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ABSTRACT
Human posture detection allows the capture of the kinematic parameters of the
human body, which is important for many applications, such as assisted living,
healthcare, physical exercising and rehabilitation. This task can greatly benefit from
recent development in deep learning and computer vision. In this paper, we propose
a novel deep recurrent hierarchical network (DRHN) model based on MobileNetV2
that allows for greater flexibility by reducing or eliminating posture detection
problems related to a limited visibility human torso in the frame, i.e., the occlusion
problem. The DRHN network accepts the RGB-Depth frame sequences and
produces a representation of semantically related posture states. We achieved 91.47%
accuracy at 10 fps rate for sitting posture recognition.

Subjects Human-Computer Interaction, Artificial Intelligence, Computer Vision
Keywords Posture detection, Computer vision, Deep learning, Artificial neural network,
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INTRODUCTION
Machine learning and deep learning has shown very good results when applied to
various computer vision applications such as detection of plant diseases in agriculture
(Kamilaris & Prenafeta-Boldú, 2018), fault diagnosis in industrial engineering (Wen et al.,
2018), brain tumor recognition from MR images (Chen et al., 2018a), segmentation of
endoscopic images for gastric cancer (Hirasawa et al., 2018), or skin lesion recognition
(Li & Shen, 2018) and even autonomous vehicles (Alam et al., 2019).

As our daily life increasingly depends on sitting work and the opportunities for physical
exercising (in the context of COVID-19 pandemic associated restrictions and lockdowns
are diminished), many people are facing various medical conditions directly related to
such sedentary lifestyles. One of the frequently mentioned problems is back pain, with bad
sitting posture being one of the compounding factors to this problem (Grandjean &
Hünting, 1977; Sharma & Majumdar, 2009). Inadequate postures adopted by office
workers are one of the most significant risk factors of work-related musculoskeletal
disorders. The direct consequence may be back pain, while indirectly it has been associated
with cervical disease, myopia, cardiovascular diseases and premature mortality (Cagnie
et al., 2006). One study (Alberdi et al., 2018) has demonstrated that body posture is one
of the best predictors of stress and mental workload levels. Another study linked
postural instability and gait difficulty with a rapid rate of Parkinson’s disease progression
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(Jankovic et al., 1990). Posture recognition is also relevant for disabled people (Ma et al.,
2020) and elderly people for proper health diagnostics (Chen et al., 2018b) as the sedentary
behavior has a negative effect on people’s wellbeing and health. Therefore, the solutions
that would improve the daily living conditions of both healthy and spine pain affected
people in the context of assisted living environments (Maskeliunas, Damaševičius & Segal,
2019).

While there are existing classical approaches for human posture prediction,
unfortunately, they generally assert that entire human skeleton is visible in frame. Even
though those assumptions of scene composition are valid, with everyone moving to their
home offices, meeting them is simply not feasible. Not everyone is capable of having
complex multi-camera setups to track their body posture. For this reason, there is a need
for a solution that is able to inform the end-user (or their care provider) of their bad
posture with cheaply available consumer sensors in order to improve their wellbeing
without real-time supervision. With the renaissance of machine learning, and its
application in computer vision tasks, we are able to solve a lot of complex tasks using black
box models by shifting the majority of computations from the end-user device into the
training stage. For this reason, artificial neural networks have been used in wide variety
of applications. In this article, we propose a novel deep recurrent hierarchical neural
network approach for tracking human posture in home office environments, where
majority of the person sitting at the desk and therefore is occluded from the camera.
Additionally, a pilot of 11 test subjects is made in order to validate our approach
effectiveness.

RELATED WORK
The existing solutions such as orthopedic posture braces may not be viable solution due to
other underlying medical conditions. Computer-aided posture tracking combined with
behaviour improvement techniques due to continuous monitoring and self-assessment
can contribute to remedy this issue (Dias & Cunha, 2018). The most prominent
solution to this problem is skeleton based posture recognition (Jiang et al., 2015) using
commercially available depth sensors such as Microsoft Kinect (Zhang, 2012) and Intel
Realsense (Keselman et al., 2017). However, these solutions generally depend on some
assertions, i.e., camera calibration settings, lightning conditions, expected posture
(Hondori & Khademi, 2014), often making the results unreliable.

For identifying inadequate posture wearable textile sensors (García Patiño,
Khoshnam & Menon, 2020), inertial and magnetic sensors attached to human body
(Bouvier et al., 2015), depth cameras (Ho et al., 2016), radio-frequency identification tags
(Saab & Msheik, 2016), 3D motion analysis (Perusquía-Hernández et al., 2017), video
surveillance (Afza et al., 2021), Kinect sensors (Ryselis et al., 2020) and sensors attached to
office chairs (Zemp et al., 2016; Bibbo et al., 2019) were used, while registering body posture
parameters such as forward inclination, distance to the computer, and relative skeletal
angles. However, the camera-based systems have demanding requirements for distance,
proper lighting, calibration and non-occlusion.
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Another approach focuses on wiring sensors directly to the human body to acquire data,
although it limits the freedom of movement for work activities (Arnold et al., 2020).
Despite these achievements, it is still quite difficult to recognize posture in real-time or
correctly identify transitional activities in real-world environments (Nweke et al., 2019) as
the recognition of fine-grained activities such as correct or incorrect cases of sitting
postures is still a problem (Chin et al., 2019).

Currently, the state of the art in non-invasive posture tracking is depth and image
processing (Abobakr, Hossny & Nahavandi, 2018; Matthew et al., 2019; Camalan et al.,
2018). For example, Huang & Gao (2019) reconstruct realistic 3D human poses using the
3D coordinates of joint points captured by the depth camera and employ conformal
geometric algebra to improve human limb modelling. Li, Bai & Han (2020) used
OptiTrack and Kinect v2 to get and transfer data into a human skeleton coordinates.
They used random forest regression learn the joint offset regression function, and adjust
the skeleton based on the predictions on joint offset. Finally, as a result, they can determine
the motions based on predicted posture. Liu et al. (2020) suggested 3D Convolutional
Neural Network (CNN), called 3D PostureNet, while Gaussian voxel modeling is adopted
to represent posture configurations. The method allows to eliminate the coordinate
deviations caused by various recording environments and posture displacements. Pham
et al. (2019) exploit Deep CNNs based on the DenseNet model to learn directly an end-to-
end mapping between the input skeleton sequences and their action label for human
activity recognition. The network learns spatio—temporal patterns of skeletal movements
and their discriminative features for further downstream classification tasks. Sengupta
et al. (2020) detect skeletal joints using mmWave radar reflection signals. First, the
reflected radar point cloud. Next, CNN was trained on radar-to-image representation
and used to predict the position of the skeletal joints in 3-D space. The method was
evaluated in a single person scenario using four primary motions. The method has shown
to be robust in adverse weather conditions and deviations in light conditions.

However, none of the above mentioned methods are applicable when only the upper
part of the body is visible. Some methods tried to tackle this problem by exploiting the
temporal relationship between the body parts to deal with the occlusion problem and to
get the occluded depth information (Huang, Hsu & Huang, 2013) or by recreating a
topological character (Bei et al., 2017), yet they still require a recreation of a full body
skeleton.

To address this problem, we propose a novel approach for human posture classification
by using a supervised hierarchical neural network (Liu et al., 2019) that uses the
RGB-Depth data as input. Our method extends MobileNetV2 (Sandler et al., 2018)
neural network to include the recurrent layers. This allows the network to learn from a
sequence of images by adding the dimension of time to our feature list. Allowing the
network to use the context of what happened in previous frames to make predictions.
This is an improvement over existing methods for skeleton prediction as this allows for our
approach to predict user posture in more complex environments, for example, when a
person is sitting in front of an office desk thus a large portion of his/her body is occluded.
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Such position would cause other known skeleton-based posture prediction methods to fail,
due to lack of data provided by the sensors to infer the full human skeleton.

Our novelty is the use only a simple depth camera, so the subject does not need to
wear any sensors on their body nor have entire body visible in sensor field of view. In fact,
only the upper 30% of the body may be visible, whereas when using the Kinect style sensor,
the lower legs must be visible or generated artificially to allow the reconstruction of the
skeleton or, otherwise, the recognition process fails. Our approach does not rely on a
(visual or artificial) reconstruction of the full skeleton and, thus, allows for the detection of
posture in advanced scenarios such as sitting at a desk, where a camera often receives very
limited information.

METHODS
Network architecture
Our preliminary analysis has shown that it is very hard to predict human posture based
on a single shot. For this reason, we opted to use time sequences with n = 4 frames.
However, during training the input has a variable length of 1 ≤ n ≤ 4, with each
frame being about a second apart to reduce the dependence on the previous frames.

We selected to use deep convolutional recurrent neural networks for they have shown
some of the best capabilities when it comes to similar tasks requiring to predict sequences
of data as with natural speech recognition (Sundermeyer, Ney & Schlu, 2015; Graves,
Mohamed & Hinton, 2013) or even traffic prediction (Ji & Hong, 2019).

The input of our network architecture (Fig. 1) is the RGB-D frame sequence that
is fed into depth-wise convolutional block (Zhang et al., 2019), which reduces the
dimensionality of each frame by a factor of two, without losing each individual channel’s
influence on the output. This is due to depth-wise convolutions applying separate kernels
for each channel. This is then followed by a convolutional layer in order to extract the
best individual features, which is followed by a second dimensionality reduction layer.
We do this because our input frames are captured at 640 × 480 px resolution, which is
the maximum hardware resolution of the Intel Realsense D435i device. Reducing the
dimensionality twice leaves us with 128 features, each of 160 × 120 px resolution. At this
stage, we use Long Short Term Memory (LSTM) convolutional block (Xu et al., 2020;
Li et al., 2020), which is tasked to extract 32 most useful features in the entire sequence.

Figure 1 Our recurrent hierarchical ANN architecture using MobileNetV2 as the main backbone. It takes the RGB-D frame sequence as input
and outputs the flattened prediction tree as a result. Full-size DOI: 10.7717/peerj-cs.442/fig-1
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For our main neural network backbone, we use MobileNetV2, which is the extension of
MobileNet, for it has show to achieve great results in predictive capabilities (Howard et al.,
2017; Zhou et al., 2019), however, the architecture itself is relatively light-weight for it
is designed to be used in low power devices such as mobile devices, unlike for example,
YOLOV3, which while having impressive recall results (Redmon & Farhadi, 2018), is much
more complex and has a substantially poorer performance. The MobileNetV2 output is
then connected to a global average pooling layer in order to reduce dimensionality and
improve generalization rate (Zhou et al., 2016). Finally, the output is subsequently
connected to a fully-connected layer, which represents the flattened representation of
posture state prediction hierarchy, which can be seen in Fig. 2.

Our entire ANN setup can be seen in Table 1. After each of two bottleneck layers we
additionally use spatial dropout layers as it is shown to improve generalization during
training and reduce the effect of nearby pixels being strongly correlated within the feature
maps (Murugan & Durairaj, 2017), each with dropout probability of 0.2, whereas the
spatial dropout post LSTM cell has a dropout probability of 0.3, because the higher the
network is upstream the more dropout layers influence the entire network, therefore high
values upstream may cause the network to be more unstable and difficult to train.
The dropout layer before the output layer however, has a dropout probability of 50%.
Aggressive dropout values reduce the chance that the model is will overfit by training
on noise instead of image features. All our previous layers up to this point had used
Rectified Linear Unit as our activation function in order to impose non-linearity
into our model for it has shown better results and improved performance due to its
mathematical simplicity in CNNs (Hanin, 2019). However, for the last layer we opted to
use the sigmoid activation due to our network outputting hierarchical values and acting as
multi-label classifier, while the softmax activation is more useful for multi-class
classification tasks.

Figure 2 Flattened hierarchy representation of postures expanded into a hierarchical tree.
Full-size DOI: 10.7717/peerj-cs.442/fig-2
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Algorithm of sitting posture detection
Figure 3 depicts algorithm of our enhanced posture detection solution. Process starts
with the initialization of model weights for sorting out the RGB-D camera output (both
depth and RGB as varying on the condition either modality can provide compensation
features). Algorithm then tries to reconstruct intermediate frame for retrieval and analysis
of frame semantics, which are then used for stack validity status verification. Assuming
the condition, analysis starts in the recurrent layers of our modified MobileNet v2
architecture, with Pareto-Optimal berparameter optimization (Plonis et al., 2020).
The model then assigns prediction labels and algorithm further tries to improve the quality
by firing smart semantic prediction analyzer, checking not only the output value but
probable output status for a combined confidence level of <40%, as an improved
determinator for further frame semantic analysis. A final validity status is then initiated,
depending on condition leading to a majority voting and a very reliable detection of
bad posture. Algorithm was designed to work continuously and is able to automatically
stop processing to stay compatible with green computing paradigm (Okewu et al., 2017) to
save energy.

Prediction of posture states
We adopted the semantic matchmaking approach (Ruta et al., 2014) to describe the
semantic relationship between different postures using an ontological tree for analysis,
reasoning and knowledge discovery. In order to extract the specific prediction label we
parse the posture hierarchy tree (Fig. 2), first, by checking, which posture state is most
likely according to the neural network. Once we know, which posture type is most likely to
be represented in the frame sequence, we proceed to the sub-nodes and check their
predictions. We continue this search until we find the leaf node, which represents the
actual label. This approach allows us to filter out the most likely path that is seen in
the frames. This is helpful in cases when the similarities between postures is large.

Table 1 Layers of the proposed neural network architecture for human posture recognition.

Type Filters Size Output

Input – – t × 640 × 480

Depthwise convolution – 11 × 11/2 t × 320 × 240

Convolution 64 1 × 1 t × 320 × 240

Spatial dropout P(x) = 0.2 – t × 320 × 240

Depthwise convolution – 5 × 5/2 t × 160 × 120

Convolution 128 1 × 1 t × 160 × 120

Spatial dropout P(x) = 0.2 – t × 160 × 120

LSTM convolution 16 3 × 3 160 × 120

Spatial dropout P(x) = 0.3 – 160 × 120

MobileNetV2 – – 4 × 5

Global average pooling – – 1,280

Dropout P(x) = 0.5 – 1,280

Fully-connected (sigmoid) – – 8
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For example, all forward postures share the same characteristics—shoulders are not at
90 degree angle, and the head is positioned forward with respect to the body. This allows
us to ignore all the weight influences, where for example, the person is lying down.
Additionally, the further down the tree the label leaves are the less of an overall recall error
is, due to each level of the tree being ontologically similar, for example, predicting lying
down, instead of partially lying down is a smaller error than predicting hunched over.

Loss function
One of the reasons why we use the flattened final layer to represent our posture hierarchy is
because we can represent our problem as multi-label classification (Wang et al., 2019).
This allows us to use binary cross-entropy (Eq. (1)) in order to calculate the loss between
expected output and ground truth:

Hp ¼
XN

i¼1

ŷi � logðyiÞ þ ð1� ŷiÞ � logð1� yiÞ (1)

Figure 3 Activity diagram of the proposed method for sitting posture state recognition.
Full-size DOI: 10.7717/peerj-cs.442/fig-3
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Binary cross-entropy classifier is fit for our multi-label classification task (Wu et al., 2018)
as each of our cells output is a binary one and more than one cell can be positive at a
time, depending on how deep the classification is, as opposed to the categorical cross-
entropy, which is a solution for multi-class tasks, where the input can yield only a single-
class output.

Network training
For training a neural network various optimization methods have been proposed.
However, one of the most popular optimization methods due to its computational
efficiency allowing training ANN on large datasets more easily on weaker hardware in
addition to the ability to achieve faster convergence than other methods is Adam
(Kingma & Ba, 2015). For these reasons, we had opted to use Adam for training using the
initial training rate of 5e−4, with a batch size of eight.

Additionally, we perform data augmentation as it has shown to improve ANN
generalization (Fawzi et al., 2016). We perform horizontal image flipping in order to
increase the view count, and perform random hue and saturation changes, aiming to
increase stability against different lightning conditions as all of our video sequence
instances were recorded during same time frame, therefore, maintaining nearly identical
lightning. In all cases, the identical augmentation values are used for all images in the
same series with the same probability of performing image flipping, hue and saturation
augmentation being 50% independently. Random hue shift is performed in the range of
h = [0, 2π) radians, while the saturation has the random range of s = [0, 2].

Data collection
ANNs have the benefit of doing all the heavy work upfront during the training therefore,
allowing to improve system runtime by reducing the number of required calculations
(Holden et al., 2019). However, this approach depends on the quality of the training
data, which can be defined in terms of the size of available samples, class balance and even
the correctness of the labels. Our approach depends on both color and depth information.
Unfortunately, still there are no publicly available labeled human posture dataset that
additionally provides depth information. For our experiments, we have devised a
methodology to create such dataset. The data collection procedure consists of two stages.

Stage I
The person starts by sitting up straight. This position is then filmed for 30 s. Afterwards,
the person is instructed to lightly hunch forward, which is followed by another 30 s of
sitting in this position. Afterwards, the person is again instructed to hunch more,
emulating their average hunching posture. After the filming, the subject is instructed
once more to hunch forward in order to emulate the worst possible forward posture.
Once the 30 s have been recorded in this posture, the person is then instructed to sit
up straight for an additional 30 s to get used to this position. Then, we start emulating
the bad backwards posture, i.e., lying down in the chair. The person is instructed to
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partially lie in the chair for 30 s, after which he/she is instructed to do it twice more in
increasingly bad posture positions giving us three sets of bad forward and backward
posture examples.

Stage II
The person is instructed to initially sit up straight. Then the person is instructed to start
slowly counting from one to five, while slowly worsening their forward posture. When the
person finishes counting, he/she is expected to be in the worst forward posture they
imagine. Afterwards, the subject returns to straight position. This action is repeated for five
times. Once the forward posture data is recorded, the person is asked to perform the
similar action, this time with backwards posture, where once again when they finish
counting, they are fully lying in the chair.

Each of the stages is recorded three separate times using different camera perspectives
at 10 o’clock, 12 o’clock and 3 o’clock. The person is filmed in front of the computer
desk and during the filming they are asked to interact with the table in their current
posture how they imagine they would sit on the table. This can range from drawing on a
piece of article, to checking the drawers, using keyboard or even holding their head with
their hand.

When collecting our dataset, we asked 11 subjects (seven men and four women) to
perform the posture emulation tasks. The informed consent was obtained, while we
followed strictly the requirements of the Helsinki declaration. The research was approved
by the Institutional Review Board, Faculty of Informatics, Kaunas University of
Technology (2018-09-24 No. IFEP201809-2). Further expansion of dataset to include
different body types or disabilities may additionally improve the results in more real world
cases.

Data labelling
Once the data is collected it must be labeled manually. However, one of the issues
when labeling data we have noticed that has caused some of the data points to be thrown
out completely is for a person to actually differentiate properly what posture that person is
in. Even though the filming took in relatively discrete time intervals, some subjects may
take longer/shorter to perform specified actions, they may attempt to fix their posture
due to it being uncomfortable for them, etc. Additionally, some people have indiscernible
sitting straight and lightly hunched posture, as their normal posture is already biased
towards leaning head forward. Therefore, the labeling of such data is a challenge due to its
subjectiveness as bad data labels may poison the network and cause it to overfit instead of
generalizing.

Using our recorded dataset, we have extracted these labels: sitting straight, lightly
hunched, hunched over, extremely hunched, partially lying and lying down. While we have
three backwards posture angles, we opted for only two backwards posture labels as it is
difficult to objectively measure lying down and extremely lying down as in multiple cases
subjects barely made any movements.
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Dataset
Our dataset consists of 66 different captured video sequence instances totaling 133 min
of recording, which we split into individual labeled frames. We used 10-fold cross-
validation. For training, we had split the data from each individual in 90:10 ratio instead of
splitting the frames, as this gives more objective results, because similar frames from
the same captured video will not be a part of evaluation, thus artificially increasing the
recall rate. We can see the number of frames in training and testing frames in Table 2,
additionally we can see that dataset is slightly skewed towards sitting straight and lying
down due to the dataset being not completely balanced. While class imbalance may
cause issues in generalization of the network, we believe that the imbalance is not high
enough to have a noticeable impact. Finally, the examples of images in the dataset are given
in Table 3 (right side view). The subjects presented in the images have provided their
informed consent for publication of identifying images in an online open-access
publication.

RESULTS
Accuracy
We evaluate the prediction correctness against ground truth in two stages: using final
prediction labels (sitting straight, lightly hunched, hunched over, extremely hunched,
partially lying, lying down); and intermediate branch predictions (forward posture,
backward posture, straight posture). This provides us better insight on the prediction
results as this will show both absolute error and intermediate branch error. The confusion
matrix for the first case can be seen in Fig. 4. In the first case, we achieved an accuracy of
68.33%, sensitivity of 0.6794, specificity of 0.9372 and f-score of 0.6789. Note that the
network has achieved a high specificity rate, which means that it can effectively recognize
the subjects, who do not have the posture problems. As we can see from the confusion
matrix (Fig. 4), the biggest issues arise in prediction regarding hunched over and extremely
hunched labels. The proposed network model had a hard time discerning between
these two values. This indicates that either our dataset for these two labels have little
variation and the positions are very similar, or that one of the labels has been mislabeled
and has poisoned the predicted values. This suggests that further investigation in our
dataset is definitely needed.

Table 2 Frame count in the dataset.

Posture class Training Testing Dataset (%)

Sitting straight 3390 505 21.53

Lightly hunched 2230 200 14.16

Hunched over 2534 321 16.09

Extremely hunched 1918 182 12.18

Partially lying 2053 339 13.04

Lying down 3622 302 23.00
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Table 3 Examples of images in dataset (right side view).

Posture class RGB and Depth images

Sitting straight

Lightly hunched
forward

Hunched over
forward

Extremely hunched
forward

Partially lying down
in the chair

(Continued)

Kulikajevas et al. (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.442 11/20

http://dx.doi.org/10.7717/peerj-cs.442
https://peerj.com/computer-science/


However, all largest misclassification values occur between neighbouring classes
(extremely hunched vs hunched over—49.5%), (hunched over vs extremely hunched—
40.66%), (partially lying vs lying down—28.15%), (lying down vs partially lying—19.47%),
suggesting that perhaps the need for some fuzzification of class definitions and
interpretation of results, or that these posture classes should be combined.

Our dataset depends on the expert interpretation of what they are seeing in the camera,
which may be the cause of this disparity. Performing data labeling by more experts
may improve the results as this would reduce the ambiguity in our dataset that we have
due to a limited number of experts labeling the data. However, the network is accurate
enough that it can suggest the labels in further labeling processing. This would change our
solution from being supervised machine learning into semi-supervised or even completely

Figure 4 Confusion matrix indicating expected labels versus network predictions. Accuracy values
are given in percents. Diagonal values indicate correct predictions.

Full-size DOI: 10.7717/peerj-cs.442/fig-4

Table 3 (continued)

Posture class RGB and Depth images

Lying down in the
chair
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unsupervised machine learning approach. Notwithstanding, this is beyond the scope of our
research. However, if we investigate further we can see from Fig. 5 that the root posture
prediction has better results, where the network model manages to generalize between
forward posture, backward posture and straight posture cases.

This partial confusion matrix (Fig. 5) makes it clear that while some finer detail in our
dataset is less objective and is difficult for the network to generalize, the neural network
itself is adept in solving the classification of the base postures with the mean accuracy
rate of 91.47% (sensitivity 0.9185, specificity 0.9595, f-score 0.9132 and kappa 0.8081).
The bottom level (root) labels are more than enough in a lot of cases when it comes to
posture recognition tasks that do not require precise user angle extraction. Additionally,
when comparing partial and full confusion matrices we can see that the deeper levels
additionally have lower false negative results, indicating the addition of the hierarchical
structure for prediction can inherently improve the prediction results in deeper levels due
to the semantic connections between labels.

Performance
Due to fact that our approach usesMobileNetV2 as the backbone for our ANN that means
that is lightweight and can be used in real-time applications. Our method performs a
posture prediction on average in 94 ms (which corresponds to 10 fps rate) on a workstation
with the following specifications: Intel i7-4790 CPU with 16GB of RAM, nVidia 1070 GPU
with 8GB of GDDR5 VRAM.

Comparison
We compare our results with the results of other authors in Table 4.

Figure 5 Confusion matrix indicating bottom level expected labels versus network predictions.
Accuracy values are given in percents. Diagonal values indicate correct predictions.

Full-size DOI: 10.7717/peerj-cs.442/fig-5
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Our method allows to achieve the real time sitting posture recognition with the same or
better recognition accuracy and video resolution than other similar state-of-the-art
methods. For example, Wang et al. (2016) achieved higher accuracy and recognition rate,
however their method require the visibility of full skeleton detected by Kinect sensors
and not occluded by any obstacles. Gochoo et al. (2018, 2019) achieved a very high
recognition rate using three low resolution thermal sensors placed around the subject
to recognize eight postures and 26 yoga postures, respectively, but no occlusions were
allowed either. Tariq et al. (2019) used Kinect and additional motion sensors from
smartwatch to achieve the required level of accuracy.

DISCUSSION
The training of neural network depends on hardware used for recording. We used Intel
Realsense D435i, but the results may be worse when using different hardware, for example,
KinectV2 as these two devices produce different noise in their depth fields. This may
cause the network to have poorer results when compared to the one that it has been trained
on. However, we are not able to validate this claim. Additionally, when testing the network
using the real-time camera feed we had noticed that while relatively similar and their
mirror image angles work it may have lower precision rates with something more extreme
like placing sensor very high or very low relative to the table or user.

Finally, when using in real world application, one of the measures to improve prediction
stability is to use majority voting on the preceding 10 video frames. This is performed
by taking the prediction label that had appeared the most times in the previous recorded
10 frames. This technique can improve the stability of the predictions as a single video
frame will no longer change the prediction results. However, the predictions will have a
delay, due to previous video frames influencing the result for a short period of time.

Table 4 Comparison of posture recognition methods.

Method Frame
resolution,
px

Frame
rate, fps

Accuracy,
%

Task Reference

Real-time deformable
detector

320 × 240 10 75.33 Hand posture recognition Hernandez-Belmonte &
Ayala-Ramirez (2016)

Ensemble of
InceptionResNetV2

640 × 480 n/a 95.34 Four postures (standing, sitting, lying, and lying
crouched)

Byeon et al. (2020)

LVQ (learning vector
quantization) neural
network

640 × 480 333 99.01 Five full-skeleton postures (standing, sitting,
stooping, kneeling, and lying)

Wang et al. (2016)

Multi-stage convolutional
neural network (M-CNN)

n/a 5 98.70 Two postures for fall detection Zhang, Wu & Wang
(2020)

LVQ neural network 48 × 16 10 99.95 Eight postures (stand, hand raise, akimbo, open
wide arms, squat, toe touch, crawl, and lie)

Gochoo et al. (2018)

Deep CNN 24 × 8 9 99.99 26 yoga postures Gochoo et al. (2019)

D CNN n/a n/a 98.16 Detection of 10 standstill body poses. Liu et al. (2020)

Deep recurrent hierarchical
network

640 × 480 10 91.47 Spine posture recognition while sitting This paper

Note:
n/a, data is not available.
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Another limitation of this study is a small number of subjects (11), all healthy, which
may have influenced the validity of the results. The age range and gender diversity of
the subject group was limited. In future, we will have to extend the subject group to
include various professional/occupational groups as well as school children and
adolescents as well as people with different body types and disabilities in order to improve
the results for real world cases.

CONCLUSION
We have proposed an extension of theMobileNetV2 neural network, which allows the use
of sequential video data as an input, therefore, allowing for the deep neural network to
extract important temporal features from video frames, which would otherwise be lost
when compared to a single-frame classification while still being capable of the single-frame
prediction due to being biased towards the last frame. We have improved the top-layer
of theMobileNetV2 architecture by adding the hierarchical data representation, which acts
as a semantic lock for top-level label classification by filtering out the invalid class labels
early. Additionally, we have performed a pilot study based in which we suggest the
methodology required to collect the training dataset and validation datasets. Further
improvements in dataset collection methodology can be made in order to account for
different body shapes, disabilities and removing labeling ambiguities. The proposed
posture classification approach is highly extensible due to its flattened tree representation,
which can be easily adapted to the already existing posture classification tasks with the
depth of the ontological semantic posture model being one of the driving factors for
classification quality. Based on our validation data giving us a classification accuracy of
91.47% in predicting three main sitting posture classes (backward posture, forward posture
and straight posture) at a rate of 10 fps. Finally, unlike in related work, our method
does not depend on the skeletal predictors, therefore we can perform the sitting human
posture prediction when only as low as 30% of the human torso is visible in the frame.
For these reasons, we believe that our approach is more robust for real-time human
posture classification tasks in the real-world office environment.
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