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Abstract: There are many tool condition monitoring solutions that use a variety of sensors. This 
paper presents a self-powering wireless sensor node for shank-type rotating tools and a method for 
real-time end mill wear monitoring. The novelty of the developed and patented sensor node is that 
the longitudinal oscillations, which directly affect the intensity of the energy harvesting, are signif-
icantly intensified due to the helical grooves cut onto the conical surface of the tool holder horn. A 
wireless transmission of electrical impulses from the capacitor is proposed, where the collected elec-
trical energy is charged and discharged when a defined potential is reached. The frequency of the 
discharge pulses is directly proportional to the wear level of the tool and, at the same time, to the 
surface roughness of the workpiece. By employing these measures, we investigate the support vec-
tor machine (SVM) approach for wear level prediction. 

Keywords: sensor node; energy harvesting; tool vibrations; tool condition monitoring (TCM); sup-
port vector machine (SVM); end milling; piezoelectric transducer 
 

1. Introduction 
During the machining process, severe tool wear can lead to quality degradation of 

the workpiece or to the breakage of the tool itself, resulting in unexpected production 
downtime, or even in damage to the equipment or injuries to the operator [1]. In the pro-
duction process, more than 75% of equipment failures are attributed to direct tool wear 
or failure, which accounts for up to 6.8% of the total machining process. Tool change and 
its wear can also lead up to 3% to 12% of total production costs [2]. The lifespan of the tool 
depends on a number of parameters, such as lubrication. During milling operation, when 
lubrication is applied, tool life is estimated to last 75 min, while the process of milling 
without lubrication cutter tool lifespan is expected to end after 45 min [3]. 

A generic tool condition monitoring (TCM) system consists of sensors, signal pro-
cessing, classification and tool condition detection components [4,5]. Sensors are de-
ployed in order to directly or indirectly measure physical signals such as: cutting force, 
torque, vibration, acoustic emission, current and power, sound and temperature. These 
physical signals are evaluated for detection of tool wear, chatter or breakage conditions 
in real-time. General requirements for sensors used in the industrial applications are: low 
cost, small size, robustness, reliability and non-invasive installation. Sensors that comply 
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with such requirements can be integrated with cloud manufacturing frameworks that en-
able smart online machining process monitoring, forming cyber-physical systems that are 
able to learn from data generated by such sensors [6,7]. Such implemented smart tool con-
dition monitoring systems can significantly increase machining productivity and reduce 
tool costs by optimizing its life. This is achieved by implementing condition-based tool 
replacement strategies instead of time-based tool replacements, which is especially im-
portant in high precision, high speed and complex machining processes. 

Implementation of a TCM system in production can ensure early detection of tool 
wear resulting in a decrease of the production costs as well as increasing production effi-
ciency and ensuring the safety of operators. The use of TCM systems can generate 10–50 
% cutting speed increment, reduce up to 75% downtime and 30% maintenance costs. Thus 
such economic incentives for implementation of tool monitoring systems have led to sig-
nificant research interest in developing reliable and robust systems to be deployed in in-
dustrial environments [4]. 

To meet the set of requirements for TCM systems to be used in industrial environ-
ments, wireless self-powered sensor nodes can be employed. They should consist of trans-
ceiver for wireless data transmission, microcontroller for data processing and battery for 
storing the energy collected from the environment [8–10]. Ambient energy harvesting 
from immediate environment enables increasing the sensor lifespan as well as reducing 
or eliminating altogether the need for maintenance [11,12]. During milling operation, the 
common source of ambient energy is the vibration of the tool and/or workpiece, which 
can be harvested using electromagnetic, piezoelectric, electrostatic and magnetrostrictive 
principles [13]. 

The authors of [14] propose the use of an attachable electromagnetic energy harvest-
ing driven wireless vibration-sensing TCM system, which can detect cutter wear and 
breakage conditions during milling process. Such energy harvester is enough to power a 
sensor node consisting of power management circuit, three accelerometers and wireless 
data transmission capability. In [15] the authors discuss the use of a circular bimorph pi-
ezoelectric transducer that assures a resonant frequency in the same mode as the turning 
tool. Such a device is attached to the turning tool collecting vibrations present during op-
eration. Paper [16] discusses the use of bimorph piezoelectric cantilever with an inertial 
mass attached to a milling tool. The electric energy by the piezoelectric transducer when 
it is excited by the vibrations of the cutter caused by the impact of its cutting tooth on the 
workpiece. As the wear of the milling tool increases, the angular acceleration exerted on 
the tool increases as well, leading to up to two times higher voltage output from the pie-
zoelectric transducer, thus relating the increase in the output voltage to changes in the 
condition of the tool over time. 

The data collected from the sensor node can be analyzed in parallel while the milling 
operation is in progress by implementing machine learning (ML) algorithms and provide 
feedback on the condition of the milling tool to the equipment as well as the operator. 

The use of machine learning approach for tool wear estimation is being adopted quite 
quickly in factories where intelligent monitoring systems are being deployed. Since the 
signals generated by the sensors are non-linear with respect to the tool wear rate, a sup-
port vector machine (SVM) model can be used as a classifier to predict the wear of milling 
tools [17]. Accurate predictions in detecting tool wear under various cutting conditions 
with rapid response rate are achieved by measuring the audible acoustic signals and ana-
lyzing them in the frequency domain by extracting signal features that correlate with the 
actual milling phenomena. The prediction of the wear of the end mill tool can be consid-
ered as the classification task and solved by applying different machine learning algo-
rithms. Tool wear prediction based on linear axis force and current signals using SVM and 
random forest (RF) approach tend to achieve very good classification accuracy results: 
98.1 % (SVM) and 86.1 % (RF) respectively [18]. It can be noted, that employing SVM, tool 
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condition binary classification task into “sharp” and “dull” classes allows to achieve clas-
sification rate of 100% [19], using features extracted from three-axis cutting measuring 
forces, torque, three-axis accelerometer and acoustic emission signals. 

Other commonly applied ML methods to tackle this problem include artificial neural 
networks (ANN), RF, decision trees (DT) [20], neuro-fuzzy systems [21], or convolutional 
neural network (CNN) [22], with a focus on prediction accuracy and training time. A 
neuro-fuzzy system (with a feedforward backpropagation neural network) can be used to 
perform online tool wear condition monitoring by measuring three parameters—maxi-
mum tool wear, machining time and cutting power that are required to create a certain 
surface roughness, thus making the most efficient use of the cutting tool [21]. Deep con-
volutional neural networks have achieved state-of-the-art results in many imaging recog-
nition tasks, therefore they are increasingly applied to make predictions analyzing tool 
wear images [22–24]. It could be a very efficient method to exclude relative numerical 
features as well [25–27]. However, the provided accuracy results of different ML methods 
vary considerably, ranging from 50% to 100% [18,19,21,28], depending on the derived fea-
tures, experimental conditions, the prediction task (classification or regression), the pa-
rameters of the ML model and etc. Therefore, it is difficult to provide objective insights or 
to perform an unbiased comparative study. 

The support vector machine—regression (SVR) approach is used to predict tool wear 
condition. During milling, tool wear changes the surface roughness of the workpiece and 
therefore the surface roughness values are used as an indirect measure of the tool wear 
condition. The corresponding empirical and newly derived attributes have been calcu-
lated from the original data, i.e., the variation of the capacitor charge level over time, ob-
tained from the proposed sensor node. Common time-series features such as running av-
erages, autocorrelation and entropy were calculated as well. The ten most valuable fea-
tures were selected for SVR model training. Among the three types of kernels, the predic-
tion model with a radial basis function (RBF) kernel was the best for predicting the value 
of the workpiece surface roughness. The SVR-RBF model reveals that it is able to provide 
the lowest average errors of 2.420% based on mean absolute percentage error (MAPE). 
Furthermore, the results show a significant inverse correlation between the variance of 
the capacitor charging time (the length of the capacitor charging cycle) and the surface 
roughness of the workpiece. 

The paper is structured as follows: After the introduction, Section 2 presents a 
method for converting the rotational vibrations of a shank-type rotating tool into longitu-
dinal vibrations by embedding it into a cone-shaped horn with helical slots in the spindle 
of the machine tool. The advantages of embedding such a tool compared to a conventional 
one are demonstrated in Section 3. Experimental results on the prediction of tool wear 
condition using the SVR approach are provided in Section 4. Additional experiments, in-
cluding time serious features and different machine learning algorithms, are presented in 
Section 5. Finally, Section 6 concludes the paper. 

2. Material and Methods 
2.1. Design of a Horn-Type Waveguide with Helical Slots 

A cone-shaped tool holder, also referred as horn, is usually used in machining pro-
cesses where the excited vibrational response of the tool reduces cutting forces and im-
proves the surface quality of the workpiece. The cone-shape of the tool holder was chosen 
because it would act as a concentrator-resonator of ultrasonic vibration energy and be as 
rigid as possible for lateral loads; other shapes (stepped, exponential, catenoidal and etc.) 
are less rigid, and the helical grooves formed on their lateral surfaces would further re-
duce their lateral stiffness and be less efficient. The motion generated at the tool-work-
piece interface is typically longitudinal, torsional or a composite of longitudinal and tor-
sional (L&T). It can be achieved either by the use of a transducer capable of synchronously 
generating both vibrational modes simultaneously, or by the introduction of geometric 
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features on the surface of the horn waveguide that enable transformation of longitudinal 
motion by the transducer into L&T form at the tool. 

In this study, a cone-shaped type tool holder design with helical slots formed on its 
planar surface has been developed using the Solidworks (Dassault Systèmes SolidWorks 
Corporation, Waltham, MA, USA) computer-aided design (CAD) software package. As 
presented in Figure 1, the designed cone-shaped tool holder has three uniformly distrib-
uted helical slots of 45 mm length, 3 mm width and 3 mm depth, with an angle of 30° on 
its planar surface with the longitudinal axis of the tool holder. The selected material for 
the tool holder is C45 steel (EN 1.0503) whose chemical composition and mechanical 
properties are provided in Table 1. 

Table 1. Chemical composition and mechanical properties of C45 (EN 1.0503) type steel. 

Chemical Composition, % 
C Si Mn Ni P S Cr Mo 

0.43–0.5 Max. 0.4 0.5–0.8 max. 0.4 max. 0.045 max. 0.045 max. 0.4 max. 0.1 
Physical Properties 

Brinell hardness Young’s modulus Poissons ratio Density 
180 210 GPa  0.3 7800 kg/m3 

Introduction of helical slots on the surface of the cone-shaped tool holder enable cou-
pling of L&T vibrational mode in the 14.1 kHz and 15.2 kHz vibrational frequency band-
width, thus creating an L&T vibrational mode. This L&T vibrational mode can be used in 
a reverse action during milling operation as compared to the traditional application of 
horn-type waveguides with helical slots. In our design, when the end mill tool is excited 
during milling by torsional vibrations entering or exciting the workpiece, these vibrations 
are transferred to the tool holder where they are partially transformed into longitudinal 
vibrations due to the generation of the L&T vibration mode. The longitudinal vibrations 
generated in the tool holder are transferred to an axially poled piezoelectric transducer, 
where they are used to deform it, thus generating an electric charge. 

The assembly of a cone-shaped tool holder with an end milling tool made of high 
speed steel (HSS) material is presented in Figure 2. The tool holder is rigidly attached to 
the entire outer flange surface. Such configuration was used in subsequent FEM modeling 
work. 

 
Figure 1. Horn type tool holder model design with helical slots formed on its planar surface. 
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Figure 2. Tool holder with end mill tool geometrical model—rigid fix constraint boundary condi-
tions. 

2.2. Simulation of Horn-Type Waveguide with Helical Slots 
The COMSOL Multiphysics (COMSOL, Inc., Burlington, MA, USA) software pack-

age was used to model the vibration response of the horn type tool holder with helical 
slots. In FEM modeling, the flange surface of the tool holder was firmly attached (Figure 
2), and the milling forces were applied to the end mill tool, the principal block diagram of 
the created FEM simulation model is provided in Figure 3. The evaluation of the vibra-
tional modes and the conditions for the longitudinal-torsional mode coupling effect to 
take place for the tool holder model and the frequency dependence of the L&T modes on 
the geometrical and material parameters was performed by modeling. The analysis of the 
surface displacements of the contact surface of the toolholder with the piezoelectric trans-
ducer was carried out in the Solid Mechanics (solid) module in the frequency domain. The 
complete simulation of the tool holder with the piezoelectric transducer, was performed 
by integrating the Electrical Circuit (cir), Electrostatics (es) and Solid Mechanics (solid) 
modules. 

 
Figure 3. Principal block diagram of the FEM simulation model. 

In such applications, the motion generated at the tool-workpiece interface is typically 
longitudinal, rotational, or longitudinal and rotational, which can be achieved either by 
using a transducer that can simultaneously generate both vibration modes, or by intro-
ducing geometric elements on the tool holder surface that allow the transducer to trans-
form the longitudinal motion at the tool into L&T form. 

In the considered FEM formulation, the dynamics of the tool is described by the fol-
lowing equation of motion in block form, taking into account that the fundamental law of 
motion is known and defined by the node displacement vector 𝑢௄: 

൤𝑀ேே 𝑀ே௄𝑀௄ே 𝑀௄௄൨ ൜𝑢ሷ ே𝑢ሷ ௄ൠ+൤𝐶ேே 𝐶ே௄𝐶௄ே 𝐶௄௄൨ ൜𝑢ሶ ே𝑢ሶ ௄ൠ+൤𝐾ேே 𝐾ே௄𝐾௄ே 𝐾௄௄൨ ቄ𝑢ே𝑢௄ቅ  =  ቄ଴௥ቅ (1) 
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where the node displacement vectors 𝑢ே, 𝑢௄ correspond to the displacements of the free 
and kinematically excited nodes; 𝑀, 𝐶, 𝐾 are the mass, stiffness and damping matrices, 
respectively; 𝑟 is a vector representing the reaction forces of the kinematically excited 
nodes. 

The displacement vector of unconstrained nodes is expressed as 𝑢ே  =  𝑢ே௥௘௟  + 𝑢ே௄, 
where 𝑢ே௥௘௟ denotes the component of the relative displacement with respect to the dis-
placement 𝑢ே௄, of the moving base. The vectors 𝑢ே and 𝑢ே௄ correspond to the displace-
ments of the rigid body that do not cause internal elastic forces in the structure. The pro-
portional damping method takes the form 𝐶 =  𝛼M +  𝛽K, where 𝛼 and 𝛽 as Rayleigh 
damping constants. Thus, by performing algebraic Equation (1), the following matrix 
equation is obtained: 𝑀ேே𝑢ሷ ே௥௘௟ + 𝐶ேே𝑢ሶ ே௥௘௟ + 𝐾ேே𝑢ே௥௘௟  =  𝑀෡ (2) 

where the left side of the equation contains structure matrices constrained at the nodes of 
the determined kinematic excitation, and the right side reflects the kinematic excitation 
applied by the vector of inertial forces acting on each node of the structure. 

The model verification was performed to validate the adopted tool modeling ap-
proach and thus to ensure that the constructed FEM model can accurately predict the dy-
namic behavior of the vibration-controlled tool. The degree of agreement between the 
measured and simulated frequency responses was chosen as a quantitative criterion de-
scribing the accuracy of the model. One of the main factors determining the vibrational 
response of a tool is related to its boundary conditions. The main challenge was to achieve 
a proper frictional locking of the tool in the gripper. In addition, considerable effort was 
made to ensure that the dynamic analysis applied a kinematic excitation to the FEM model 
that corresponded to the actual vibration excitation induced by the tool. During the model 
adjustment phase, the most suitable values of stiffness 𝑘௭,  𝑘௥ and 𝑘ఝ were captured: the 
values of these coefficients were adjusted until a sufficiently close match between the sim-
ulated and measured eigenfrequencies was reached. This procedure was performed by 
conducting a sequence of frequency response analyses in the range of 0– 20 𝑘𝐻𝑧 with dif-
ferent values of stiffness coefficients. For the frequency response analysis, the displace-
ments of the tool holder surface in the longitudinal direction opposite to the position of 
the end mill were measured and the results are shown in Figure 4. 

 

Figure 4. Average displacement amplitude in longitudinal direction for horn with and without 
slots. 

The obtained results show that a tool holder with uniformly distributed helical slots 
formed on its conical surface and excited to resonate at its torsional vibrational mode will 
result in surface displacements more than six times higher than those compared to a con-
ventional design horn type tool holder without surface modifications. Conversely, if the 
tool holder with helical slots is excited in the longitudinal vibrational mode, the ampli-
tudes of the surface displacement in the longitudinal direction will be more than twice as 
higher as those obtained from tool holder without helical slots. Across the full generated 
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L&T vibrational mode frequency bandwidth we can see that the surface displacement am-
plitudes in longitudinal direction at about 15 kHz are at least twice as large as the results 
obtained with the tool holder without helical slots. This effect is obtained due to the partial 
conversion of torsional vibrations into longitudinal vibrations in the tool holder. 

Tool holder assembly with a piezoelectric transducer allows to evaluate energy har-
vesting properties under L&T mode excitation. For this purpose an axially poled piezoe-
lectric (material PZT-5H) transducer of 𝑂𝐷 × 𝐼𝐷 × 𝐻  = 40 𝑚𝑚 × 32 𝑚𝑚 × 10 mm  di-
mensions has been selected. 

The size and type of this piezoelectric transducer were chosen with respect to the 
position of the appearance of the maximum amplitudes of displacement of the tool holder 
flat surface in longitudinal direction, under end milling tool excitation conditions resonat-
ing at torsional mode (Figure 5). During milling operation the cutting tool is predomi-
nantly excited by torsional forces, thus it is important that the piezoelectric transducer 
shape would be selected ac-cording to formation of surface displacement at this vibra-
tional mode. According to Figure 5, we can see that maximum surface displacement at 
torsional mode is formed at the outer diameter of the contact surface, for this reason axi-
ally polled, ring shape PZT has been selected to optimize harvesting of vibrational energy. 

  
(a) (b) 

Figure 5. Tool holder with slots surface displacement heat map in longitudinal direction of the 
transducer at (a) torsional, (b) axial excitation vibrational modes. 

Repeated results of the frequency response of the piezoelectric transducer output 
voltage in the 20 kHz frequency range are presented in Figure 6. The results show that the 
transducer, when embedded together with the tool holder with helical slots on its surface, 
generates a significantly higher output power over frequency range where the L&T mode 
coupling effect is present, compared to the case where a tool holder without helical 
grooves is used instead. This confirms the previously obtained results presented in Figure 
4, where the highest longitudinal surface displacement is obtained when the tool holder 
with helical slots is excited to resonate at its torsional mode. 

 
Figure 6. Piezoelectric transducer generated voltage output for tool holder with and without heli-
cal slots. 
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This voltage, generated by the axially poled piezoelectric transducer, can be used to 
power low-power electronics, such as sensor nodes, which can be embedded inside the 
tool holder for measuring tool wear parameters during milling operation such as change 
in capacitor charge over time. 

2.3. Design of Sensor Node Embedded inside Cone-Shaped Tool Holder for Cutter Wear 
Monitoring 

The voltage obtained from the piezoelectric transducer under deformations when the 
tool holder is excited to resonance in L&T mode can be harvested by low-power senor 
nodes. To this end, the design of such a sensor node has been proposed in this study. 

During operation, when the tool holder is excited, the voltage generated by the pie-
zoelectric transducer is fed to electronics assembled as printed circuit board assembly 
(PCBA). The designed PCBA (Figure 7) consists of power management, data processing 
and wireless communication units. 

 
Figure 7. Front, back and isometric views of PCBA with MCU and Bluetooth module. Back view of 
the designed PCBA shows the introduced placement for coin type battery. 

As the designed device is expected to operate on low power all electronic compo-
nents have been selected with low power budget requirements in mind. For this reason, 
an MCU ULP MSP-430G2553 microcontroller (Texas Instruments, Dallas, TX, USA) has 
been selected. A MLT BT-05 type 4.0 Bluetooth serial communication module is also in-
cluded for wireless communication with a smartphone. Detailed electrical schematics of 
the PCBA are provided in Figure 8. 

 
Figure 8. Electrical schematics of the prototype PCBA used with designed sensor. 

Here, voltage from the piezoelectric transducer generated during milling operation 
is fed to a voltage multiplier consisting of Schottky diodes (D1A and D1B) and capacitors 
(C2, C3, C5, C6) where it is converted into a DC signal. From here the voltage is used to 
charge capacitor C4. The change in the charge level of the capacitor over time is measured 
by the MCU (microcontroller) and sent via Bluetooth. The denoted charge level change 
over time is directly related to the vibrations of the tool, which amplitudes depend on the 
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wear state of the tool. As the tool gradually wears out, the amplitude of the torsional vi-
brations present in the tool during interaction with the workpiece are also increasing [29]. 
As these vibrations are partially transformed into longitudinal vibrations deforming the 
piezoelectric transducers, the piezoelectric transducer is subjected to higher stresses dur-
ing operation with increasing tool wear over time, resulting in higher output voltages. 
When the MCU measures the capacitor voltage, it also compares it to a set voltage thresh-
old value. In case this threshold value is exceeded, the MCU triggers N-channel field tran-
sistor Q1, discharging the capacitor C4 through the resistor loads R1 and R2. Once the 
capacitor is discharged, another measuring cycle is initiated. 

During discharge, the voltage from the C4 capacitor is fed to the power accumulation 
unit, in our case a super capacitor, where it is stored and used for powering the electronics. 
This enables the self-powering capability of the sensor node. The principle of operation of 
the developed device, to be used during milling operation, is presented graphically in the 
flow chart (Figure 9). 

 
Figure 9. Working process flow of the wireless energy harvesting sensor node used to detect end 
mill tool condition wear state. 

As provided in Figure 9, during the milling operation (1), the predominantly random 
torsional vibrations exciting the cutting tool (2 & 3) are transmitted to the tool holder with 
helical slots (4). At the tool holder, these torsional vibrations are partially transformed into 
longitudinal vibrations (5) and transferred to deform an axially polled piezoelectric trans-
ducer (6). The voltage (7) from the piezoelectric transducer (6) is converted into a DC sig-
nal and continuously fed to the “C4” capacitor (8). During milling, the charge level of the 
capacitor “C4” (8) is measured (9) by an embedded microcontroller (10) at every 250 ms 
time interval. The microcontroller performs the following tasks: it compares the charge 
level of the capacitor “C4” with a predetermined value (11), in case the measured capaci-
tor charge level exceeds the predetermined threshold, the microcontroller initiates the dis-
charge of the capacitor (12). Here, the capacitor (13) voltage (14) is discharged into the 
power accumulation unit (15), which is used as a power source by the sensor it-self and 
the charging cycle of the capacitor “C4” (8) is restarted. In addition to controlling the dis-
charge of the capacitor, the microcontroller (10) also initiates wireless data transmission 
(16) via Bluetooth to the smartphone (17). The data transmitted contains information on 
the charge level of the capacitor at the time of measurement. The smartphone is used here 
to display the received data (19) and to store it on a local hard drive (20) for later pro-
cessing and analysis. 

Thus, the proposed sensor design not only enables the energy harvested by the pie-
zoelectric transducer to be used as an alternative power source of the sensor, but also to 
measure and record the change of the generated voltage over time, expressed as the 
change in the charge level of the capacitor. Here, the exponential increase of the capacitor 
charge level over time can be related to the gradual wear of the end mill tool. 
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3. Experimental Setup 
In order to experimentally verify that the use of helical slots on the planar surface of 

the tool holder lead to higher voltage from piezoelectric transducer, two tool holders have 
been prepared, one with and one without slots. These two manufactured tool holders was 
used during vibrational response experimental study as presented in block diagram (Fig-
ure 10), while the actual experimental setup is presented in Figure 11. The experimental 
setup was kept identical for both tool holders. 

 
Figure 10. Vibrational response test setup used for tool holder with and without helical slots. (1)—
Positioning of the tool holder with and without helical slots during the experiment. 

As presented in the block diagram of the experimental set-up, a piezoelectric actuator 
was fixed at the end of the tool holder, where the end milling tool is to be mounted to 
excite the tool holder. The piezoelectric actuator was connected to a waveform generator 
exciting it by a chirp type signal in the 50 kHz frequency range. 

  

(a) (b) 

Figure 11. Actual experimental set-up of the vibration response of the tool holder with and with-
out helical slots. (a)—view of the tool holder with a fixed piezoelectric actuator and a linear ampli-
fier P200 (FLC Electronics AB, Partille, Sweden), (b)—a view of the Polytec PSV-500 3D laser dop-
pler vibrometer-scanner (Polytec GmbH, Widbronn, Germany). 

A PSV-500 3D laser doppler vibrometer (Polytec, Bake Parkway Irvine, CA, USA) 
was used for non-contact surface displacement measurements. These measurements were 
made on the surface of the tool holder, which is dedicated for contact with piezoelectric 
transducer (opposite position of piezoelectric actuator). Results from the performed vi-
brational response experiment are presented in Figure 12. 
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Figure 12. Measured surface displacement amplitudes for the tool holder with and without helical 
slots excited at axial mode. 

The acquired results show that for the tool holder with helical slots, if it is excited to 
resonate at its axial mode, the surface displacement amplitude is twice as high, compared 
to the obtained results for the tool holder without helical slots, when it is excited to reso-
nate at the longitudinal mode. The vibrational response study results are consistent with 
the results obtained during FEM modeling of the tool holder (Figure 4), showing that un-
der the same excitation condition, the longitudinal surface displacement amplitudes of 
the tool holder with helical slots are significantly higher when compared to the tool holder 
without these helical slots. The frequency differences when compared to the FEM model 
are due to the different mounting position: in the FEM model, the tool holder is mounted 
to its outer flange surface (Figure 2), whereas in the experimental study it is mounted to 
its own free weight. Nonetheless, study results show a trend, observed during FEM stud-
ies, that the introduction of helical slots on the tool holder lead to the increase of longitu-
dinal vibrations. This is achieved, because the introduction of helical slots enables partial 
transformation of the torsional vibrations generated at the input surface of the tool holder 
into longitudinal motion reinforcing the longitudinal vibrations that already exist. These 
combined longitudinal vibrations are transmitted through the tool holder deforming a 
piezoelectric transducer. 

For experimental research to monitor the condition of rotating shank-type tools an 
instrument design was proposed and developed. According to the FEM results obtained 
in the previous section, the device consisted of a cone-shaped tool holder with three helical 
grooves uniformly distributed on its planar surface, a piezoelectric transducer and a 
PCBA board with integrated electronics. A 3D CAD model of the device, designed in the 
Solidworks (Dassault Systèmes SolidWorks Corporation, Waltham, MA, USA) software, 
is shown in Figure 13, providing cross-sectional and exploded views and the assembly 
elements presented in Table 2. 

Table 2. Components constituting a condition monitoring device for a rotating shank type tool. 

Number Component Description 
1 Holder’s Morse cone for assembly inside CNC center 
2 Antenna for wireless data transmission 
3 PCBA holder inside tool holder 
4 PCBA with data processing and transmission components 
5 Back-mass 
6 Stack type piezoelectric transducer 
7 Flange for assembling tool holder with Morse cone cover 
8 Cone shaped tool holder with helical slots 
9 End mill tool 

For the experimental investigation aimed at evaluating the energy harvesting perfor-
mance of the developed device under actual milling conditions and its dependence on the 
milling process parameters, the developed device (Figure 13) has been assembled inside 
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the spindle of V-20 CNC milling center (Figure 14, Leadwell, Taichung City 421, Taiwan). 
This experiment has been repeated for a tool holder with and a tool holder without helical 
slots on its planar surface. Throughout the milling process, a one-way Bluetooth connec-
tion was established with an Android smartphone and the information about the charge 
level of the C4 capacitor was sent and stored every 250 ms. 

 
Figure 13. (a)—Energy harvester device assembly section view, (b)—Energy harvester device as-
sembly exploded view. 

  
(a) (b) 

Figure 14. Wireless sensor node used for tool condition monitoring assembled inside Leadwell V-
20 CNC milling center (Leadwell CNC Machines MFG., Corp., Taiwan), (a)—outside CNC view, 
(b)—inside CNC view. 

The experiments were carried out by machining the entire top surface of a workpiece 
with the following dimension:  𝑙𝑒𝑛𝑔𝑡ℎ =  250 mm, ℎ𝑒𝑖𝑔ℎ𝑡 =  50 mm and 𝑤𝑖𝑑𝑡ℎ = 50 mm. The selected workpiece is made from 1.0037 type carbon steel. The chemical com-
position and mechanical properties of this type of material are provided in Table 3. 
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Table 3. Chemical composition and mechanical properties of 1.0037 type steel. 

Chemical Composition, % 
C Mn P S 

0.17—0.20 1.40 0.045 0.045 
Physical Properties 

Brinell hardness Young’s modulus Poissons ratio Density 
324 200 GPa  0.29 7700 kg/m3 

The HSS end mill cutting tool was selected for machining the workpiece. The main 
parameters of the end mill tool are provided in Table 4. 

Table 4. The main parameters of the end mill tool used during the machining operation. 

Tool type HSS 
End type Straight 

Number of teeth, Z Four 
Helix angle 35° 

Shank diameter 10 mm 
Cutting part diameter 10 mm 

Shank diameter 10 mm 
Working part length 25 mm 

Overall length 75 mm 

The milling operation parameters were selected according to the workpiece and the 
cutting tool when used without lubrication, as provided in Table 5. 

Table 5. Milling process parameters used during experiment. 

Parameter Spindle 
Speed, n 

Feed 
Speed, vf 

Feed Per 
Tooth, fz 

Axial Depth 
of Cut, ap 

Radial Depth 
of Cut, ae 

Value 1210 RPM 148 mm/min 0.031 mm/tooth 1 mm 9.8 mm 

During milling operation, the wireless sensor node was configured to discharge the 
capacitor C4 if its voltage level reached or exceeded a set threshold of 0.7 V, which would 
re-set and repeat the capacitor charging process.c v 

The results of the capacitor charging levels over time, recorded on the smartphone 
during the milling experiment, are shown in Figure 15. 

  
(a) (b) 

Figure 15. Experimental results of capacitor C4 charging times when tool holder without (a) and with (b) slots is used 
during milling operation. 
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Figure 15a presents the capacitor charging period during milling operation when the 
tool holder is implemented without helical slots and Figure 15b shows the capacitor charg-
ing rate where the tool holder with three uniformly distributed slots is assembled with 
our device. From the obtained results, we can see that the average time to charge the ca-
pacitor to the set threshold of 0.7 V is 7.38 s when using the tool holder with helical slots 
and 25.53 s when using the tool holder without slots. The results show that the tool holder 
with helical slots is charged more than 3.45 times faster, which means that up to 3.45 times 
more vibrational energy is harvested during milling operation over the same time interval 
if the device is implemented using the tool holder with helical slots. 

In the next step, the experiment was carried out by changing the parameters of the 
milling process. The spindle speed remained the same at 1210 RPM, but the milling depth 
was increased from 1 mm to 1.5 mm. The experiment was performed with both tool hold-
ers, with and without helical slots, and the results of this study are presented in Figure 16. 

  
(a) (b) 

Figure 16. Experimental results of the capacitor C4 charging times when the tool holder without (a) and with (b) helical 
slots is used during milling operation, with the depth of cutting increased from 1 mm to 1.5 mm. 

The obtained results show that increasing the depth of cut from 1 mm to 1.5 mm 
resulted in a significant decrease of the capacitor charging time up to the set threshold for 
both tool holders, with and without helical slots. 

The average charging time recorded for the C4 capacitor when assembled with the 
tool holder without helical slots was 17 s, whereas for the tool holder with helical slots it 
was 4.9 s. The results show that, as in the last step of the experiment, the difference be-
tween the tool holder with helical slots leads to a 3.47 times faster capacitor charging when 
compared to the one with the tool holder without helical slots. 

It is important to note that the charging time of the capacitor C4 decreased signifi-
cantly with increasing milling depth in tool holders with and without helical grooves, 
which means that the process parameter has a significant effect on the amplitude of the 
vibrations excited in the end mill tool during operation. However, the difference in the 
generated voltage between the tool holder designs remains relatively the same. 

The increase in the amount of the harvested energy can be anticipated with the in-
crease in spindle speed, because it leads to the increased frequency of tool tooth contact 
with the workpiece and hence the frequency of excitation of the milling tool. As the mill-
ing depth increases, the cutting edge of the milling tool is subjected to higher forces during 
the impact cycle. 

The next step of the experimental study investigated the ability of the proposed sen-
sor node to detect gradual tool wear during milling operation. For this purpose, the device 
(Figure 13) was assembled with a sharp (new) four flute HSS end mill tool (see Table 4), 
which, according to the process parameters defined in Table 5, was used to machine the 
top surface of a 1.0037 type steel (see Table 3) workpiece, with a 𝑙𝑒𝑛𝑔𝑡ℎ = 250 mm, ℎ𝑒𝑖𝑔ℎ𝑡 =  50 mm 𝑎𝑛𝑑 𝑤𝑖𝑑𝑡ℎ =  50 mm. The experimental study was carried out 
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by machining the top surface of the workpiece 61 times continuously, starting with a sharp 
(new) end mill tool, gradually (over milling operation) achieving its wear. During the 
milling of the top surface of the workpiece, once the machining was started, data from the 
sensor node with the capacitor charge level were sent every 250 ms. A smartphone with 
Bluetooth connectivity was used for the receiver to visually display the data on the screen 
in real time and store it for later processing. Each time milling operation of the workpiece 
top face was completed, its surface roughness was measured and logged at 15 different 
points using Mitutoyo SJ-210 surface roughness tester (Mitutoyo America Corp., Aurora, 
IL, USA). A flowchart of the experimental process, showing the steps involved in each 
milling iteration carried out during the experiment, is given in Figure 17. Two parameters 
were recorded during the experiment: the capacitor charge level during continuous mill-
ing and the workpiece surface roughness measurements after each milling iteration. Both 
parameters recorded at the sensor node were fed as input data to an SVM-based predic-
tion model to assess whether they can be used to detect the gradual tool wear in real time 
during milling operation, which is expressed by the relationship between the change of 
the capacitor charge level and the increase in workpiece surface roughness. 

 
Figure 17. The flow chart of process steps used during experiment execution. 

4. Experimental Results 
4.1. Features’ Extraction for an SVM-Based Prediction Model 

Support Vector Machines (SVMs) are one of the most popular supervised learning 
algorithms applied for both classification and regression problems [30]. The Support vec-
tor regression (SVR) approach is able to solve nonlinear problems with a comparably 
small number of model parameters. Unlike other machine learning algorithms, the algo-
rithm does not suffer from the problem of overfitting [31]. Moreover, the SVR based pre-
diction model is very suitable for edge devices due to its decision-making time. In the 
development of an intelligent monitoring system for the cutter wear process, the speed 
and robustness of the decision are the most important factors, because changes of the ca-
pacitor charge level can be observed within milliseconds. Since the effectiveness of an SVR 
depends upon the selection of kernels, the parameters of those kernels and soft margin 
parameter, different experiments have been carried out in this study. 

Each milling iteration of the top surface of the workpiece lasted on average 10 min, 
during which 2400 data points were recorded to determine the charge level of the capaci-
tor and 15 different surface points were taken to measure the average surface roughness 
after the milling operation. The average surface roughness values are considered as the 
output of the SVR model. However, the raw data representing the charge level of the ca-
pacitor, measured every 250 ms, are not suitable as input data for the model. Therefore, 
seven common statistical measures [32] have been calculated from the distribution of the 
capacitor charge level as provided in Table 6: 
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Table 6. Calculated statistical features used as SVR model input data. 

Feature Name Explanation 
Avg Average value of the capacitor charge level values 
Var Variability value of the capacitor charge level values 
Sd Standard deviation of the capacitor charge level values 
ACorr Autocerrelation value of the capacitor charge level values 𝑀ସ𝐴𝑣𝑔 4 data point simple moving averages of the capacitor charge level values 
InterQ Interquartile value of the capacitor charge level values 
Energy Absolute energy of the capacitor charge level values 

Feature Avg- is the simple average value of all 2400 data points, denoting capacitor 
charge level. Variation Var and standard deviation Sd are calculated accordingly. 

The autocorrelation function (ACF) is a useful characteristic for finding recurring 
patterns. This characteristic indicates the degree of similarity between values of the same 
variables over two time intervals. This concept has been used for defining the attribute 
ACorr, which refers to the average autocorrelation value calculated between two measures 
of the capacitor charge level at times 𝑥௧ and 𝑥௧ି௞ [32]: 

𝐴𝐶𝑜𝑟𝑟 =  1𝑛 − 1 ෍ 𝐴𝐶𝐹(𝑥௜, 𝑥௜ି௞௡
௜ ୀ ଵ ), 𝑘 =  1,2,3 …. (3) 

where value 𝑘 - is the time interval (the lag), which represents autocorrelation between 
values that are one time interval apart. 

The feature 𝑀ସ𝐴𝑣𝑔 calculates moving averages. In our case, four data points are 
taken and their average is calculated [33]: 𝑀𝐴𝐹 =  (𝑥௜ + 𝑥௜ାଵ + ⋯ + 𝑥௜ା(ெିଵ))𝑀  (4) 

𝑀ସ𝐴𝑣𝑔 =  1𝑛 − (𝑀 − 1) ෍ 𝑀𝐴𝐹௜௡ି(ெିଵ)
௜ ୀ ଴  (5) 

where 𝑛 - data points, where M is the size of the sliding window, and in our case 𝑀 = 4. 
Another quite informative characteristic is interquartile InterQ, which calculates the 

difference between the third quartile and the first quartile for a data [33]: 𝐼𝑛𝑡𝑒𝑟𝑄 =  𝑄ଷ − 𝑄ଵ.  (6) 
where 𝑄ଵ - the first quartile, and 𝑄ଷ - the third quartile. 

Feature Energy is the sum of the squared data values [34]: 

𝐸𝑛𝑒𝑟𝑔𝑦 =  ෍ (𝑥௜)ଶ௡ିଵ
௜ ୀ ଴  (7) 

Three specific measures have been derived using expert’s knowledge: 
• Energy provides the percentage amount of very high values of the capacitor charge 

level, 𝑥௜ > 360,𝑖 =  1, 𝑛തതതതത. It has been noticed, that the amount of such values has a 
positive relationship with surface roughness and correlation coefficient is equal to 
0.811. 

• 𝑆𝑖𝑔𝑛𝑎𝑙௝௨௠௣ provides the sum of squared differences (∆𝑥௜)ଶ, including the condition: 
the value of (∆𝑥௜)ଶ has to be greater than 0.9 of the quantile of differences between 
data points, 𝑄∆௫೔(𝑝), 𝑝 =  0.9: 
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𝑆𝑖𝑔𝑛𝑎𝑙௝௨௠௣  =  ෍ (∆𝑥௜)ଶ > 𝑄∆௫೔(0.9),௡ିଵ
௜ ୀ ଴  where ∆𝑥௜  =  (𝑥௜ାଵ − 𝑥௜).  (8) 

where 𝑄 - quantile function, 𝑝 - probability value 0 ൏ 𝑝 ൏ 1. This feature highly 
correlates with the output (see Table 7). 

• Avg_cycle is the average length of one capacitor charge cycle, until the set threshold 
level. 
The end of the cycle is determined if the difference between data points is relatively 
large ∆𝑥௜ > ℎ. The most appropriate threshold value for ℎ =  150 has been deter-
mined experimentally. The average cycle length Avg_cycle is calculated by taking into 
account all recorded lengths at the capacitor charge level. It has been observed that 
higher values of workpiece surface roughness (Ra) have lower values of average ca-
pacitor charge cycle. For example, for a roughness of 1.959, the average capacitor cy-
cle length is 59 time intervals (1 time interval = 250ms), which is 59 × 250ms = 14,750 ms =  14.759s, meanwhile for a roughness of more than 4, the cycle is very 
small averaging about 1.750s. The relation between the decrease in the average ca-
pacitor charging cycle time and the increase in surface roughness is provided in Fig-
ure 18. 

 
Figure 18. Capacitor charge cycle duration dependence on the surface roughness of the workpiece: 
14.759 s vs. Ra = 1.959 µm, 4.25 s vs. Ra = 2.533 µm, 3.25 seconds vs. Ra = 3.138 µm, 1.75 seconds 
vs. Ra = 4.03 µm. 

The obtained results show that there is a negative correlation (𝑟 =  −0.743) between 
the length of the capacitor charging cycle and the surface roughness of the workpiece, 
which is due to the wear of the cutting edge of the milling tool. In this case, the charge 
level of the capacitor at the time of the measurement was expressed in integers, where one 
unit equals 0.0015 volts, and the MCU was set to discharge the capacitor when it reaches 
an integer value of 350, that is when its charge level equals 0.5 volts. During the milling 
operation, when the charge on the piezoelectric transducer capacitor voltage reaches or 
exceeds the set threshold value, the capacitor is discharged and the cycle repeats itself. 
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Ten features have been included for the prediction task and the correlation coeffi-
cients (see Table 7) show that the most informative features are ACorr, InterQ, Energy, BigV 
and 𝑆𝑖𝑔𝑛𝑎𝑙௝௨௠௣. The most irrelevant feature (𝑟 =  0.574) is the standard deviation of the 
capacitor charge level. 

Table 7. Pearson correlation coefficient values. 

 Avg Var  Sd ACorr M4Avg InterQ Energy BigV Signaljump Avg_cycle 
Roughness −0.739 0.641 0.574 −0.817 −0.767 0.825 0.812 0.811 0.889 −0.743 

4.2. Model Evaluation Metrics and Prediction Accuracy Results 
All modeling experiments were carried out using the Python programming language 

in Jupyter notebook in the Google Colab environment. The fit of the SVR model was eval-
uated by calculating the coefficient of determination and prediction error. 𝑅ଶ (coefficient of determination) is commonly used to evaluate model performance 
[33]. 𝑅ଶ is the regression score, which is a statistical measure of how close the data are to 
the fitted regression line. In regression, it is a measure of how well the regression predic-
tions approximate the real data. When 𝑅ଶequals to 1, it indicates that the regression pre-
dictions perfectly fit the data: 𝑅ଶ  =  𝑆𝑆𝑅𝑆𝑆𝑇  =  1 − ∑ (𝑦௜ − 𝑦పෝ)ଶ௠௜ ୀ ଵ∑ (𝑦௜ − 𝑦ത)ଶ௠௜ ୀ ଵ  (7) 

where SSR is the sum of squares of residuals, SST - the total sum of squares, 𝑦௜ - the actual 
value, 𝑦పෝ  - the predicted value and 𝑦ത the mean value. 

The provided results (Figure 19) indicate that 𝑅ଶ value for RBF-SVM model varies 
from 0.930 to 0.975, depending on the number of kernels, varying from 1 to 4. These results 
denote that the RBF-SVM model explains all the variability of the response data. More 𝑅ଶ scoring variations can be observed with the polynomial SVM model, ranging from 
0.838 to 0.911 respectively. The regression score of the linear SVM model is more or less 
stable at around 0.77. 

𝑅ଶ  = 0.97566775994 
SVR(C = 4, degree = 3, epsilon = 0.05, 

gamma = ‘scale’, kernel = ‘rbf’) 

𝑅ଶ  = 0.958919381860 
SVR(C = 2, degree = 3, epsilon = 0.05, 

gamma = ‘scale’, kernel = ‘rbf’) 

𝑅ଶ  = 0.930381291742 
SVR(C = 1, degree = 3, epsilon = 0.05, 

gamma = ‘scale’, kernel = ‘rbf’) 

   

(a)  (b) (c) 
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𝑅ଶ  = 0.7786679105 
SVR(C = 4, degree = 3, epsilon = 0.05, 

gamma = ‘auto’, kernel = ‘linear’) 

𝑅ଶ  = 0.77649652937 
SVR(C = 2, degree = 3, epsilon = 0.05, 

gamma = ‘auto’, kernel = ‘linear’) 

𝑅ଶ  = 0.774049232444 
SVR(C = 1, degree = 3, epsilon = 0.05, 

gamma = ‘auto’, kernel = ‘linear’) 

   
(d) (e) (f) 𝑅ଶ  = 0.911783959637 

SVR(C = 4, degree = 3, epsilon = 0.05, 
gamma = ‘scale’,kernel = ‘poly’) 

𝑅ଶ  = 0.874943830963 
SVR(C = 2, degree = 3, epsilon = 0.05, 

gamma = ‘scale’, kernel = ‘poly’) 

𝑅ଶ  = 0.838342249562 
SVR(C = 1, degree = 3, epsilon = 0.05, 

gamma = ‘scale’, kernel = ‘poly’) 

   
(g) (h) (i) 

Figure 19. Coefficient of determination 𝑅ଶ value for RBF-SVR model depending on the number and the type of kernels. 
(a)—4 rbf kernels, (b)—2 rbf kernels, (c)—1 rbf kernel, (d)—4 linear kernels, (e)—2 linear kernels, (f)—1 linear kernel, (g)—
4 polynomial kernels, (h)—2 polynomial kernels, (i)—1 polynomial kernel. 

Three error measures for time-series prediction are usually calculated: the root mean 
square error (RMSE); the mean absolute deviation (MAD) and the mean absolute percent-
age error (MAPE). In our experiments, MAPE is calculated to evaluate the prediction ac-
curacy of SVM models. MAPE is a relative error measure that uses relative errors to com-
pare the predicted accuracy between time-series models. The formula for calculating the 
MAPE is provided below [33]: 

𝐸ெ  =  1𝑛 ෍ ฬ𝑦௜ − 𝑦ො௜𝑦௜ ฬ ∙ 100௡
௜ ୀ ଵ  (8) 

where n - he number of time point, 𝑦௜ - is the actual value at a given time period i, and 𝑦ො௜ 
- is the predicted value. 

The data used to test the model (capacitor charge level values over time) are obtained 
from 31 different milling operations. The average MAPE value of the SVM model with a 
radial basis function kernel and C = 4, predictions are equal to 2.420%. The SVM with a 
polynomial kernel and C = 4 resulted in an average MAPE value of 5.431%, while the 
highest error was observed with the linear kernel of 8.608%. The predicted and real (ac-
tual) values of the surface roughness during the testing are presented in Figure 20. 
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(a) (b) (c) 

Figure 20. Testing results of the SVM model with different kernels: (a)—linear, (b)—polynomial, (c)—radial basis function. 

5. Discussion 
As the data can be considered as a time series, various additional features such as 

entropy, “peak to peak” distance, seasonality and trend can be calculated for prediction. 
The Seasonal-Trend Decomposition by Loess (STDL) method [34] can be applied to 

time series, because it can decompose a time series into seasonal, trend and remainder 
components [35]: 𝑌௧  =  𝑇௧ + 𝑆௧ + 𝑅௧.  (9) 
where 𝑇௧ − is the trend component, 𝑆௧ − is the seasonal component representing for ex-
ample the annual cycles, and 𝑅௧ is an irregular (remainder). 

STDL model diagram for the capacitor charging level seasonal trend when workpiece 
surface roughness is Ra = 4.03 µm and Ra = 3.21 µm and dp = 200 (number of presented 
data points) is provided in Figures 21 and 22, respectively. STDL parameters: seasonal 
period = 12, seasonal window = periodic, seasonal degree = 0, trend degree = 1, low pass 
degree = 1, robust loess fitting = False. The experimental results with different model pa-
rameters exhibit almost no seasonality, therefore we can conclude that the STDL model is 
not useful for our data analysis. 

The feature SE—is the spectral Shannon entropy, often applied to time series [35]: 𝑆𝐸 =  − ׬ 𝑓መ(𝜆) 𝑙𝑜𝑔 𝑓መ(𝜆)𝑑𝜆గିగ .  (10) 

here 𝑓መ(𝜆) is an estimate of the spectral density of the data. It measures the predictability 
of the time series. Large SE values are calculated when the time series is difficult to fore-
cast, while small values indicate a high signal-to-noise ratio. 

 
Figure 21. STDL of the capacitor charge level data, when workpiece surface roughness Ra = 4.03. 
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Figure 22. STDL of the capacitor charge level data, when workpiece surface roughness Ra = 3.21. 

Another popular time series feature is “peak-to-peak” which calculates the distance 
between two peaks: lowest and highest [32]: 𝑃𝑡𝑜𝑃 =  |max(𝑋) − min (𝑋)|.  (11) 

The entropy feature has provided promising results for our data, resulting in a sig-
nificant value of correlation coefficient 𝑟 =  0.858. The peak-to-peak calculation is less 
informative and has an inverse correlation with the output value, 𝑟 =  −0.660 

To visualize a linear relationship through regression, scatterplot diagrams of those 
two features (SE and PtoP) are provided in Figures 23 and 24, including the regression 
line and the 95% confidence interval of that regression. 

 
Figure 23. Relationship between data entropy value and roughness. 

 
Figure 24. Relationship between data peak-to-peak value and roughness. 
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Additional experimental investigations were performed by implementing other ma-
chine learning approaches. In particular, decision trees (regression) and convolutional 
neural networks were used to compare their performance with SVR on a selected dataset. 
A simple dense CNN architecture with a 5-layer dense block was selected [36], because 
the direct connection in the dense block can solve the problem of vanishing gradient, as it 
is less prone to overfitting compared to the deep CNN [31]. Furthermore, there is no need 
to use deep CNN architectures for image recognition, because our input features are nu-
merical values (not tool wear images). The prediction results of the SVR different model, 
the decision tree and the CNN are provided below (Figure 25). 

 
Figure 25. Comparison results for different ML algorithms MAPE (SVR with different kernels, DT 
and CNN) represented using boxplot. 

From the obtained results (Figure 25) we can conclude that SVM with radial basis 
function is the most accurate algorithm (MAPE error 2.42%), however the average MAPE 
error is only slightly different from the results of DT (3.02%) and CNN (2.61%), but the 
final decision should be made considering two factors: accuracy and performance speed. 
Convolutional neural networks have shown their superiority in terms of accuracy, how-
ever, the larger number of parameters and the complex architecture make this an ex-
tremely time-consuming approach. Besides, CNNs are more efficient in solving problems 
with a huge number of instances and attributes. For these reasons, the SVM model is pref-
erable for this problem, noting that the prediction error is 7.28% lower than that of CNNs. 

6. Conclusions 
This study presents the design of a sensor node employing piezoelectric energy har-

vesting for wear detection in rotating shank-type tools. The results, obtained during mod-
eling, revealed that the cone-shaped tool holder with helical slots introduces an L&T vi-
bration mode coupling effect, which allows the torsional forces acting on the tool during 
cutting operation to be converted into longitudinal motion. The excited longitudinal mo-
tion can be used to deform the piezoelectric transducer generating the voltage. 
• The performed FEM studies of a tool holder with a piezoelectric transducer show 

that a tool holder with helical slots, experiences more than two times higher surface 
displacement amplitudes in longitudinal direction, when it is excited in the L&T 
mode. 

• A tool holder with helical slots, when assembled with piezoelectric transducer (and 
excited to resonate at L&T mode), produces more than two times the voltage com-
pared to a tool holder without helical slots. 

• The experimental studies have confirmed the FEM modeling results, where the ex-
cited tool holder with helical slots has more than 2 times higher surface displacement 
amplitudes in the longitudinal direction and is able to generate more than 3 times 
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higher amount of voltage from the embedded piezoelectric transducer during milling 
operation compared to a tool holder without helical slots. 

• The sufficient power generated by the device allows it to be used as a wireless sensor 
node, that can be used in milling operations for detecting the wear of the end mill 
tool, when the voltage generated by the piezoelectric transducer increases exponen-
tially due to the progressive cutter degradation. 

• The machine learning approach was applied to solve the milling wear prediction 
problem using surface roughness measurements as the key indicator of tool condi-
tion. SVR with a radial basis function kernel provides the lowest prediction error 
(2.420% MAPE) compared to polynomial (5.431% MAPE) and linear (8.608% MAPE) 
kernels. However compared to other ML methods, namely CNN and DT, the supe-
riority of SVR-RBF is not so apparent. 

• By exploring the computed empirical features of the SVR model, it was observed that 
time series features such as autocorrelation, interquartile, absolute energy, entropy 
are the most relevant for solving the problem. However, according to the correlation 
coefficient, the most informative feature is the specially created feature 𝑆𝑖𝑔𝑛𝑎𝑙௝௨௠௣ 
(𝑟 =  0.889) used for determining signals’ jumps due to the difference in data points 
at the 90% confidence level. 

7. Patents 
After obtaining positive results during the experimental research, a patent applica-

tion entitled: “Wireless sensor to assess the quality of rotating tools” has been submitted 
for the developed device to The State Patent Bureau of the Republic of Lithuania. 

Author Contributions: Conceptualization, supervision, V.O. and A.M.; resources, V.O. and R.C.; 
methodology, V.J.; sensor node design and FEM modeling, V.O., V.J. and P.K.; validation, P.K. and 
R.C.; software and data processing, A.P.-T. and L.K.; SVM model realization and testing A.P.-T. and 
L.K. All authors assisted in writing and improving the paper. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research was funded by the European Regional Development Fund according to the 
supported activity No. 01.2.2-MT-K-718 under the project No. DOTSUT-234. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

Nomenclature 
SVM Support vector machine 
TCM Tool condition monitoring 
MCU Microcontroller 
ML Machine learning 
RF Random forest 
RBF Radial Basis Function 
MAPE Mean absolute percentage error 
L&T Longitudinal and torsional composite vibrational mode 
CAD Computer aided design 
Lf Free length of the end mill (mm) 
FEM Finite element method 
PZT Piezoelectric transducer 
OD Outer diameter (mm) 
ID Inner diameter (mm) 
H Height (mm) 
PCBA Printed circuit board assembly 
MCU Microcontroller 
DC Direct current 
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3D Three dimensional 
CNC Computerized numerical control 
HSS High speed steel 
n Spindle speed (RPM) 
vf Feed seed (mm/min) 
fz Feed per tooth (mm/tooth) 
ap Axial depth of cut (mm) 
ae Radial depth of cut 
uK, uN node displacement vectors 
M Mass matrix 
K Stiffness matrix 
C Damping matrix 
α Mass proportional damping coefficient 
β Stiffness proportional damping coefficient 
C Carbon (%) 
Si Silicon (%) 
Mn Manganese (%) 
Ni Nickel (%) 
P Phosphorus (%) 
S Sulfur (%) 
Cr Chromium (%) 
Mo Molybdenum (%) 
Ra Arithmetic mean roughness (µm) 
Avg Average value of the capacitor charge level values 
Var Variability value of the capacitor charge level values 
Sd Standard deviation of the capacitor charge level values 
ACorr Autocorrelation value of the capacitor charge level values 
M4Avg4 data point simple moving averages of the capacitor charge level 
InterQ Interquartile value of the capacitor charge level values 
Energy Absolute energy of the capacitor charge level values 
ACF Autocorrelation function 
MAF  Moving average formula 
k Time interval 
Q Quantile function 
Q1 First quartile 
Q4 Fourth quartile 
p Probability value (0 < p < 1) 
r Negative correlation 𝑅ଶ Coefficient of determination (0 < 𝑅ଶ ≤ 1) 
SSR Sum of squares of residuals 
SST Total sum of squares 𝑦పෝ  The predicted value 𝑦ത The mean value 𝑃𝑡𝑜𝑃 Peak-to-peak 
MAPE The root mean square error 
STDL Seasonal-Trend decomposition by losses 𝑇௧ Trend component 𝑆௧ Seasonal component 𝑅௧ Irregular 
SE Shannon entropy 𝑓መ(𝜆) Estimate of the spectral density of data 
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