier 

Feature list Classification accuracy, % 

Full list 98.85 

Full list(no letters) 91.82 

Full list(no gender) 98.85 

Full list(no_REC_LTw_delta) 98.36 

Full list (no REC_SP_supp) 98.36 

Full list(no REC_SP_supp,no_REC_LTw_delta) 96.89 

Full list (no gender, no letters) 91.65 

Full list(no letters,no_REC_LTw_delta) 86.91 

Full list(no gender,no_ REC_SP_supp) 96.89 

Full list(no letters,no_ REC_SP_supp) 91.49 

Full list(no gender,no_REC_LTw_delta) 97.71 

REC_LTw_prob, REC_SP_prob, Class 76.10 

REC_LTw_prob, REC_SP_prob, Class, letters 95.42 

REC_LTw_prob, REC_SP_prob, Class, gender 78.39 

REC_LTw_prob, REC_SP_prob, Class, REC_LTw_delta 91.33 

REC_LTw_prob, REC_SP_prob, Class, REC_SP_supp 85.11 

After analysis of the test results, and taking account into the possibilities of 

realization, it is evident that the inclusion of some of the features in the classification 

is not essential, as they exert little or no influence on the classification result. For 

example, the “gender” feature had no influence on the accuracy of the classification 

result, though the determination of gender in speech recognition is a difficult task. 
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5.2. The connection of two recognizers: word-based and phoneme-based HTK 

The following research was carried out by combining the REC_LTw (two 

additional states and six Gaussians) and REC_LTp (extended 35 phoneme set) 

recognizers using the digit vocabulary. Although the recognizers are both HTK-based, 

the produced recognition hypotheses differ due to their different methods. The 

distribution of subsets is presented in Table 5.8. In the case of this classification, the 

“blind” decision rule was again used. The TF subset had more objects and the “better” 

recognizer was the REC_LTw recognizer, which should lead to an accuracy of 

138/148*100 = 93.24%. 

 

Table 5.8. Subsets of data used for decision rule training with the 

classification of the results of the REC_LTw and REC_LTp recognizers 

Subset Description Number 

of phrases 

T=T Both recognizers produce the same hypotheses and both hypotheses are 

correct 

5,816 

F=F Both recognizers produce the same hypotheses and both hypotheses are 

incorrect 

23 

T- The REC_LTw recognizer produces a correct decision, while the 

REC_LTp recognizer does not produce any decision 

- 

F- The REC_LTw recognizer produces an incorrect decision, while the  

REC_LTp recognizer does not produce any decision 

- 

-T The REC_LTp recognizer produces a correct decision, while the  

REC_LTw recognizer does not produce any decision  

- 

-F The REC_LTp recognizer produces an incorrect decision, while  the 

REC_LTw recognizer does not produce any decision 

- 

-- Both recognizers do not produce any decision - 

TF Both recognizers produce different hypotheses, and REC_LTw produces 

a correct decision 

138 

FT Both recognizers produce different hypotheses, and REC_LTp produces 

a correct decision 

10 

FF Both recognizers produce different hypotheses, and both produce an 

incorrect decision 

13 

Total number of phrases 6,000 

 

The W-value was 1, and the critical value of W for N = 10 at p ≤ 0.05 was 8. 

Therefore, the result was significant at p ≤ 0.05. There was sufficient evidence to 

suggest that there was a difference between the additives. 
The REC_LTw/REC_LTp hybrid approach has the most phrases in the subset 

of F=F, which will influence the hybrid decision-making rule percentage. The 

classification accuracy results of the REC_LTw and REC_LTp recognizers are 

presented in Table 5.9. 
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Table 5.9. Classification accuracy of REC_LTw and REC_LTp with different 

classifiers 

Name of classifier 
10-times cross-

validation mean, % 

5 times cross-validation 

mean, % 

RIPPER 96.62 96.71 

C4.5 97.97 97.31 

Multinominal Logistic 

Regression 
99.32 99.13 

Multilayer Perceptron 98.65 90.24 

ZeroR 93.24 89.83 

AdaBoost 99.32 96.71 

K-Nearest Neighbor (kNN) 100 99.13 

RandomForest 99.32 99.13 

Support Vector Machines 100 99.13 

NaiveBayes 100 97.31 

 

After changing the random seed for XVal/%Split from 1 to 40, the average 

classification accuracy using the 10-times cross-validation method did not change 

with either classifier. 

Although classification accuracy was 100%, when 10-times cross-validation 

was used a hybrid decision-making rule learned by the KNN and SVM classifiers 

worked with 99.40% accuracy due to the F = F subset and the number of words 

unrecognized by both recognizers. With the results of an unknown speaker, a hybrid 

decision-making rule was learned 99.38% of the time. Compared to the results of the 

REC_LTw recognizer, the error percentage decreased by only 23.46%. 

Research with the kNN classifier was performed by varying the number of 

neighbors from 1 to 100. These results are presented in Figure 5.3.  

 

Figure 5.3. The reliance of classification accuracy results on the number of neighbors with 

the kNN classifier 

Figure 5.3 shows that by increasing the number of neighbors with the kNN 

classifier, classification accuracy decreases. A classification accuracy of 100% was 

achieved using one neighbor. This accuracy stabilizes at 93.24% from 15 neighbors 

to 100. 
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Another piece of research was performed with the SVM classifier, by varying 

kernels. The results of this are presented in Table 5.10. 

Table 5.10. The reliance of classification accuracy on the kernels used in the 

SVM classifier 

Kernel Accuracy of Correctly 

Classified Instances, % 

PolyKernel 100 

NormalizedPolyKernel 100 

Puk 97.30 

RBFKernel 100 

 

Because two classifiers presented the same classification accuracy, research into 

reliance on features was carried out using two classifiers: kNN (one neighbor) and 

SVM (PolyKernel). The results of both classifiers are presented in Table 5.11. 

 

Table 5.11. The reliance of classification accuracy results on features, with the 

kNN and SVM classifiers 

 

Feature list 

Classification accuracy, %  

kNN SVM 

Full list (REC_LTw_prob, REC_LTp_prob, REC_LTP_supp, 

REC_LTw_delta, letters, gender) 
100 100 

Full list (no letters) 93.24 93.24 

Full list (no gender) 100 100 

Full list (no_REC_LTw_delta) 100 100 

Full list (no REC_LTp_supp) 100 100 

Full list (no REC_LTp_supp, no_REC_LTw_delta) 100 100 

Full list (no gender, no letters) 92.57 93.24 

Full list (no letters, no REC_LTw_delta) 93.24 93.24 

Full list (no gender, no_REC_LTp_supp) 100 100 

Full list (no letters, no_REC_LTp_supp) 95.27 93.24 

Full list (no gender, no_REC_LTw_delta) 100 100 

Only REC_LTw_prob, REC_LTp_prob, class 95.27 93.24 

Only REC_LTw_prob, REC_LTp_prob, letters 100 100 

Only REC_LTw_prob, REC_LTp_prob, gender 95.95 93.24 

Only REC_LTw_prob, REC_LTp_prob, REC_LTW_ delta 95.27 93.24 

Only REC_LTw_prob, REC_LTP_prob, REC_LTP_supp 93.24 93.24 

 

In this research into reliance on features, slightly better classification results 

were achieved using the kNN classifier. It was evident that using only the 

“REC_LTw_prob,” “REC_LTp_prob,” and “letters” features provides the same 

classification accuracy as using the full list of features.  

 

5.3. The connection of three recognizers: Spanish, HTK word-based, and HTK 

phoneme-based 

In order to create a hybrid speech recognizer, it was first necessary to find the 

best combinations of speech recognizers that produced the highest RA results. 
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Therefore, three recognizers – REC_LTw (two additional states and six Gaussians), 

REC_LTp (extended 35 phoneme set), and REC_SP – were combined using the digit 

vocabulary. The distribution of these subsets is presented in Table 5.12.   

 

Table 5.12. Subsets of data used for decision rule training for the classification 

of the results of the REC_LTw/REC_LTp/REC_SP recognizers  

Subset Description Number of 

phrases 

TTT All recognizers produce the same hypotheses and all hypotheses are 

correct 

5,362 

FFF All recognizers produce the same or different hypotheses and all 

hypotheses are incorrect 

1 

TTF The REC_LTw and REC_SP recognizers produce the same 

hypotheses and the hypotheses are correct, the REC_LTp hypothesis 

is incorrect 

118 

TFT The REC_LTw and REC_LTp recognizers produce the same 

hypotheses and the hypotheses are correct, the REC_SP hypothesis is 

incorrect 

451 

FTT The SP and REC_LTp recognizers produce the same hypotheses and 

the hypotheses are correct, the REC_LTw hypothesis is incorrect 

8 

TFF The SP and REC_LTp recognizers produce the same hypotheses and 

the hypotheses are incorrect, the REC_LTw hypothesis is correct 

20 

FTF The REC_LTw and REC_LTp recognizers produce the same 

hypotheses and the hypotheses are incorrect, the REC_SP hypothesis 

is correct 

35 

FFT The REC_LTw and REC_SP recognizers produce the same 

hypotheses and the hypotheses are incorrect, the REC_LTp 

hypothesis is correct 

5 

Total number of phrases 6,000 

 

When evaluating the Kruskal–Wallis H test, the H statistic was 9.42 (2, N = 30). 

The p-value was 0.009, and the result was significant at p ≤ 0.05. The recognition 

accuracy was significantly different among the three recognizers. 

Subset FFF, where all recognizers produced the same or different hypotheses 

and the hypotheses were incorrect, had only one phrase. This means that there was 

only one case where all of the recognizers produced an incorrect answer – in all other 

cases, one or two recognizers produced the correct answer. The results of this 

classification are presented in Table 5.13.  

The highest classification results were obtained by the RF classifier (100 trees). 

After changing the random seed for XVal/%Split from 1 to 40, the average 

classification accuracy with 10-times cross-validation was 99.67% (standard 

deviation 0.28). 
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Table 5.13. Classification accuracy results of the REC_LTw / REC_LTp / 

REC_SP recognizers 

Name of classifier 
10-times cross-

validation mean, % 

5 times cross-validation 

mean, % 

RIPPER 96.23           94.17 

C4.5 95.91           95.102 

Multinominal Logistic 

Regression 
96.54           93.27 

Multilayer Perceptron 96.70 95.67 

ZeroR 92.46 92.69 

AdaBoost 92.46 93.04 

K-Nearest Neighbor (kNN) 96.86 95.95 

RandomForest 97.17 96.52 

Support Vector Machines 96.07 95.08 

NaiveBayes 92.77 93.45 

 

The hybrid decision-making rule was evaluated by adding together the number 

of phrases of the subsets TTF+TFT+FTT+TFF+FTF+FFT and multiplying it by the 

classification accuracy, and adding the number of phrases in the TTT subset and 

dividing by the total number of phrases. The classifier hybrid decision-making rule 

worked at an accuracy of 99.67±0.09% with 10-times cross-validation, and at 99.61% 

with 5-times cross-validation. Compared to the REC_LTw recognizer alone, the error 

percentage of these results decreased by 51.85%. 

Using the RF classifier, reliance on number of trees was also evaluated in the 

classification of these three recognizers. This classification accuracy is presented in 

Figure 5.4. 

 

 
Figure 5.4. The reliance of classification accuracy on the number of trees in the RF 

classifier 

 

5.4. The connection of two recognizers:  HTK word-based and Speech Server 

Another hybrid solution was evaluated using the REC_LTw (two additional 

states and six Gaussians) and REC_MSS recognizers with the digit vocabulary. The 

subsets and numbers of phrases in each subset are presented in Table 5.14. 
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Table 5.14. Subsets of data used for decision rule training for the 

classifications of REC_LTw/REC_MSS  

Subset Description Number 

of phrases 

T=T Both recognizers produce the same hypotheses and both hypotheses are 

correct 

5,902 

F=F Both recognizers produce the same hypotheses and both hypotheses are 

incorrect 

- 

T- The REC_LTw recognizer produces a correct decision, while the 

REC_MSS recognizer does not produce any decision 

3 

F- The REC_LTw recognizer produces an incorrect decision, while the  

REC_MSS recognizer does not produce any decision 

- 

-T The REC_MSS recognizer produces a correct decision, while the  

REC_LTw recognizer does not produce any decision  

- 

-F The REC_MSS recognizer produces an incorrect decision, while  the 

REC_LTw recognizer does not produce any decision 

- 

-- Both recognizers do not produce any decision - 

TF Both recognizers produce different hypotheses, and REC_LTw produces a 

correct decision 

51 

FT Both recognizers produce different hypotheses, and REC_MSS produces a 

correct decision 

44 

FF Both recognizers produce different hypotheses, and both produce an 

incorrect decision 

- 

Total number of phrases 6,000 

 

The W-value was 13.5. The critical value of W for N = 7 at p ≤ 0.05 was 2. 

Therefore, the result was not significant at p ≤ 0.05. 

Using the Weka package and ten data mining algorithms, the classification 

accuracy results of these two recognizers are presented in Table 5.15. 

 

Table 5.15. Classification accuracy results of the REC_LTw/REC_MSS 

recognizers 

Name of classifier 
10-times cross-

validation mean, % 

5-times cross-validation 

mean, % 

RIPPER 95.79 89.58 

C4.5 90.53 78.16 

Multinominal Logistic 

Regression 
97.89 81.55 

Multilayer Perceptron 98.95 81.25 

ZeroR 53.68 45.46 

AdaBoost 95.79 92.08 

K-Nearest Neighbor (kNN) 96.84 89.88 

RandomForest 100 93.33 

Support Vector Machines 94.74 80.29 

NaiveBayes 93.68 80.16 
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The highest classification results in both cases were obtained by the RF classifier 

(100 trees). After changing the random seed for XVal/%Split from 1 to 40, the average 

classification accuracy with 10-times cross-validation was 99.66% (standard 

deviation 0.60). A hybrid decision-making rule learned by the RF classifier works 

with 99.99±0.01% accuracy when 10-times cross-validation is applied, and 99.89% 

when 5-times cross-validation is applied. Compared to the REC_LTw recognizer 

alone, the error percentage of these results decreased by 86.42%. 

The reliance of classification accuracy on the number of trees with the RF 

classifier is presented in Figure 5.5. 

 

Figure 5.5. The reliance of classification accuracy on the number of trees in the RF 

classifier 

The highest classification accuracy was obtained with 22 trees. The accuracy 

then decreased to 98.95% with 23 trees before climbing again using 24 trees, 

remaining stable until 100 trees. 

Therefore, an analysis of the reliance of the classification accuracy on the 

features of the RF classifier was carried out using 22 trees. These results are presented 

in Table 5.16. 

Of the features used for classification, a “Full list” was most effective. The 

highest impact on results was exerted by the “letters” feature. By eliminating this 

feature, the classification accuracy decreased by 23.16%. The lowest impact was 

exerted by the features of “gender” and “REC_LTw_delta.” 
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Table 5.16. The results of the reliance of classification accuracy on features 

with the RF classifier 

Feature list Classification 

accuracy, %  

Full list (REC_LTw_prob, REC_MSS_prob, Class, REC_MSS _supp, 

REC_LTW_delta, letters, gender) 
100 

Full list (no letters) 76.84 

Full list (no gender) 98.95 

Full list (no_REC_LTw_delta) 98.95 

Full list (no REC_MSS_supp) 94.74 

Full list (no REC_MSS_supp, no_REC_LTw_delta) 95.79 

Full list (no gender, no letters) 81.05 

Full list (no letters, no REC_LTw_delta) 77.89 

Full list (no gender, no_ REC_MSS_supp) 96.84 

Full list (no letters, no_ REC_MSS_supp) 78.95 

Full list (no gender, no_REC_LTw_delta) 95.79 

Only REC_LTw_prob, REC_MSS_prob, Class 76.84 

Only REC_LTw_prob, REC_MSS_prob, Class, letters 95.79 

Only REC_LTw_prob, REC_MSS_prob, Class, gender 71.58 

Only REC_LTw_prob, REC_MSS_prob, Class, REC_LTw_ delta 75.79 

Only REC_LTw_prob, REC_MSS_prob, Class, REC_MSS_supp 77.89 

 

5.5. The recognition of the LIEPA speech corpus using a hybrid approach 

5.5.1. Isolated word recognition 

A 5-times cross-validation test was carried out using two additional states and 

six Gaussians due to the highest RA results having been achieved with these acoustic 

modeling parameters during the REC_LTw research in subsection 4.2.1.1. In each 

fold, speakers were rotated in order to test all 50 of them (see Annex 6). The results 

of this analysis are presented in Table 5.17. 

 

Table 5.17. The results of the 5-times cross-validation of the RA of Lithuanian 

digit names from the LIEPA speech corpus, using two additional states and six 

Gaussians  

Command 1-Fold 2-Fold 3-Fold 4-Fold 5-Fold 

NULIS 100 60 100 100 100 

VIENAS 100 40 100 100 100 

DU 80 100 90 100 90 

TRYS 70 60 100 100 90 

KETURI 90 80 100 90 100 

PENKI 90 50 80 100 100 

SESI 100 90 100 100 100 

SEPTYNI 100 90 90 100 90 

ASTUONI 100 90 100 100 100 

DEVYNI 100 90 100 100 100 

Average RA with 95% 

confidence level, % 

93±6.57 75±12.82 96±4 99±1 97±2.99 
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The average recognition accuracy of all 5 folds was 92±3.31% (standard 

deviation 5.33).  

The second recognizer, REC_SP, was used with the same fragment of the 

LIEPA speech corpus. A male profile and mixed transcriptions were used due to the 

highest RA results having been achieved under these conditions in the previous testing 

of REC_SP in section 4.1.2.1. The results of this are presented in Table 5.18. 

 

Table 5.18. RA of digit names with REC_SP using the LIEPA speech corpus  

Command REC_SP RA, % 

NULIS 78 

VIENAS 96 

DU 90 

TRYS 82 

KETURI 46 

PENKI 62 

SESI 84 

SEPTYNI 88 

ASTUONI 90 

DEVYNI 92 

Average RA, % 80.8±11.09 

 

The average RA of digit names with REC_SP using the LIEPA speech corpus 

was 80.8±9.61% (standard deviation 5.33).  

The obtained results were gathered and systemized for classification, and the 

subsets and numbers of phrases in each subset are presented in Table 5.19. 

 

Table 5.19. The subsets of data used for decision rule training for the 

classification of the results of the REC_LTW/REC_SP recognizers with the LIEPA 

speech corpus  

Subset Description 

Number 

of 

phrases 

T=T Both recognizers produce the same hypotheses and both hypotheses are correct 375 

 

F=F Both recognizers produce the same hypotheses and both hypotheses are incorrect 3 

T- The REC_LTw recognizer produces a correct decision, while the REC_SP 

recognizer does not produce any decision 

64 

F- The REC_LTw recognizer produces an incorrect decision, while the  REC_SP 

recognizer does not produce any decision 

6 

-T The REC_SP recognizer produces a correct decision, while the  REC_LTw 

recognizer does not produce any decision  

- 

-F The REC_SP recognizer produces an incorrect decision, while  the REC_LTw 

recognizer does not produce any decision 

- 

-- Both recognizers do not produce any decision - 

TF Both recognizers produce different hypotheses, and REC_LTw produces a 

correct decision 

21 
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FT Both recognizers produce different hypotheses, and REC_SP produces a correct 

decision 

29 

FF Both recognizers produce different hypotheses, and both produce an incorrect 

decision 

2 

Total number of phrases 500 

 

The W-value was 1. The critical value of W for N = 10 at p ≤ 0.05 was 8. 

Therefore, the result was significant at p ≤ 0.05. There was sufficient evidence to 

suggest that there was a difference between the additives. 

The decision-making rule was taught and tested with the 10-times cross-

validation method. The results of this experiment are presented in Table 5.20.  

 
Table 5.20. The results of the classification accuracy of the 

REC_LTw/REC_SP recognizers 

Name of classifier 10-times cross-validation mean, % 

RIPPER 82 

C4.5 82 

Multinominal Logistic Regression 70 

Multilayer Perceptron 88 

ZeroR 60 

AdaBoost 82 

K-Nearest Neighbor (kNN) 88 

RandomForest 86 

Support Vector Machines 82 

NaiveBayes 82 

 

Of the 10 classifiers listed, the Multilayer Perceptron and kNN classifiers 

managed to achieve the highest accuracy. After changing the random seed for 

XVal/%Split from 1 to 40, the average classification accuracy with 10-times cross-

validation was 87.35% (standard deviation 2.19) with the Multilayer Perceptron 

classifier, and 87.8% (standard deviation 1.96) with kNN. 

With 10-times cross-validation testing, a hybrid decision-making rule was 

learned 96.74±0.68% of the time with the Multilayer Perceptron classifier. 

Compared to the results of the REC_LTw recognizer alone, the error percentage 

of these results decreased by 59.25% with the Multilayer Perceptron classifier.  

These results show that the acoustic models and connection technology 

examined are suitable for digit recognition with different speech corpora. 

 

5.5.2. Phrase recognition  

Phrase recognition research was carried out using the LIEPA speech corpus. The 

Z060 corpus was selected for this research, due to its large number of speakers and 

the majority of its commands being phrases (see Table 3.2). The part that was used 

for recognition contained 143 speakers and 26 commands (eight isolated words and 
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18 phrases containing up to four words). This research was executed to show that not 

only isolated words could be recognized with this method. 

Using the Kaldi toolkit (57), recognition research was carried out using acoustic 

models involving both monophones and triphones. The same MFCC-based features 

as in the HTK package and the other default parameters of monophone and triphone 

recognition methods were used for phrase recognition by the Kaldi package. 

Approximately 20% of the corpus was used as the test set, and the remainder was used 

for training the system. The 5-times cross-validation method was carried out with the 

whole Z060 corpus. The recognition results are presented in Table 5.21.  

 

Table 5.21. RA results of monophone and triphone acoustic models of phrases 

in the LIEPA speech corpus 

 Models Fold 1 Fold 2 Fold 3 Fold 4 Fold 5  AVERAGE RA, % 

Monophone 89.44 79.75 89.92 87.15 83.90 86.04±8.25% 

Triphone 88.02 88.71 90.46 91.09 91.45 89.95±4.25% 

 

The average phrase recognition accuracy with monophone acoustic models was 

86.04% while using default parameters, and 89.95% with triphone models by adding 

Gaussian mixtures. Compared to word recognition accuracy, these results were lower, 

as monophone and triphone acoustic modelling returned results of 91.99% and 

93.92%, respectively. Kaldi gives an average estimate of the logarithmic probability 

of the whole phrase, and HTK gives the logarithmic probability of each word 

individually. For these reasons, it was decided to evaluate the recognition accuracy of 

the whole phrase. 

There were no cases where either recognizer did not produce a decision, but 

there were many where both recognizers produced the same incorrect decision. Most 

of these incorrect decisions were missing the short word “į” – e.g., “grįžti į skyriaus 

turinį,” “grįžti į temos turinį.” Many mistakes were also made in failing to recognize 

another short word: “ir” – e.g., “junesko ir lietuva.”  

The results obtained were gathered and systemized for classification, and the 

complementarity of the results of both recognizers is presented in Table 5.22. 

 

Table 5.22. The complementarity of monophone- and triphone-based 

recognizers 

Subset Description Number 

of 

phrases 

T=T Both recognizers produced the same correct decision 2,900 

F=F Both recognizers produced the same incorrect decision 144 

T- 
The recognizer with triphone AM produced a correct decision, while the 

recognizer with monophone AM did not produce a decision 
- 

F- 
The recognizer with monophone AM produced a correct decision, while the 

recognizer with triphone AM did not produce a decision 
- 
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-T 
The recognizer with monophone AM produced a correct decision, while the 

recognizer with triphone AM did not produce a decision 
- 

-F 
The recognizer with triphone AM produced a correct decision, while the 

recognizer with monophone AM did not produce a decision 
- 

-- Both recognizers did not produce a decision - 

TF Only the recognizer with triphone AM produced a correct decision 159 

FT Only the recognizer with monophone AM produced a correct decision 302 

FF Both recognizers produced different incorrect decisions 64 

 

The decision-making rule was taught and tested with the 10-times cross-

validation method. The features used for classification were: obtained logarithmic 

probability from recognizers output, letters (the proportion of the number of certain 

letters to the number of all letters in the decision of the recognizers), and gender. The 

results of the classification experiment are presented in Table 5.23. 
 

Table 5.23. The classification accuracy of the results of recognizers 

Name of classifier 
10-times cross-validation 

mean, % 

RIPPER 91.32 

C4.5 92.19 

Multilayer Perceptron 91.54 

ZeroR 65.51 

AdaBoost 85.25 

RandomForest 94.14 

NaiveBayes 83.30 

 

The highest classification results were obtained by the RF classifier. After 

changing the random seed for XVal/%Split from 1 to 40, the average classification 

accuracy with 10-times cross-validation was 93.07% (standard deviation 0.5). A 

hybrid decision-making rule learned by an RF classifier works with 93.44±0.15% 

accuracy when the 10-times cross-validation test is applied. 

Compared to those of the triphone acoustic model recognizer alone, the error 

percentage of these results decreased by 34.73%. 

 

5.6. The connection of two different recognition engines and the use of a noisy 

speech corpus 

The previous experiments were executed using no additional signal processing. 

No artificial noise was added to the signal, but in order to examine if the model could 

be applied to real life, signal processing was necessary. To generate such data, 5 dB 

of white noise was added to the audio signal.  

Using the Kaldi toolkit (57), recognition research was carried out using triphone 

acoustic models. The same MFCC-based features as in the HTK package and the other 

default parameters of the triphone recognition method were used. 
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Deep Speech 2 was selected as the different recognition engine.  

With both of the previously mentioned recognizers, the NAMES3 speech corpus 

(21 speakers, 26 commands, 20 utterances) was trained and tested with 7 folds, using 

data from 18 speakers for training and 3 for testing the system. The triphone-based 

recognizer was taught and tested using a phoneme set with diphthongs.  

As previously mentioned, 7 folds were taught and tested with both recognizers, 

the results of which are presented below in Table 5.24. 

 

Table 5.24. The recognition accuracy results of triphone-based and Deep 

Speech 2 recognizers 

Recognizer Fold1 Fold2 Fold3 Fold4 Fold5 Fold6 Fold7 Average RA,% 

Triphone-based  90.96 88.32 90.57 89.29 91.73 93.27 79.29 88.75±3.40% 

Deep Speech 2 85.96 85.04 93.26 84.49 85.38 88.85 70.32 84.56±5.23% 

 

A higher average recognition accuracy of 88.75% was achieved with the Kaldi 

package using triphone acoustic models. Deep Speech 2 with RNN was able to 

achieve an RA of only 84.56%. This might be because default settings were used for 

this experiment. However, the goal of this experiment was to determine if the 

connection of these two recognizers would obtain higher RA results than the RA of 

one or the other recognizer alone. Results obtained from both recognizers are 

summarized in Table 5.25. 

 

Table 5.25. The complementarity of the results of triphone-based and Deep 

Speech 2 recognizers 

Subset Description 
Number 

of phrases 

T=T 
Both recognizers produced the same hypotheses and both hypotheses 

were correct 
8,534 

F=F 
Both recognizers produced the same hypotheses and both hypotheses 

were incorrect 
30 

T- 
The triphone-based recognizer produced a correct decision while the 

Deep speech 2 recognizer did not produce a decision 
0 

F- 
The triphone-based recognizer produced an incorrect decision while 

the Deep speech 2 recognizer did not produce a decision 
0 

-T 
The Deep speech 2 recognizer produced a correct decision while the 

triphone-based recognizer did not produce a decision 
11 

-F 
The Deep speech 2 recognizer produced an incorrect decision while 

the triphone-based recognizer did not produce a decision 
15 

-- Both recognizers did not produce a decision 0 

TF 
Both recognizers produced different hypotheses, and the triphone-

based recognizer produced a correct decision 
1,118 

FT 
Both recognizers produced different hypotheses, and the Deep speech 

2 recognizer produced a correct decision 
639 

FF 
Both recognizers produced different hypotheses, and both produced 

an incorrect decision 
496 

Total number 

of phrases 
  10,843 
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In this experiment, there were cases when the triphone-based recognizer did not 

produce a decision but the Deep Speech 2 recognizer produced a correct decision. In 

this case, the hybrid decision rule submits the correct answer thanks to the Deep 

Speech 2 recognizer. There were also cases when the triphone-based recognizer did 

not produce a decision and Deep Speech 2 produced an incorrect decision, so these 

samples are accepted as incorrect in the hybrid decision rule. 

The decision-making rule was taught and tested with the 10-times cross-

validation method. The features used for classification were obtained using 

logarithmic probability from triphone-based recognizer output, letters (the proportion 

of the number of certain letters to the number of all letters in the decision of the 

recognizer), and gender.  

The random forest classifier was used for the connection of both recognizers on 

the basis of the earlier experiment. After changing the random seed for XVal/%Split 

from 1 to 40, the average classification accuracy with 10-times cross-validation was 

92.62% (standard deviation 0.32). A hybrid decision-making rule learned by the RF 

classifier worked with 93.81±0.1% accuracy when the 10-times cross-validation test 

was applied. 

The W-value was 37.5. The critical value of W for N = 26 at p ≤ 0.05 was 89. 

Therefore, the result was significant at p ≤ 0.05. There was sufficient evidence to 

suggest that there was a difference between the additives. The root mean squared error                   

was 0.2407, which demonstrates that the model can predict the data relatively 

accurately. Compared to the results of the triphone-based recognizer alone, the error 

percentage decreased by 44.44%. 

 

5.7. The recognition of the INFOBALSAS speech corpus using a hybrid 

approach 

The REC_LTtri Lithuanian speech recognizer is based on a CD-HMM model. 

Its basic version uses triphones as a basic speech element to model acoustic events 

that occur during speech recording. Gaussian mixtures are used to model the 

probabilities of particular acoustic events, and acoustic properties are described using 

MFCC features. The Viterbi search algorithm was used as the basis for the decoding 

procedure to find the most likely sequences of acoustic events (88). 

The output of the Lithuanian REC_LTtri recognizer presented separate 

logarithmic probabilities for each word in a phrase. An example output is presented 

below:  

 
"fdanbru/LIGOS/ANKI_SPO/d1010.rec" 

1100000 9600000 ankilozinis -68.571236 

9600000 18800000 spondilitas -65.389702 

 

The mean logarithmic probability of the whole phrase was calculated according 

to the length of the frame, e.g., “ankilozinis spondilitas” – 66.918. This logarithmic 

probability was used as one of the features for the connection of recognizers 

The recognition results of 731 voice commands from the MEDIC medical 

speech corpus were used in the construction of a hybrid recognizer. All of the results 
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obtained from both recognizers were grouped into several subsets. These subsets are 

summarized in Table 5.26 (123). 

 

Table 5.26. The complementarity of the results of the REC_LTtri and 

REC_SP recognizers 

Subset Description Number 

of 

phrases 

1 Both recognizers produced the same correct decision 135,898 

2 Both recognizers produced the same incorrect decision 178 

3 
The REC_LTtri recognizer produced a correct decision, while the REC_SP 

recognizer did not produce a decision 
3,398 

4 
The REC_LTtri recognizer produced an incorrect decision, while the REC_SP 

recognizer did not produce a decision 
48 

5 
The REC_SP recognizer produced a correct decision, while the REC_LTtri 

recognizer did not produce a decision 
7 

6 
The REC_SP recognizer produced an incorrect decision, while the REC_LTtri 

recognizer did not produce a decision 
1 

7 Both recognizers did not produce a decision 1 

8 Only REC_LTtri produced a correct decision 33,650 

9 Only REC_SP produced a correct decision 1,357 

10 Both recognizers produced different incorrect decisions 902 

 

The Weka package was selected for research into the connection of the two 

recognizers. A hybrid decision-making rule was taught and tested with the 12-times 

cross-validation method. This was taught using the data of 11 speakers, while the data 

of the remaining speaker was used for checking the accuracy of the learned rule (later 

on, the results of these 12 tests were averaged). The experiment showed that the set 

of decision-making rules learned by RIPPER works with 97.85±2.30% accuracy. 

Because the decision rule is called into action only when the REC_SP and REC_LTtri 

solutions differ, the average operating accuracy of the hybrid recognizer is 98.92% 

A hybrid decision-making rule was also taught and tested with the regular 10-

times cross-validation method, without regard to interface between training objects 

and speakers. This rule was taught using 90% of the objects, with its accuracy 

measured using the remaining 10% of the objects; 10 tests were performed, and after 

changing the set of test objects the results were averaged. There were examples of the 

voices of the same speakers in the training and testing samples. The 10-times cross-

validation method showed that the hybrid decision rule learned by RIPPER works 

with 98.73±0.24% accuracy, and the “blind” decision rule accuracy was 96.12%. 

Thus, the ATP_HB hybrid recognizer correctly recognizes all 1 subset records 

(135,898), all 3 subtype records (3,398), and recognizes 8 + 9 subset records (34,562 

out of 35,007) with 98.73% accuracy. This means that the average operating accuracy 

of the hybrid recognizer is 99.10% – (135,898 + 3,398 + 34,562) / 175,440. This result 

is valid when ATP_HB recognizes the speech of one of the 12 known speakers. 
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The RIPPER classifier was selected for the implementation of the hybrid 

decision-making rule because it provides a very simple set of rules. An example of 

these rules is presented below: 

SP :- lt_prob<=-73.44, lt_space>=10, lt_d>=10, sp_a<=14.3 

default LT 

The set of rules of the RIPPER algorithm is arranged and applied in turn: if the 

first rule is not suitable, the second rule is applied, and so on. The REC_SP recognizer 

rule lists cases in which it is worth believing the decision of the REC_SP recognizer 

rather than that of the REC_LTtri recognizer. If none of the above rules apply, then 

the last “default LT” rule recommends believing the decision of the REC_LTtri 

recognizer. In almost all REC_SP rules, the conjunctive lt_delta_prob <= threshold is 

present. This means that the decision of the REC_SP recognizer is offered to be used 

if the REC_LTtri recognizer is not completely sure of its proposed priority solution.  

The RIPPER classifier and other such hybrid recognizers decrease recognition 

error by 24% compared with a HTK-based Lithuanian recognizer alone. This is 

another result that demonstrates that the hybrid recognizer is suitable for the 

recognition of phrases. 

 

5.8. Hybrid recognition technology 

A voice-controlled, web-service-based prototype of a hybrid recognizer was 

developed during the INFOBALSAS project using the proposed method of recognizer 

connection. It can be described as a set of internet objects and functions for accessing 

remote-based service operations. All calculations are performed server-side, and users 

are presented with an HTML5-based frontend compatible with any modern browsers 

and devices, including Android-based phones and tablets. This client-server principle 

allows the full control, support, and improvement of speech recognition processes, 

and also reduces the calculations performed on a client’s device, as speech processing 

is very computationally intensive. The web service itself was developed using .NET4 

WCF libraries and is compatible with industry standard applications (88). 

The main recognition process can be explained in three steps: 

1)  A user pronounces a voice prompt using their device of choice, thus a sound 

recording is produced and sent to the server for further processing; 

2)  As soon as the server receives the recorded audio file, the signal processing 

components are activated and the recording is then further passed to both speech 

recognizers, which then continue the recognition process and produce the possible 

semantic meanings and probabilities of a recognized answer;  

3) To make the final decision rule, the RIPPER induction algorithm (173) is 

applied due to its simplicity: a set of rules found using the RIPPER algorithm are 

arranged. This means that rules are applied in a given order: if the first rule cannot be 

applied, the second rule should be applied, and so on. The response is generated and 

sent back to the client’s device (application or web script) via an encrypted string and 

is then further shown on screen, passed for further application steps, or even 

pronounced using a proprietary Lithuanian TTS. 
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The highest classification accuracy from the 10 most popular data mining 

algorithms for digit names and Lithuanian names was achieved by the random forest 

(RF) classifier. The realization of RF is more complicated compared to the RIPPER 

algorithm, but it can be done using manuals and packages (174). 

 

5.9. Chapter summary and results  

1. By connecting two or three recognizers using the Lithuanian digit name speech 

corpus, the highest RA was achieved by the hybrid of REC_LTw/REC_SP after 

using the 10-times cross-validation method: 99.79±0.07%. The total error 

decrease with the hybrid of REC_LTw/REC_SP recognizers was 72.84%.  

2. After connecting the REC_LTw and REC_MSS recognizers, the results were 

the highest of all digit speech corpus recognition tests with a hybrid recognizer 

made for a GSM signal. The achieved RA was 99.99% with the 10-times cross-

validation test, and the decrease in recognition failure was 86.42%. 

3. Using the names speech corpus, the highest RA was achieved with a hybrid of 

the REC_LTw/REC_SP recognizers: 99.44% with 10-times cross-validation, 

and 99.23% with 7-times cross-validation. 

4. Research with part of the LIEPA the speech corpus showed that the method of 

connection could be performed with other speech corpora. The RA achieved by 

the hybrid of the REC_LTw/REC_SP recognizers was 96.74±0.68% with 10-

times cross-validation. 

5. Research on the recognition and connection of phrases was carried out using 

part of the LIEPA speech corpus. This demonstrated that the hybrid method 

could also be applied to phrases. Although the recognition accuracy achieved 

was no higher than 95%, compared to a triphone acoustic model recognizer 

alone the error percentage of these results decreased by 34.73%. 

6. Research was performed with two different speech recognition engines 

(Microsoft and Baidu) using the names speech corpus with a signal: noise ratio 

of 5 dB. The connection of results improved recognition accuracy by 44.44% 

compared to the use of a triphone-based recognizer alone.  

7. In all cases, when connecting recognizers it was determined that hybrid 

recognizers were more accurate than separate recognizers. 

8. Of the 10 classifiers used to determine the hybrid recognizer connection rule, 

the best results were achieved in four cases out of five with the random forest 

classifier. In the other case, the kNN and SVM classifiers achieved an equal 

score, which tied them for the best results. 

9. By increasing the number of trees in the RF classifier, classification accuracy 

slightly rose until it reached its maximum. Further increase in the number of 

trees did not result in an increase in accuracy.  
10. The impact of features on classification accuracy showed that the main features 

were the confidence measure of the REC_SP recognizer and the average log 

probability of the REC_LTw or REC_LTp recognizers. 

11. The classification results achieved by REC_LTw/REC_SP (99.81±0.07%) can 

be compared with those found in the work of Rasymas and Rudžionis (131), 

published in 2015. There, an RA of 98.16% was achieved from a speech corpus 
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(50 commands, 12 speakers, 20 utterances each) by connecting five recognizers 

(Lithuanian, Russian, English, and two German.)  

12. Research from the INFOBALSAS project provides an example that a hybrid 

approach to speech recognition could be applied for the recognition of not only 

isolated words, but also of phrases. In this project, a hybrid recognizer decreased 

recognition error by 24% compared with a HTK-based Lithuanian recognizer 

alone. 
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6. CONCLUSIONS 

1. The SKAIC30 speech corpus of ten digit names (30 speakers, 10 digits, 20 

pronouncements of each digit) and the NAMES3 speech corpus of Lithuanian 

names and words (21 speakers, 26 names or words, 20 pronouncements of each 

name or word) were collected, and were used for investigations into their 

recognition. It was found that the name and word selection technique created 

ensured very high recognition accuracy (RA) – 97.38±1.17% – of the NAMES3 

speech corpus by the adapted REC_SP Spanish recognizer. For comparison, the 

RA of the NATO alphabet using the same recognizer was only 67.2% (two 

speakers, 26 words, 50 pronouncements of each word).  

2. The REC_SP Spanish language recognizer (8.0 (Spanish-US)) was selected as the 

non-native recognizer, and MSS’2007 Spanish language recognizer (9.0 for MSS 

(Spanish-US)) (REC_MSS) was selected for telephone applications. Tests on the 

recognition of the SKAIC30 speech corpus by the REC_MSS recognizer showed 

that the isolated command transcription selection technique allowed for the 

attainment of a very high RA – 99.12±0.88% – for this corpus.  

3. The REC_LTw Lithuanian language recognizer, with a word-based HMM, and the 

REC_LTp Lithuanian language recognizer, with a phoneme-based HMM, were 

created and investigated. The technique for the recognition of isolated word 

commands by choosing the number of HMM states and Gaussian mixtures in the 

word-based HMM allowed for the attainment of a very high RA – 99.19±0.81% – 

of the SKAIC30 speech corpus by the REC_LTw recognizer. By using the 

technique of introducing new monophones into a phoneme-based HMM, a 

97.1±1.11% RA of the SKAIC30 speech corpus by the REC_LTp recognizer was 

achieved, even without using the phonetic segmentation of the speech corpus. 

4. The results of research into connecting two or three recognizers showed that the 

suggested method of using machine learning for the connection of different 

recognizers improved the RA of the speech corpora used in all cases: 

5. By connecting two or three recognizers using the SKAIC30 speech corpus, the best 

RA result was achieved by a hybrid of the REC_LTw/REC_SP recognizers – 

99.78%. The most significant RA error decrease was also achieved by a hybrid of 

the REC_LTw/REC_SP recognizers – 72.84%, when the 5-times cross-validation 

average method was used. 

6. After connecting the REC_LTw and REC_MSS recognizers, their results were the 

highest of all digit speech corpus recognition tests with a hybrid recognizer made 

for a telephone signal. The RA achieved was 99.89% with the 5-times cross-

validation test, and the decrease in recognition failure was 86.42%. 

7. Using the NAMES3 name speech corpus, the RA achieved by a hybrid of the 

REC_LTw/REC_SP recognizers was 99.44±0.09% with the 10-times cross-

validation test, and 99.23% with the 7-times cross-validation test. 

8. The hybrid recognizer decreased the recognition error of the MEDIC medical 

speech corpus by 24% compared with a HTK-based Lithuanian recognizer alone. 

Of this speech corpus, 52.26% of recordings were phrases containing two to five 

words.  
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9. Research on part of the LIEPA speech corpus has shown that the developed 

acoustic models and method of connecting recognizers work with both phrases and 

other speech corpora. 

10. Research with different recognition engines and added noise has shown that the 

connection of recognizers achieves better results than one recognizer alone, and 

that this method works with different engines and noisy signals.  

11. The proposed method of connecting recognizers was implemented in new hybrid 

recognition technology, created and proved during the INFOBALSAS project. 

12. The results obtained can be compared with the results of different Lithuanian 

authors: 

- The RA of the adapted non-native recognizer is significantly higher than 

the 92.5% presented in the thesis of Maskeliūnas (83 p. 111). This RA 

was achieved using a digit speech corpus with the following parameters: 

10 speakers, 10 digits, and 20 pronouncements of each digit. 

- The REC_LTw Lithuanian language recognizer with a word-based 

HMM can be compared with the one found in the thesis of Laurinčiukaitė 

(158 p. 78). There, the RA of 50 commands was 97.77% (31 speakers, 

20 utterances of each command). 

- The RA results of the REC_LTp Lithuanian language recognizer with a 

phoneme-based HMM can be compared with the 93.91% achieved in the 

doctoral thesis of Laurinčiukaitė (158 p. 78). This result was attained 

using phoneme-based HMMs and a speech corpus with the following 

parameters: 31 speakers, 50 commands, 20 pronouncements of each 

command.  

- The results of the combination of recognizers achieved in this thesis can 

be compared with those found in the work of Rasymas and Rudžionis 

(131), published in 2015. There, an RA of 98.16% was achieved from a 

speech corpus (50 commands, 12 speakers, 20 utterances each) by 

connecting five recognizers (Lithuanian, Russian, English, and two 

German). 
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7. SANTRAUKA 

Šnekamoji kalba yra kasdienio bendravimo priemonė. Sparčiai tobulėjant 

technologijoms ir joms užimant vis svarbesnę vietą kasdienėje žmonių veikloje, tampa 

labai aktualu pritaikyti technologijas taip, kad būtų įmanoma jas valdyti žmonėms 

pačiu priimtiniausiu būdu – balsu. Todėl pagrindinis automatinio šnekos atpažinimo 

sistemų kūrėjų ir tobulintojų tikslas yra sukurti technologijas, kurios galėtų girdėti, 

suprasti, kalbėti ir veikti pagal balsu gautą informaciją.  

Pastaruoju metu šnekos atpažinimo technologijos yra plačiai taikomos 

informacinėse technologijose. Todėl šnekos atpažinimo priemonių ir metodų 

pritaikymas informacinėse technologijose yra viena labiausiai tyrinėjamų sričių. 

Šnekamosios kalbos atpažinimo sistemos taikomos automobilių pramonėje (laisvų 

rankų įranga, navigacijos bei multimedijos prietaisų valdymas balsu), mobiliuosiuose 

telefonuose ir daug kitų įvairių sričių. Sėkmingi tyrimai šnekos atpažinimo srityje 

reikalauja didelių finansinių išteklių ir gausaus duomenų rinkinio, apimančio ir 

sudėtingas balso komandas. Žinoma kompanija Google sėkmingai vykdo tokius 

tyrimus, paremtus paslėptųjų Markovo modelių (PMM) principu, ir stebina rezultatais 

– sistemos atpažįsta net neplačiai vartojamų kalbų žodžius. Šios įmonės sėkmę lemia 

surinkti dideli garsynai, naudojami šnekos atpažinimo sistemoms mokyti.  

Lietuvių kalba nėra plačiai vartojama pasaulyje, todėl kitos šalys 

nesuinteresuotos skirti daug dėmesio jos tyrimams ir šnekos atpažinimo sistemų 

pritaikymui. Tačiau Lietuvos mokslininkai ir tyrėjai gali sėkmingai pritaikyti jau 

esamus šnekos atpažinimo produktus saviems tyrimams. 

Darbo tikslas 

Disertacijos tikslas – sukurti hibridinę lietuviškų balso komandų atpažinimo 

technologiją sujungiant du ar daugiau šnekos atpažintuvų. Tikimasi, jog tuo atveju, 

kai vienas iš sujungtų atpažintuvų suklys, kitas ar kiti priims teisingą sprendimą. 

Pasirinktas hibridinio atpažintuvo taikymas – iš raidžių ir skaitmenų sudarytų kodų 

atpažinimas per mikrofoną, taip pat skaitmenų kodo atpažinimas per telefoną. 

Darbo uždaviniai 

Darbo tikslui pasiekti išsikelti šie uždaviniai: 

1. Surinkti skaičių pavadinimų ir vardų garsynus, tinkamus kodams, 

susidedantiems iš skaičių ir lotyniškų raidžių, atpažinti. 

2. Kitakalbį atpažintuvą pritaikyti lietuviškoms balso komandoms atpažinti. 

3. Paruošti du lietuvių šnekos atpažintuvus taikant žodžiais grįstus ir fonemomis 

grįstus PMM.  

4. Sujungti du ir daugiau atpažintuvų taikant mašininio mokymo metodus.  

5. Gautus atpažinimo tikslumo tyrimo rezultatus palyginti su kitų Lietuvoje 

atliktų tyrimų rezultatais. 

Tyrimų metodika ir priemonės 

Pasirinktas hibridinis atpažintuvo modelis, nes sujungus kelias skirtingas 

atpažinimo sistemas, veikiančias pagal skirtingus metodus, padidinamas balso 
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komandų atpažinimo tikslumas. Pasirinktas hibridinio atpažintuvo taikymas – kodų 

atpažinimas per mikrofoną ir per telefoną. Lietuviškas atpažintuvas buvo 

modeliuojamas su HTK programinių įrankių paketu pagal žodžių, fonemų ir 

kontekstinių fonemų PMM akustinius modelius. Pasirinkti PMM MFCC (melo dažnių 

kepstro koeficientai) požymiai, užtikrinantys gerus izoliuotų komandų atpažinimo 

rezultatus. Mikrofoniniam taikymui pasirinktas su operacinėmis sistemomis 

Windows’7 ir Windows’8 laisvai platinamas ispanų šnekos atpažintuvas Microsoft 

Speech Recognizer 8.0 (Spanish-US), o telefoniniam taikymui – balso serveryje 

Microsoft Speech Server (MSS’2007) naudojamas ispanų šnekos atpažintuvas 

Microsoft Speech Recognizer 9.0 for MSS (Spanish-US). Abiem atpažintuvams 

sujungti pasirinktas laisvai platinamas WEKA programų paketas.  

Lietuviškų vardų atrankos metodika sukurta remiantis lietuviškų vardų 

atpažinimo tikslumo tyrimų su ispanų šnekos atpažintuvu Microsoft Speech 

Recognizer 8.0 (Spanish-US) rezultatais. 

Darbo mokslinis naujumas 

1. Sukurta vardų ir kitokių žodžių atrankos metodika, tinkanti lotyniškoms 

raidėms identifikuoti atpažįstant siūlomus vardus ar kitokius žodžius. Metodika 

užtikrina daugiau nei 30 % didesnį lotyniškų raidžių atpažinimo tikslumą, palyginti 

su NATO abėcėlės garsyno atpažinimo tikslumu.  

2. Pasiūlyta kelių atpažintuvų sujungimo taikant mašininį mokymą metodika. 

Jos skiriamasis bruožas yra požymių, gautų iš atpažintuvų, sujungimas su papildomais 

požymiais, priklausančiais nuo atpažinto žodžio. Metodika patikrinta šiais atvejais: 

- sujungiant keturių skirtingų garsynų ar jų fragmentų atpažinimo rezultatus:  

a) dviejų skaičių pavadinimų garsynų (30 diktorių, 10 skaičių pavadinimų po 20 

ištarimų ir 50 diktorių, 10 skaičių pavadinimų po 1 ištarimą), 

b) vardų garsyno (21 diktorius, 26 vardai arba kitokie žodžiai, atitinkantys tam 

tikrą abėcėlės raidę, po 20 ištarimų),  

c) medicinos terminų garsyno (731 frazė arba žodis, 12 diktorių, po 20 ištarimų);  

d) frazių ir žodžių garsyno (146 diktoriai, 18 frazių, 8 žodžiai po 1 ištarimą); 

- sujungiant su skirtingais atpažinimo varikliais (Microsoft ir Baidu) gautus vardų 

garsyno atpažinimo rezultatus; 

- sujungiant 5 dB lygyje užtriukšminto vardų garsyno atpažinimo rezultatus; 

- sujungiant telefoninio formato (8 kHz, 8 bitai) skaičių pavadinimų garsyno 

atpažinimo rezultatus. 

Atpažinimo tyrimuose naudoti trys programų paketai: HTK, Kaldi ir 

TensorFlow. 

Darbo rezultatų praktinė reikšmė 

Disertacijos tyrimų rezultatai galėtų būti naudojami kuriant lietuvių kalbos 

automatinio šnekos atpažinimo sistemas, paremtas kodų atpažinimu. Kodai, sudaryti 

iš raidžių ir skaitmenų, galėtų būti panaudoti ligų pavadinimams (TLK-10-AM), 

prekių kodams, PIN kodams ir kt. atpažinti per mikrofoną. Taip pat taikytinas iš 

skaičių sudarytų kodų atpažinimas per telefoną ir mikrofoną.  
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Siūlomas atpažintuvų sujungimo metodas buvo pritaikytas hibridinio 

atpažinimo technologijoje, sukurtoje ir patvirtintoje projekto „INFOBALSAS“ metu. 

Ginamieji teiginiai 

1. Siūloma vardų ir kitokių žodžių, tinkamų lotyniškoms raidėms identifikuoti, 

metodika užtikrina daugiau nei 30 % didesnį vardų ir kitokių žodžių garsyno (21 

diktorius, 26 vardai ir kitokie žodžiai, 20 ištarimų) atpažinimo tikslumą, palyginti su 

NATO abėcėlės garsyno atpažinimo tikslumu (2 diktoriai, 26 žodžiai, 50 ištarimų). 

2. Siūloma kelių atpažintuvų sujungimo metodika (mašininio mokymosi metodo 

taikymas derinant iš atpažintuvų gautus požymius bei naudojant papildomus 

požymius, kurie priklauso nuo atpažinto žodžio) leido pagerinti visų tyrimams 

naudojamų šnekos garsynų atpažinimo tikslumą. Pagrindiniai šios metodikos 

aspektai: 
- klasifikavimo procese naudojami visi šnekos garsyno požymiai. Tai pagrindinis 

skirtumas nuo kelių kitų atpažintuvų sujungimo būdų; 

- tyrimuose naudojamus papildomus požymius (sp_supp, lt_delta_prob, gender, lt_a,…, 

lt_ž, sp_a, ..., sp_ž) sugeneruoja kalbos ekspertai, naudodamiesi atpažintuvų išvestimis 

arba rankiniu būdu. Šie požymiai visais tirtais atvejais leido padidinti klasifikavimo 

tikslumą, palyginti su klasifikavimo naudojant požymius, gautus vien iš atpažintuvų, 

rezultatais; 

- dviejų ar trijų atpažintuvų sujungimo tyrimai, kuriuose buvo naudojami keli šnekos 

garsynai, parodė, kad siūlomas metodas visais nagrinėtais atvejais padidina garsynų 

atpažinimo tikslumą; 

- siūloma kelių atpažintuvų sujungimo metodika buvo išbandyta naudojant medicininį 

šnekos garsyną, susidedantį iš atskirų žodžių ir frazių. RIPPER klasifikatorius ir 

siūlomas hibridinis atpažintuvas atpažinimo klaidų skaičių sumažina 24 %, palyginti su 

vien HTK pagrindu veikiančiu lietuvišku atpažintuvu. 

Dalyvavimas projektuose 

Dalyvauta Aukštųjų technologijų plėtros 2011–2013 metų programos projekte 

„Hibridinė atpažinimo technologija balso sąsajai (INFOBALSAS)“. 

 

7.1. Lietuviškų balso komandų atpažinimo problemos 

Atlikus literatūros analizę paaiškėjo, kad plačiausiai taikomas izoliuotų 

komandų atpažinimo metodas yra paslėptieji Markovo modeliai. Izoliuotoms 

komandoms atpažinti taikomi žodžiais, fonemomis arba kontekstinėmis fonemomis 

grįsti PMM. Kaip atpažinimo požymiai paprastai naudojami signalo energija, melų 

skalės kepstro koeficientai ir jų pirmosios bei antrosios eilės išvestinės. Požymių 

vektoriaus ilgis lygus 39. Gilieji neuroniniai tinklai turi pranašumą prieš PMM, bet 

norint juos naudoti Lietuvoje reikia papildomų išteklių, visų pirma, finansavimo. 

Vienas svarbiausių šnekos atpažinimo sistemos elementų yra garsyno 

surinkimas ir anotavimas. Tam reikia daug žmogiškųjų išteklių ir laiko. Neturint 

garsynų, anotuotų fonemų lygmeniu, izoliuotoms komandoms atpažinti turėtų būti 

taikomi žodžiais grįsti PMM, nes jiems pakanka lengvai realizuojamo garsyno 

segmentavimo žodžių lygmeniu. Kaip paaiškėjo atlikus literatūros analizę, užsienyje 

garsynų atpažinimo tikslumo rezultatai lyginami su rezultatais, gautais naudojant tuos 
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pačius garsynus. Lietuvoje tokių galimybių nėra dėl lietuvių kalbos specifikos ir 

tyrimuose naudojamų skirtingų garsynų, todėl atliktų tyrimų rezultatus nutarta lyginti 

tik su lietuvių tyrėjų gautais rezultatais. 

Hibridinis atpažintuvas veikia šiuo principu: vienu metu naudojami du skirtingi 

atpažintuvai. Tai prasminga, jei, vienam atpažintuvui klystant, kitas priima teisingą 

sprendimą. Kartu su lietuviškais atpažintuvais, veikiančiais pritaikius žodžiais ir 

fonemomis grįstus PMM, hibridinio atpažintuvo tyrimams pasirinktas ispanų šnekos 

atpažintuvas, o telefoniniam taikymui – Microsoft balso serveris, leidžiantis kurti 

interaktyvaus balso atsakymo per telefoną sistemas, ir šio serverio ispanų šnekos 

atpažintuvas. 

 

7.2. Tyrimų metodika ir priemonės 

7.2.1. Tyrimuose naudoti ištekliai ir priemonės 

Šiuo metu dažniausiai taikomas matematinis balso atpažinimo modelis – 

paslėptosios Markovo grandinės (PMM). Jose randama tikėtiniausia ištartoji balso 

komanda (atskiras žodis ar žodžių seka), atitinkanti tam tikrus parinktus parametrus ir 

tenkinanti tam tikrus apribojimus (113). Atpažinimo modelio parametrai gaunami 

mokymo metu, o mokoma pagal įvairių diktorių balso įrašus (garsynus). 

PMM technologija buvo taikoma lietuviškiems atpažintuvams REC_LTw ir 

REC_LTp sukurti. Atpažintuvų akustiniams modeliams sudaryti buvo naudojamas 

atvirojo kodo programinių priemonių rinkinys HTK v.3.2 (Hidden Markov Toolkit) 

(112). Žodžiais grįsto PMM akustinių modelių sudarymo ir testavimo procesą 

iliustruoja 7.1 pav. pateikta schema.  

 
7.1. pav. Žodžiais grįsto PMM akustinių modelių sudarymo procesas 

 

Taikant HTK programinių įrankių paketą balso komandoms modeliuoti fonemų 

metodu reikia specialiai paruošti duomenis ir atitinkamus failus, reikalingus modelių 

mokymui ir atpažinimui. Balso komandoms modeliuoti ir atpažinti taikant fonemų 

modelius reikia atlikti 8 nuoseklius duomenų ir failų paruošimo žingsnius. Pirmieji 7 

žingsniai – fonemų PMM modelių paruošimas ir mokymas, o aštuntas žingsnis – 
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modelių testavimas. Taip pat vietoj būsenų ir Gauso mišinių variacijos įvedamos 

naujos fonemos. Akustinio modelio struktūra pateikta 7.2 pav.  

Pirmiausia garsyno įrašai buvo transformuoti į požymių vektorių sekas. Tuo 

tikslu garso įrašai buvo diskretizuoti 16 kHz dažniu ir suskaidyti į 20 ms trukmės 

analizės langus, 10 ms paslinktus vienas kito atžvilgiu (persidengiantys analizės 

langai). Kiekviename analizės lange buvo įvertinama šnekos signalo energija ir 

signalo spektras. Spektro reikšmės buvo grupuojamos su 26 „filtrais“, kurie buvo 

išdėstyti netiesinėje (melų) dažnio skalėje. Remiantis filtrų išėjimais buvo 

apskaičiuota 12 melų dažnio kepstro koeficientų (MFCC). Signalo energijai ir kepstro 

koeficientams buvo papildomai apskaičiuojami jų pirmosios ir antrosios eilės 

skirtumai laiko atžvilgiu. Vieną 20 ms trukmės signalo analizės langą atitiko 39 

komponentes turintis požymių vektorius.  

 
7.2. pav. Fonemomis grįsto PMM akustinių modelių sudarymo procesas 

 

Nelietuviško atpažintuvo naudojimas paremtas daugiakalbio atpažinimo 

principais, t. y. tikimasi, kad vienos kalbos (paprastai mažiau populiarios) fonetines 

savybes gana gerai atspindi kitos kalbos (paprastai populiarios) akustiniai-fonetiniai 

modeliai. Eksperimentai parodė (147), kad ispanų kalbos fonetinė sistema kur kas 

artimesnė lietuviškai nei angliška, todėl pasirinkta prie lietuvių kalbos adaptuoti 
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ispanų šnekos atpažintuvą (REC_SP), platinamą su Windows’7 operacine sistema 

(146). 

Microsoft balso serveris (Microsoft Speech Server, MSS’2007) yra interaktyvus 

telefoninis autoatsakiklis, integruotas kartu su paketu „Visual Studio 2005“. Viena iš 

MSS’2007 ypatybių yra VoIP palaikymas. VoIP iš esmės leidžia vartotojams pateikti 

ir priimti užklausas per internetą. Balso serveris gali priimti VoIP užklausas be jokios 

papildomos programinės ar aparatinės įrangos. MSS’2007 palaiko anglų, vokiečių, 

ispanų, prancūzų, japonų ir kinų kalbas. MSS’2007 balso serveryje naudojama UPS 

(Universal Phone Set) transkribavimo sistema. Balso serverio atpažintuvas 

(REC_MSS) buvo naudojamas skaičiams atpažinti per telefoną.  

 

7.2.2. Garsynai 

Norint ištirti balso komandų atpažinimo tikslumą pirmiausia reikia turėti 

tinkamai paruoštus lietuviškų skaičių pavadinimų ir vardų balso komandų garsynus. 

Tyrimuose naudotų garsynų duomenys pateikti 7.1 lent. 

Lietuviškų skaičių nuo 0 iki 9 pavadinimų garsyną SKAIC30 sudaro 30 diktorių 

– 23 moterų (M) ir 7 vyrų (V) – balso įrašai. Kiekvienas skaičius ištariamas 20 kartų. 

Tiriamasis lietuviškų skaičių pavadinimų garsynas sudarytas iš 6000 skirtingų balso 

įrašų. 

 

7.1. lentelė. Garsynų duomenys 
Garsyno 

pavadinimas 
Komandų skaičius Diktorių skaičius 

Ištarimų 

skaičius 

SKAIC30 10 30 (7 V, 23 M) 20 

LETTERS 26 2 (1 V, 1 M) 50 

NATO 26 2 (1 V, 1 M) 50 

NAMES1 250 2 (1 V, 1 M) 20 

NAMES2 70 10 (5 V, 5 M) 20 

NAMES3 26 21 (9 V, 12 M) 20 

LIEPA Z001 10 50 (9 V, 41 M) 1 

LIEPA Z060 
26 (18 frazių; 

 8 izoliuotos komandos) 
143 (35 V, 108 M)  1 

MEDIC 731 12 (7 V, 5 M) 20 

 

Garsyno LETTERS atpažinimo naudojant REC_SP atpažintuvą vidutinis 

tikslumas buvo tik 25,9 %. Vadinasi, raidės tarimas negali būti naudojamas kodams 

atpažinti. Garsynas NATO, su tuo pačiu atpažintuvu atpažintas 67,2 % tikslumu (157), 

taip pat negali būti naudojamas kodams atpažinti. Todėl buvo nuspręsta sukurti 

garsyną NAMES1. Jį sudaro apie 10 vardų, prasidedančių skirtingomis lotyniškos 

abėcėlės raidėmis. Šis garsynas buvo naudojamas pradiniame vardų atrankos etape 

(procedūra aprašyta 7.2.4 poskyryje). Geriausiai atpažinti 1, 2 ar 3 vardai ir kitokie 

žodžiai kiekvienai raidei pateko į NAMES2 garsyną. Šį papildė 8 diktorių įrašai. 

Galutinis vardų garsynas pavadintas NAMES3. Jį sudaro 21 diktoriaus – 12 moterų ir 

9 vyrų – balso įrašai. Vardų garsyną sudaro 26 skirtingų vardų ir balso komandų 
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atitikmenys kiekvienai lotyniškos abėcėlės raidei. Kiekvienas vardas buvo ištartas 20 

kartų ir garsyną sudaro iš viso 10 920 balso įrašų. Šis garsynas užtriukšmintas 5 dB 

lygyje ir panaudotas papildomam tyrimui su skirtingais atpažintuvais.  

2015 m. rugpjūtį užbaigtas projektas „Lietuvių šneka valdomos paslaugos – 

LIEPA“. Projekto metu sukurtas 100 valandų garsynas buvo pritaikytas šnekos 

technologijų moksliniams tyrimams ir konstravimo darbams, elektroninėms 

paslaugoms teikti. Garsyno dalis Z001 buvo naudojama izoliuotoms komandoms 

atpažinti, o kita dalis Z060 – frazėms atpažinti. Garsyno dalis Z060 buvo pasirinkta 

tyrimui, nes joje yra didelis kalbėtojų skaičius ir daugiau negu trečdalis įrašų – frazės. 

 

7.2.3. Lietuviškų balso komandų transkripcijų sudarymo metodika 

Naudojant vokiečių, anglų, prancūzų bei ispanų kalbų sintezatorių ir atitinkamos 

kalbos UPS alfabetus sukurtos lietuviškų skaičių pavadinimų transkripcijos. Skaičių 

pavadinimai buvo sintezuojami, atrinkti tie, kurie skamba panašiausiai į lietuvišką 

tarimą. Sukurtos transkripcijos buvo nusiųstos Microsoft balso serverio (MSS’2007) 

gramatikos redaktoriui (PE). Kiekvienam skaičiui ir skirtingai kalbai parengti atskiri 

atrankos testai (iš viso 40). Bandymas buvo atliekamas Microsoft balso serverio 

paketu (MSS’2007), vienas diktorius ir viena diktorė kiekvieną skaičių per mikrofoną 

ištarė po 100 kartų. Pradinio transkripcijų rinkinio rengimo algoritmas pateiktas 7.3 

pav. 

 

 
7.3. pav. Pradinio transkripcijų rinkinio rengimo algoritmas 

 

Daugiausia kartų atpažintos transkripcijos buvo naudojamos galutiniame 

transkripcijų paruošimo ir atrankos etape. Jo algoritmas pateiktas 7.4 pav.   
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7.4. pav. Galutinio transkripcijų rinkinio rengimo algoritmas 

7.2.4. Vardų atrankos metodika 

Vardų ir kitokių žodžių atitikmenų lotyniškai abėcėlei atranka buvo vykdoma 

keliais etapais, kurie pavaizduoti algoritmais 7.5 ir 7.6 pav. Atranka vykdyta 

naudojant adaptuotą ispanų šnekos atpažintuvą, esantį Windows’7 operacinėje 

sistemoje. 
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7.5. pav. Pirminės vardų atrankos algoritmas 

 

Pirminės atrankos iteracijos vykdomos pagal abėcėlę – pradedama nuo raidės 

„A“ ir pilnos gramatikos (PG). 

Kiekviename iteracijos žingsnyje vykdomas visų garsyne esančių vardų, 

prasidedančių testuojama raide, atpažinimo testavimas, skaičiuojami atpažinimo 

rezultatai ir atrenkami 1, 2 arba 3 geriausiai atpažinti vardai, jei jų atpažinimo 

tikslumas bent 80 %. Atpažinimo gramatikoje paliekamos tik atrinktų vardų 

transkripcijos, o kitos transkripcijos iš gramatikos pašalinamos (AG_R). Sudaroma 

testuojamos raidės vardų atpažinimo tikslumo eiliškumo lentelė. 
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Jeigu antrame žingsnyje nepavyko surasti nė vieno vardo, atpažįstamo bent 

80 % tikslumu, visi vardai, prasidedantys testuojama raide, paliekami kitai iteracijai 

(raidės „A“ atveju – AG_B). 

Tuo atveju, kai geriausiai atpažįstamo vardo atpažinimo tikslumas nesiekia 

80 % ir iš atpažinimo rezultatų matyti, kad vardas yra maišomas su vardu, 

prasidedančiu kita raide, leidžiama iš gramatikos pašalinti testuojamą vardą atpažinti 

trukdantį vardą, jei tai nėra paskutinis likęs vardas, prasidedantis ta raide. Kritiniu 

atveju leidžiama pašalinti paskutinį vardą, prasidedantį kita raide, kuris trukdo 

atpažinti testuojamą vardą. Į atpažinimo gramatiką įtraukiamas kitas anksčiau 

pašalintas vardas pagal atpažinimo tikslumo eiliškumo lentelę. Kritinis atvejis – kai, 

pašalinus trukdantį vardą, žymiai padidėja testuojamo vardo atpažinimo tikslumas, o 

trukdantis vardas yra vienintelis atrinktas vardas, prasidedantis ta raide. 

Kiekvienai raidei turi likti bent vienas vardas ir sąraše neturi likti 2 vardų su tais 

pačiais teksto fragmentais (PG_X), pavyzdžiui: Gražvydas, Mažvydas; Aleksas, 

Feliksas, Iksas. 

Po pirminės atrankos sudaromas NAMES2 garsynas iš 70 vardų ir kitokių 

žodžių. Galutinės atrankos algoritmas pateiktas 7.6 pav. Atrenkami vardai ir kitokie 

žodžiai, atitinkantys lotyniškas raides.  

 

 
7.6. pav. Galutinės vardų atrankos algoritmas 

 

Norint surinkti galutinį rinkinį, vieno vardo atpažinimo tikslumas (RA_L) turi 

būti didesnis nei 85 %, o bendras atpažinimo tikslumas (RA) turėtų būti didesnis nei 

95 %. 
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7.2.5. Atpažintuvų sujungimo metodika 

Hibridinis atpažintuvas sudarytas iš REC_SP atpažintuvo, turinčio integruotą 

signalo aptikimo bloką, REC_LTw atpažintuvo ir sprendimų priėmimo bloko, kuris 

realizuoja hibridinę (-es) sprendimo priėmimo taisyklę (-es) (7.7 pav.). Šnekos 

signalas pirmiausia patenka į REC_SP. Šis nustato komandos ribas ir signalo ištrauką 

pateikia REC_LTw atpažintuvui, o savo sprendimą perduoda sprendimų priėmimo 

blokui. REC_LTw atpažintuvas savo sprendimą taip pat perduoda sprendimų 

priėmimo blokui. Jei sprendimai skiriasi, sprendimų priėmimo blokas nusprendžia, 

kurį iš dviejų rezultatų pateikti vartotojui kaip galutinį atsakymą. 

 

 
7.7. pav. Hibridinio atpažintuvo struktūra 

 

Svarbiausias hibridinio atpažintuvo komponentas yra hibridinis sprendimų 

priėmimo blokas, kuris sukonstruotas taikant mašininio mokymo metodiką. Mokymui 

buvo naudojami garsyno įrašai, kai atpažintuvų REC_LTw ir REC_SP sprendimai 

skyrėsi. Jie glaustai apibūdinti 7.2 lent.  

 

7.2. lentelė. Atpažintuvų REC_LTw ir REC_SP rezultatų papildomumas 
Poaibis  Aprašymas  

T=T  Atpažintuvų siūlomi sprendimai sutampa ir yra teisingi  

F=F  Atpažintuvų siūlomi sprendimai sutampa ir yra neteisingi  

T-  Atpažintuvas REC_LTw siūlo teisingą sprendimą, atpažintuvas REC_SP 

sprendimo nesiūlo  

F-  Atpažintuvas REC_LTw siūlo neteisingą sprendimą, atpažintuvas REC_SP 

sprendimo nesiūlo  

-T  Atpažintuvas REC_SP siūlo teisingą sprendimą, atpažintuvas REC_LTw 

sprendimo nesiūlo  

-F  Atpažintuvas REC_SP siūlo neteisingą sprendimą, atpažintuvas REC_LTw 

sprendimo nesiūlo  

--  Abu atpažintuvai sprendimo nesiūlo  

TF  Atpažintuvų siūlomi sprendimai nesutampa, REC_LTw sprendimas teisingas  

FT  Atpažintuvų siūlomi sprendimai nesutampa, REC_SP sprendimas teisingas  

FF  Atpažintuvų siūlomi sprendimai nesutampa, abu sprendimai neteisingi  
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Kiekvieną mokymo imties objektą sudarė abiejų atpažintuvų sprendimai 

konkrečiam garso įrašui. Suformuluotas dviejų klasių – TF ir FT – atskyrimo 

(atpažinimo) uždavinys.  

Požymiai, pagal kuriuos aprašoma mokymo imtis, hibridiniam sprendimų 

priėmimo blokui pateikti 7.3 lent. Kiekvienas mokymo imties objektas buvo aprašytas 

atsižvelgiant į 38 (skaičiams) ir 62 (vardams) požymius. 
 

7.3. lentelė. Požymių imtis 
Požymio 

pavadinimas  

Paaiškinimas  

SP_conf  REC_SP atpažintuvo pateikto sprendimo patikimumo įvertis [0,..,1000].  

sp_supp  Jei REC_SP atpažintuvo pateiktas sprendimas sutampa su REC_LTw 

atpažintuvo pateikta 2-ąja (arba 3-iąja) alternatyva, šis parametras 

nurodo, kiek 2-oji (arba 3-ioji) REC_LTw alternatyva yra prastesnė už 

1-ąjį (prioritetinį) REC_LTw sprendimą (logaritminės tikimybės 

prasme). Jei REC_LTw atpažintuvas nepateikia alternatyvių sprendimų 

arba jei REC_SP atpažintuvo siūlomas sprendimas nesutampa su 

REC_LTw atpažintuvo alternatyvomis, šiam požymiui priskiriama 

reikšmė 10.  

lt_prob  REC_LTw atpažintuvo pateikto sprendimo patikimumo įvertis, 

matuojamas vidutine logaritmine tikimybe signalo analizės langui. 

Frazės pradžioje ir pabaigoje galimai esančios tylos atkarpos į šį 

įvertinimą neįtraukiamos. 

lt_delta_prob  Patikimumo įverčių skirtumas tarp prioritetinio sprendimo ir 2-osios 

REC_LTw atpažintuvo alternatyvos. Jei REC_LTw atpažintuvas 

nepateikia alternatyvių sprendimų, šiam požymiui priskiriama reikšmė 

10. 

gender  Dvireikšmis požymis, nusakantis kalbėtojo lytį (m, f). 

lt_a ...... lt_ž  

(letters_lt)  

Proporcija (%), kurią REC_LTw atpažintuvo pateiktame prioritetiniame 

sprendime (frazėje) sudaro raidės „a“. Pvz., jei REC_LTw atpažintuvas 

pateikia prioritetinį sprendimą „AIDS“, tai šis požymis lygus 25 % (1 

raidė iš 4).  

sp_a ...... sp_ž  

(letters_sp)  

Toliau tokiu pat būdu transformuojamas REC_SP atpažintuvo 

sprendimas, žr. prieš tai pateiktus požymių lt_a ..... lt_ž paaiškinimus.  

 

Atpažintuvams sujungti taikomos dvi skirtingos metodikos: 

1. Įprastinis 10 kartų kryžminis patikrinimas su grafine WEKA sąsaja. 

Paruošiamas vienas visų diktorių požymių failas, WEKA programų paketas pagal 

nutylėjimą atsitiktiniu būdu skirsto duomenis: 90 % mokymui, 10 % testavimui, 10 

kartų atlieka klasifikavimą, tada rezultatus vidurkina ir parodo ekrane. Toks 

klasifikavimas leidžia prognozuoti klasifikavimo tikslumą (ir kartu hibridinio 

atpažintuvo tikslumą) žinomam kalbėtojui (vienam iš garsyno diktorių). 

2. Sudėtingesnis n kartų kryžminis patikrinimas, kur n – diktorių skaičius. 

Paruošiama 2*n failų: mokymui imama n–1 diktorių, o testavimui – 1 (n-tojo) 

diktoriaus požymiai. Klasifikavimas atliekamas n kartų per komandinę eilutę 

paduodant mokymui n–1 diktorių požymių failą, o testavimui – n-tojo diktoriaus 

požymių failą. Tai kartojama n kartų keičiant n-tąjį diktorių. Tada rezultatai rankiniu 
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būdu vidurkinami. Tokio klasifikavimo rezultatai leidžia prognozuoti klasifikavimo 

tikslumą (ir kartu hibridinio atpažintuvo tikslumą) nežinomam kalbėtojui. Dėl didelės 

skaičiavimų apimties vietoje n kartų kryžminio patikrinimo daromas n/2, n/3 ir pan. 

kryžminis patikrinimas – gaunami mažesnio tikslumo rezultatai. 

 

7.3. Atpažinimo tyrimai 

7.3.1. Balso serveris REC_MSS 

Tyrimai balso serveryje vykdyti su ispanų šnekos atpažintuvu Microsoft Speech 

Recognizer 9.0 for MSS (Spanish-US). Naudojant lietuviškų skaičių pavadinimų 

garsyną SKAIC30 gautas 99,12±0,88 % atpažinimo tikslumas. Tyrimo rezultatai 

pateikti 7.4 lent. 

 

7.4. lentelė. Skaičių pavadinimų atpažinimo tikslumo tyrimų naudojant balso 

serverį rezultatai 
Skaičius Atpažinimo tikslumas, % Patikimumo rodiklis 

NULIS 99,67±0,22 0,87 

VIENAS 100 0,93 

DU 98,83±0,42 0,90 

TRYS 99,5±0,27 0,87 

KETURI 95,5±0,80 0,74 

PENKI 100 0,92 

SESI 97,83±0,57 0,84 

SEPTYNI 99,83±0,16 0,90 

ASTUONI 100 0,86 

DEVYNI 100 0,87 

Vidurkis (%) su 95 % 

patikimumo intervalu 
99,12±0,88 0,84 

 

Tyrime taip pat buvo įvertintas patikimumo rodiklis (angl. confidence measure). 

Patikimumo rodiklis pateikiamas nuo 0 iki 1. Skaičius laikomas atpažintu, jei 

patikimumo rodiklis didesnis už 0,2.  

7.3.2. Ispaniškas atpažintuvas REC_SP 

Eksperimentai parodė, kad ispanų kalbos fonetinė sistema kur kas artimesnė 

lietuviškai nei kitos, todėl pasirinkta prie lietuvių kalbos adaptuoti ispanų šnekos 

atpažintuvą Microsoft Speech Recognizer 8.0 (Spanish-US), platinamą su Windows’7 

operacine sistema.  

Skaičių atpažinimas vykdytas su garsynu SKAIC30. Atpažinimo rezultatai su 

skirtingomis transkripcijų gramatikomis (UPS, žodinė ir maišyta), vyrišku ir 

moterišku profiliais pateikti 7.5 lent.  
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7.5. lentelė. Skaičių atpažinimo su ispanišku atpažintuvu REC_SP tikslumo 

tyrimo rezultatai 

 
Skaičius 

 

Profilis ir gramatika 

Default, 

žodinės 

Default, 

UPS 

Mot.,  

žodinės 

Mot.,  

UPS 

Vyr.,  

žodinės 

Vyr.,  

UPS 

Vyr., 

maišytos 

NULIS 42,33 61,00 55,00 54,50 70,67 75,67 80,67±1,53 

VIENAS 91,17 93,67 93,33 93,33 96,67 96,33 95,83±0,78 

DU 64,33 67,00 51,67 51,33 73,50 80,00 79,67±1,56 

TRYS 98,00 98,17 96,50 96,50 99,00 99,17 99,00±0,39 

KETURI 53,83 57,83 49,50 48,83 85,83 74,50 86,50±1,33 

PENKI 97,17 95,67 90,67 90,83 98,17 98,67 98,67±0,44 

SESI 97,33 100 98,83 98,83 100 100 100 

SEPTYNI 97,67 98,00 96,17 96,00 99,17 99,50 99,17±0,35 

ASTUONI 95,33 95,67 86,50 87,17 99,67 99,67 99,67±0,22 

DEVYNI 75,50 78,00 80,67 80,67 72,00 86,50 81,33±1,51 

Vidurkis (%) 

su 95 % 

patikimumo 

intervalu 

81,26± 

12,99 

84,81± 

10,60 

79,89± 

12,36 

79,79± 

12,52 

89,48± 

7,88 

91,01± 

6,63 

92,05± 

5,48 

 

Didžiausias skaičių atpažinimo tikslumo vidurkis gautas su maišytomis 

transkripcijomis ir vyrišku profiliu – 92,05±5,48 %. 

Vardams atpažinti su REC_SP atpažintuvu buvo naudojamas NAMES3 

garsynas. Atpažinimo rezultatai pateikti 7.6 lent.  

 

7.6. lentelė. Vardų atpažinimo su ispanišku atpažintuvu REC_SP tikslumo 

tyrimo rezultatai 
 

Vardas 

Profilis ir gramatika 

Mot., 

žodinės 

Default, 

žodinės 

Vyr., 

žodinės 

Vyr., 

UPS  

Vyr., 

maišytos 

Austėja 90,8 98,7 99,6 99,2 99,6±0,29 

Boleslovas 96,0 97,7 98,9 98,3 98,9±0,48 

Cecilija 96,3 97,1 99,8 99,3 99,8±0,20 

Donatas 98,3 98,7 99,8 99,8 99,8±0,20 

Eimantas 98,9 98,9 97,9 97,9 97,9±0,66 

Faustas 98,7 98,9 98,3 98,7 98,3±0,60 

Gražvydas 95,0 98,9 99,4 98,7 99,4±0,36 

Hansas 98,9 98,9 99,0 100,0 99,0±0,46 

Izaokas 99,4 98,5 98,3 99,2 98,1±0,63 

Jonas 94,0 96,3 97,1 96 97,1±0,78 

Karolis 100,0 100,0 97,9 97,7 97,9±0,66 

Laima 97,9 99,4 98,9 99 98,9±0,48 

Martynas 99,6 98,3 97,7 99,8 97,1±0,78 

Nojus 97,7 98,1 97,1 97,9 97,1±0,78 

Oskaras 99,0 100 100,0 99,4 100 

Patrikas 99,0 99,8 99,8 99,8 99,8±0,20 

Qju 60,1 70,8 86,0 88,1 85,6±1,63 
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Ričardas 90,1 93,5 87,9 96,2 91,7±1,28 

Sandra 97,7 99,8 99,4 99,8 99,2±0,41 

Teodoras 95,6 99,8 97,1 97,9 97,1±0,78 

Ulijona 92,3 94,8 96,0 90,4 96,0±0,91 

Vacys 97,7 97,3 96,7 100 98,3±0,60 

Wašington 93,3 96,9 98,5 97,88 98,5±0,56 

Xsas 97,5 95,0 94,6 98,9 95,4±0,97 

Ygrekas 93,1 95,6 96,0 96,2 95,4±0,97 

Zacharijus 94,4 93,1 96,0 29,8 96,0±0,91 

Vidurkis (%) su 

95 % 

patikimumo 

intervalu 

95,05±2,94 96,72±2,17 97,22±1,29 95,23±4,77 97,38±1,17 

 

Kaip ir skaičių pavadinimų atpažinimo tyrime, didžiausias vardų atpažinimo 

tikslumas gautas su vyrišku profiliu ir maišytomis transkripcijomis – 97,38±1,17 %. 

7.3.3. Lietuviškas atpažintuvas REC_LTw 

Skaičių pavadinimų atpažinimo tikslumo tyrimui su skirtingu būsenų skaičiumi 

buvo parinktas būsenų skaičius, apytiksliai lygus balso komandą sudarančių fonetinių 

elementų skaičiui intervale imtinai nuo 2 iki 7 su pridėtu vienetu, dvejetu, ketvertu, 

penketu ir t. t. Atpažinimo rezultatai pateikti 7.8 pav. 

 

 
7.8. pav. Skaičių pavadinimų atpažinimo tyrimų su papildomomis būsenomis 

rezultatai 

 

Toliau buvo tęsiami skaičių atpažinimo tikslumo tyrimai su skirtingu būsenų ir 

Gauso mišinių skaičiumi. Testuojant tą patį garsyną SKAIC30 buvo įterpiami Gauso 

mišiniai ir tiriamas komandų atpažinimo taikant modelius su papildomomis 

būsenomis ir skirtingu Gauso mišinių skaičiumi tikslumas. Atpažinimo rezultatai 

pateikti 7.9 pav. 
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7.9. pav. Skaičių atpažinimo tikslumo tyrimų su papildomomis būsenomis ir Gauso 

mišiniais rezultatai 

 

Įvedus Gauso mišinius atpažinimo tikslumas žymiai padidėjo. Geriausi skaičių 

atpažinimo su REC_LTw atpažintuvu rezultatai (99,33±0,67 %) gauti naudojant 2 

papildomas būsenas ir 6 Gauso mišinius. Su šiais akustinių modelių parametrais buvo 

atliktas 5 kartų kryžminis patikrinimas (mokoma su 24 diktorių įrašais ir testuojama 

su likusiais 6, kaskart keičiant mokymo ir testavimo diktorių rinkinius), gautas 

atpažinimo tikslumo vidurkis – 99,19±0,81 %. 

Atitinkami tyrimai akustiniuose modeliuose keičiant būsenų ir Gauso mišinių 

skaičių buvo atlikti su vardų garsynu NAMES3. Atpažinimo tikslumo tyrimo 

rezultatai pateikti 7.10 pav.  

 

 
7.10. pav. Vardų atpažinimo tikslumo tyrimo keičiant būsenų ir Gauso mišinių skaičių 

rezultatai 

 

Geriausi vardų atpažinimo tikslumo tyrimo rezultatai (99,17±0,83 %) gauti su 3 

papildomomis būsenomis ir 2 Gauso mišiniais. Su šiais akustinių modelių parametrais 

buvo atliktas 7 kartų kryžminis patikrinimas (mokoma su 19 diktorių įrašais ir 

testuojama su likusiais 3, kaskart keičiant mokymo ir testavimo diktorių rinkinius), 

gautas atpažinimo tikslumo vidurkis – 96,7±2,45 %. 
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7.3.4. Lietuviškas atpažintuvas REC_LTp 

Šnekamosios kalbos atpažinimui taikyti HTK programinių įrankių paketą 

galima ir modeliuojant balso komandų atpažinimą fonemų modelių metodu. Šis balso 

komandų modeliavimo metodas buvo taikomas tik skaičių pavadinimų garsynui 

atsižvelgiant į tai, kad balsu ištartų kodų sistemai atpažinti reikės daugiausia skaičių 

(nes daugumoje kodų vyrauja skaičiai). 

Tyrimui buvo sukurti 24 skirtingi fonemų rinkiniai, juos sudarė nuo 19 iki 35 

fonemų. Kaip ir ankstesniuose tyrimuose, 24 diktorių įrašai buvo naudojami mokymo 

procesui, kiti 6 – testavimui. Tyrimų rezultatų dalis pavaizduota 7.7 lent. 
 

7.7. lentelė. Skaičių pavadinimų garsyno atpažinimo tikslumo tyrimas taikant 

fonemomis grįstus PMM  

Fonemų rinkinys Digit1 Digit2 Digit9 Digit16 

Fonemų skaičius 

rinkinyje 
19 28 (SAMPA) 31(2) 35 

Atpažinimo tikslumo 

vidurkis (5 kartų kryžminio 

patikrinimo), % 

63,05±3,59 84,12±2,44 91,65±2,94 97,1±1,11 

 

Geriausi tyrimo taikant fonemomis grįstus PMM rezultatai gauti su Digit16 

fonemų rinkiniu, kurį sudaro šios fonemos ir jų grupės: vm, n, a, s, d, u, tm, rm, y, km, 

e, i, pm, shm, uo, lm, sil, t, ii, nk, sh, nm, dm, sm, ik, uk, ud, ish, esh, ek, en, et, ir, ir, 

sp. Atlikus 5 kartų kryžminį patikrinimą gautas 97,1±1,11 % atpažinimo tikslumo 

vidurkis. 

 

7.4. Hibridiškumo tyrimai 

Atlikus literatūros analizę, dviejų atpažintuvų sujungimo galimybių tyrimui 

pasirinkta naudoti duomenų analizės sistemą WEKA, kurioje įdiegta kelios dešimtys 

klasifikatorių. Iš jų atrankos tyrimui pasirinkta naudoti: kNN (K-Nearest Neighbour), 

RIPPER, NB (Naive Bayes), RF (Random Forest), C4.5, ZeroR, SVM (Support 

Vector Machines), AdaBoost, MP (Multilayer Perceptron) ir MLR (Multinomial 

Logistic Regression) (159). 

Atpažintuvų REC_LTw/REC_SP, REC_LTw/REC_MSS, REC_SP/ 

REC_LTw/REC_LTp sujungimo galimybių tyrimas atliktas naudojant skaičių 

pavadinimų garsyną. Hibridinė sprendimo priėmimo taisyklė buvo mokoma ir 

tikrinama 5 kartų kryžminio patikrinimo būdu ir įprastu 10 kartų kryžminio 

patikrinimo būdu. Šio eksperimento rezultatai pateikti 7.8 lent. 
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7.8. lentelė. Atpažintuvų sujungimo galimybių tyrimo naudojant skaičių 

pavadinimų garsyną rezultatai 

Klasifikatorius 

 

REC_LTw/REC_SP REC_LTw/REC_MSS 
REC_SP/ 

REC_LTw/REC_LTp 

10 k. 

kryžminio 

patikrinimo 

vidurkis  

5 k. 

kryžminio 

patikrinimo 

vidurkis  

10 k. 

kryžminio 

patikrinimo 

vidurkis  

5 k. 

kryžminio 

patikrinimo 

vidurkis  

10 k. 

kryžminio 

patikrinimo 

vidurkis  

5 k. 

kryžminio 

patikrinimo 

vidurkis  

RIPPER 94,71 95,42 95,79 89,58 95,91 89,25 

C4.5 96,83 95,31 90,53 78,16 99,02 90,69 

MLR 97,09 96,04 97,89 81,55 93,45 85,39 

MP 96,83 96,88 98,95 81,25 97,71 90,32 

ZeroR 88,62 88,22 53,68 45,46 51,39 42,21 

AdaBoost 97,35 96,95 95,79 92,08 93,78 90,37 

 kNN 96,56 94,77 96,84 89,88 96,07 86,67 

RF 98,15 98,26 100 93,33 99,02 95,26 

SVM 95,50 93,45 94,74 80,29 96,07 87,07 

NB 92,06 85,83 93,68 80,16 85,11 83,81 

 

Geriausi klasifikavimo rezultatai visais trimis atvejais gauti naudojant RF 

klasifikatorių (medžių skaičius 100). Geriausi klasifikavimo rezultatai gauti sujungus 

REC_LTw ir REC_SP atpažintuvus. Klasifikatoriaus išmokta sprendimo priėmimo 

taisyklių aibė veikia 99,02 % tikslumu ir hibridinio atpažintuvo veikimo tikslumas 

siekia 99,79±0,07 %, kai atliktas 10 kartų kryžminis patikrinimas. 

Klasifikatorius suteikia galimybę keisti medžių skaičių, todėl buvo nuspręsta 

atlikti RF klasifikatoriaus efektyviausio medžių skaičiaus paieškos tyrimą. Tam buvo 

atliktas 10 kartų kryžminio patikrinimo eksperimentas keičiant RF klasifikatoriaus 

medžių skaičių nuo 1 iki 100. Tyrimo rezultatai pateikti 7.11 pav. 

 

 
7.11. pav. Klasifikavimo tikslumo priklausomybė nuo medžių skaičiaus (naudojant 

skaičių pavadinimų garsyną) 

 

7.9 lent. pateikti REC_LTw ir REC_LTp atpažintuvų (skaičių pavadinimų 

garsynui) sujungimo galimybių tyrimo su skirtingais klasifikatoriais rezultatai.  
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7.9. lentelė. Atpažintuvų sujungimo galimybių tyrimo naudojant skaičių 

pavadinimų garsyną rezultatai 

Klasifikatorius 

 

REC_LTw/REC_LTp 

10 kartų kryžminio 

patikrinimo vidurkis  

5 kartų kryžminio 

patikrinimo vidurkis  

RIPPER 96,62  96,71  

C4.5 97,97  97,31  

MLR 99,32  99,13  

MP 98,65 90,24 

ZeroR 93,24 89,83 

AdaBoost 99,32 96,71 

 kNN 100 99,13 

RF 99,32 99,13 

SVM 100 99,13 

NB 100 97,31 
 

Geriausi klasifikavimo sujungiant REC_LTw ir REC_LTp atpažintuvus 

rezultatai gauti naudojant kNN ir SVM klasifikatorius.  

Dviejų atpažintuvų REC_LTw ir REC_SP sujungimo galimybių tyrimo 

naudojant vardų ir kitokių žodžių garsyną rezultatai pateikti 7.10 lent. 

 

7.10. lentelė. Atpažintuvų sujungimo galimybių tyrimo naudojant vardų ir 

kitokių žodžių garsyną rezultatai 

Klasifikatorius 

 

REC_LTw/REC_SP 

10 kartų kryžminio 

patikrinimo vidurkis  

7 kartų kryžminio 

patikrinimo vidurkis 

RIPPER 95,91  89,25  

C4.5 99,02  90,69  

MLR 93,45  85,39  

MP 97,71  90,32  

ZeroR 51,39  42,21  

AdaBoost 93,78  90,37  

 kNN 96,07  86,67  

RF 99,02  95,26  

SVM 96,07  87,07  

NB 85,11  83,81  

  

10 kartų kryžminio patikrinimo eksperimentas parodė, kad RF klasifikatoriaus 

išmokta sprendimo priėmimo taisyklių aibė veikia 99,02 % tikslumu. Atsižvelgiant į 

tai, kad sprendimo taisyklė iškviečiama tik tada, kai REC_SP ir REC_LTw 

sprendimai skiriasi, vidutinis hibridinio atpažintuvo veikimo tikslumas siekia 

99,44±0,09 %, kai atliktas 10 kartų kryžminis patikrinimas, ir 99,23 %, kai atliktas 5 

kartų kryžminis patikrinimas. 

Atliktas klasifikavimo tikslumo priklausomybės nuo medžių skaičiaus kitimo 

RF klasifikatoriuje tyrimas. Tikslumas svyravo: parinkus 46 medžius, tikslumas buvo 

98,85 %, esant 48 medžiams, jis sumažėjo iki 98,19 %, o pasirinkus 100–150 medžių 

gautas stabilus 99,02 % hibridinio atpažintuvo veikimo tikslumas. 
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Norint patikrinti, ar sukurti akustiniai modeliai efektyvūs, atliktas sujungimo 

tyrimas su LIEPA garsynu. Pasirinkta dirbti su 50 diktorių (41 moters ir 9 vyrų) 

garsyno fragmentu. Skaičių nuo 0 iki 9 pavadinimų ištarimai buvo atpažinti per 

žodžiais grįstus ispanišką ir lietuvišką PMM atpažintuvus. Ispanų šnekos atpažintuvu 

REC_SP gautas 80,8±9,61 % atpažinimo tikslumas, o lietuvišku REC_LTw – 

92±3,31 % atpažinimo tikslumas. 

Atpažintuvai sujungti 10 kartų kryžminio patikrinimo būdu su 10 klasifikatorių 

(7.11 lent.).  
 

7.11. lentelė. Atpažintuvų sujungimo galimybių tyrimo naudojant LIEPA 

garsyną rezultatai 

Klasifikatorius 

 

10 kartų kryžminio 

patikrinimo vidurkis  

RIPPER 82 

C4.5 82 

MLR 70 

MP 88 

ZeroR 60 

AdaBoost 82 

 kNN 88 

RF 86 

SVM 82 

NB 82 

 

Geriausi rezultatai gauti naudojant MLR ir KNN klasifikatorius. Abiem atvejais 

vidutinis hibridinio atpažintuvo veikimo tikslumas – 96,74±0,68 %. Palyginti su 

REC_LTw atpažintuvo rezultatais, klaidų sumažėjo 59,25 %. Tai leidžia patvirtinti, 

kad akustiniai modeliai ir sujungimo metodika veikia ir su kitais garsynais. 

Frazių atpažinimo tyrimas taip pat buvo atliktas naudojant LIEPA šnekos 

garsyną. Garsyno dalį Z060 sudaro 143 kalbėtojų įrašai ir 26 komandos, iš kurių 18 

frazių. Tyrimas buvo atliktas norint parodyti, kad šis metodas tinkamas ir frazėms 

atpažinti.  

Naudojant Kaldi įrankių rinkinį (57), atpažinimo tyrimas buvo atliktas taikant 

monofoninius ir trifoninius akustinius modelius. Akustiniam modeliavimui naudoti 

tie patys MFCC požymiai, kaip ir dirbant su HTK programinių įrankių paketu, taip 

pat kiti numatytieji monofonų ir trifonų parametrai atpažinimui su Kaldi programinių 

įrankių paketu. Apie 20 % garsyno buvo naudojama testuoti, o likusi dalis – sistemai 

mokyti. Su visu garsynu Z060 buvo atliktas 5 kartų kryžminis patikrinimas, rezultatai 

suvidurkinti. Vidutinis frazių atpažinimo taikant monofoninius akustinius modelius 

tikslumas yra 86,04 %, o taikant trifoninius akustinius modelius – 89,95 %.  

Sprendimų priėmimo taisyklę išmokusi sistema buvo išbandyta 10 kartų 

kryžminio patikrinimo metodu. Klasifikacijai buvo naudojami požymiai, gauti iš 

atpažintuvų išvesties, t. y. logaritminės tikimybės, o raidės proporcija žodyje ir 

diktoriaus lytis įvesti rankiniu būdu.  

Geriausias klasifikacijos rezultatas buvo pasiektas su RF klasifikatoriumi. 

Pakeitus Random seed į XVal/%Split nuo 1 iki 40, vidutinis klasifikacijos taikant 10 
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kartų kryžminį patikrinimą tikslumas yra 93,07 % (standartinis nuokrypis 0,5). Kai  

atliekamas 10 kartų kryžminio patikrinimo bandymas, hibridinė sprendimo priėmimo 

taisyklė, išmokta RF klasifikatoriaus, veikia 93,44 ±0,15 % tikslumu. Palyginti su 

rezultatais, gautais naudojant tik trifoninio akustinio modelio atpažintuvą, klaidų 

sumažėjo 34,73 %. 

Ankstesniuose tyrimuose duomenys naudoti netaikant papildomo signalo 

apdorojimo. Norint patikrinti, ar modelį būtų galima pritaikyti realiomis sąlygomis, 

tyrimui pasirinktas 5 dB lygyje užtriukšmintas vardų garsynas. 

Naudojant Kaldi įrankių rinkinį, atpažinimo tyrimas buvo atliktas taikant 

trifoninį akustinį modelį. Deep Speech 2 buvo pasirinktas kaip kitas atpažinimo 

variklis. Deep Speech 2 yra end-to-end gilusis neuroninis tinklas, skirtas 

automatiniam šnekos atpažinimui, pagrįstas Baidu atpažinimo varikliu. 

Naudojant anksčiau minėtus atpažintuvus buvo išmokytas NAMES3 šnekos 

garsynas (21 diktorius, 26 komandos, 20 ištarimų) ir atliktas 7 kartų kryžminis 

patikrinimas. 18 diktorių duomenys buvo naudojami mokymui, o 3 – testavimui.  

Didesnis vidutinis atpažinimo tikslumas – 88,75 % – buvo pasiektas su Kaldi 

programinių įrankių paketu, taikant trifoninius akustinius modelius. Naudojant Deep 

Speech 2 su RNN pasiektas tik 84,56 % atpažinimo tikslumas.  

Atpažintuvams sujungti buvo naudojamas RF klasifikatorius. Pakeitus Random 

seed į XVal/% Split nuo 1 iki 40, vidutinis klasifikavimo taikant 10 kartų kryžminį 

patikrinimą tikslumas yra 92,62 % (standartinis nuokrypis 0,32). Hibridinė RF 

klasifikatoriaus išmokta sprendimų priėmimo taisyklė veikia 93,81±0,1 % tikslumu, 

kai taikomas 10 kartų kryžminio patikrinimo testas.  Palyginti su rezultatais, gautais 

naudojant trifoninį atpažintuvą, klaidų sumažėjo 44,44 %. 

 

7.5. Išvados 

1. Surinktas ir paruoštas lietuviškų skaičių pavadinimų garsynas SKAIC30 (30 

diktorių, 10 skaičių pavadinimų po 20 ištarimų) bei lietuviškų vardų ir kitokių žodžių 

garsynas NAMES3 (21 diktorius, 26 vardai po 20 ištarimų). Nustatyta, kad sukurta 

vardų ir kitokių žodžių atrankos metodika užtikrina didelį garsyno NAMES3 

atpažinimo su ispanų šnekos atpažintuvu REC_SP tikslumą – 97,38±1,17 %. 

Palyginimui su tuo pačiu atpažintuvu buvo atliktas NATO alfabeto garsyno (2 

diktoriai, 26 žodžiai po 50 ištarimų) atpažinimo tikslumo tyrimas ir gautas tik 67,2 % 

atpažinimo tikslumas. 

2. Ispanų šnekos atpažintuvas Microsoft Speech Recognizer 8.0 (Spanish-US) 

(REC_SP) buvo pasirinktas kaip kitakalbis atpažintuvas, o balso serveryje Microsoft 

Speech Server (MSS’2007) naudojamas ispanų šnekos atpažintuvas Microsoft Speech 

Recognizer 9.0 for MSS (Spanish-US) (REC_MSS) pasirinktas telefoniniam taikymui. 

Garsyno SKAIC30 atpažinimo su REC_MSS atpažintuvu tyrimai parodė, kad 

izoliuotų komandų transkripcijų atrankos metodika leidžia pasiekti didelį (99,12±0,88 

%) skaičių pavadinimų garsyno atpažinimo su kitakalbiu atpažintuvu tikslumą.  

3. Paruošti du lietuvių šnekos atpažintuvai. Jie ištirti taikant žodžiais ir fonemomis 

grįstus PMM. Pasiūlyta izoliuotų komandų atpažinimo metodika, kurią taikant 

pasirenkamas PMM būsenų ir Gauso mišinių skaičius žodžiais grįstuose PMM, leido 

pasiekti didelį garsyno SKAIC30 atpažinimo su žodžiais grįstu REC_LTw 



158 

atpažintuvu tikslumą (99,19±0,81 %). Pasiūlyta izoliuotų komandų atpažinimo 

įvedant naujus monofonus fonemomis grįstuose PMM metodika leido pasiekti 

pakankamai didelį garsyno SKAIC30 atpažinimo su fonemomis grįstu REC_LTp 

atpažintuvu tikslumą (97,1±1,11 %) net netaikant garsyno fonetinio segmentavimo. 

4. Pasiūlyta kelių atpažintuvų sujungimo taikant mašininį mokymą metodika visais 

atvejais leido padidinti naudotų garsynų atpažinimo tikslumą: 

- sujungus du arba tris atpažintuvus, didžiausias skaičių pavadinimų garsyno 

atpažinimo tikslumas gautas su hibridiniu REC_LTw/REC_SP atpažintuvu 

(99,78 %); naudojant hibridinį REC_LTw/REC_SP atpažintuvą ir taikant 5 kartų 

kryžminio vidurkinimo metodiką klaidų sumažėjo labiausiai (72,84 %);  

- sujungus du atpažintuvus REC_LTw ir REC_MSS, gauti patys geriausi skaičių 

pavadinimų garsyno atpažinimo su hibridiniu atpažintuvu, skirtu telefoniniam 

signalui, rezultatai: taikant 10 kartų kryžminio vidurkinimo metodiką buvo gautas 

100 % tikslumas, o taikant 5 kartų kryžminio vidurkinimo metodiką – 99,89 % 

tikslumas; 

- vardų garsyno NAMES3 atpažinimo su hibridiniu REC_LTw/REC_SP 

atpažintuvu taikant 10 kartų kryžminio vidurkinimo metodiką tikslumas lygus 

99,44±0,09 %, o taikant 7 kartų kryžminio vidurkinimo metodiką – 99,23 %; 

- tyrimai su LIEPA šnekos garsynu parodė, kad sukurti akustiniai modeliai ir 

sujungimo metodika veikia tiek su kitais garsynais, tiek su frazėmis; 

- atliktas tyrimas su 5 dB lygyje užtriukšmintu vardų garsynu sujungiant su 

skirtingais atpažinimo varikliais (Microsoft ir Baidu) gautus garsyno atpažinimo 

rezultatus. Hibridinis atpažintuvas atpažinimo klaidų skaičių sumažino 44,44 %; 

- hibridinis atpažintuvas medicininio šnekos garsyno MEDIC atpažinimo klaidų 

skaičių sumažino iki 24 %, palyginti su vien HTK pagrindu veikiančiu lietuvišku 

atpažintuvu. Šio šnekos garsyno didžiąją dalį sudaro frazės (nuo 2 iki 5 žodžių). 

5. Siūlomas atpažintuvų sujungimo būdas buvo taikomas hibridinio atpažinimo 

technologijoje, sukurtoje ir patvirtintoje projekto „INFOBALSAS“ metu. 

6. Gauti rezultatai gali būti palyginti su įvairių Lietuvos autorių pasiektais rezultatais: 
- garsyno SKAIC30 atpažinimo su kitakalbiu atpažintuvu tikslumas yra gerokai didesnis 

nei nurodytas su R. Maskeliūno disertacijoje (83; p. 111) –  92,5 % (10 diktorių, 10 skaičių 

pavadinimų po 20 ištarimų); 

- lietuvių šnekos atpažintuvo REC_LTw tikslumas gali būti palygintas su 

S. Laurinčiukaitės disertacijoje (158; p. 78) pasiektu 97,77 % atpažinimo tikslumu (50 

komandų, 31 diktorius, po 20 ištarimų); 

- rezultatai, gauti su lietuvių šnekos atpažintuvu REC_LTp, gali būti palyginti su S. 

Laurinčiukaitės disertacijoje (158; p. 78) pateiktu 93,91 % jau minėto 50 komandų garsyno 

atpažinimo tikslumu; 

- gauti hibridinių atpažintuvų garsynų atpažinimo tikslumo tyrimo rezultatai gali 

būti palyginti su T. Rasymo ir V. Rudžionio 2015 m. straipsnyje (131) pasiektu 50 

komandų garsyno (12 diktorių, po 20 ištarimų) atpažinimo tikslumu (98,16 %), 

gautu sujungus penkis atpažintuvus (lietuvių, rusų, anglų, du vokiečių). 
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Annex 1 

 

 

Table 1. English language digit transcriptions 
Digit Transcription 

0 Nulis; nuhlihs; nuhliys; nuwlihs; nuwliys. 

1 
Vienas; viyaxnahs; viyaxnaxs; viyaxnaas; viyahnahs; viyahnaxs; Viyahnaas; 

viyehnahs; viyehnaxs; viyehnaas. 

2 Du; Duuh; duuw; duh; duw. 

3 Trys; tris; trees; triys; trihs. 

4 
Keturi; Kehtuhraih; ketthurriy; kehtuhrih; kehtuhriy; kehtuwrih; Kehtuwriy; 

kaetuhrih; kaetuhriy; kaetuwrih; kaetuwriy. 

5 Penki; pehnkih; pehngkih; pehngkiy; paengkih; paengkiy. 

6 Sheshi; shehshih; shehshiy; shaeshih; shaeshiy. 

7 
Septyni; sehptinih; sehptiynih; sehptiyniy; sehptihnih; sehptihniy; saeptiynih; 

saeptiyniy; saeptihnih; saeptihniy. 

8 

Ashtuoni; ahshtuhaanih; ahshtuwaxnih; ahshtuwaxniy; ahshtuwahnih; 

ahshtuwahniy; axshtuwaxnih; axshtuwaxniy; Axshtuwahnih; axshtuwahniy; 

aashtuwaxnih; aashtuwaxniy; aashtuwahnih; aashtuwahniy. 

9 
Devyni; dehvinih; dehviynih; dehviyniy; dehvihnih; dehvihniy; Daeviynih; 

daeviyniy; daevihnih; daevihniy. 

 

 

 

 

 

Table 2. German language digit transcriptions 
Digit Transcription 

0 Nuhlihs; Nulis; Nulihs; Nuhlis; Nuhlys; Nulys. 

1 
Vihehnas; Vienas; Vihaxnas; Viyenas; Vihyenas; Vihyehnas; Vyenas; 

Vyehnas. 

2 Du; Duh; Duuh; Duw. 

3 Trhies; Trys; Tries. 

4 Kaxtuhrhih; Kehtuhrhih; Keturi; Keturhih; Keturih; Kehtuhrih. 

5 Paxnkih; Pehnkih; Penki; Penkih; Pehnki. 

6 
Sheshi; Shehshih; Shaxshih; Shehshi; Sheshih; Scheschi; Schehschi; 

Schehschih; Scheschih. 

7 
Sseptyni; Saxptienih; Sehptienih; Septyni; Ssehptienih; Ssehptynih; Sseptieni; 

Sseptienih. 

8 Ashtuhaonih; Ashtuoni; Ashtuhonih; Ashtuhoni; Ashtuonih. 

9 
Dehvienih; Devyni; Daxvienih; Devienih; Dehvieni; Dehvyni; Dehvynih; 

Devieni; Devini; Devinih; Devynih. 

 

 

 

 



174 

 

Table 3. French language digit transcriptions 
Digit Transcription 

0 Nulis; Nouluece; Noulice; Noulihce; Noulihss; Nouliss.s. 

1 Vienas; Viehnass; Viehnaass; Viehnace; Vyehnace; Vyehnass.. 

2 Du; Dou; Duh; Douh; Dous. 

3 Trys; Tryss; Tryce; Tryhss; Tryhce; Triss; Trihss; Trihce; Trice 

4 
Keturi; Kehturi; Kehtouri; Kehtourhi; Kehtourih; Kehtouryh; 

Kehtourhy;Kehtoury; Ketoury; Ketouri; Getoudi. 

5 Penki; Pinki; Pehnki; Pinkih; Pinky; Pinkyh 

6 Sheshi; Shechi; Chechi; Chehchi; Chehchih; Chechy; Chehchy; Chechyh.. 

7 
Septyni; Sehptyni; Sehptueni; Sehptini; Sehptyhni; Sehptyhnih; Sehptihnih; 

Sehptyhnyh; Septini. 

8 
Ashtuoni; Achtuoni; Achtuonih; Achtuony; Achtuonyh; Achtuhohni; 

Achtouohni. 

9 Devyni; Devynih; Dehvyni; Dehvini; Dehvinih 
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Annex 2 

 

Table 1.  Full grammar for selection of names and words corresponding to 26 Latin 

letters for identification (NAMES1)  

 

 

Letter Name 

A Adomas, Agota, Aleksas, Andrius, Antanas, Arnoldas, Artūras, Asta, Aurelija, 

Austeja 

B Barbora, Bernardas, Beata, Benas, Benediktas, Birutė, Boleslovas, Božena, Brigita, 

Bronius 

C Cecilija, Celestas, Cezaris 

D Daiva, Dalia, Danguolė, Danutė, Daumantas, Deimantė, Dominykas, Donatas, 

Dovilė, Dovydas 

E Edgaras, Egidija, Eimantas, Elena, Eligijus, Elvyra, Emilija, Erika, Evaldas, 

Evelina 

F Fausta, Felicija, Feliksas, Filomena, Florijona, Fortūna, Fridrikas 

G Gabija, Gabrielė, Gediminas, Gerda, Gintaras, Gintautas, Gitana, Goda, 

Gražvydas, Greta 

H Hamletas, Hansas, Haroldas, Henrikas, Heraklis, Hermanas, Horacijus 

I Ignas, Ilona, Indraja, Indrė, Inesa, Irena, Irmantas, Iveta, Izabelė, Izaokas 

J Jadvyga, Joana, Jokūbas, Jolanta, Jonas, Jovita, Julija, Juozapas, Jūratė, Justas 

K Kajus, Kamilė, Karolis, Kazys, Kęstutis, Klaudijus, Kornelija, Kostas, Kotryna, 

Kristina 

L Laima, Laurynas, Leonas, Lilija, Linas, Liucija, Liutauras, Liveta, Loreta, Lukas 

M Mantas, Margarita, Marius, Marytė, Martynas, Matas, Mažvydas, Mindaugas, 

Mykolas, Modestas 

N Natalija, Nedas, Neimantas, Nerijus, Neringa, Nijolė, Nikolajus, Nojus, Nomeda, 

Normantas 

O Odeta, Odrė, Ofelija, Oksana, Olegas, Ona, Orinta, Oskaras, Otilija, Ovidijus 

P Palmira, Patricija, Patrikas, Paulius, Petras, Pijus, Pilypas, Povilas, Pranas, 

Prudencijus 

Q Kju, Kventinas 

R Radvilė, Raminta, Ramūnas, Renata, Ričardas, Rima, Rytis, Rokas, Rolandas, Rūta 

S Sandra, Saulė, Sigitas, Simona, Skirmantas, Sofija, Solveiga, Sonata, Steponas, 

Svajūnas 

T Tadas, Tatjana, Tauras, Tautvilė, Tautvydas, Teodoras, Teresė, Timas, Titas, 

Tomas 

U Ubalda, Ugnė, Uldis, Ulijona, Unė, Uosis, Urbonas, Ursinas, Urðulė, Urtė 

V Vacys, Vaida, Valerija, Veronika, Viktoras, Vilius, Viltė, Vincas, Vygantas, 

Vytautas 

W Dabalju, Wašington 

X Iksas 

Y Ygrek, Ygrik, Yla, Ygrekas 

Z Zacharijus, Zenonas, Zigfridas, Zigmas, Zilbertas, Zinaida ,Zita, Zofija, Zoja, Zosė 
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Table 1. List of speakers used in digit names recognition cross-validation  
1 FOLD 

 
2 FOLD 3 FOLD 4 FOLD 5 FOLD 

Training Testing Training Testing Training Testing Training Testing Training Testing 

FAGNG

RA 

FIEVVI

S 

FIEVVIS FAGNG

RA 

FIEVVIS FGINGE

D 

FIEVVI

S 

FRUTN

AN 

FIEVVIS MMOD

SLE 

FAGNVI

N 

FJUSKI

N 

FJUSKI

N 

FAGNV

IN 

FJUSKI

N 

FIEVJU

R 

FJUSKI

N 

FSIMME

I 

FJUSKI

N 

MRIMA

PA 

FAISIZI FUGNB

UC 

FUGNB

UC 

FAISIZI FUGNB

UC 

FIEVSA

B 

FUGNB

UC 

FVAIVA

I 

FUGNB

UC 

MVYGV

AI 

FAISZY

M 

FUGNN

OV 

FUGNN

OV 

FAISZY

M 

FUGNN

OV 

FKAMM

OS 

FUGNN

OV 

FVANP

EC 

FUGNN

OV 

FVIONA

B 

FAUSN

EM 

FZIVST

A 

FZIVST

A 

FAUSN

EM 

FZIVST

A 

FLAUZ

ET 

FZIVST

A 

FVILVA

I 

FZIVST

A 

FRAISA

V 

FDAILO

I 

MLINJU

R 

MLINJU

R 

MDAIG

US 

MLINJU

R 

MEDGV

OL 

MLINJU

R 

MKAZA

NU 

MLINJU

R 

FDAILO

I 

FGINGE

D 

 FGINGE

D 

 FAGNG

RA 

 FAGNGR

A 

 FAGNG

RA 

 

FIEVJU

R 

 FIEVJU

R 

 FAGNVI

N 

 FAGNVI

N 

 FAGNVI

N 

 

FIEVSA

B 

 FIEVSA

B 

 FAISIZI  FAISIZI  FAISIZI  

FKAMM

OS 

 FKAMM

OS 

 FAISZY

M 

 FAISZY

M 

 FAISZY

M 

 

FLAUZE

T 

 FLAUZE

T 

 FAUSN

EM 

 FAUSN

EM 

 FAUSN

EM 

 

FRAISA

V 

 FRAISA

V 

 FDAILO

I 

 FDAILO

I 

 MDAIG

US 

 

FRUTN

AN 

 FRUTN

AN 

 FRUTN

AN 

 FGINGE

D 

 FGINGE

D 

 

FSIMME

I 

 FSIMME

I 

 FSIMME

I 

 FIEVJU

R 

 FIEVJU

R 

 

FVAIVA

I 

 FVAIVA

I 

 FVAIVA

I 

 FIEVSA

B 

 FIEVSA

B 

 

FVANP

EC 

 FVANP

EC 

 FVANP

EC 

 FKAMM

OS 

 FKAMM

OS 

 

FVILVA

I 

 FVILVA

I 

 FVILVA

I 

 FLAUZ

ET 

 FLAUZE

T 

 

FVIONA

B 

 FVIONA

B 

 FVIONA

B 

 FRAISA

V 

 MEDGV

OL 

 

MDAIG

US 

 FDAILO

I 

 MDAIG

US 

 MDAIG

US 

 FRUTN

AN 

 

MEDGV

OL 

 MEDGV

OL 

 FRAISA

V 

 MEDGV

OL 

 FSIMME

I 

 

MKAZA

NU 

 MKAZA

NU 

 MKAZA

NU 

 FVIONA

B 

 FVAIVA

I 

 

MMODS

LE 

 MMODS

LE 

 MMODS

LE 

 MMOD

SLE 

 FVANP

EC 

 

MRIMA

PA 

 MRIMA

PA 

 MRIMA

PA 

 MRIMA

PA 

 FVILVA

I 

 

MVYGV

AI 

 MVYGV

AI 

 MVYGV

AI 

 MVYGV

AI 

 MKAZA

NU 
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Table 1A.  Phoneme set (v ie n a s d u t r y k e i p sh uo l sil sp) RA 
Digit1 

Command 
Phoneme set 

distribution 

RA, % 

1-fold 2-fold 3-fold 4-fold 5-fold 

VIENAS v ie n a s sp 73.3 88.3 85.0 100 57,5 

DU d u sp 0.0 0.0 3.3 0.0 0,0 

TRYS t r y s sp 33.3 65.8 50.8 43.3 35,0 

KETURI k e t u r i sp 25.0 17.5 34.2 15.0 27,5 

PENKI p e n k i sp 12.5 5.8 23.3 3.3 6,7 

SHESHI sh e sh i sp 85.8 86.7 100 97.5 97,5 

SEPTYNI s e p t y n i sp 98.3 100 92.5 90.8 100 

ASHTUONI a sh t uo n i sp   100 97.5 96.7 100 90,0 

DEVYNI d e v y n i sp 92.5 80.8 94.2 99.2 70,0 

NULIS n u l i s sp 100 99.2 99.2 94.2 93,3 

Average RA, % 62.08 64.17 67.92 64.33 56.75 

Overall 5 folds average  RA, % 63.05 

 

Table 2A.  Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk sp) – SAMPA 
Digit2 

Command 
Phoneme set 

distribution 

RA, % 

1-fold 2-fold 3-fold 4-fold 5-fold 

VIENAS vm ie n a s sp 100 100 100 100 97,5 

DU d uk sp 0.8 0.0 1.7 0.0 0,0 

TRYS tm rm y s sp 95.0 95.0 95.0 95.0 94,2 

KETURI km e t u rm ik sp 99.2 84.2 79.2 71.7 72,5 

PENKI pm e nk km ik sp 97.5 95.8 100 72.5 93,3 

SHESHI shm e shm ik sp 84.4 75.0 96.7 85.8 71,7 

SEPTYNI sm e pm tm ii nm 

ik sp 
95.0 100 100 91.7 99,2 

ASHTUONI a sh t uo nm ik sp   100 100 100 100 100 

DEVYNI dm e vm ii nm ik 

sp 
100 90.8 100 100 90,8 

NULIS n uk lm i s sp 98.3 97.5 96.7 95.0 97,5 

AVERAGE RA, % 87.0 83.83 86.92 81.17 81.67 

Overall 5 folds average RA, % 84.12 

 

Table 3A.  Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud sp). Includes a new allophone ud, in command DU 
Digit3 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 70.8 
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TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 99.2 

PENKI pm e nk km ik sp 97.5 

SHESHI shm e shm ik sp 84.2 

SEPTYNI sm e pm tm ii nm ik sp 95.8 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 100 

NULIS n uk lm i s sp 98.3 

AVERAGE RA, % 94.08 

 

Table 4A.  Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish sp). Includes a new allophone ish, in command SESI 
Digit4 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 90.0 

DU d ud sp 99.2 

TRYS tm rm y s sp 95 

KETURI km e t u rm ik sp 97.5 

PENKI pm e nk km ik sp 90.0 

SHESHI shm e shm ish sp 88.3 

SEPTYNI sm e pm tm ii nm ik sp 89.2 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 95.8 

AVERAGE RA, % 94.42 

 

Table 5A.  Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh sp). Includes a new allophone esh, in command SESI 
Digit5 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 64.2 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 97.5 

PENKI pm e nk km ik sp 98.3 

SHESHI shm esh shm ish sp 96.7 

SEPTYNI sm e pm tm ii nm ik sp 95.8 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 98.3 

AVERAGE RA, % 94.5 

 

Table 6A.  Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh sp). In command SEPTYNI, phoneme ii is changed 

into phoneme y 
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Digit6 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 66.7 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 98.3 

PENKI pm e nk km ik sp 95.0 

SHESHI shm esh shm ish sp 96.7 

SEPTYNI sm e pm tm y nm ik sp 95.0 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 95.58 

 

Table 7A.  Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek sp). Includes a new phoneme ek, in command 

PENKI 
Digit7 

Command Phoneme set distribution 
RA, % 

1-fold 5-fold 

VIENAS vm ie n a s sp 100 97.2 

DU d ud sp 69.2 43.3 

TRYS tm rm y s sp 95.0 90.0 

KETURI km e t u rm ik sp 96.7 57.5 

PENKI pm ek nk km ik sp 98.3 80.8 

SHESHI shm esh shm ish sp 95.8 100 

SEPTYNI sm e pm tm y nm ik sp 95.0 99.2 

ASHTUONI a sh t uo nm ik sp   100 100 

DEVYNI dm e vm ii nm ik sp 99.2 80.8 

NULIS n uk lm i s sp 99.2 92.5 

AVERAGE RA, % 94.92 85.17 

 

Table 8A.  Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii nk 

sh nm dm sm ik uk ud ish esh ek sp). Diphthong ie in command VIENAS is separated 

into two phonemes ik and e 
Digit8 

Command Phoneme set distribution 
RA, % 

 1-fold 

VIENAS vm ik e n a s sp 84.2 

DU d ud sp 80.8 

TRYS tm rm y s sp 94.2 

KETURI km e t u rm ik sp 95 

PENKI pm ek nk km ik sp 98.3 

SHESHI shm esh shm ish sp 95.8 

SEPTYNI sm e pm tm y nm ik sp 95.0 

ASHTUONI a sh t uo nm ik sp   100 
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DEVYNI dm e vm ii nm ik sp 100 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 93.92 

 

Table 9A.  Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii nk 

sh nm dm sm ik uk ud ish esh ek sp) Diphthong ie in command VIENAS is separated 

into two phonemes i and ek 

Digit9 

Command 
Phoneme set 

distribution 

RA, % 

1-fold 2-fold 3-fold 4-fold 5-fold 

VIENAS vm i ek n a s sp 100 100 100 100 98,3 

DU d ud sp 79.2 60.0 92.5 98.3 82,5 

TRYS tm rm y s sp 95 91.7 95.0 95.0 90,8 

KETURI km e t u rm ik sp 95.8 71.7 60.0 63.3 60,0 

PENKI pm ek nk km ik sp 96.7 74.2 92.5 79.2 58,3 

SHESHI shm esh shm ish 

sp 
95.8 96.7 100 100 100 

SEPTYNI sm e pm tm y nm 

ik sp 
96.7 100 100 92.5 99,2 

ASHTUONI a sh t uo nm ik sp 100 100 100 100 100 

DEVYNI dm e vm ii nm ik 

sp 
99.2 97.5 99.2 100 92,5 

NULIS n uk lm i s sp 100 97.5 96.7 94.2 95,0 

AVERAGE RA, % 95.83 88.92 93.58 92.25 87.67 

Overall 5 folds Average 

RA, % 
91.65 

 

Table 10A.  Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek sp). Includes phoneme e, in command PENKI 

Digit10 

Command Phoneme set distribution 
RA, % 

5-fold 

VIENAS vm i ek n a s sp 98.3 

DU d ud sp 82.5 

TRYS tm rm y s sp 91.7 

KETURI km e t u rm ik sp 60.8 

PENKI pm e nk km ik sp 67.5 

SHESHI shm esh shm ish sp 100 

SEPTYNI sm e pm tm y nm ik sp 99.2 

ASHTUONI a sh t uo nm ik sp 100 

DEVYNI dm e vm ii nm ik sp 94.2 

NULIS n uk lm i s sp 98.3 

AVERAGE RA, % 89.25 
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Table 11A.  Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek en sp). Includes a new phoneme en, in command 

PENKI 

Digit11 

Command Phoneme set distribution 
RA, % 

5-fold 

VIENAS vm i ek n a s sp 99.2 

DU d ud sp 82.5 

TRYS tm rm y s sp 90.8 

KETURI km e t u rm ik sp 56.7 

PENKI pm en nk km ik sp 80.8 

SHESHI shm esh shm ish sp 100 

SEPTYNI sm e pm tm y nm ik sp 99.2 

ASHTUONI a sh t uo nm ik sp 100 

DEVYNI dm e vm ii nm ik sp 91.7 

NULIS n uk lm i s sp 98.3 

AVERAGE RA, % 89.92 

 

Table 12A.  Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek en et sp). Includes a new phoneme et, in command 

KETURI 

Digit12 

Command Phoneme set distribution 
RA, % 

5-fold 

VIENAS vm i ek n a s sp 99.2 

DU d ud sp 84.2 

TRYS tm rm y s sp 91.7 

KETURI km et t u rm ik sp 66.7 

PENKI pm en nk km ik sp 87.5 

SHESHI shm esh shm ish sp 100 

SEPTYNI sm e pm tm y nm ik sp 99.2 

ASHTUONI a sh t uo nm ik sp 100 

DEVYNI dm e vm ii nm ik sp 96.7 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 92.50 

 

Table 13A. Phoneme set (vm  n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek en et  ir sp). Includes a new phoneme ir, in 

command KETURI 

Digit13 

Command Phoneme set distribution 
RA, % 

2-fold 5-fold 

VIENAS vm i ek n a s sp 99.2 99.2 

DU d ud sp 65.0 84.2 

TRYS tm rm y s sp 92.5 93.3 
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KETURI km et t u rm ir sp 85.0 70.8 

PENKI pm en nk km ik sp 91.7 88.3 

SHESHI shm esh shm ish sp 97.5 100 

SEPTYNI sm e pm tm y nm ik sp 100 99.2 

ASHTUONI a sh t uo nm ik sp 100 100 

DEVYNI dm e vm ii nm ik sp 99.2 98.3 

NULIS n uk lm i s sp 98.3 100 

AVERAGE RA, % 92.83 93.33 

 

Table 14A. Phoneme set (vm  n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek en et  ir sp). Additional phoneme ud is added to 

command DU 

Digit14 

Command Phoneme set distribution 
RA, % 

2-fold 5-fold 

VIENAS vm i ek n a s sp 99.2 99.2 

DU d ud ud sp 90.8 94.2 

TRYS tm rm y s sp 92.5 93.3 

KETURI km et t u rm ir sp 85.0 71.7 

PENKI pm en nk km ik sp 92.5 88.3 

SHESHI shm esh shm ish sp 97.5 100 

SEPTYNI sm e pm tm y nm ik sp 100 98.3 

ASHTUONI a sh t uo nm ik sp 100 100 

DEVYNI dm e vm ii nm ik sp 99.2 98.3 

NULIS n uk lm i s sp 98.3 99.2 

AVERAGE RA, % 95.50 94.25 

 

Table 15A. Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek en et  ir ke sp). Includes a new phoneme ke, in 

command KETURI 

Digit15 

Command Phoneme set distribution 
RA, % 

5-fold 

VIENAS vm i ek n a s sp 99.2 

DU d ud ud sp 93.3 

TRYS tm rm y s sp 93.3 

KETURI ke et t u rm ir sp 57.5 

PENKI pm en nk km ik sp 91.7 

SHESHI shm esh shm ish sp 100 

SEPTYNI sm e pm tm y nm ik sp 99.2 

ASHTUONI a sh t uo nm ik sp 100 

DEVYNI dm e vm ii nm ik sp 98.3 

NULIS n uk lm i s sp 99.2 

AVERAGE RA, % 93.17 
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Table 16A. Phoneme set (vm n a s d u tm rm y km e i pm shm uo lm sil t ii 

nk sh nm dm sm ik uk ud ish esh ek en et ir ri sp). Includes a new phoneme ri, in 

command KETURI 

Digit16 

Command 
Phoneme set 

distribution 

RA, % 

1-fold 2-fold 3-fold 4-fold 5-fold 

VIENAS vm i ek n a s sp 100 99.2 100 100 99,2 

DU d ud ud sp 100 90.8 95.8 100 94,2 

TRYS tm rm y s sp 95.0 94.2 95.0 95.0 92,5 

KETURI km et t u ri ir sp 100 91.7 93.3 82.5 86,7 

PENKI pm en nk km ik sp 100 94.2 100 96.7 90,0 

SHESHI shm esh shm ish 

sp 
96.7 97.5 100 100 100 

SEPTYNI sm e pm tm y nm 

ik sp 
96.7 100 98.3 93.3 98,3 

ASHTUONI a sh t uo nm ik sp 100 100 100 100 100 

DEVYNI dm e vm ii nm ik 

sp 
100 98.3 99.2 100 98,3 

NULIS n uk lm i s sp 100 99.2 98.3 96.7 98,3 

AVERAGE RA, % 98.84 96.51 97.99 96.42 95.75 

Overall 5 folds Average 

RA, % 
97.1 

 

Table 17A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh ek o sp). A new phoneme o is added to the set. 

Diphthong uo in command ASTUONI is separated into two phonemes u and o 
Digit17 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 63.3 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 93.3 

PENKI pm ek nk km ik sp 98.3 

SHESHI shm esh shm ish sp 96.7 

SEPTYNI sm e pm tm y nm ik sp 95.8 

ASHTUONI a sh t u o nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 94.17 
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Table 18A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh ek o sp). In command ASTUONI, phoneme u is 

changed into uk 
Digit18 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 68.3 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 96.7 

PENKI pm ek nk km ik sp 98.3 

SHESHI shm esh shm ish sp 97.5 

SEPTYNI sm e pm tm y nm ik sp 95.8 

ASHTUONI a sh t uk o nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 95.08 

 

Table 19A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh sp). In command SEPTYNI, phoneme ii is changed 

into i 
Digit19 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 64.2 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 100 

PENKI pm e nk km ik sp 95.8 

SHESHI shm esh shm ish sp 95.8 

SEPTYNI sm e pm tm i nm ik sp 95.0 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 97.5 

AVERAGE RA, % 95.33 

 

Table 20A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh yk sp) ). A new phoneme yk is added to the set. 

Phoneme ii in command SEPTYNI is changed into yk. Also previous phoneme ik is 

changed into i  
Digit20 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 62.5 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 98.3 
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PENKI pm e nk km ik sp 99.2 

SHESHI shm esh shm ish sp 96.7 

SEPTYNI sm e pm tm yk nm i sp 97.5 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 98.3 

AVERAGE RA, % 94.67 

 

Table 21A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh ek yk sp). A new phoneme yk is added to the set. 

Phoneme ii in command DEVYNI is changed into yk. Also previous phoneme ik is 

changed into i  
Digit21 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 69.2 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 96.7 

PENKI pm ek nk km ik sp 89.3 

SHESHI shm esh shm ish sp 95.8 

SEPTYNI sm e pm tm y nm ik sp 98.3 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm yk nm i sp 100 

NULIS n uk lm i s sp 98.3 

AVERAGE RA, % 95.17 

 

Table 22A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh ek yk sp). Command DEVYNI includes two types 

of phoneme sets 
Digit22 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 69.2 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 96.7 

PENKI pm ek nk km ik sp 98.3 

SHESHI shm esh shm ish sp 95.8 

SEPTYNI sm e pm tm y nm ik sp 95.0 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm yk nm i sp 

dm e vm ii nm ik sp 
99.2 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 94.92 
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Table 23A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh ek o sp). Command ASTUONI includes two types 

of phoneme sets 
Digit23 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 63.3 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 93.3 

PENKI pm ek nk km ik sp 98.3 

SHESHI shm esh shm ish sp 96.7 

SEPTYNI sm e pm tm y nm ik sp 95.8 

ASHTUONI a sh t u o nm ik sp   

a sh t uk o nm ik sp   
100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 94.17 

 

Table 24A. Phoneme set (vm ie n a s d u tm rm y km e i pm shm uo lm sil t 

ii nk sh nm dm sm ik uk ud ish esh ek yk sp. Command SEPTYNI includes two types 

of phoneme sets 
Digit24 

Command Phoneme set distribution 
RA, % 

1-fold 

VIENAS vm ie n a s sp 100 

DU d ud sp 69.2 

TRYS tm rm y s sp 95.0 

KETURI km e t u rm ik sp 96.7 

PENKI pm ek nk km ik sp 98.3 

SHESHI shm esh shm ish sp 95.8 

SEPTYNI sm e pm tm y nm ik sp 

sm e pm tm yk nm i sp 
95.0 

ASHTUONI a sh t uo nm ik sp   100 

DEVYNI dm e vm ii nm ik sp 99.2 

NULIS n uk lm i s sp 100 

AVERAGE RA, % 94.92 
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Annex 5 

Table 1. List of speakers used for names and words recognition 

 

Table 2. Names and words 7-times cross-validation speaker distribution 

1-FOLD 2-FOLD 3-FOLD 4-FOLD 5-FOLD 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

 0F 8F 8F  0F 8F 3F 8F 6M 8F 11F 

1F 9M 9M 1F 9M 4M 9M 7M 9M 12F 

2F 16F 16F 2F 16F 5M 16F 10F 16F 13F 

3F  3F   0F   0F   0F  

4M  4M  1F  1F  1F  

5M  5M  2F  2F  2F  

6M  6M  6M  3F  3F  

7M  7M  7M  4M  4M  

10F  10F  10F  5M  5M  

11F  11F  11F  11F  6M  

12F  12F  12F  12F  7M  

13F  13F  13F  13F  10F  

14F  14F  14F  14F  14F  

15F  15F  15F  15F  15F  

17M  17M  17M  17M  17M  

18M  18M  18M  18M  18M  

19M  19M  19M  19M  19M  

20M  20M  20M  20M  20M  

Speaker Number 

FAGNRUM 0F 

FEGLZAJ 1F 

FIVEVAL 2F 

FJULBAL 3F 

MJURBIZ 4M 

MLAUBAR 5M 

MROKKUO 6M 

MSARNEM 7M 

FGINBAR 8F 

MDARJEG 9M 

FGINPAS 10F 

FGINTRA 11F 

FGRETUB 12F 

FINDBEN 13F 

FLAUKLU 14F 

FMILRAU 15F 

MANDMAR 16M 

MJUOCES 17M 

MKASRAT 18M 

MZYGSVE 19M 

FSEVBUT 20F 
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6-FOLD 7-FOLD 

Trainin

g 
Testing 

Trainin

g 
Testing 

 0F 14F 8F 18M 

1F 15F 9M 19M 

2F 17M 16F 20M 

3F  3F  

4M  4M  

5M  5M  

6M  6M  

7M  7M  

10F  10F  

11F  11F  

12F  12F  

13F  13F  

8F  14F  

9M  15F  

16F  17M  

18M   0F  

19M  1F  

20M  2F  
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Table 3. Average names and words RA by varying number of states 

 

Command 

+0 

 states 

+2  

states 

+3 

 states 

+4 

 states 

+6 

 states 

Austėja 
100 100 97.5 100 100 

Boleslovas 
100 100 100 98.3 98.3 

Cecilija 
100 100 100 100 100 

Donatas 
66.7 100 97.5 48.3 40 

Eimantas 
98.3 100 100 95 100 

Fausta 
26.7 98.3 97.5 100 100 

Gražvydas 
76.7 50 100 41.7 98.3 

Hansas 
43.3 100 47.5 100 100 

Izaokas 
100 100 100 100 8.3 

Jonas 
11.7 83.3 100 83.3 100 

Karolis 
58.3 100 100 100 11.7 

Laima 
8.3 75 100 50 100 

Martynas 
85 100 100 100 100 

Nojus 
10 75 100 100 100 

Oskaras 
71.7 100 100 100 16.7 

Patrikas 
90 91.7 100 50 96.7 

Kju 
0 1.7 55 95 95 

Ričardas 
31.7 91.7 2.5 31.7 80 

Sandra 
6.7 100 80 100 100 

Teodoras 
96.7 100 100 98.3 100 

Ulijona 
100 100 100 98.3 70 

Vacys 
18.3 70 97.5 100 100 

Wašington 
68.3 70 77.5 70 100 

Xsas 
0 0 65 60 90 

Ygrekas 
96.7 100 97.5 31.7 26.7 

Zacharijus 
100 100 95 100 100 

RA, % 
60.20±14.85 84.87±10.79 88.85±8.85 82.75±9.97 81.99±12.19 
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Table 4. Average names and words RA by varying number of Gaussian 

mixtures in states 

Command 

Additional states. + 2 Additional states. + 3 

2
 

M
ix

tu
re

s 

3
 

M
ix

tu
re

s 

4
 

M
ix

tu
re

s 

6
 

M
ix

tu
re

s 

1
0
 

M
ix

tu
re

s 

1
  
M

ix
tu

re
 

2
 

M
ix

tu
re

s 

3
 

M
ix

tu
re

s 

4
 

M
ix

tu
re

s 

6
 

M
ix

tu
re

s 

Austėja 100 100 100 100 100 100 100 100 100 100 

Boleslovas 100 100 100 100 100 100 100 100 100 98.3 

Cecilija 100 100 100 100 100 100 100 100 100 100 

Donatas 100 100 100 100 100 100 100 100 100 100 

Eimantas 100 100 100 100 100 100 100 50 100 100 

Fausta 100 100 100 96.7 100 100 100 100 100 100 

Gražvydas 100 100 100 100 100 100 100 100 100 98.3 

Hansas 100 100 100 100 100 100 100 95 100 100 

Izaokas 98.3 98.3 100 100 100 100 100 100 100 100 

Jonas 98.3 100 51.7 38.3 100 93.3 100 100 100 58.3 

Karolis 96.7 75 100 100 100 100 100 100 100 100 

Laima 96.7 91.7 90 81.7 100 100 98.3 98.3 100 70 

Martynas 100 100 100 100 100 100 100 100 100 100 

Nojus 98.3 100 73.3 96.7 100 98.3 100 100 100 100 

Oskaras 85 66.7 95 100 100 100 100 100 100 95 

Patrikas 100 100 100 100 100 95 100 96.7 100 100 

Kju 83.3 91.7 88.3 88.3 86.7 71.7 86.7 95 85 95 

Ričardas 100 100 100 100 100 96.7 98.3 88.3 100 100 

Sandra 100 100 100 100 100 100 100 100 100 100 

Teodoras 100 100 100 100 100 100 100 40 100 100 

Ulijona 100 100 98.3 100 100 100 100 100 100 100 

Vacys 85 91.7 98.3 1.7 91.7 68.3 98.3 78.3 98.3 93.3 

Wašington 100 80 100 100 100 100 100 95 100 88.3 

Xsas 70 8.3 58.3 38.3 100 60 96.7 81.7 36.7 96.7 

Ygrekas 100 91.7 100 100 100 100 100 100 100 98.3 

Zacharijus 100 100 100 100 100 100 100 98.3 100 100 

RA, % 

96.6 

± 

2.83 

92.12 

± 

7.38 

94.35 

± 

5.00 

90.07 

± 

9.48 

99.17 

± 

0.83 

95.51 

± 

4.19 

99.2 93 96.9 95.8 
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Command 

Additional states. +4 

2
 

M
ix

tu
re

s 

3
 

M
ix

tu
re

s 

4
 

M
ix

tu
re

s 

6
 

M
ix

tu
re

s 

1
0

 

M
ix

tu
re

s 

1
6

 

M
ix

tu
re

s 

Austėja 100 100 100 100 100 100 

Boleslovas 100 100 100 98.3 100 100 

Cecilija 100 100 100 100 100 100 

Donatas 100 100 100 95 100 100 

Eimantas 100 100 100 98.3 100 100 

Fausta 100 100 100 100 100 100 

Gražvydas 100 100 100 100 100 100 

Hansas 100 100 100 100 100 100 

Izaokas 100 100 100 96.7 100 100 

Jonas 91.7 41.7 86.7 100 98.3 100 

Karolis 100 100 100 100 100 100 

Laima 100 100 100 100 100 100 

Martynas 100 68.3 100 100 100 100 

Nojus 100 100 100 100 100 100 

Oskaras 100 56.7 100 61.7 100 100 

Patrikas 100 78.3 100 86.7 100 100 

Kju 85 95 86.7 95 95 95 

Ričardas 100 75 100 78.3 100 100 

Sandra 100 100 100 100 100 100 

Teodoras 100 100 100 100 100 100 

Ulijona 100 100 100 100 100 100 

Vacys 66.7 100 98.3 100 100 98.3 

Wašington 100 90 100 98.3 100 100 

Xsas 91.7 98.3 95 85 100 100 

Ygrekas 100 96.7 100 95 100 100 

Zacharijus 100 100 100 98.3 100 100 

RA, % 97.5 92.3 98.7 95.6 99.7 99.7 
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Annex 6 

 

1-FOLD 2-FOLD 3-FOLD 4-FOLD 5-FOLD 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

Traini

ng 

Testin

g 

D03 D48 D48 D03 D03 D27 D03 D44 D03 D58 

D05 D54 D54 D05 D05 D28 D05 D45 D05 D61 

D07 D87 D87 D07 D07 D29 D07 D78 D07 D62 

D10 D88 D88 D10 D10 D30 D10 D79 D10 D63 

D11 D90 D90 D11 D11 D31 D11 D80 D11 D64 

D12 D91 D91 D12 D12 D36 D12 D81 D12 D65 

D13 D92 D92 D13 D13 D37 D13 D82 D13 D69 

D16 D94 D94 D16 D16 D41 D16 D83 D16 D73 

D21 D95 D95 D21 D21 D49 D21 D84 D21 D75 

D23 D96 D96 D23 D23 D57 D23 D85 D23 D77 

D27  D27  D48  D48  D48  

D28  D28  D54  D54  D54  

D29  D29  D87  D87  D87  

D30  D30  D88  D88  D88  

D31  D31  D90  D90  D90  

D36  D36  D91  D91  D91  

D37  D37  D92  D92  D92  

D41  D41  D94  D94  D94  

D44  D44  D95  D95  D95  

D45  D45  D96  D96  D96  

D49  D49  D58  D27  D27  

D57  D57  D61  D28  D28  

D58  D58  D62  D29  D29  

D61  D61  D63  D30  D30  

D62  D62  D64  D31  D31  

D63  D63  D65  D36  D36  

D64  D64  D69  D37  D37  

D65  D65  D73  D41  D41  

D69  D69  D75  D49  D49  

D73  D73  D77  D57  D57  

D75  D75  D44  D58  D44  

D77  D77  D45  D61  D45  

D78  D78  D78  D62  D78  

D79  D79  D79  D63  D79  

D80  D80  D80  D64  D80  

D81  D81  D81  D65  D81  

D82  D82  D82  D69  D82  

D83  D83  D83  D73  D83  

D84  D84  D84  D75  D84  

D85  D85  D85  D77  D85  
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