
Journal of Physics: Complexity

PAPER • OPEN ACCESS

Transient chaos in time-delayed systems subjected to parameter drift
To cite this article: Julia Cantisán et al 2021 J. Phys. Complex. 2 025001

 

View the article online for updates and enhancements.

This content was downloaded from IP address 88.222.25.29 on 13/04/2021 at 14:28

https://doi.org/10.1088/2632-072X/abd67b


J.Phys.Complex. 2 (2021) 025001 (10pp) https://doi.org/10.1088/2632-072X/abd67b

OPEN ACCESS

RECEIVED

30 September 2020

REVISED

30 November 2020

ACCEPTED FOR PUBLICATION

23 December 2020

PUBLISHED

2 February 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Transient chaos in time-delayed systems subjected to
parameter drift
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Abstract
External and internal factors may cause a system’s parameter to vary with time before it stabilizes.
This drift induces a regime shift when the parameter crosses a bifurcation. Here, we study the case
of an infinite dimensional system: a time-delayed oscillator whose time delay varies at a small but
non-negligible rate. Our research shows that due to this parameter drift, trajectories from a chaotic
attractor tip to other states with a certain probability. This causes the appearance of the
phenomenon of transient chaos. By using an ensemble approach, we find a gamma distribution of
transient lifetimes, unlike in other non-delayed systems where normal distributions have been
found to govern the process. Furthermore, we analyze how the parameter change rate influences
the tipping probability, and we derive a scaling law relating the parameter value for which the
tipping takes place and the lifetime of the transient chaos with the parameter change rate.

1. Introduction

A vast variety of systems are not static over time, in the sense that they cannot be modeled by the same set of
equations and parameters as time passes. External factors as the increase in greenhouse gases in the context of
climate dynamics [1] are one of the possible causes. Also, this change can be caused by internal factors, i.e., by
the nature of the system itself as in the case of some engineering systems that wear-out. Furthermore, some
systems may be modified manually by an experimentalist that, for instance, injects chemical substances in a
reactor at a slowly varying flux [2].

Mathematically, these processes are reflected by a drift in one of the parameters of the model. If the system
is randomly perturbed, it can be modeled by adding a noise term [3–5], and in some cases by the combined
effect of drift and noise [6]. Here, we restrain to the case of a parameter drift.

For systems suffering a drift at slow rates, the analysis of the frozen-in system, that is, the model with-
out time dependence in the parameters, is of great importance. A vital part of this analysis consists on the
computation of bifurcation diagrams that depict the dynamics of the frozen-in system for different values of
a parameter. It has been shown in [7, 8] that there is a delay in the regime shift when a parameter drifts, at
small but non-negligible rates, and crosses a bifurcation point (pbif ). This transition occurs at a value of the
parameter pcr > pbif . This is usually referred to as the delay effect in systems with parameter drift. It was also
shown that the value of pcr depends on the parameter change rate. This type of bifurcations that are crossed
due to the time dependence of one of the parameters are called dynamic bifurcations [9].

Previous work on dynamic bifurcations has been initially restrained to systems where only regular attractors
were involved. More recently, some attention has been focused on chaotic attractors by using either maps [10,
11] or flows [12]. In both cases, an ensemble approach is needed and a normal distribution was found for
the values of pcr. Here, we aim to broaden systems currently explored, by studying dynamic bifurcations in an
infinite dimensional system: a time delayed oscillator. As far as we know, this type of systems have not received
much attention in the context of dynamic bifurcations and they are worth a study due to the ubiquity in nature
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of time-delayed systems. Physically, the time delay accounts for the finite propagation time of information. In
the case of laser arrays, for instance, this is due to the finite speed of light [13] and the time delay determines
its stability [14]. Here, we consider that the time delay slowly drifts with time and we explore its implications.
This drift may account, for instance, for the seasonal fluctuations to the regeneration time of a resource [15].

Besides the delay effect, the parameter drift provokes another interesting phenomenon: bifurcation-
induced tipping [16]. When the system presents multistability trajectories, for p > pcr, have to tip to any of
the attractors that are stable with a certain probability. This tipping probability also depends on the parameter
change rate. Finally, in a time framework, we may consider that after the tipping, the drifting system is in its
steady state. Before that, it is in its transient state. Depending on the parameter change rate, the transient state
would last for a longer or shorter period of time. This may be a problem in some engineering systems as a
parameter drift would be identified long after its start, possibly causing parameter drift failure [17, 18].

This article is organized as follows. In section 2 we present our system: the Duffing oscillator with time
delay, and we analyze its dynamics when the parameters are frozen-in. In section 3 we introduce the time
dependence in the time delay parameter. We explore the tipping probabilities in section 4 and the delay effect
in section 5, deriving a scaling law that relates the delay and the parameter change rate. Finally, the time frame-
work is analyzed in section 6, where the arising transient chaos phenomenon is characterized. Discussions and
conclusions are drawn at the end.

2. Time-delayed Duffing oscillator

As a paradigmatic example of a nonlinear oscillator with delay, we study the transient dynamics of the
undamped and unforced Duffing oscillator with a delay term of the form γx(t − τ ), where τ is the time delay
and γ is the amplitude of the delay. The equation for the system reads:

ẍ + αx + βx3 + γx(t − τ) = 0. (1)

We consider the system in absence of dissipation since we focus our study in the effect of the time delay term.
This can be performed experimentally if we consider that the experiments are carried out in the laboratory
under very low pressure and therefore in the situation of vacuum. In this physical context, thanks to the time
delay and the absence of damping, the oscillator presents a region of parameters for which a chaotic attractor
is stable. In the absence of a time delay, the dynamics would be restricted to a limit cycle with period around 4
time units.

When the delay is taken into account, we choose the same parameter values considered in [19], that is,
α = −1,β = 0.1 and γ = −0.3. With these values the potential has the shape of a double well, with an unstable
fixed point at the origin and two stable fixed points at the bottom of the wells. Taking x(t) = x(t − τ ) = x∗,
we find the numerical values for the fixed points as

x∗ = 0 x∗± = ±
√

−α− γ

β
= ±

√
13 = ±3.606. (2)

In this section, we present the system dynamics for the frozen-in case, that is, for the system when the
time delay does not vary with time. For different but fixed in time values of τ , the system’s behavior changes.
To uncover this, we explore the attractors that appear for two values of τ that correspond to the starting and
ending scenarios of the ramp τ (t) that is explored in the next section.

In the context of time-delayed systems, initial conditions are replaced by history functions: u0(t) = (x0, ẋ0),
which are a set of initial conditions in the continuous time interval [−τ , 0]. The history functions that we use
here are, for simplicity, constant functions. Due to the multistability of the system, different history functions
lead to different attractors. In figure 1, we show all the coexisting attractors in phase space for τ = 3 and τ = 4.

In figure 1(a), we observe two attractors: a limit cycle, L, and a chaotic attractor, A. The bifurcation diagram
for τ ∈ (0, 5] and history functions u0 = 1 and u0 = −1, which was calculated in [20], showed that the chaotic
attractor disappeared at τ = 3.6. More precisely, at this value, a boundary crisis takes place. As τ approaches
3.6, the distance between the chaotic attractor and its basin boundary decreases until they collide. As a result,
the chaotic attractor disappears and for values just after τ = 3.6 some trajectories show transient chaos. After
this transient, they end up in a fixed point (x+ or x−) becoming stable at τ = 3.6.

Consistently, for τ = 4, in figure 1(b), it can be seen that the chaotic attractor is no longer stable and
that there are two new attractors, corresponding to the previously calculated fixed points, x+ and x− from
equation (2). Although the limit cycle is still stable in both scenarios, it is important to remark that its amplitude
decreases with τ . This fact can be noticed by checking the different scales on the axis in figures 1(a) and (b).
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Figure 1. Attractors before and after the bifurcation at τ = 3.6. (a) For τ = 3, two attractors coexist: a limit cycle that we call L
and a chaotic attractor, A. (b) For τ = 4, the limit cycle is stable although its amplitude decreases with τ , as can be observed by
noting the different scales of both figures. Furthermore, two new attractors appear: two symmetrical fixed points, x±.

Figure 2. Basins of attraction before and after the bifurcation at τ = 3.6. Two black crosses point the x± attractors. (a) For τ = 3,
the pink and bone-shaped region corresponds to the set of history functions that go the chaotic attractor. On blue, the ones that
go to the limit cycle. (b) For τ = 4, the bone shaped structure is replaced by the almost circular basins of x+ in yellow and x− in
green around the attractors, which are also intermingled with the blue basin maintaining the bone-shaped structure.

Now, we calculate the basins of attraction for τ = 3 and τ = 4. For this purpose, we distribute N = 103 041
constant history functions uniformly in a grid of [−8, 8] × [−8, 8], in steps of 0.05. The basins are com-
puted integrating (1) for every history function with the algorithm Tsit5 from Julia [21] for delay differential
equations, which is a Runge–Kutta method with adaptative stepsize-control. The parameters for the numeri-
cal calculation have to be taken cautiously as the results have to be very precise to lead to the correct attractor,
specially in the chaotic region. In our case, we took RelTol = 10−9, AbsTol = 10−12 and maxiters = 109. The
criterion for convergence to fixed points is that the trajectory enters a square of 0.01 × 0.01. In the case of the
limit cycle, the criterion for convergence is that the peaks from the time series become equally spaced, thus
periodic, and with the same amplitude. When none of these criteria are met, the chaotic attractor is assigned.

The basin of attraction for τ = 3 is depicted in figure 2(a). In blue, the history functions that lead to the
limit cycle, L, and in pink the history functions that lead to the chaotic attractor, A. The fixed points x+/x−

are also represented as black crosses. As it can be seen, there is a bone-shaped region that corresponds to the
chaotic attractor basin. Outside this bone-shaped structure, all the trajectories approach the limit cycle. This
basin occupies larger regions of phase space for increasing τ .

Following a similar sketch, the basin of attraction for τ = 4 is depicted in figure 2(b). The yellow and green
regions correspond to the set of history functions that lead to x+ and x− respectively. As it can be seen, around
each fixed point there is a circular region of points with smooth boundaries that leads to them, in other words,
trajectories that start near x± = ±(

√
13, 0) end up in the yellow/green attractor. These two regions become

larger for higher values of τ , occupying larger areas inside the bone-shaped region. Also, there are other history
functions, mainly inside the previous bone-shaped structure, that approach x±.

Finally, we have computed the transient lifetimes, that is, the time that the trajectories take before they
reach an attractor. For τ = 3, the attractors are reached after approximately 15 time units. What means that
the transient time has a small duration as compared to the characteristic time of the oscillator. However, for
τ = 4, things are more complicated. In figure 3, we show the transient lifetimes to reach either L or x+/x−. As
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Figure 3. Transient lifetimes for τ = 4. The color bar indicates the time before the trajectories reach either L or x+/x−. The
bone-shaped structure is preserved as the trajectories heading to the fixed points are the ones that take the longest times.

it can be seen, we still distinguish the bone-shaped region as the trajectories ending in x+/x− are the ones that
take the longest times, specially for history functions closer to them. Specifically, for the trajectories (A → L),
the median transient lifetime is t̃tr = 58 and for (A → x±), t̃tr = 307.

3. Time dependent delay, τ (t)

Once the behavior of the system for fixed values of the time delay (before and after the bifurcation at τ = 3.6)
is known, we let this parameter slowly evolve with time between those scenarios. The main difference with the
previous section is that now we are interested in the case of the parameter variation during the evolution of the
system. In other words, the parameter turns into a slowly varying function of time of the form τ (t) = τ 0 + εt,
where ε is a sufficiently small parameter compared to the natural time scale of the system.

Dynamic bifurcations, as mentioned before, are the bifurcations which are crossed due to the time depen-
dence of this parameter [9]. Here, we aim to study this phenomenon for systems where not only chaotic
attractors are involved, but time delay is present too. This is an interesting area as models that include a time
delay cover the unavoidable phenomenon of the finite propagation of information. We let not just a normal
multiplicative or additive parameter vary with time, but the time delay itself.

The first difference in this analysis from the one of regular attractors is that single trajectories are no longer
representative and do not contain all the possible dynamics. Thus, we follow an ensemble of trajectories starting
on the same set of history functions used in the previous section to calculate the basins of attraction. The
attractor that is reached for a certain time, t, through this procedure is called snapshot attractor [22].

Furthermore, we ought to redefine our system including the time delay dependence with time. We replace
τ in equation (1) by:

(3)

where τ 0 is the initial value of τ , t1 is the time for which the parameter shift starts and t2 when it ends. We refer
to this system as the non-autonomous system, in contrast with the frozen-in system.

For simulation purposes, we take τ 0 = 3 and we let t1 = 100. This way, we let the system evolve to its steady
state (remember figure 2(a)), before the shift in τ starts. The orbits evolve as in the previous section until
t = t1, when τ starts shifting and finally they reach one of the attractors that are stable after the bifurcation
(see figure 2(b)). For t2, we choose sufficient and different values depending on ε so that all the trajectories
have the time to reach one of the attractors.
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Figure 4. State dependent basin of attraction for ε = 10−2. As the chaotic attractor looses stability at τ = 3.6, the trajectories tip
to one the attractors that are stable (L, x±). This leads to phenomenon of random tipping, and as result we obtain a riddle basin
inside the bone-shaped structure.

Table 1. Percentage of trajectories that approach each attractor depending on
the value of the parameter change rate.

ε L(%) x+(%) x−(%)

10−2 70.30 14.85 14.85
7 × 10−3 74.48 12.76 12.76
5 × 10−3 80.02 9.99 9.99
3 × 10−3 88.58 5.71 5.71
10−3 99.05 0.475 0.475

4. Random tipping

Using the same terminology as in [23], we refer to the basin for the non-autonomous system as scenario-
dependent basin, because it depends on the parameters of the parameter shift. Figure 4 depicts the scenario-
dependent basin of attraction for ε = 10−2. In this case, t2 = 350.

We distinguish three different basins corresponding to the attractors past the bifurcation, see figure 1(b).
Outside the bone-shaped structure, all initial functions approach the limit cycle. If we compare this with
figure 2, we observe that the trajectories initially in the limit cycle never jump to a different attractor, not
even for faster parameter change rates. Inside the bone-shaped structure, the yellow/green smooth boundary
regions present for the frozen-in system disappear now, even if we stop the shift at τ = 4. Due to the presence of
the chaotic attractor, there is no pattern, and the history functions that lead to each basin are completely inter-
mingled. This is because the final destination of each trajectory depends on the precise moment that it is caught
wandering in the chaotic attractor when it tips. We may say that the chaotic attractor acts as a memory-loss
agent. In other words, predictability of individual trajectories is lost because the passage through the chaotic
attractor induces fractal basins of attraction. Similar phenomena [23] for non time-delayed systems has been
addressed as a random tipping.

We may repeat the same procedure for different values of the parameter rate of change, ε. In table 1 we
show how the number of trajectories that approach each attractor varies with ε. This is also referred to as
tipping probability as it reflects the probability of a random history function to end in each of the attractors.
The values of t2 chosen in each case are 350, 350, 400, 700, 3600, respectively.

Due to the symmetry of the potential well, the percentages for attractors x+ and x− are the same. For faster
changes in τ , the probability that a trajectory ends up in the fixed points x± rather than in the limit cycle,
L, grows. For the sake of clarity, this is also represented in figure 5, where the blue points correspond to the
percentage of trajectories that leave the chaotic attractor, A, and end up in the limit cycle, L. In the same way,
the yellow/green points correspond to the percentage of trajectories that leave the chaotic attractor, A, and end
up in x±.

5. Scaling law

Although we have uncovered the scenario-dependent basins of attraction, one question is still lacking. When
does the orbit jump from the chaotic attractor to either of the attractors that are stable at the end of the

5



J.Phys.Complex. 2 (2021) 025001 (10pp) J Cantisán et al

Figure 5. Dependence on the parameter change rate for the percentage of trajectories that leave the chaotic attractor and
approach the limit cycle (blue points) or the fixed points, x± (yellow/green points). For faster parameter change rates, more
trajectories end up in the fixed points, x±.

Figure 6. Time series for the non-autonomous Duffing oscillator with ε = 10−2. The secondary x-axis shows the time
dependence in the τ parameter. It can be seen that the chaotic attractor is stable for a period past τ bif . The steady state is reached
for τ = τ cr.

parameter shift? From [20], we know that the bifurcation through which the chaotic attractor looses stability
occurs at τ = 3.6 for the frozen-in system. However, the picture here is different as our parameter varies during
the evolution of the system. Now, we explore if the value of τ for this transition, which we call τ cr, is different
from the one in the frozen-in case.

In figure 6, we show two time series corresponding to two different history functions for the non-
autonomous system with ε = 10−2. The secondary x-axis marks the evolution of the parameter. As it can
be seen, in both cases, the behavior at first is chaotic. At t = 100, τ starts increasing. At τ = 3.6 (or t = 160),
the chaotic attractor lost stability for the frozen-in case. However, the chaotic behavior is still present for a
while after until the system jumps to x− in (a) or L in (b). The vertical dotted lines indicate this moment and
the value of τ bif . Between τbif and τ cr, the chaotic attractor is a metastable state of the system.

For numerical purposes, we calculated τ cr as the value of τ for which the orbit is at a distance of dx = 0.001
from x±, or the value of τ for which the period of oscillation stabilizes and the amplitude starts decreasing.

As previously mentioned, due to the chaotic attractor, this analysis has to be performed for a large set of
history functions. This is why for each value of the parameter change rate, we do not obtain only one value of
τ cr; instead we obtain a distribution of values. In figure 7 we can see the form of this distribution for the cases
A → x± and A → L when ε = 7 × 10−3. Both of them are fitted to a gamma distribution with positive skew. It
is interesting to notice that the variance is more pronounced for the trajectories going to the limit cycle, while
for the ones going to x±, the deviation in the values for the transition is smaller. Inside both histograms, we
have indicated the median value of τ cr, that we denote as τ̃cr, since it is more representative in this case than the
mean values. We conclude that history functions that end up in the limit cycle, on average, leave the chaotic
attractor before and for a wider range of values of τ .

This type of distribution is in contrast with other analysis performed for non time-delayed systems. In
[10–12] it was found that the values of the parameter for the transition follow a normal distribution instead

6
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Figure 7. Gamma distribution of τ cr for ε = 7 × 10−3 for the trajectories that leave the chaotic attractor and approach (a) the
fixed points or (b) the limit cycle. The variance is higher in the later case, but the median value is smaller. Thus, history functions
that end up in the limit cycle, on average leave the chaotic attractor before and for a wider range of values of τ .

Figure 8. Scaling law for the median value τ̃cr with the parameter change rate. The points (in blue for trajectories that approach
the limit cycle and in yellow/green the trajectories that approach the fixed points) correspond to numerically calculated values
and in red we show a power law fit.

of a gamma distribution. This might be one of the effects that delay causes in the system. It implies that there
are some trajectories that tip at much larger values than the average.

If we repeat the same process for different values of ε, we may deduce how it affects the value of τ for the
transition. Figure 8 depicts the dependence of τ̃cr with ε for the trajectories that end up in the fixed points
(yellow/green) and the limit cycle (blue). As we can see, for higher rates the delay phenomenon is more severe
in both cases. However, we can see that on average the transition occurs before for the trajectories heading to
L rather than x±.

This tendency indicates that for faster parameter change rates, the transition to the attractor takes place at
higher values of τ . This may explain the previously mentioned phenomenon by which for faster rates more
trajectories end up in x± rather than in the limit cycle. In the frozen-in system the basin for the fixed points
occupies larger areas for increasing values of τ , thus when the dynamic bifurcation takes place the system is
more likely to be at the yellow/green basin for faster rates.

The points in figure 8 are fitted to a power law that constitutes the numerical scaling law for the median
value τ̃cr

A → x± : τ̃cr = a · ε4/15 + τ0 (4)

A → L : τ̃cr = b · ε4/7 + τ0, (5)

where a, b > 0 are constants and τ 0 = 3.6 in our case, with an R-square: R2 = 0.9993 and R2 = 0.9999 respec-
tively. We have added the point for the limit ε→ 0 which corresponds to the frozen-in case for which the chaotic
attractor looses stability at τ = 3.6.

This law indicates that an increasing parameter change rate increases the parameter value for the transi-
tion. However, the increase in τ̃cr is reduced for higher values of ε as the slope of the curves reduces with the
parameter change rate.
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Figure 9. Normalized number of trajectories that remain in the chaotic attractor for a time t. The dashed lines correspond to a
parameter change rate of ε = 5 × 10−3 and the full ones to ε = 10−2. In blue the trajectories that approach the limit cycle and in
yellow/green the ones that approach the fixed points. For slow parameter change rates the transient dynamics lasts for a longer
period of time. This may create the false impression that the transient regime is the steady state.

6. Transient chaos interpretation

In this section we consider again our system with parameter drift and the previous results from a different
perspective. Until now, we have considered that the drift in τ represented a small perturbation to the associated
frozen-in system and that the chaotic behavior after τ = 3.6 was a metastable state that ended at τ cr. Also, we
calculated the value of τ̃cr for which the delayed bifurcation takes place.

Now, we study the system without any previous knowledge of the behavior of the frozen-in system. From
an experimentalist point of view, sometimes it is the regime shift which indicates that there is a parameter drift
and not the other way around. However, if this regime shift occurs later than expected due to the delay effect,
the parameter may have reached dangerous values when it is noticed by the experimentalist [17, 18]. This is
why, in this section, we are interested in measuring the time that the system takes before the tipping.

In this time framework, we deal with a non-autonomous system that behaves chaotically for a finite time
before reaching one of the attractors (see figure 6). In this sense, the system presents transient chaos and the
scaling law predicts the end of the transient state.

As before, the end of the transient state depends on the history function, but unlike in the frozen-in system,
we find no spatial pattern (see figure 3). As explained in section 5 where the random tipping was discussed, this
is due to the presence of the chaotic attractor that acts as a memory-loss agent. In other words, predictability
of the decay to the steady-state for individual trajectories is lost because of the passage through the chaotic
attractor.

In order to characterize the transient chaos regime, we analyze the decay with time in the number of trajec-
tories that still present a chaotic behavior. In figure 9 we represent N(t) as the normalized number of trajectories
in the chaotic attractor for a time t. The blue lines correspond to the trajectories that end in the limit cycle and
the yellow/green lines to the ones that end in the x± attractors. This is calculated for ε = 5 × 10−3 (dotted
lines) and ε = 10−2 (full lines).

Note that the decay in τ starts at t = 100, and that τ and time t are equivalent through equation (3). When
the curves decrease to zero, the transient chaos regime ends and every trajectory reaches its steady state.

As it can be seen, the decay with time slows down at the end of the curve. This is related to the gamma
distribution for τ cr (figure 7). In fact, we are representing nothing more than the complementary cumulative
distribution function of figure 7 in terms of time. There are some trajectories with a transient lifetime higher
than the average and this produces a delay in reaching the steady state for the full set of history functions.
Similarly, the variance in figure 7 is reflected now as the time since the curve N(t) starts decreasing until it
reaches zero, this is more pronounced for the set of trajectories going to the limit cycle (blue lines) while the
others present a more step-like shape.

If we compare between different values of ε, we can assert by looking at figure 9 that the transient lifetime
decreases with the change rate of the parameter shift. For faster changes in the parameter the steady state is
reached faster, although it occurs for further values of τ from τ 0.

Finally, we may translate the scaling law deduced in the previous section to a time framework just by using
equation (3):

A → x± : t̃tr = c · ε−13/15 + t1, (6)

A → L : t̃tr = d · ε−6/7 + t1, (7)

8
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Figure 10. Scaling law for the transient lifetime with the parameter change rate. The points (in blue for trajectories that approach
the limit cycle and in yellow/green the trajectories that approach the fixed points) correspond to numerically calculated values
and in red we show a power law fit.

where t̃tr refers to the median lifetime of the transient dynamics which follows the same gamma distribution
as τ cr in figure 7. Also, t1 in our case is 100 and c, d are positive constants. The numerically calculated points
and the scaling laws are depicted in figure 10 for a visual guidance.

Again, we obtain that the median value for the transient lifetime decreases with the parameter change rate
following a power law. This decrease is more pronounced in the case of the trajectories that approach the fixed
points as the slope is bigger in that case. For any change rate, the transient lifetime of the trajectories heading
towards the limit cycle is shorter. Of course, when ε→ 0, the transient lifetime tends to infinity as in the limit
when the parameter does not vary with time, the trajectories stay in the chaotic attractor forever. This is an
interesting result as if a parameter is varying very slowly, an experimentalist may not notice that it is varying
as the regime would not shift for a long time after the start of the drift. Specially, for the history functions
corresponding to the tail of the lifetimes distribution. This may be dangerous in some engineering systems
due to the parameter drift failure mechanism [17, 18].

For other time-delayed oscillators, we would expect to find similar qualitative results. If the time delay
presents a drift, the transient time before the system settles to a specific attractor would depend on the param-
eter change rate. For faster change rates, the transient would decrease while the value of the critical time delay
would increase. We also expect that in multistable systems when a chaotic attractor is involved the predictability
would be lost.

7. Conclusions

In the present work, we have analyzed the dynamics of a time-delayed oscillator whose time delay suffers a drift
in time. The time delay increases linearly with time crossing a bifurcation value, after which the system presents
multistability. We have found that trajectories initially in the chaotic attractor tip to one of the remaining attrac-
tors with a certain probability that depends on the parameter change rate. For faster rates more trajectories tip
to the fixed points x± instead of the limit cycle. However, predictability is lost in the non-autonomous system
as the basins are riddle-like. In this sense the chaotic attractor acts as a memory-loss agent.

Also, we have found that the delay effect in the regime shift is present in time-delayed systems. However, it
acts in a different way from the previously reported in other type of systems. The distribution of values of τ for
which trajectories tip, this is τ cr, follows a gamma distribution instead of a normal distribution. This implies
that there is a set of trajectories that tip at larger values of τ .

Furthermore, we derived two scaling laws relating the median value of τ cr, that is, τ̃cr and the parameter
change rate for the cases for which the trajectories tip to the limit cycle and for the ones that tip to the fixed
points x±. We have also shown that trajectories that end up in the limit cycle tip before than the ones that tip
to x± and that for faster parameter change rates, τ̃cr increases in both cases.

Finally, we have characterized the system behavior in terms of time. As the chaotic dynamics lasts for a
finite amount of time, we may say that the system presents transient chaos and we derived a scaling law for
the transient lifetime. We conclude that for very small parameter drifts, the transient may last for unexpected
long times. This may cause problems in the context of engineering due to parameter drift failure mechanisms.
On the other hand, for fixed parameter change rates, trajectories that end up in the limit cycle have a shorter
transient regime on average.
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