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Considerations on Performance Evaluation of
Atrial Fibrillation Detectors
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Abstract—Objective: A large number of atrial fibrillation
(AF) detectors have been published in recent years, signi-
fying that the comparison of detector performance plays
a central role, though not always consistent. The aim of
this study is to shed needed light on aspects crucial to
the evaluation of detection performance. Methods: Three
types of AF detector, using either information on rhythm,
rhythm and morphology, or segments of ECG samples, are
implemented and studied on both real and simulated ECG
signals. The properties of different performance measures
are investigated, for example, in relation to dataset imbal-
ance. Results: The results show that performance can differ
considerably depending on the way detector output is com-
pared to database annotations, i.e., beat-to-beat, segment-
to-segment, or episode-to-episode comparison. Moreover,
depending on the type of detector, the results substanti-
ate that physiological and technical factors, e.g., changes
in ECG morphology, rate of atrial premature beats, and
noise level, can have a considerable influence on perfor-
mance. Conclusion: The present study demonstrates over-
all strengths and weaknesses of different types of detector,
highlights challenges in AF detection, and proposes five
recommendations on how to handle data and characterize
performance.

Index Terms—Atrial fibrillation, deep learning, detection,
expert-crafted detection, performance evaluation, perfor-
mance measures.

I. INTRODUCTION

THE recent interest in deep learning (DL) has led to an
avalanche of atrial fibrillation (AF) detectors, e.g., [1]–

[17]. As a consequence, the problem of how to evaluate and com-
pare performance between different detectors, whether based on
DL or expert-crafted features, is brought into focus. To outline a

Manuscript received October 21, 2020; revised January 28, 2021;
accepted March 16, 2021. Date of publication March 22, 2021; date
of current version October 20, 2021. This work was supported by the
European Regional Development Fund under Grant agreement 01.2.2-
LMT-K-718-03-0027 with the Research Council of Lithuania (LMTLT)
and Swedish Research Council under Grant 2016-03382. (Correspond-
ing author: Monika Butkuvienė.)
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framework for evaluation that not only ensures a fair comparison
but also goes beyond reporting overall performance measures is
therefore essential.

While public databases facilitate the comparison of detector
performance, conclusions should be made with caution for a
number of reasons. Rather than using the entire database, certain
detectors have been evaluated on a subset, e.g., by excluding
poor-quality signal segments or omitting segments for the pur-
pose of balancing the datasets.

Depending on the approach taken to comparing detec-
tor output to database annotations, i.e., beat-to-beat [18]–
[24], segment-to-segment [16], [22], [25]– [29], or episode-to-
episode comparison [24], [28], [30], [31], the performance can
differ considerably. Although only results computed using the
same approach must be compared, this is not always the case.

To express performance in terms of statistical measures, e.g.,
sensitivity and specificity, is common practice. However, the
use of performance measures should be accompanied by results
uncovering detector properties. For example, by investigating
what signal scenarios cause frequent false alarms, weaknesses
in detector design can be more efficiently addressed. Such un-
derstanding can be gained by means of simulated ECG signals
which, in contrast to real signals, offer control of principal
quantities such as type and level of noise, rate of atrial premature
beats (APBs), and AF burden, i.e., the percentage of time a
patient spends in AF during the monitored period [32], [33].
The interest in brief AF episodes (< 30 s) and their association
with future risk of stroke [34], [35], motivates the simulation of
signals with varying episode length to enrich the understanding
of performance.

Since existing studies on AF detection offer very little insight
on how well episode patterns are captured, further studies are
needed that investigate the influence of missed and falsely de-
tected episodes on pattern characterizing parameters, e.g., min-
imal AF episode duration [36], clustering of AF episodes [37],
and temporal distribution of AF episodes [38]. The need for
episode pattern analysis, complementing the analysis of AF bur-
den, is emphasized in recent clinical guidelines, e.g., by deter-
mining the density of episodes per unit of time [39], [40].

The present paper addresses aspects crucial to the evaluation
of AF detector performance, leading up to a set of investigation-
based recommendations on how to handle data and characterize
performance. For the purpose of illustrating differences in per-
formance, three types of AF detector are implemented (Sec. III)
and studied on both real and simulated ECG signals (Sec. II).
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The results shed light on the suitability of different performance
measures for AF detection, the basis for comparing detector
output to annotations, and the importance of investigating the
influence of physiological and technical factors on performance
(Sec. V). Besides discussing the results, Sec. VI provides an
overview of how important aspects are dealt with in the literature.

II. ECG SIGNALS WITH PAROXYSMAL ATRIAL FIBRILLATION

A. Clinical Signals

The Saint Petersburg Atrial Fibrillation Database (SPAFDB)
consists of 36 three-lead (V1, V6, Y ) ambulatory recordings,
lasting from 1 to 7 days and amounting to a total of 158 days of
monitoring [37]. In total, SPAFDB consists of 2370 manually
annotated AF episodes which account for 19% of the total
monitoring time.

The publicly available MIT–BIH Atrial Fibrillation Database
(AFDB) consists of 23 10-h, two-lead ambulatory ECG record-
ings from patients with AF, mostly paroxysmal [41]. The Long-
Term AF Database (LTAFDB) consists of 84 24-h two-lead
ambulatory ECG recordings acquired in patients with parox-
ysmal or persistent AF [41]. In total, AFDB consists of 297
manually annotated AF episodes which account for 43% of
the total monitoring time, while LTAFDB consists of 7329
manually annotated AF episodes which account for 59% of the
total monitoring time. It should be noted that the leads are not
specified for any of the two databases.

B. Simulated Signals

To investigate the influence of various physiological and tech-
nical factors on performance, simulated ECGs in paroxysmal AF
are used [32]. The model produces 12-lead ECGs composed of
real signal components randomly selected from three datasets,
each consisting of ventricular rhythm, atrial activity (f-waves or
P-waves), and QRST complexes. Accounting for the switching
between non-AF and AF, these components, together with noise,
are summed to produce simulated signals. The noise, being the
sum of baseline wander, muscle noise, and electrode movement
artifacts, is scaled to the desired root mean square (RMS) value.
Two of the model parameters are set based on the overall
characteristics of AFDB, namely AF burden to 0.37 and median
episode length to 167 beats. The APB rate is set to 0.05 and noise
RMS level to 0.02 mV, whereas the remaining model parameters
have their default values [32].

III. ATRIAL FIBRILLATION DETECTORS UNDER COMPARISON

In the literature, three types of AF detector can be discerned,
those using only rhythm, both rhythm and morphology, and
segments of ECG samples as input. The first two types require
prior QRS detection, here accomplished by the wavelet-based
detector described in [42], whereas the third type does not. In the
following, one representative of each detector type is considered
with the aim to reveal overall strengths and weaknesses.

A. Rhythm-Based Detector

Rhythm-based detection makes use of that AF episodes are
manifested by irregular RR intervals which often are associated

with increased heart rate. The implemented detector, designed
to detect brief AF episodes, includes blocks for ectopic beat
filtering, bigeminy suppression, characterization of RR interval
irregularity, and signal fusion [21]. The detector is used to pro-
cess all three ECG databases and simulated signals, employing
the parameter values in [21].

B. Rhythm- and Morphology-Based Detector

Four parameters serve as input to the rhythm- and
morphology-based detector, capable of detecting AF episodes
as short as 8 beats [31]: 1. Rhythm irregularity, quantified by
the rhythm-based detector described in Sec. III.A; 2. P-wave
absence, quantified by computing the normalized ratio of the
rectified signal in the PQ interval to that of the TQ interval;
3. f-wave presence, quantified by the squared and summed error
between different PR intervals; and 4. noise level, quantified by
the spectral entropy ratio-weighted RMS value of the extracted
f-wave signal. The latter three parameters are determined from
an f-wave signal, extracted using an echo state network [43]. The
parameters are fed to a fuzzy logic classifier producing a fuzzy
output, i.e., a value between 0 and 1, reflecting the likelihood of
AF being present in the sliding detection window. The detector
requires two ECG leads, i.e., one with negligible atrial activity
(e.g., V6) and another with atrial activity (e.g., V1). The detector
is used to process SPAFDB and simulated signals, employing
the parameter values in [31].

C. DL-Based Detector

A DL-based detector is implemented using a 1D convolutional
neural network (CNN), whose structure is inspired by those
described in [16], [44]. The ECG signal is preprocessed using
a band-pass filter (0.5–40 Hz) to remove baseline wander and
high-frequency noise. The CNN is composed of two convolu-
tional layers and one fully connected layer. Both convolutional
layers rely on 128 kernels with a stride of one, followed by
a 1× 32 average-pooling layer with a stride of 32. The fully
connected layer consists of 256 neurons with a rectified linear
unit activation function and two output neurons with a softmax
activation function. To mitigate the risk of overfitting, all layers
are followed by dropout layers with probabilities of 0.5. The
outputs of the convolutional layers are batch-normalized. The
DL-based detector is trained using the gradient-based Adam
optimizer [45], with a learning rate of 0.001 and a batch size
of 128.

The detector was trained on two-thirds of AFDB and validated
on the remaining one-third, using the lead with the most negative
S-wave which reasonably well mimics V1 of the test databases.
To increase the number of segments for training, each signal was
divided into 30-s segments with 50% overlap. Poor-quality seg-
ments were eliminated based on sample skewness and kurtosis
as proposed in [46]. In total, 358 segments out of 59185 were
eliminated due to poor quality. The resulting training dataset
consists of 25169 segments assigned to AF and 33658 segments
to non-AF. To equalize the signal amplitude across a recording,
the modulus of each segment was taken and normalized to the
interval [0, 1]. The detector is tested on SPAFDB and simulated
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signals, again with each signal divided into 30-s segments but
without any overlap.

IV. PERFORMANCE EVALUATION

A. Annotation Comparison

The predominant approach to processing annotations is to
compare the detector output to the annotations on a beat-to-
beat basis. Another approach is to compare L-beat segments,
where a segment is assigned to AF when at least 50% of the L
detected beats are in agreement with the beat annotations. Yet
another approach is to count the number of correctly detected AF
episodes: an episode is considered correctly detected when the
overlap between the detector output and the episode annotation
exceeds a predefined threshold, e.g., 50%.

In the following, these three approaches to processing anno-
tations are referred to as beat-to-beat, segment-to-segment, and
episode-to-episode comparison, respectively.

B. Performance Measures

Performance is invariably evaluated by determining the num-
ber of correctly detected AF cases (true positives, TP), the
number of correctly detected non-AF cases (true negatives, TN),
the number of falsely detected AF cases (false positives, FP), and
the number of missed AF cases (false negatives, FN). Depending
on the type of annotation comparison, “case” refers to either beat,
segment, or episode. From these four counts, the well-known
performance measures, such as sensitivity (Se), specificity (Sp),
positive predictive value (PPV), negative predictive value (NPV),
and accuracy (Acc) are computed.

Other measures include balanced accuracy (AccB), F1 score,
and Matthews correlation coefficient (Mcc), defined by

AccB =
1

2
(Se+ Sp), (1)

F1 =
2 · TP

2 · TP + FP + FN
, (2)

Mcc =
TP · TN − FP · FN

√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

,

(3)

respectively. The measures AccB and F1 both take values in
the interval [0, 1], where 1 means perfect detection and 0.5
random detection. In its original definition, Mcc takes values
in the interval [−1, 1], however, to facilitate a comparison be-
tween performance measures, Mcc is normalized to the interval
[0, 1] [47].

V. RESULTS

A. Analysis of Performance Measures

Fig. 1(a) shows an annotated AF pattern composed of just
a few episodes, together with the output of the rhythm-based
detector composed of numerous false detections making up for
2% of the total number of beats. Using beat-to-beat comparison,
the receiver operating characteristic (ROC) shown in Fig. 1(b)
suggests near-perfect performance. However, due to the huge

Fig. 1. (a) Annotated AF pattern from SPAFDB (upper panel), out-
put of the rhythm-based detector (lower panel), and (b) corresponding
ROC. The performance measures are computed using beat-to-beat
comparison. The annotated pattern consists of 8 episodes with a me-
dian episode length of 113 beats, while the detector-produced pattern
consists of 518 episodes with a median episode length of 15 beats.

Fig. 2. The effect of data imbalance, expressed as AF burden, on dif-
ferent performance measures. The arc of the circle indicates AF burden.
The dots in each colored sector show the values of a performance
measure obtained for different AF patterns, using the rhythm-based
detector and beat-to-beat comparison. The radius of the colored sector
represents the median of the values of a performance measure.

imbalance between non-AF and AF beats (96.7% are non-AF),
such a conclusion is misleading. Since 98.1% of the AF beats
and 98.0% of the non-AF beats are correctly detected, the
false AF detections have negligible influence on the ROC. In
terms of performance measures, Acc and AccB are insensitive
to data imbalance and therefore indicate higher performance,
whereas F1 and Mcc are sensitive and therefore indicate lower
performance, see Fig. 1(a).

To shed further light on data imbalance, the performance of
the rhythm-based detector is studied on 103 recordings from
SPAFDB, AFDB, and LTAFDB; 40 recordings with AF burden
<1% and >99% were excluded. Fig. 2 shows that imbalance
has only a minor effect on Acc, AccB , F1, and Mcc when AF
burden is between 10% (negative imbalance) to 80% (positive
imbalance). Interestingly, only F1 and Mcc are influenced by
a negative imbalance of 1–10%, while Acc and AccB remain
essentially unchanged. Since the sectors 80–90% and 90–99%
contain very few values, no meaningful observations can be
made.



BUTKUVIENĖ et al.: CONSIDERATIONS ON PERFORMANCE EVALUATION OF ATRIAL FIBRILLATION DETECTORS 3253

Fig. 3. Pearson correlation coefficient for different performance mea-
sures, obtained using the rhythm-based detector and beat-to-beat com-
parison.

The information carried by the different performance mea-
sures is investigated by correlation analysis, again using the
rhythm-based detector and beat-to-beat comparison on 103
recordings. Fig. 3 shows that Sp, NPV, AccB , and Mcc are
strongly correlated (r > 0.8) with each other, while PPV and
F1 do not correlate with Sp, NPV, AccB , or Mcc. The measure
PPV correlates strongly with F1 since both are determined by
the number of false positives. On the other hand, Sp and NPV
are strongly correlated due to the fact that missed AF beats are
uncommon in rhythm-based AF detection, thus reducing NPV.

B. Influence of Annotation Comparison

Fig. 4 shows how the type of annotation comparison in-
fluences performance. For the rhythm-based and the rhythm-
and morphology-based detectors, episode-to-episode compari-
son indicates much lower performance for all measures than do
the other two types of comparison. However, for the rhythm-
and morphology-based detector, the difference in performance
is less pronounced. While the segment-to-segment comparison
indicates the best performance, the difference relative to beat-
to-beat comparison is negligible.

Fig. 5 shows how segment length influences performance
using segment-to-segment comparison. As expected, perfor-
mance deteriorates as the length shortens due to that shorter
manifestations of noise and sporadic ectopic beats cause more
false detections.

Fig. 6 shows how the overlap percentage between detected
and annotated episodes influences performance using episode-
to-episode comparison. As expected, Se and NPV decrease and
Sp and PPV increase as the overlap percentage increases since
fewer episodes are detected. However, the intersection point
between the Se/NPV and Sp/PPV curves differs considerably
for the two types of detector, being 15% for the rhythm-based
and 48% for the rhythm- and morphology-based.

C. Factors Influencing AF Detection Performance

1) Lead Selection: Detection accuracy as a function of
processed lead is presented in Fig. 7. The performance of the

DL-based detector depends heavily on lead, with the best per-
formance obtained for V1, i.e., the one used for training, then
dropping dramatically for the other leads with lower f-wave
amplitude. The performance of the expert-crafted detectors is
largely independent of selected lead. It should be noted that the
lead dependence of the rhythm-based detector is due to that the
performance of the QRS detector is lead-dependent.

2) APB Rate: Detection accuracy as a function of APB rate
is presented in Fig. 8. The performance of the rhythm-based
and the DL-based detectors drops rapidly as the APB rate
increases, whereas the rhythm- and morphology-based detector
performs well even at high APB rates thanks to the inclusion
of morphologic information. For the rhythm-based detector, the
drop in performance is expected as this type of detector is known
to poorly discriminate AF from irregular rhythms with APBs.

3) Noise Level: Detection accuracy as a function of noise
level is presented in Fig. 9. The performance of the rhythm-based
and the rhythm- and morphology-based detectors drops rapidly
when the noise level exceeds 0.15 mV, largely attributed to
the drop in performance of the QRS detector. Although less
dependent on noise level, the DL-based detector performs con-
siderably worse at lower noise levels than the other two detectors.
It should be recalled that the performance of the DL-based
detector does not depend on QRS detection.

VI. DISCUSSION

The recent, rapid progress in AF detector development is
driven by clinical relevance and advancements in medical tech-
nologies. However, this development comes with the challenge
of adequately evaluating and comparing performance relative to
published detectors.

A. Performance Evaluation

In the present study, three types of annotation comparison
are considered. The results show that performance depends on
the selected type, notably that episode-to-episode comparison
indicates much poorer performance than do the other two types
of comparison (Fig. 4). Even when the same type is used,
segment length (Fig. 5) and episode overlap (Fig. 6) influence
performance, e.g., increasingly poorer when shorter segments
are used. Therefore, a meaningful comparison can only be
made when these aspects are taken into consideration. If not,
conclusions on detector superiority, which tend to be common
in the literature, cannot and should not be drawn.

Another aspect which deserves consideration is that neither
beat-to-beat nor segment-to-segment comparison indicates the
number of detected AF episodes. Obviously, episode-to-episode
comparison is more appropriate to use, especially when dense
episode patterns are the subject of analysis. However, this type
of comparison is rarely used, likely because it results in lower
performance figures (Fig. 4). For DL-based detectors, segment-
to-segment comparison is the preferred choice since deep neural
networks typically do not rely on heartbeat timing; the segment
length is usually related to what is deemed the shortest de-
tectable episode. DL-based detectors requiring heartbeat timing
include [11], [17], [48].
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Fig. 4. Detector performance using episode-to-episode (50% overlap), beat-to-beat, and segment-to-segment (30 s) annotation comparison. Note
that only segment-to-segment comparison can be used to describe the performance of the DL-based detector, since the detector structure does
not lend itself to the other two types of comparison. The results are obtained using SPAFDB.

Fig. 5. Influence of segment length on detector performance using
segment-to-segment comparison. The DL-based detector is not in-
cluded since it was trained to process 30-s segments. The results are
obtained using SPAFDB.

Fig. 6. Influence of episode overlap on detector performance us-
ing episode-to-episode comparison. The results are obtained using
SPAFDB.

Since no consensus has been established on what measures
should be used to report on performance, an important aim of
the present paper is to facilitate such a consensus by highlighting
various properties of measures commonly used in the literature.
Since AF detection represents a binary problem, it is intimately
associated with the 2× 2 confusion matrix defined by the counts

TP, FN, TN, and FP, cf. Sec. IV.B. Combinations of these
four counts have been used to define performance measures,
with Se, Sp, PPV, and NPV as the most popular [21], [28],
[49], [50]. None of these measures can, however, be considered
fully informative as their respective definitions involve only two
counts of the confusion matrix [47]. Joint use of all four measures
provides richer information on performance, but also renders
a comparison of performance more complicated. Therefore, it
is understandable that the use of a single overall performance
measure, e.g., Acc, F1, Mcc, has become popular [51], [52].
However, a single overall performance measure hides important
properties. It is well-known that Acc, being a popular measure
in AF detection, tends to inflate performance for imbalanced
datasets [47], [53], [54], cf. Fig. 2. By comparing F1 with Mcc,
it should be highlighted that Mcc depends on the number of
samples correctly classified as true negatives, while F1 does
not. Since Mcc indicates good performance only when most AF
episodes and most non-AF “episodes” are correctly detected, we
recommend the use of Mcc instead of F1 or Acc when evaluating
overall performance.

The area under the ROC, known as the area-under-the-curve
(AUC), is another single overall performance measure popular
in many studies, e.g., [12], [21], [22], [25], [55], [56]. Unfortu-
nately, the AUC results from integrating Se and Sp not only in
regions of operational interest, but also in regions of no clinical
interest [47], [57], [58]. Hence, we recommend that AUC is
disregarded when reporting on performance, while it may be
used to provide better understanding of how different parameter
settings influence performance [21], [25], [55].

B. Factors Influencing Performance

The influence of various physiological and technical factors
on performance is rarely investigated in the literature, despite
the fact that essential information on detector properties can
be uncovered, cf. Sec. V.C. Situations in which performance
degrades deserve particular attention.

Since the performance of the DL-based detector depends
heavily on the lead selected for processing (Fig. 7(b)), the
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Fig. 7. (a) Simulated multi-lead ECG during AF and (b) detection accuracy (Acc) as a function of lead selection. The results are based on 100
simulated 1-h ECGs and presented as mean ± confidence interval (CI) (95%).

Fig. 8. (a) Simulated ECGs with different APB rates and (b) detection accuracy (Acc) as a function of APB rate. The results are based on 100
simulated 1-h ECGs and presented as mean ± CI (95%).

Fig. 9. (a) Simulated ECGs (V1) during AF with different noise levels (RMS) and (b) detection accuracy (Acc) and QRS detection performance
(Se and PPV) as a function of noise level. The results are based on 100 simulated 1-h ECGs and presented as mean ± CI (95%).

datasets used for training and testing should consist of recordings
from the same lead to achieve the best performance. In the
present study, lead V1 was used since its f-waves are more
prominent than in any of the other leads of the standard 12-lead
ECG. When using different databases for training and testing,
it is not only important to use a similar lead, but also to avoid
differences in measurement equipment and large variation in

signal quality. These observations are probable reasons why
nearly all DL-based detectors in the literature have been tested
using cross-validation on the training database, see Table I. As
for the two expert-crafted detectors, their performance is not
nearly as sensitive to lead selection (Fig. 7(b)).

Since P- and f-wave information is part of the decision
process, the performance of the rhythm- and morphology-based
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TABLE I
COMPARISON OF DL-BASED AF DETECTORS

TABLE II
COMPARISON OF EXPERT-CRAFTED AF DETECTORS

detector remains largely unchanged for an increasing APB
rate [31], cf. Fig. 8(b). On the other hand, as expected, the
performance of the rhythm-based detector deteriorates consid-
erably since decisions are based on RR interval information.
More surprising is that the performance of the DL-based detector
also deteriorates considerably, a behavior likely explained by a
training process that identifies rhythm irregularity as a prominent
AF feature; however, a representative training database with a
greater variety of cardiac rhythms than that of AFDB should
help improving performance [63]. In addition to investigating
performance as a function of APB rate, other AF-masquerading
arrhythmias, e.g., bi-/trigeminy, atrial tachycardia, and atrial
flutter, deserve to be investigated as well.

The influence of missed and falsely detected QRS complexes
on AF detector performance is rarely reported in the literature.
In many studies, QRS detection is assumed to be perfect simply
because the database annotations on QRS occurrence times serve
as the starting point for AF detection [27], [29], [50], [55], [59].
However, in practice, ECGs are often noisy, e.g., when recorded
under ambulatory conditions, and, therefore, QRS detection
is far from perfect. As evidenced by Fig. 9, the performance
of the expert-crafted AF detectors deteriorates at higher noise

levels because of deteriorating QRS detector performance. In
addition, for rhythm- and morphology-based detectors, noise
enters through P- and f-wave features, thus calling for their
careful use at higher noise levels.

AF detector performance as a function of different AF episode
length also deserves attention since performance will deteriorate
as the length becomes increasingly shorter. For example, when
the median episode length of simulated signals decreased from
120 to 30 beats, the accuracy of the rhythm-based and the
rhythm- and morphology-based detectors decreased from 0.84
to 0.65 and from 0.92 to 0.80, respectively [32].

C. Comparing Detector Performance

A meaningful comparison of performance requires that the
datasets for training and testing are handled in the same way
across studies. Firstly, all records of the database should be
used, meaning that no records should be excluded due to poor
signal quality or as a means to obtain balanced datasets [64].
Secondly, testing should be done on a database different from
the one used for training so that performance can be established
on unseen data. Thirdly, the same patient should not appear in
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TABLE III
STRENGTHS AND WEAKNESSES OF DIFFERENT TYPES OF DETECTOR

both the training and the test datasets. Though not critical to
a comparison, it is highly desirable to provide insight on what
particular problem situations cause performance to deteriorate,
e.g., by presenting examples of motion artefacts and non-AF
arrhythmias.

Tables I and II show to what extent DL-based and
expert-crafted detectors, respectively, comply with the above-
mentioned requirements; the listed detectors were all evaluated
on AFDB. It is obvious that a comparison of performance
can be highly misleading as data handling differs among the
studies. Only 7 out of 14 (50%) of the DL-based detectors were
tested on all records of AFDB, whereas 10 out 13 (77%) of
the expert-crafted detectors; it should be noted that the records
excluded in [13], [29], and [26] were motivated by incorrect an-
notations. Similarly, as few as 4 (29%) of the DL-based detectors
used different patients in the training and the test sets, whereas
10 (77%) of the expert-crafted detectors. The effect of using
different patients in the training and the test sets is illustrated
by a recent study which reported excellent performance of the
proposed DL model for AF detection (Se = 0.991, Sp = 0.985)
when the same patient appeared in both sets [17]; however,
when the sets contained different patients, the performance was
mediocre (Se = 0.905, Sp = 0.797). Concerning testing on a
database other than that used for training, only 1 DL-based
detector (7%) complied with this requirement, whereas 10 (77%)
of the expert-crafted detectors. Interestingly, the performance of
that particular DL-based detector was found to drop dramatically
when tested on another database (Se remained unchanged at
0.990 while Sp dropped from 0.970 to 0.860 [11]), thus offering
a possible reason why different training and test databases have
been shunned in the literature. Concerning plots of problem
signals, again only 1 study (7%) on DL-based detection provided
such information, whereas 7 (54%) of the studies on expert-
crafted detectors.

A summary of strengths and weaknesses of rhythm-based,
rhythm- and morphology-based, and DL-based detectors are
presented in Table III.

D. Future Challenges in AF Detection

Today, the ECG can be acquired over an extended time period
so that detailed characterization of AF episode patterns can
be accomplished. The resulting information may be used to
understand the significance of AF triggers and the development
of complications such as stroke.

Fig. 10. Influence of false alarms on parameters characterizing AF
patterns: (a) annotated AF pattern from LTAFDB and (b) detector-
produced pattern.

AF patterns can be characterized by the heuristic parameterA,
defined so that patterns with a single short AF episode cluster
are associated with values close to 1, while episode patterns
spread out evenly over the entire monitoring period with values
close to 0 [38]. Another approach to characterizing AF episode
patterns is through history-dependent point process modeling,
using an alternating, bivariate Hawkes self-exciting model re-
cently introduced in [37]. The model parameter β1 defines
the exponential decay of the point process intensity function
and provides information on episode clustering. Clustered AF
episode patterns are associated with smaller β1 values.

Sophisticated analysis of episode patterns implies higher de-
mands on detection performance. As illustrated by Fig. 10, the
annotated episodes differ considerably from those produced by
the detector, and as a result, A and β1 will differ considerably
as well.

Unfortunately, episode analysis is made difficult in recordings
containing noisy segments as AF detection becomes unreliable.
Rather than simply discarding such segments from further anal-
ysis, as is often done, future research should focus on improving
electrode technology and algorithms for signal processing and
machine learning to ensure more reliable characterization of
episode patterns.

E. Limitations

One detector representative for each of the three main types
found in the scientific literature, i.e., rhythm-based, rhythm-
and morphology-based, and deep learning-based, have been
studied. Another type of detector is the one relying solely on
atrial information; however, this type was not considered as it
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is known to perform poorly in noisy signals [72]. While other
representatives could have been chosen, the aim of the present
study is to identify structure-dependent aspects on performance
evaluation, not to grade the performance of different detectors,
therefore making the choice of representatives less critical.

In certain applications, e.g., wearable devices, computational
complexity needs to be considered when evaluating perfor-
mance. Since complexity is detector-specific, such considera-
tions have been left out of the present study. Nonetheless, it
may be noted that the structure of a rhythm-based detector is
typically less complex than that of a DL-based. For example,
the rhythm-based detector in [21] requires 8 multiplications
per RR interval, whereas the DL-based detector in [11], with
its 159841 trainable parameters, evidently requires many more
multiplications as well as dramatically more memory.

The DL-based detector was trained on ECG segments whose
quality was determined from sample skewness and kurtosis [46].
More recently, other approaches to quality assessment have been
proposed designed specifically for use in AF detection [73]–
[76]. These approaches may lead to better training results and,
ultimately, better detection performance.

Modern sensor technology have helped form a new paradigm
of long-term AF monitoring relying on the analysis of photo-
plethysmographic (PPG) signals. As a result, a large number
of PPG-based AF detectors have been published, e.g., [19],
[30], [63], [65]–[71], [23]. While PPG-based detection was
not addressed in the present paper, the considerations made
on performance evaluation of ECG-based detectors apply to
PPG-based detectors as well.

VII. RECOMMENDATIONS

From the implications of the results as well as from reviewing
a large number of recent, peer-reviewed papers, the present study
leads up to the following five recommendations on evaluating
detector performance:

1) To use different datasets for training and testing, and to
ensure that the two datasets do not contain signals from
the same patient.

2) To substantiate the approach taken to annotation compar-
ison and, if applicable, report segment length and episode
overlap.

3) To evaluate performance in terms of Mcc, rather than Acc
or F1, and to include Se, Sp, and PPV so as to facilitate a
comparison to the many published detectors; AUC should
be left out when reporting performance.

4) To evaluate the influence of physiological and technical
factors on performance, including lead selection, APB
rate, noise level, and AF-masquerading arrhythmias.

5) To pay special attention to detection performance when
the aim is to characterize AF episode patterns.
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