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1. INTRODUCTION  

Relevance of the research 

Traumatic Brain Injury (TBI) is a prominent reason for mortality across the 

globe, causing suffering to patients and relatives as considerable costs to society. 

Around 2.5 million people in the European Union suffer from TBI. Out of these 

people, 1.5 million have been admitted to hospital, and 57,000 have lost their lives. 

Globally, it impacts 50 million people and costs the global economy US$400 billion 

annually. An estimate study states that every year in the USA $1 in every $200 is 

spent on TBI [2]. American innovation strategy [3] spends over 300 million US dollars 

for the BRAIN Initiative project which aims to help researchers better understand brain 

disorders, post-traumatic stress disorder (PTSD), and TBI for managing and analyzing 

large data sets involved in the severity. TBI is a complicated and severe condition; 

however, the evidence for treatment recommendations is lacking, and approaches are 

seldom adequately targeted. Generally, clinical TBI research is reduced to the 

attempts to isolate single factors for treatment. These single factors for the treatment 

approach do not account for the complexity of TBI and lack generalizability. Modern 

computational techniques and the availability of robust risk adjustment models 

facilitate more holistic approaches [2,3].  

In the process of combatting this burden, we will entirely depend on improving 

understanding of TBI pathophysiology. After the primary injury, a pathophysiological 

implication is set, and, if it is not investigated, it could cause everlasting disability or 

mortality. Effective monitoring of the condition is essential to manage severe TBI 

based on immediate detection, and alteration of abnormal physiology could yield 

better results. Because keeping up the distribution of oxygen and nutrients to the brain 

via cerebral blood flow (CBF) is required for the brain to function, where intracranial 

hemodynamic monitoring is a fundamental element of neuromonitoring after severe 

TBI [4].  

CBF is maintained by the cerebral autoregulation process, where CBF is 

proportional to the pressure gradient across the cerebral vascular bed monitoring after 

severe TBI, which includes monitoring of the difference between the arterial pressure 

(ABP) and the intracranial pressure (ICP). The difference between ABP and ICP has 

been denoted as the cerebral perfusion pressure and is used clinically to guide 

treatment along with the ICP value. This process is known as cerebral autoregulation 

(CA) [4]. 

 It is an intrinsic ability of the brain to maintain stable CBF, while mean arterial 

blood pressure (MAP) and cerebral perfusion pressure (CPP) are changing [1,4]. The 

regulatory mechanism provides metabolic substrates under physiological and 

pathological conditions, for instance, after neuro-trauma or spontaneous intracranial 

hemorrhage. Constant CBF is regulated by altering the arteriolar diameter, which will 

change the cerebral blood volume (CBV) and, hence, ICP, while ICP is the sum of the 

partial pressures of the brain tissue, cerebrospinal fluid (CSF), and CBV [4,5]. CPP is 

defined as:  

                     CPP = MAP – ICP                                            (1) 
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Autoregulation has been explained as a balancing act between vasoconstriction 

and vasodilation as the cerebrovascular bed’s resistance accepts slow variations in 

CPP. CA’s impairment influences the outcomes most of all, which means that it is 

essential to explore CA continuously in real-time [5,6]. This is essential to have a 

useful method or tool for the estimation and monitoring of CA. The relationship 

between ABP, ICP, and cerebral arterial blood flow velocity (CABFV) produces 

information on CA’s operating behavior [4–6]. The development of the pressure 

reactivity index (PRx), calculated as a moving correlation coefficient between the 

slow-wave of ABP and ICP, has allowed for continuous CA monitoring over time. 

Since ICP and ABP are frequently employed measurement methods in TBI patients 

in the intensive care unit (ICU), and since no external ABP handlings are essential, 

PRx became a universally acknowledged CA condition marker. However, PRx, being 

a simple correlation coefficient, is noisy due to its non-discriminant nature; it is also 

inherent, incoherent, and physiologic [7].  

The slow pressure waves in the cranial enclosure and the slow waves from blood 

vessels were first explained by Janny and Lundberg [8,9]. The ABP is obtained from 

the peripheral ABP signal, such as the radial artery. Pulse and respiratory waves, 

respectively, derived from cardiac and breathing events, are excluded. The ICP slow 

waves originate from the intracranial blood volume, termed as the plateau wave [8–

10]. The relationships between ICP and ABP waves, CPP, and autoregulation, are still 

debatable.  

Increased ICP has been related to low CA reactivity [11,12,13,14] and has 

emerged as an essential physiological driver of continuous deterioration. CPP values 

with the uppermost and lower limits are linked to poor CA reactivity and construct 

the base for individualized CPP target spectrum in adult TBI care, summarized as the 

‘optimal’ CPP(CPPopt) theory.  

The CPPopt theory has become popular during the last decade with the 

observation that PRx and CPP reflect a U-shaped relation over time with the least PRx 

occurring at a CPP, for which, CA reactivity is excellently secured; [13,14] reflects 

the parabolic relationship between PRx and CPP in adult TBI. Deviations in the 

achieved CPP from the CPPopt value have been associated with worse outcomes [15–

16].  

The only productive idea is to identify in real-time optimal cerebral perfusion 

pressure, which is identified using PRx. However, the most significant disadvantage 

of this method is the long delay in identifying the first conclusion for the individual 

patient, which requires waiting for hours. Impairment of the autoregulation for more 

than 5 minutes can kill the patient because the patient will lose the neuron cells. 

Physicians have as little as 5 minutes for the treatment decision making in order to 

save the patient. There are several questions but not enough answers in the field. Many 

scientists are working in this field by using different approaches; some are working 

on creating a new technology; some are working on automatic decision making 

(Artificial Intelligence, deep learning), while others are enhancing the currently 

available technology. Yet, there are not many novel ideas for such complicated 

problems. Neither the modern medicine nor the modern pharma industry can help with 

the treatment decision making of severe traumatic patients.   
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This thesis is a focused and vital study to enhance the existing technology to 

estimate correct cerebral autoregulation and prevent neuron (brain cell) damage by 

analyzing ABP and ICP signal. This further improves the signal quality for the 

estimation of the reactivity indexes (i.e., PRx, volumetric reactivity index (VRx)) that 

could also be used for identifying patient-specific optCPP (Optimal perfusion 

pressure).   

Scientific-technological questions  

The scientific-technological questions that are being resolved in this thesis are 

as follows: 

How can the quality of the slow wave from the arterial pressure reference signal 

recorded from the human body be improved to get a reliable, sensitive, and specific 

estimation of autoregulation?  

How can cerebral autoregulation be measured and controlled non-invasively 

with sensitivity and specificity as needed for the clinical practice? Is there any better 

alternative to the currently available methods?  

Hypothesis  

It is possible to improve the reliability, sensitivity, and specificity of 

cerebrovascular autoregulation outcomes by automatic elimination of artifacts in the 

arterial line and by the higher quality (increased signal to noise ratio) filtering of slow 

arterial blood pressure waves. 

 It is possible to measure and monitor CA non-invasively and continuously by 

ultrasound attenuation dynamic measurement in the human brain. 

Aim of the thesis 

This research aims to develop a method for the extraction of a higher quality 

slow wave as a reference signal from the arterial line and to identify a slow wave of 

higher and acceptable quality for reliable, sensitive, and specific cerebral 

autoregulation monitoring by filtering the unwanted signals (any signal which has no 

relation to physiology) in both invasive and non-invasive autoregulation by their 

reactivity index assessment in a cost-effective way (without artificial intelligence or 

supercomputers).  

Objectives of the research   

The primary objectives of the research are listed below:  

1. To examine and select the best possible method of artifact removal in the 

invasive, non-invasive arterial and intracranial line. 

2. To assess the clinical association between the CA index, PRx, and the quality 

of ABP and ICP signals.  

3. To perform a comparative study between two novel non-invasive methods 

based on the volumetric reactivity index.   

4. To propose a novel cost-effective, non-invasive CA monitoring technology: 

Ultrasonic attenuation in the brain. 
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These objectives of this thesis provide the basis for each of the result chapters 

(4,5,6,7).  In the subsequent chapters of the thesis, the literature review study was 

covered in Chapter 2, methods used in the thesis are outlined in Chapter 3, and detailed 

each of the studies in Chapters 4,5 and 6, while Chapter 1 consists of an introduction 

and working hypotheses. In the final Chapter, 7, conclusions are summarized. 

Scientific novelty of the work  

The raw signal from the arterial blood pressure (ABP) line and intracranial line 

(ICP) contains a higher number of artifacts in the recorded data, which adversely 

impacts the monitoring effectiveness. Such signals full of artifacts are being 

evaluated, improved, and enhanced by filtering process which provides improved CA 

value that helps physicians make patient treatment decisions efficiently. The collected 

raw data has been processed and filtered with various filters, and, among those, the 

FIR (Parks–McClellan) filter was found to be efficient, which provides filtered data 

that offers significantly better PRx outcomes than any other tested filters.  

Slow wave analysis for the cerebral autoregulation index by using the FIR 

(Parks–McClellan) filtration method in traumatic brain-injured patients and a healthy 

volunteer was novel and value-adding for cerebral-autoregulation index (PRx, VRx) 

estimation.   

Also, proposing a novel noninvasive volumetric reactivity index (VRx2- based 

on ultrasonic attenuation) is cost-effective approach than any other noninvasive CA 

monitoring methods including the transcranial doppler, which makes it advantageous 

in the developing countries.  

Research methods and tools 

The retrospectively collected data that was utilized in two of the studies 

comprising this thesis was harvested in TBI patients admitted to the Republican 

Vilnius University Hospital (Lithuania). Each patient exhibited a clinical need for ICP 

monitoring; ICP and additional computerized bedside signal recordings are within the 

database.  

The study of healthy volunteers was performed at the Health Telematics Science 

Institute of Kaunas University of Technology, where IBV recording was done by a 

noninvasive ultrasonic monitor developed by the Health Telematics Science Institute 

of Kaunas University of Technology (Kaunas, Lithuania). 

MATLAB software and ICM+ were used to process the data recorded during 

the studies. 

SPSS statistical software package was used to implement a statistical analysis 

of the data. 

Practical importance of the work  

The yearly incidence of TBI is approx. 500 out of 100,000 in the US and Europe. 

TBI ranges from 100–330 new cases of 100,000 population every year. It is one of the 

significant causes of death and disability, particularly among young individuals, 

leading to suffering in victims and relatives, and substantial direct and indirect costs 

to the society. In the USA, a yearly burden of around $ 60 billion is observed. In 
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patients with severe TBI, the lifetime cost per case is estimated at $ 396,000 with 

patient damage and medical rehabilitation costs by a factor of 4. A recent study shows 

that TBI’s total costs in Europe, excluding non-hospitalized patients, produced a 

figure of € 33 billion. Up to 1/3 of TBI patients who were not admitted to hospital 

could also develop a lifelong disability [3].  

TBI is known for the heterogeneity, including etiology, mechanisms, pathology, 

severity, and treatment, with widely varying outcomes. Traffic incidents cause various 

types of injuries across the globe. TBI can be diffuse damage, contusion brain damage, 

and intracerebral hematoma. Structural damages may or may not be visible on 

imaging. The clinical severity ranges from a minor injury to survivable damage. 

Center TBI found significant differences in outcomes between centers with a higher 

risk of ‘poorer’ vs. ‘better’ centers after adjustment. They also recognize that TBI is 

not merely an acute event, but it can trigger a chronic process, with a progressive 

injury over hours, days, weeks, months, and even years [3].  

As mentioned above, European (Center TBI) and American (Track TBI) 

institutions have been working with the traumatic brain-injured patients to achieve 

better treatment by transferring all the current research efforts to treat better into the 

modern concept of precise medicine, individual-tailored medicine. Nevertheless, no 

precise ideas have been developed yet to resolve the above-mentioned problems. The 

only way to resolve these are higher-quality signals, improved monitoring, better 

individual patient treatment decision-making, and a better prognosis.  

Description of analysis on ABP, ICP, and cerebral autoregulation monitoring  

It is already known that the continuous assessment of ICP, ABP, and cerebral 

autoregulation has been available during the last two decades. However, the quality 

of the collected neurophysiological (ICP, ABP) signal is unknown, and the impact of 

the signal quality on CA monitoring variables has not been described.  

Association and impact of invasive ICP and ABP slow-wave for CA monitoring 

in TBI patients 

Mean ABP(t) and ICP(t) is essential for a shorter period to calculate the pressure 

reactivity index (PRx), and the most common approach being used is the moving 

average. The main aim of this study is to bring attention to the need for ABP and ICP 

signal analysis in TBI patients as cerebral autoregulation (CA) index PRx(t) shows 

the importance of quality of ABP(t) and ICP(t) signals for the diagnostic value of CA 

monitoring. 

Novel Non-invasive method of cerebral autoregulation monitoring  

The novel non-invasive ultrasound attenuation volumetric reactivity index 

(VRx2) is similar to the time-of-flight volumetric reactivity index (VRx1) which is 

used these days for scientific research and studies. The ultrasonic attenuation 

volumetric reactivity index (VRx2) is an appealing, economic surrogate to the time-

of-flight reactivity index (VRx1) and potentially easy for hardware miniaturization.  
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Statements for defense 

For the best possible filter selection, in the filtration of neurophysiological 

signals to avoid the intensive care unit’s false alarm, the finite impulse response (FIR) 

filtering approach is adopted. Among the five filters, the FIR (PM) filtering approach 

offers higher quality of the filtered slow wave. It is better than the Kalman filter, the 

Butterworth low pass filter, the Chebyshev filter, and slightly better than the moving 

average.  

The PRx, TBI patient’s clinical outcome, and the quality of ABP and ICP signal 

indicated that the FIR (Parks–McClellan) filtered data was more sensitive for 

discriminating between intact and impaired cerebral autoregulation for TBI treatment 

decision making.  

The comparative study of the noninvasive ultrasonic volumetric reactivity 

indexes VRx1 (time-of-flight) and VRx2 (attenuation) monitoring showed a 

significant correlation. The attenuation based volumetric reactivity index (VRx2) can 

be used as a noninvasive alternative autoregulation index similar to the ultrasonic time 

of flight based VRx1 and could be used to reflect essential information related to the 

CA status.  

Dissemination of findings 

• Two publications related to the doctoral thesis were published in the scientific 

journals with IF (see Publications on page 99). 

• The concept presented at five international conferences in 5 countries: 

Glasgow (Scotland, UK), Madrid (Spain), Cardiff (Wales, UK), Copenhagen 

(Denmark), and at a University conference in Kaunas (Lithuania). 

Structure of the dissertation 

The dissertation consists of seven chapters excluding the list of references:  

Chapter One of the dissertation discusses the problem and hypothesis, including 

the relevance of the research.  

Chapter Two covers the literature review study, where the currently existing 

solution technologies and their limitations are discussed.  

Chapter Three explains the methodologies used in the thesis.  

Chapter Four presents the study conducted to select the best filter for filtering 

the ABP/ICP signal slow wave.  

Chapter Five presents the results of the association of sensitivity and specificity 

of ABP/ICP quality with clinical outcomes.  

Chapter Six presents the findings of the association between the novel 

volumetric reactivity index (VRx2) compared to the Ultrasonic time of flight 

reactivity index (VRx1).  

Chapter Seven contains the overall conclusion and limitations of the research.  

The total volume of the thesis is 98 pages. There are 34 figures, 11 tables and 

227 references in the text. 
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2. LITERATURE REVIEW – CEREBRAL AUTOREGULATION 

MONITORING  

A hemodynamic model for the CBF has been described to allow investigating 

CBF regulation [17, 18]. This model relies on the pressure applied to the ABP, the 

backpressure in the cranial enclosure (ICP), and the resistance of the diameter of the 

small cerebral vessels (cerebrovascular resistance (CVR), see Fig. 2.1). This 

relationship can be simplified as: 

 

                                        𝐶𝐵𝐹 =  
𝐴𝐵𝑃−𝐼𝐶𝑃

𝐶𝑉𝑅
                                                 (2)              

 

Hence, cardiovascular, ICP, and cerebrovascular elements are essential factors 

of CBF or circulation. This model specifies understanding of the physiological 

determinant that manages brain perfusion in normal conditions and explains that 

CBF regulation is generally impaired [4,17,18]. 

The main objective of a clinical study of TBI is to improve the management 

of severe TBI; the main factors influencing the treatment outcomes are CA [6,11]. 

Autoregulation is explained as a balancing act between vasoconstriction and 

vasodilation as the cerebrovascular bed’s resistance accepts slow variations in CPP. 

Where cerebral autoregulation impairment influences the outcomes the most, it is 

essential to continuously explore cerebral autoregulation over time (real-time) [13–

16]. Czosnyka et al. exposes the relationship between slow changes in mean ABP 

and ICP, leading to the relationship between CPP and the cerebral blood flow (CA) 

by developing PRx. PRx is most commonly obtained by the calculation of pressure 

reactivity index (PRx), as the Pearson correlation between ABP and the intracranial 

pressure (ICP) slow waves [15,16]. The rise in luminal ABP will lead to passive 

cerebrovascular dilation, increasing cerebral blood volume, and ICP. In that case, 

the correlation coefficient (PRx) between ABP and ICP will be positive. 

2.1 Regulation of Cerebral and Arterial Circulation  

The brain requires nutrients and oxygen to function adequately. Hence, a 

circulatory structure is essential to keep up the stable CBF for the brain’s various 

requirements. Oxygen and supplement distribution are based on the pumping to the 

heart–brain system to make sure the accurate regulation of its perfusion. The 

cerebral vessels have the excellent capability to adjust quickly and respond to the 

brain’s pressure in the cerebral vessels. Cardiovascular, intracranial pressure, and 

cerebrovascular components are all essential regulators of the cerebral circulation.  

2.1.1 Cardiovascular element/component study  

The brain vessels’ pressure is based on key factors outside of the brain: the heart 

provides the cardiac output, whereas the peripheral vessels provide the resistance. 

Both contribute to the ABP supply to the cerebral structure. The balance between the 

brain cerebrovascular resistance and the total resistance determines the proportion of 

the cardiac output supplied to the brain. Hence, any pathophysiological event that 

impacts the heart can change cerebral circulation. Hence, circumstances, for example, 
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cardiogenic shock and arrhythmia, damage CBF [19, 20]. We must consider that 

pathologies influencing ABP can impact CBF [21,22]. Vasopressors operate to buffer 

ABP by shrinking peripheral vessels, and inotropes and cardiopulmonary bypass 

mechanisms operate to modulate cardiac results (Fig.2.1). An essential consideration 

to these ABP enhancement-based methods is that the connection among ABP and 

CBF variations is usually nonlinear because functional alterations in the vascular tone 

occur at the cerebral arterioles because of CA [23–26]. Additionally, regulating ABP 

as a remedy will raise the blood flow to the brain and raise the blood flow to any 

vascular beds with small vascular resistance. 

 

Fig. 2.1. Regulation of the cerebral blood flow (circulation). The 

microvasculature is directly proportional to perfusion pressure and inversely 

proportional to vascular resistance. ICP places its effect on CBF through changes in 

perfusion pressures [4] 

2.1.2 Intracranial element  

The venous pressure is related to larger cerebral veins and the intracranial 

pressure. If the ICP pressure is higher in the lateral lacunae that feed into the large 

venous sinuses, then these compressed vessels go to a post-capillary venous pressure 

above ICP [27,28]. Thus, an increase in ICP leads to the decreased longitudinal 

pressure gradient across the vascular bed – the cerebral perfusion pressure, and, if 

there are no compensatory changes in CVR, CBF decreases [29]. A rise in the volume 

of the intravascular compartment, the CSF compartment, or the brain parenchymal 

compartment, can increase ICP and therefore have the potential to decrease CBF [30].  

2.1.3 Cerebrovascular element  

CBF can be handled by dynamic changes in the |regulating vessels’ diameter, 

thus influencing the cerebral vascular resistance (CVR). The main site of active 
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regulation of the cerebral circulation occurs at the arterioles [17,18]. Nevertheless, 

larger conduit arteries, capillaries, and venous shapes are valuable in certain 

conditions [31,32], such as neuronal awakening, relaxation of pericytes neighboring 

capillaries are considered responsible for a significant portion of the flow gain [32–

34].  

Such cerebral vascular resistance changes are predictable while brain activation, 

an increase in the neuronal activity elicits a significant increase in the blood flow [35] 

mediated via vessel dilation. While the vasospasm is linked to subarachnoid 

hemorrhage, large cerebral arteries compress, and repeatedly develop a higher local 

CVR and lower CBF [36].  

Alteration in the cerebral vessels’ vascular environment is created by 

constriction and dilating materials, such as vasoactive materials, possibly provided to 

the vessels by the bloodstream (e.g., pCO2) created locally. This heterogeneity in the 

identified sites of vasoactive material production can cause difficulty in physiological 

mechanisms [37].  

The autonomous nervous system could impact the vascular tone of cerebral 

vessels. Except for animal studies, a rich innervation of the dilating parasympathetic 

and constricting sympathetic fibers, CBF’s autonomous control in humans remains 

questionable [38, 39].  

Moreover, cerebrovascular resistance, mean arterial pressure, and intracranial 

pressure, the heart’s outcome, is an autonomous regulator of CBF [40,41,42]. Such an 

opinion was made from studies that have demonstrated CBF change after 

interventions that change the cardiac output but have no impact on the MAP [43,44].  

As per the traditional model (Fig.2.1), for a rise in cardiac outcome to produce 

a raised CBF without alteration in ABP, absolute peripheral resistance and 

cerebrovascular resistance must be reduced [42]. The ABP measured in the studies 

(vascular regulation researches) is not the ABP in the large cerebral arteries, but rather 

the pressure in a narrow peripheral vessel, or measured at the finger or arm non-

invasively. A rise in the cardiac outcome causes a rise in CBF, ICP and unchanged 

ABP.  

The simple schema provided in Fig.2.1 must be interpreted with the knowledge 

of the variables’ interdependence. The cerebral circulation has multiple brain-

protective mechanisms, such as if ABP falls, aortic and carotid baroreceptors will 

change automatically to increase HR, and, hence, buffer ABP and CBF [44]. In the 

same way, according to Lassen et al., on reacting to a fall in ABP, vessels will widen 

to buffer CBF [23]. These essential Cerebro protective techniques are termed cerebral 

autoregulation (CA); in the later sections, it will be explained in detail because of the 

CA’s critical role.  

2.2 Methods of Intracranial and Arterial Hemodynamic Monitoring 

Considering the multiple post physiologic conditions to TBI that could badly 

damage the cerebral circulation, correct and realistic intracranial hemodynamic 

monitoring technologies are essential. Sometimes, choosing a suitable monitoring 

technique is an efficient requirement that depends on the clinical sequence of events. 

Non-invasive monitoring techniques, such as transcranial Doppler (TCD) and near-
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infrared spectroscopy (NIRS) [45,46], both are portable and possible to assess in the 

medical ICU room or the operation theatre. Besides, they have also collected high 

frequency and repeated data over time, which could be linked with other techniques, 

such as ABP, to provide CA and CO2 reactivity information.  

Non-invasive cerebral perfusion methods including brain tissue oxygen 

oximetry, laser Doppler flowmeter, and thermal diffusion [47,48], applicable for 

severe patients because of its noninvasive character, these techniques benefit from a 

bit more prosperous durable monitoring of the cerebral circulation. On the other hand, 

brain imaging techniques (computer tomography (CT), positron emission tomography 

(PET), and magnetic resonance imaging (MRI)) are advantageous to offer an excellent 

spatial resolution of CBF data and the capability to evaluate certain CBF. However, 

they do not apply to bedside measurement because of its size, temporal resolution, 

and radiation exposure [49,50]. A list of CBF monitoring approaches is explained in 

Table 2.1.  

Table 2.1. Methods for assessing cerebral blood flow  

Techni

que 

Principle Bedside and 

Continuous 

Type of CBF 

assessment 

Robustness Invasive/ 

Non-

Invasive 

PET Radioactive 

tracers emit 

positrons 

dependent 

on 

perfusion 

No Global and 

local 

Excellent Minimal 

CT Attenuation 

of Iodine 

contrast 

(perfusion 

CT) 

No Global and 

local 

Excellent Minimal 

TCD Doppler Yes Global Fair Non-

Invasive 

NIRS Absorbance 

of 

O2Hb and 

HHb 

Yes Local Good Non-

Invasive 

MRI Perfusion 

dependent 

T2 signal 

changes 

with 

gadolinium 

No Global and 

local 

Excellent Minimal 

PBTO2 Clark 

electrode 

Yes Local Excellent 

 

 

Invasive 
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LDF Doppler Yes Local Excellent 

 

 

 

Invasive 

Thermal 

diffusio

n 

Thermal 

diffusion 

Yes Local Excellent Invasive 

 2.2.1 Intracranial Pressure (ICP) and Cerebral Perfusion Pressure (CPP) 

monitoring  

ICP monitoring turns into a standard of care in serious post-TBI; however, it is 

further used for some cases of subarachnoid hemorrhage (SAH) or broad ischemic 

strokes. Because the brain sits inside the stiff cranium, rises in the volume of all three 

crucial sections (tissue, blood, CSF) cause a rise in ICP. Thus, monitoring ICP can 

alert the clinician of a critical physiological condition, such as developing edema, 

extending injuries, or developing hydrocephalus. Any cause rises in ICP can reduce 

global perfusion by a reduction in CPP, as explained in Fig.2.1, or cause an impressive 

reduction in the local perfusion in the areas of herniation. In herniation syndromes, 

because of the pressure gradients inside the brain, fragments of the skull tissue are 

pressed with force opposite to the stiff frame, such as the foramen magnum, the 

tentorium cerebelli, or the falx cerebri, and the resultant local compression activates 

impressive reduction in CBF. 

The assessment of ICP needs access to the cranium, usually accomplished with 

a frontal burr hole. Even though the best location for assessing ICP is from the 

parenchyma, pressure can be transduced from various positions inside the skull, i.e., 

the subdural, epidural, or intraventricular locations [51]. Intraventricular transducing 

is specifically advantageous in some circumstances due to a fluid-filled 

intraventricular catheter that can admit ICP assessment and drainage of CSF as a 

measure to reduce a raised ICP. Intraventricular drains, yet, need a fluid-filled 

transducing line and thus carry extra chances of infection. As ICP influences cerebral 

venous pressure, it is regularly monitored together with ABP to give CPP. Same as 

monitoring ICP, monitoring CPP is suggested after severe TBI. CPP presents the 

clinicians with some warning of whether the brain will be hypo or hyper perfused and 

permit careful titration of the potential technique to adjust CBF clinically [52].  

2.3 Cerebrovascular Autoregulation (CA)  

CA is the homeostatic system by which the brain keeps up almost continuous 

CBF regardless of alteration in systemic BP and CPP [53, 54]. A temporary variation 

in CPP offers efficient adjustments in cerebrovascular resistance by complex 

neurogenic, myogenic, and metabolic mechanisms to protect constant CBF. Such a 

process is termed as DCA (dynamic cerebral autoregulation). DCA maintains enough 

supply of glucose and oxygen to the brain to meet its high metabolic needs. Impaired 
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autoregulation has been explained after TBI [55–58], ischemic stroke [59–61], and 

intracerebral hemorrhage (ICH) [62,63], and has been related to poor outcomes [62]. 

2.3.1 Static and dynamic autoregulation monitoring 

Static autoregulation monitoring indicates the relation between ABP and CBF 

alterations at a steady-state, which is the durable CBF response to a maintained 

variation in ABP. On the contrary, dynamic measurement of autoregulation indicated 

CBF changes in response to temporary alterations in ABP. Dynamic CA measurement 

needs constant ABP (e.g., fluid-filled pressure transducer, or from a non-invasive 

photoplethysmogram) and an alternate CBV or CBF, NIRS, brain oxygenation, ICP, 

see Table 2.1. DCA is frequently tested with persuaded transient alterations in ABP. 

Techniques to alter ABP for DCA measurement consist of contraction of supra-

systolic thigh cuffs [64,65], postural maneuvers [66], and the lower body negative 

pressure [67]. 

The static autoregulation was explained by Lassen et al. by the CA curve. For 

plotting equilibrium state assessment, two of ABP and CBF from 11 research articles, 

explaining an autoregulatory plateau and lower limit of autoregulation (LLA) are used 

[23]. The authors concluded that the LLA for the brain is at a mean ABP of 50 mm 

Hg. This principle had been carrying through in medical exercise just before the recent 

recognition that the LLA is variable throughout pathological settings [68,69]. 

Irrespective of the procedures employed to evaluate dynamic or static autoregulation, 

some appearance of a static Lassen’s curve has to be produced if the aim is to 

recognize an LLA and allocate ABP and CPP objectives. 

Besides specifying the lower boundary of autoregulation from demographic 

data, equilibrium state assessment of CBF and CPP can be evaluated with an 

individual, linear measure, the static rate of autoregulation. An individual change in 

CVR (CVR= CPP/CBF) is evaluated in reaction to an individual alteration in CPP 

[70]. Usually, ABP rises by the slow perfusion of a vasopressor to gradually raise the 

ABP by approximately 20 mm Hg. In different situations, ABP or CPP is extremely 

changeable; the CA curve can be estimated by plotting CBF at an average in ABP or 

CPP (Fig. 2.2).  

Dynamic autoregulation, an alternative approach to static autoregulation 

assessment, continuously monitors the CBF response to natural slow variations ABP 

[71]. This kind of approach has essential warnings, the inherent ABP changes cannot 

be hard enough to resist CBF, and alterations in CBF can happen by all elements 

except for ABP. Nevertheless, the benefits are that the monitoring has no hazard to 

the patients, and, because the monitors can be continuously used, someone may 

evaluate trends over time CA in a patient. The study of slow ABP trends and CBF for 

CA measurement can be split into the time domain (the correlation approach) or in 

the frequency domain (transfer function or wavelet transform analysis). The most 

widely used CA indexes are enlisted in Table 2.1. 

The frequency-domain approach considers that CA serves as a high pass filter. 

Into the model, rapid, higher frequency variations above 0.3 Hz in ABP (such as pulse 

wave) directly transmit to the cerebral circulation. Meanwhile, slow, low-frequency 

variations below <0.15 Hz in ABP are filtered out and incompletely transmitted to 
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CBF. The transfer function exploits the ABP and CBF waves’ FFT to measure three 

variables, phase, gain, and coherence in the chosen frequency range (0.02–0.07 Hz 

and 0.07–0.15 Hz) [72]. The phase is the angle of counterbalance between the CBF 

and the ABP wave and, in the core, presents the physiological timing by which CBF 

varies in response to a slow variation in ABP. An improved phase change reflects the 

initial counter regulative alterations in CBF and perfect autoregulation, while a phase 

change near 0 reflects simultaneous timing of variations in the wave, and, hence, 

impaired autoregulation. The attainment shows the volume of transfer of slow waves 

in ABP to slow waves in CBF. 

 

 

Fig. 2.2. Example of the invasive CBF and CPP monitoring, representing the Lassen’s 

curve reflecting CA. The curve also shows the lower and upper limits of CA [4] 

At last, coherence represents the statistical association between the two signals. 

High coherence between ABP and CBF describes a linear system and is an essential 

condition for reliable phase and gain calculation [71–73]. ABP and CBF, when time-

averaged (10s), minimize the influence of the cardiac pulse and respiration, and 30 

such samples are usually used for a single Pearson correlation coefficient [74,75]. A 

positive correlation among ABP and CBF reflects damaged autoregulation, while 0 or 
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a negative correlation represents intact autoregulation. These outcomes could be by 

using different elements of the ABP signal, such as the mean values represented by 

Mx, diastolic values Dx, and systolic values Sx. The benefit of correlation dependent 

ARIs in monitoring the moving trends in autoregulation can be observed in a TBI 

patient while observing the plateau waves in ICP (Fig. 2.3). The rise in ICP and a 

further reduction in CPP generates a reduction in the CBF pace and disturbance in the 

correlation index (Mx). After three waves of ICP and CA derangement, ICP and Mx 

get back to the baseline values. NIRS can also be used for estimating the CA in the 

time and frequency domain and is easily applicable in many situations (compared to 

TCD). NIRS based CA indexes estimates the relationship between CPP/ABP and 

cerebral oxygenation [76]. 

 

Fig. 2.3. Time-correlation CA during repeated ICP plateau waves in a TBI patient. The 

Mx index was calculated continuously along with other brain modalities (ICP, ABP, FV, 

CPP) [76] 

2.3.2 Cerebral autoregulation assessment  

 The concept of CA has proven to be useful in neurosurgical populations by 

cerebrovascular pressure reactivity. The CA pressure response evaluates the relation 

between ABP and ICP by taking variations in ICP to reflect variations in the cerebral 

blood volume (CBV). The essential physiology of CA pressure reactivity in 

vigorously autoregulating vessels is a reduction in cerebral ABP will induce 

intracranial vessels to enlarge [25], which raises CBV. A rise in CBV will induce 

whether an increase in ICP or no variations in ICP shall be observed. On the other 

hand, with impaired autoregulation, a decrease in ABP will cause a passive reduction 

in the vessel diameter and decrease CBV and ICP. 



26 
 

The relation among ABP, vessel, CBV, and ICP construct the base for the PRx. 

PRx is comparable to most of the time domain ARIs and is estimated as the continuous 

correlation among thirty sequential time-averaged (mean) ABP and ICP values [77]. 

A positive index (positive correlation) implies impaired cerebral autoregulation, while 

a negative (or zero) index implies intact autoregulation. 

We already know that PRx is a naturally noisy (polluted by artifacts and other 

sources) index. This pollution or noise can be reduced/removed by averaging the 

duration or timing. One more essential characteristic of the PRx is the constant 

measurements which reflect the patterns online or in real-time. In that case, a patient 

admitted with TBI is monitored with continuous ABP, ICP, CPP, and PRx for days.  

The PRx method establishes a causal relationship between ABP, cerebral blood 

volume, and ICP; however, the PRx approach does not estimate CBF or the cerebral 

blood volume, nor does it assess time-delays. Keeping in mind these factors, PRx 

provides a continuous, computationally parsimonious, physiologically based 

assessment of autoregulation that has prognostic relevance [77]. Thus, PRx is possibly 

the optimal way to constantly monitor CA reactivity for the long term in anesthetized 

or coma patients with ICP monitoring [78]. Significantly, as a concept validation, 

Brady et al. explained in a pig imitation that PRx varied from -ve to +ve values when 

the LLA attains hemorrhage [79].  

In medical practice, PRx greater than 0 does not always indicate a CPP under 

the LLA, even with the averaging of time, though, frequently, a U-shaped curve of 

PRx can be viewed [15,80,81], with the CPP at the minimal value of PRx comparable 

to the section of the greater stability of the blood flow. Whenever CPP versus PRx is 

plotted, a U-shaped curve can be seen with the higher -ve values of PRx corresponding 

to the center of the autoregulatory region as reflected by the CPP-CBF relation. 

Therefore, experimental data, clinical examination of large groups [79–81], and 

specific clinical monitoring shows that PRx is a useful indicator of autoregulation.  

2.3.3 Arterial Blood pressure for CA assessment (Invasive and non-Invasive) 

As we already know, unregulated cerebral blood flow may require active blood 

pressure management in the Neurointensive care unit (NICU) setting in monitoring 

autoregulation to shape clinical settings although the gold standard does not exist for 

estimating or monitoring autoregulation. Among different approaches, TCD, 

combined with Finapres, has become apparent as a non-invasive method of evaluating 

DCA. This method has a wonderful temporal resolution by estimating the blood flow 

velocity response to the BP variation [82,83].  

The usual approach to estimate DCA is the correlation of the time period 

approach and the transfer function study. The correlation approach evaluates CBFV 

and systemic BP for an interval of time and obtains the correlation coefficient among 

time-averaged (mean) CBFV and MAP velocity index [4]. Optionally, DCA can be 

estimated from automatic fluctuations in BP and middle cerebral artery FV at specific 

frequencies by a transfer function study [84,85].  

Both approaches have been cross-verified non-invasively by employing 

Finapres [86]. Finapres is used in the NICU, though, because of peripheral 

vasoconstriction [87]. In such cases, BP is usually estimated invasively via the intra-
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arterial catheter. However, non-invasive measurement of ABP with the Finapres 

verified with intravascular ABP for sleep monitoring [87], it is not much known 

whether they are equivalent in assessing DCA. Therefore, Petersen et al. [88] tested 

the hypothesis that Finapres can achieve comparable results to assessment with 

invasive blood pressure monitoring while using an arterial catheter. 

There is considerable methodological diversity among studies measuring DCA, 

such as TCD, combined with Finapres, which has been the method of choice for 

DCA’s non-invasive assessment. Hence, this is essential that arterial methods should 

be available to estimate CA [57]. Comparison of the fidelity and correctness (accuracy 

and precision) of Finapres to invasive arterial estimation has been explained in 

measuring BP [89]; Nevertheless, less confidence has been expressed if various 

approaches are utilized interchangeably to measure CA. Lavinio compared the ARI 

estimated as the correlation coefficient among variations of CPP and CBFV with an 

entirely non-invasive technique using Finapres as an alternative of CPP. For the 

estimation of CPP, they evaluated intravascular radial artery BP and ICP [89]. This is 

the case where two assumptions apply: the negligibility of ICP fluctuation on DCA 

estimation, and secondly, the accuracy of Finapres BP slow-wave evaluation. It is 

unclear either this was because of the dissimilarity in the BP measurement or the result 

of the ICP fluctuation. In the above investigation, excellent correlation (and 

agreement) between both approaches as BP sources was observed. Mean ABP 

evaluation does not differ by Finapres and arterial catheters.  

A good correlation was observed between the DCA estimates obtained with 

Finapres and arterial catheters [90,91]. However, a significant difference in the 

absolute values for the mean phase shift and Mx was observed. It was stated that it 

might be likely that a small amount of noise rises in the Finapres signal driven to the 

low correlation coefficient. It is challenging to clarify the dissimilarity in a phase shift 

which was reduced with an arterial catheter compared with Finapres.  

Their study agreed with the study examining the impact of invasive ABP 

measurement on the variables of DCA. Sammons et al. examined the phase change 

by Finapres and an intra-aortic catheter in patients experiencing coronary 

catheterization. He found a comparable bias, and all the evaluation was taken from 

the radial artery so that to make less probable that the expansion of the pulse pressure 

waveform from the aorta to the peripheral circulation is an essential element. It could 

be possible that the distant position of the Finapres could have caused the variation 

in a phase shift/change [91]. Sammons et al. further hypothesized that a medication 

effect might have played a role, as 76% of their patients took beta-adrenergic 

antagonists.  

Hence, it could be stated that Finapres cannot reproduce the dynamic changes 

in the low-frequency range and invasive monitoring. Omboni and colleagues [90] 

found that Finapres systolic BP fluctuates within a very low-frequency range, thus 

increasing the phase shift. However, absolute variations in estimating autoregulation 

are probably not a major concern in patients monitored with one approach or the other. 

The different mode among the techniques becomes essential if different 

approaches regarding carrying out patients’ linear measurements at different timings. 

This can introduce a strong bias, and the figures should perhaps be adjusted when an 
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arterial line approach is substituted with the Finapres or the opposite. Such as, if an 

arterial catheter obtains measurements in traumatic patients only with Finapres, it 

may seem as though DCA has improved when it is, in fact, only due to the inter-

method bias. Additionally, they found that the greater cohesion among CBF velocities 

and ABP was adapted from the arterial catheter in contrast to Finapres. Consequently, 

the least measurements had be to rule out from the evaluation to fulfill the inclusion’s 

cohesion limit [90, 91].  

2.3.4 Comparison of the wavelet and correlation method for CA assessment  

Cerebrovascular autoregulation was mediated by vasoreactivity with the 

changes in cerebrovascular resistance. Autoregulation could be a dysfunctional post-

cardiac arrest, a traumatic brain injury, and raised intracranial pressure (ICP) [92–97] 

with changes in the ABP autoregulation limits.  

The mean optimal arterial blood pressure (ABPopt) is determined where 

autoregulatory reactivity is the most intact after a pediatric hypoxic brain injury 

[95,98,99]. Aiming the CPPopt might enhance the neurological outcomes after an 

adult traumatic brain injury [96,101]. However, the ABPopt should be used after a 

pediatric cardiac arrest because invasive ICP monitoring will not be estimated 

regularly. A constant blood pressure close to ABPopt depends upon a less neurologic 

injury in kids who are at risk of a hypoxic brain injury, including a cardiac arrest 

[95,100] and those with hypoxic-ischemic encephalopathy [98–100]. 

Near-infrared spectroscopy (NIRS) helps in continuous autoregulation 

monitoring in the frontal cortex via a widely used method that uses low pass filters 

and correlation coefficients between the perfusion pressure and the surrogate of ICP 

or the cerebral blood volume (IBV) [96,105]. The correlation method is commonly 

used in TBI and the cardiopulmonary bypass [106] research even though they found 

that the correlation between a NIRS-based cerebral blood volume measure and ABP 

was associated with the outcome after pediatric cardiac arrest. 

Liu X. et al. [7] sought a new metric for autoregulation and vasoreactivity 

monitoring in pediatric hypoxic brain injury. They validated a wavelet-based method 

between ABP and ICP [7] that was excellent in identifying the ABP lower limit of 

autoregulation (LLA) in pigs with IH than the widely used, ICP-based, correlation 

matrix known as the pressure reactivity index (PRx) [77]. Moreover, the wavelet 

technique served better for identifying CPPopt and better-predicted outcomes in adult 

TBI [101]. The enhanced ability to identify CPPopt by the wavelet method may be 

related to the lower index time-variability with less signal noise. They compared the 

wavelet and the correlation matrix in pigs. Many autoregulation assessment indexes 

were estimated by the correlation and wavelet methods, such as the PRx and wavelet 

PRx (wPRx), COx, and wavelet Cox (wCOx). They also stated that the wavelet 

approach would minimize the autoregulation index variability compared to the 

correlation methods and that wavelet indexes can differentiate functional from 

dysfunctional autoregulation in the developing brain after cardiac arrest.  

Doppler flowmetry enables a standard measure of the autoregulatory function 

to identify the individual LLA in each piglet. Wavelet and correlation indexes are 

differentiated by functional or dysfunctional autoregulation. The wavelet method 
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minimizes the index variability with a slight decrease in the standard deviation for 

wHVx, wCOx, wPRx relative to their correlation indexes. The pooled wavelet index 

had better U-shapes with ABPopt than the correlation index curves. Hence, wavelet 

NIRS indexes may be used to monitor autoregulation with a lower signal variation 

than the commonly used correlation indexes [93–95]. The more impaired 

autoregulatory function is associated with a more significant risk of death and severe 

disability. However, the ability to distinguish fine neurologic deficits remains limited 

with these methods. Liu X. et al. [106] provided preclinical validation of wavelet-

based NIRS autoregulation monitoring against a laser Doppler flow measure of the 

cerebral blood flow in the brain. Efficient monitoring methods should be denoted by 

greater signal-to-noise ratios. Many widely employed NIRS autoregulation 

approaches, comprising the correlation indexes such as HVx and COx, produced 

greater signal variation that might not depict physiologic procedures. This has a small 

transformation of the correlation indexes into medical practice. 

 Liu X. et al. [106] also demonstrated that wavelet indexes had lesser variation 

than their equivalent correlation indexes. The wavelet approach reduces the signal to 

noise (SNR) through a coherence boundary to eliminate lower cohesive signals. This 

increases the possibility of analyzing the physiologic appropriate phase change among 

ABP and CBV instead of the signal noise.  

They produced separate time intervals with many hours of intact or impaired 

autoregulation, side-by-side continuous normocapnia, continuous oxygen delivery, 

the small difference in the hemoglobin level, and a anesthetized regimen. These test 

settings improve the autoregulation measurement. On the contrary, TBI patients are 

denoted by more significant clinical and physiological variation, which increases the 

signal noise (SNR) in the correlation indexes. The least variations in the waveform in 

the wavelet approach could enhance the clinical performance [101].  

The wavelet indexes create clearer U-shaped curves with ABPopt at the vertex. 

This variation was particularly evident when ABP rose over the optimal (ABPopt) 

value (Fig. 2.4). ABPopt could be recognized by various approaches, such as the 

methods that need neuromonitoring software or a visual check of the curves because 

researchers and physicians are often unable to access the multiwindow technique. 

They [106] calculated the wavelet and correlation indexes in the same piglets 

during identical physiologic changes from induced hypotension. Clinical neonatal 

wavelet NIRS methods studied hypoxic-ischemic encephalopathy [107,108] and 

prematurity [109]. wPRx and PRx, along with wCOx and Cox, had a similar capacity 

to recognize dysfunctional autoregulation.  
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Fig. 2.4. Example of ABPopt at the index. (A) The correlation indexes turn positive as 

the blood pressure decreases below ABPopt. (B) The wavelet indexes depict a U-shape with 

higher values as ABP deviates lower/ higher than ABPopt [106] 

In the study by Liu X. et al. [106], the pigs developed whole-body hypothermia. 

Although the clinical study of therapeutic hypothermia post-cardiac arrest shows 

uncertain advantages from hypothermia, the delay in inducing hypothermia could 

minimize the study’s therapeutic potential. There was not a sufficient size of the 

sample to stratify the population of pigs according to the temperature treatment. 

However, this specific study aimed to determine the agreement between the wavelet 

and correlation indexes in paired analyses. Moreover, it was suggested that wavelet 

NIRS could be tested during hypothermic cardiopulmonary bypass or adult cardiac 

arrest. The limitation of the study was the test in a unisex (male) population. It is 

required to test the accuracy of wavelet NIRS methodology in both males and females, 

and post-recovery from cardiac arrest as secondary brain injury evolves with and 

without vasopressor treatment [104,105]. 

2.3.5 Assessment of CA Indexes (Autoregulation Indexes)  

Cerebral autoregulation refers to cerebral resistant arterioles responding to the 

rise or reduction of CPP or ABP. It is an essential equilibrium-based technique that 

saves the brain from damage because of insufficient or excessive CBF [72,83,110–

113]. In the last two decades, many methodologies have been introduced and used in 

CA assessment, i.e., the autoregulation index (ARI), the transfer function analysis 

(TF), and the mean flow index (Mx), [70,101, 114–120]. With the improved CA 

assessment [79,99], there is still a reported confusion whichever method should be 

considered as the ‘gold standard’ [114,121,122]. Although some comparisons 

between various CA parameters have been published [123–129] based on ABP and 

cerebral CBFV measurements, CA’s reliability remains a significant issue [114].  

Liu X. et al. [130] aimed to assess the relationship among three widely used CA 

indexes in a controlled environment and assess the influence of noise on CA 

assessment [131], where they estimated Mx and TF parameters compared with ARI 

values based on controlled situations, undisturbed by unknown factors. Panerai et al. 

incorporated variable noise artifact pollution on the artificial data in order to evaluate 
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artifact influence on these relations. According to the white paper [133], the study 

concentrated on two frequency spectra: 0.02~0.07Hz, and 0.07~0.2Hz.  

Liu X. et al. [130] also explored the relationship between three widely used CA 

metrics: 1. transfer function analysis, 2. a second-order linear model, and 3. time-

based correlation (Mx). Their study also showed that the intensity of the noise had a 

more significant impact on all the CA parameters. They simulated the autoregulation 

index for reference for comparison with the other means. The relation between Mx 

and the autoregulation index agreed with the metric convergence and common 

interchangeability of the indexes from a scientific grade. Nevertheless, in practice, as 

shown by noise simulations, this range is shorter and shifted down towards the lower 

values of Mx (Fig.2.5A). 

 

Fig. 2.5. Example of the relationship between ARI and the estimated transfer function 

parameters (A, B) and Mx with transfer function under the no-noise condition (C, D) [129] 

A linear system is ideal while using TF for CA assessment. This cohort of 

simulated data met the criteria, and the continuous relationships between the TF phase 

with ARI or Mx agreed with the theoretical interchangeability of metrics. If we look 

at the grading outcome from the study of different autoregulation levels, an almost 

‘S’-shaped relationship between the phase and the indexes shows a noise-free 

situation, thus a phase from 0 to 70 degrees can go for grading CA (Fig.2.5). 

The ABP and CBFV normalized into Z scores before TF analysis. As per the 

white paper [133], they removed mean values before TF analysis, thus minimizing 

spectral leakage. However, normalizing ABP/CBFV rather than in absolute units has 

been raised. The normalization is expected to reduce the intrasubject variations of the 

CBFV amplitude and impact the gain estimates, thus influencing the shape of the 

relationship between Gain and ARI [133]. This could be one of the reasons why the 
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LF gain comes out so poorly in the analysis. Therefore, an in-depth analysis to 

investigate the effect of normalization is needed.  

This study shows that various approaches can lead to a weak correlation among 

autoregulation parameters, even in well-controlled simulated data – this explains why 

clinical measurements are weakly correlated. By generating artificial CBFV data, the 

real estimation will remove all external noise from the CA estimates.  

 
Fig 2.6. Example of relationships between Mx, TF parameters, and ARI with noise 

artifact [130] 

The relationship between ARI and Mx by artificial data is noisy qualitatively, 

which indicates that a simple method could offer an acceptable approximation to the 

existing noise observed in real data. The intensity of noise influences all CA 

parameters, mainly regarding the relationship between coherence and ARI. The linear 

model is used in the absence of noise, but, with various noise intensities, the 

coherence-ARI relationship's character varies (see Fig.2.6). Mean value normalization 

would reduce the variability of the CBFV amplitude and impact the gain estimates. 

Hence, the shape of the relationship between Gain and ARI was affected. That could 

have been a significant cause of the low gain of LF (correlation with ARI). Moreover, 

in this research, they unwrapped the phase to degrees, and the negative values were 

removed, whereas studies using real data showed a varying outcome on the 

relationships between CA parameters. This varying outcome can be observed because 

of various reasons, e.g., different analytic constructions; hence, they may not reflect 

the same aspect of the physiological response. Unrelated, unknown noise in the real 
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data impacts the outcome and the low reproducibility of CA parameters that might 

differ in different subjects [130].  

 

Fig. 2.7. Example of Mx-ARI relationship comparison between real data and modeled data 

[130] 

In this study, various methods were explained, which could lead to the weak 

correlation between autoregulation parameters, such as well-controlled simulated data 

with a simple linear model, which also provides an additional explanation as for why 

clinical measures are weakly correlated. To mimic a similar scenario and investigate 

the impact of the noise on the CA assessment, they use three simulated noise levels of 

5 dB, −0.5 dB, −5 dB. According to Katsogridakis et al., the distribution of the signal 

to noise ratio of the actual CBFV measurement was in the range of 4–6 dB in a study 

of 60 volunteers. Hence, they select the simulated noise of 5dB to mimic the real 

scenario of clinical CA assessment. The relationship between ARI and Mx by 

simulated data with the real data qualitatively similarly derived from Liu X. et al.’s 

study using the real data of 288 TBI patients (Fig. 2.7) [130]. The study outcome 

reflects the intensity of noise has a significant impact on all CA parameters, especially 

on (TF) coherence and ARI. Moreover, with various noise intensities, the coherence-

ARI relationship varies. Coherence is essential for detecting strongly non-linear 

relationships as expected when autoregulation is strong. The different TF variables, 

such as the phase and attain or gain, along with Mx and its connection with ARI, were 

impacted by the disturbance at different levels. However, the form of the association 

curve among the variables and ARI stays mostly static. The grading was majorly 

impacted in terms of rising noise artifacts, Mx decreases because of unrelated 

components inserted by noise. As we know, a low Mx is considered as good 

autoregulation; with a higher noise, Mx would overestimate autoregulation. 
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Therefore, in different ‘noise’ conditions, the same TF parameter value or Mx value 

will correspond to different CA stages. This could describe the weak repeatability of 

CA variables among various patient groups. Re-calibration of the CA indexes as per 

the background noise for a specific patient may be needed for stable CA scaling. It 

might certainly be not exactly a feasible solution, as the extent of the background 

noise will be unidentified, probably changeable, and usually unmeasurable [130].  

This study’s limitation was that the connection among the CA variables is 

mostly kept for simulated data, and it is derived from the numerical perspective. The 

outcome might not show the real connection of the actual recordings, as confirmed by 

Panerai and colleagues. The impact of noise on these CA parameters could be helpful, 

but the relationship between the parameters using artificial data with no noise could 

be beyond real. Moreover, the data used for modeling was taken from TBI patients; 

other patients’ cohorts need to be tested. Furthermore, the SNR was measured 

throughout the entire frequency, then again, the noise was filtered out, thus 

eliminating lots of its power, and the relevant (applicable) SNR for the signal of 

interest is much larger [130]. 

CBF measurement methods and the adaptability of signal processing approaches 

offer various autoregulation indexes. Table 2.2 emphasizes the reasoning of these 

indexes and provides an impression as to their relevance.  

Table 2.2. Synopsis of autoregulation indexes [4]  

Autoreg

ulation 

measur

e 

Signals 

required 

Computation Explanation Remarks 

Autoreg

ulation 

index 

(ARI) 

ABP and Fv By comparing the 

CBF to alter in the 

ABP 

When ARI is 0, it 

means absent 

autoregulation, ARI 

9 means perfect 

autoregulation 

Moderately 

complex 

signal 

processing 

required 

Flow 

index 

(Mx, 

Sx, Dx) 

ABP (CPP), 

Fv 

Pearson correlation 

between CPP and 

mean Fv 

When the 

autoregulation is 

impaired, the Mx, 

Dx, and Sx are 

higher  

Simplistic yet 

prognostically 

relevant 

The 

transfer 

function  

ABP, Fv From the transfer 

function of FFT of 

ABP and Fv signals 

When the 

autoregulation is 

impaired, it 

represents the 

lower phase, 

greater attain, and 

greater cohesion 

Reasonably 

complicated 

signal 

processing. 

prognostically 

relevant 
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TOx, 

COx, 

THx, 

HVx 

ABP (CPP), 

NIRS 

oxygenation 

Pearson correlation 

among consecutive 

short means of ABP 

and tissue oxygenation 

When the 

autoregulation is 

impaired, the 

indexes are higher 

Related to the 

TCD 

approach, 

however, 

permits for 

longer 

monitoring 

TOIHR

x 

HR, NIRS 

oxygenation 

Pearson correlation 

among consecutive 

short means of HR and 

NIRS oxygenation 

When TOIHRx is 

higher, the 

autoregulation is 

impaired 

comparisons 

with standard 

autoregulation 

indexes 

required 

Transfer 

function  

NIRS, ABP 

oxygenation 

The transfer function 

of FFT of ABP and 

oxygenation signals. 

Phase shift is essential 

to align oxygenation 

and ABP signals 

When the 

autoregulation is 

impaired, it 

represents the low 

phase, high gain, 

and high coherence 

Moderately 

complex 

signal 

processing 

PRx Mean ICP 

ABP 

Pearson correlation 

among consecutive 

short means of ABP 

and ICP 

Higher PRx 

represents impaired 

autoregulation 

Robust 

measure for 

long 

monitoring 

periods 

PAx The 

amplitude of 

ICP and 

ABP 

Pearson correlation 

among consecutive 

short means of ABP 

and ICP 

Higher PAx 

represents impaired 

autoregulation 

 

Same as PRx 

 

ORx PBTO2, 

ABP 

Pearson correlation 

among consecutive 

short means of ABP 

and PBTO2 

High ORx 

represents impaired 

autoregulation 

Validation 

required 

VRx ABP, IBV Pearson correlation 

among consecutive 

short means of ABP 

and IBV 

Higher VRx 

represents impaired 

autoregulation 

Similar to 

PRx, 

IBV was used 

as a surrogate 

instead of an 

ICP. 

2.4 Slow-wave Signal Artifact in Cerebral Autoregulation Monitoring  

Artifacts are termed as unwanted variations in the signal due to external sources 

to the parameter of interest [134]. 

Beate [135] and Qiao et al. [136] classified some most common types of ABP 

signal artifacts based on the phenomena of the origin of the artifact. They are 

described as a) Maximum ABP saturation (5 to 20 seconds); they are originated 

because of the flushing of the arterial line, blood clot, or thrombosis of the arterial 

line.   
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b) Minimum ABP saturation; Transient constriction in the ABP, for example, 

pinching from an arm movement causes such artifacts.  

c) Pulse pressure artifact; Such artifacts are the same as systolic and diastolic 

ABP saturation artifacts slowly reducing the pulse pressure. The origin of such an 

artifact can be because of damping in the arterial line.  

d) Square wave artifact; The origin of such artifacts comes as square waves with 

fluctuating cycles.  

e) High-frequency artifacts; They are originated by the movement or disturbance 

of the transducer (such as covering the patient with a cloth over the arterial line). 

f) Impulse-like artifacts; They are motion or sharp mechanical artifacts, such as 

crimping of the tubing. 

On the other hand, Kevin et al. [134] highlighted three different artifacts that 

impact all physiological recordings: a) Environmental artifacts; They originate from 

the mains power leads that surround the body, which can be seen in the form of 50/60 

Hz. 

b) Experimental errors; They are unwanted variations in the experimental setup.  

c) Physiological artifacts; They are variations in the desired signal due to other 

physiological processes in the body.  

2.4.1 Problem background  

Care of severe patients in the ICU, who may experience life-threatening 

deterioration sometimes over minutes or even seconds, is highly dependent on the 

quality of the data [137]. Continuous monitoring of signals, like invasive arterial 

blood pressure (ABP), and different other cranial or intracranial pressure, are an 

extreme example providing a wealth of complex, heterogeneous yet highly structured 

data at optimal sampling frequencies. Signal artifacts often impact reliability in 

estimating their derived parameters, analysis, and causing uncertainty in individual 

patient decision making. The prominent reason could be handling the missing data, 

often considering simple techniques that are biased, and the underestimation of 

variability, for example, linear interpolation of the observed data. 

In the ICU, various key factors could create/cause the noise and artifacts in the 

monitoring signals, e.g., catheter flush, patient movement, pressure transducer 

blockage, power-line interference, signal amplification, quantization, and device 

saturation, which results in clipping the signal. Hence, inadequate handling of noise 

and artifacts causes an extremely large number of false alarms in the ICU, leading to 

the disruption and decreased quality of care [134,138–141], desensitization of the 

clinical staff to warnings, and slowing down of the response times [142]. The presence 

of noise and artifacts can also challenge different algorithms’ performance designed 

for the detailed analysis of the morphology of pulsatile physiological signals [143]. 

As a result, noise handling has to be an intrinsic component of such algorithms to 

ensure their high performance. An indicator, because of artifacts in the monitoring 

wave, reduces the healthcare settings’ efficacy, prominently in intensive and critical 

care units. Hence, it is essential to develop a technique for identifying these false 

alarms (artifacts) versus actual alarms (the real changes in a patient’s physiologic 

state) [143,144]. 
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ABP monitoring is usually exposed to noise pollutants and moving artifacts. 

However, ABP monitored via non-invasive sensors can be impacted by repeated 

signal adjustment phrases that disturb the physiologic signal. This temporary loss of 

waveform or corruption is a significant issue in clinical settings. Though, various 

methods to advance ABP signal evaluation, such as cardiac output [139] or ICP 

measurement, are based on a greater quality ABP signal to be inserted into the 

evaluation algorithm. If the acquired ABP signal’s quality is insufficient, the quality 

of the resulting estimates cannot be reliable [139]. 

For patients in Neuro Intensive Care Units (NICUs), mainly for TBI patients, 

continuous ICP monitoring is exceptionally vital to save the brain from secondary 

damages caused by IH. ICP monitoring these days depends entirely on visual 

inspections by neuro-clinicians and nurses, and ICP controlling interventions are 

treated on severe patients only after longer observed ICP elevations in NICUs. The 

current methods are prone to errors, reactive, and inefficient. Automatic alarms in the 

clinical setting of IH and effective prediction models to pre-alarm the impending 

episodes of IH are highly required [145,146].  

The continuous ICP slow wave recordings overtimes, in NICU settings, are 

mostly polluted by noise and artifacts. The artifacts could be due to several reasons, 

for example, due to the motion of patients, a faulty contact, an error in the measuring 

method, and the operator’s fault. For example, motion artifacts and polluted signals 

lead to a higher wrong alarm ratio in automated IH alarm systems. Artifacts and noise 

pollute the data’s essential properties, which drives the precise prediction of upcoming 

IH impossible [145,146]. ICP levels are invasively measured with a fiber-optic 

intraparenchymal gauge (Codman and Shurtleff, Taynham, MA, USA) by placing it 

under the skull. A significant amount of artifacts often pollutes the collected ICP 

waves. According to one of the studies, an average of 5% of data points in the 

collected ICP signals are polluted by artifacts, and, in the worst case, more than 20% 

of signals can be contaminated. Fig.2.8 shows examples of ABP and ICP monitoring 

signals with artifact peaks.  

Artifacts can be recognized as high and sharp ‘spikes’. These spikes are called 

artifacts because they show quick and dramatic variations in their ICP levels’ 

oscillations which are not impossible clinically as stated by the neuroscientist or 

neurologists. Moreover, as highlighted in Fig. 2.8, an artifact consists of a cluster of 

data points, not merely one or two data points. A cluster of artifacts is called an 

‘artifact episode’. An artifact episode can be demonstrated by its location and 

morphology, i.e., width [145,146], See Fig. 2.9.  
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Fig. 2.8. An example of an artifact in ABP and ICP monitoring signal 

Artifact identification has been a complicated and costly task requiring time, 

human annotation, or thresholding depending on wave-specific feature engineering 

[138], particularly as artifacts arise from a variety of internal and external noise 

sources, sensor noise, patient movement, and clinical interventions. There are three 

major sources of artifacts that influence physiological recordings: environmental 

artifacts, experimental errors, and systemic physiological artifacts [134]. 

2.4.2 ABP and ICP data Artifacts  

The ABP/ICP slow-wave measurement is often subject to noise and artifacts. 

Moreover, ABP measured through noninvasive sensors can be affected by recurrent 

signal calibration phrases that interrupt the physiologic waveform.  

Physiological monitoring is essential in the acute stage of severe TBI. At this 

stage, the patient’s neurological status rapidly deteriorates because of increased ICP, 

followed by a decrease in CPP [91]. ICP monitoring also allows indirect, continuous 

monitoring of cerebral autoregulation (pressure reactivity index, PRx) when 

correlated with arterial blood pressure (ABP) monitoring. [147]. However, 

continuously measured physiological signals are often contaminated by signal 

artifacts which significantly reduce the derived parameters’ reliability and may even 

lead to erroneous clinical decisions [148,149]. 

Care of severe patients in the ICU, who may experience life-threatening 

deterioration sometimes over minutes or even seconds, is highly dependent on the 

quality of the data [138]. Continuous monitoring of signals, like invasive arterial 
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blood pressure (ABP), and different other cranial or intracranial pressure, are extreme 

examples providing a wealth of complex, heterogeneous yet highly structured data at 

optimal sampling frequencies. Signal artifacts often impact the reliability in 

estimating their derived parameters, analysis, and causing uncertainty in individual 

patient decision making. One of the prominent reasons could be handling the missing 

data, often considering simple techniques that are biased and underestimating 

variability, for example, the linear interpolation of the observed data.  

Yet, various techniques to advance the ABP signal study, for example, cardiac 

output [138,139] or ICP evaluation, depend on a superior quality ABP signal to be 

inserted into the evaluation algorithm. If the grade (quality) of the obtained ABP 

waveform is inadequate, the outcome’s quality could not be reliable. Similarly, if the 

obtained ABP waveform is damaged from frequent, small irregular signal loss, a 

substantial quantity of the obtained waveform may be required to be rejected. The 

evaluation of the waveform quality and the possible imputation of the realistic 

waveform signals over short periods of data loss becomes an essential preprocessing 

step [139]. 

2.4.3 State of the art  

As we have observed in the above sections, Intracranial pressure (ICP) 

monitoring has an important place in managing neurological and neurosurgical 

disorders in patients, including the traumatic brain-injured patients.  

Lundberg explained the wave patterns as A, B, and C in the 1960s [150]. B 

waves were characterized as the small repetition of peaks of ICP in the range of 10–

20 mmHg of the frequency between 0.5–2 waves per minute. These B waves have 

been observed in ICP measurement in the ICU for TBI patients. However, ICP is also 

measured in various brain diseases covering a broad spectrum from acute and subacute 

critical care settings to elective follow-up on the critically ill patients.  

2.4.4 Problem with the terminology 

In recent times, a vast number of patient populations go for ICP monitoring for 

any severe sickness where medical signal patterns are unclear. In such cases, signal 

patterns are termed B waves; however, differences in the magnitude and visual aspects 

are determined according to Lundberg. These kinds of B waves (slow-wave) have a 

lower magnitude or amplitude and have abnormal patterns, but they were still not 

classified. The Source of B waves is unknown, and they are often related to cerebral 

dysfunction. Their clinical significance is complicated, as they may also appear as 

normal physiological phenomena [151,152]. Their source is related to vasogenic 

activity [153]. This imposes a challenge to their description and quantification, 

hindering their identification in diagnosis and treatment. Because of these difficulties, 

the clinical practice focuses on ICP-related research and is currently primarily 

restricted to readings of the mean ICP. The identification of signal abnormality by 

visual appearance is a common clinical approach – this is based on personal empiric 

experience, which pushes the researcher to think about interobserver reproducibility. 

Automatic detection of B waves became a necessity and is evidently highly useful in 

both clinical and research settings. This automatic finding is possible if the signal 
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shape and size are clearly defined, preferably by consensus in the scientific 

community. A quantitative detection system may permit identifying B wave variations 

and other ‘non-Lundberg’ patterns, which may replace regular visual inspection.  

B waves are recognized by two main factors: frequency and amplitude. The 

frequency of waves that fit a fixed time period is usually estimated as waves per 

minute and a frequency range of 0.5–2 waves/min, as Lundberg originally defined 

[150]. B waves of a lower frequency were termed ‘slow waves’ [154, 155]. The ‘slow 

waves’ were used to define waves in a frequency range of 0.33 to 3 waves/min [156]. 

Their amplitude can also define B waves. Lundberg stated a maximum amplitude of 

50 mmHg in 1960. In pathology, this level of elevation is less often seen to this extent 

these days, and B waves with low amplitudes are more commonly observed. Lower 

amplitude B waves are present in the normal pressure in hydrocephalus, where B 

waves are not related to high ICP [156]. Martinez-Tejada et al. [155] classified the 

overall terms used for B waves based on the frequency of terminology in their review 

study, where the term B waves was found to be used in most articles, followed by slow 

waves and ICP slow waves, see Fig. 2.9. 

 

Fig. 2.9. Classification of the overall terms used for B waves based on the frequency of 

terminology [154] 

Moreover, apart from frequency and amplitude, two other parameters are 

generally defined to understand B waves. Their shape can also define B waves and 

whether a plateau phase is present or not. The shape seems symmetrical if the time 

taken for the incline and decline phases is the same. If the incline phase is longer, the 

shape is considered asymmetrical. These parameters are divided into subclasses 

within B waves. All subclasses recognize B waves with an extended frequency 

spectrum but mainly differ in their morphology, see Fig. 2.10.  
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The ICP wave is used to define B waves. They classify three morphology-based 

subclasses: (a) short symmetrical waves with an amplitude below 10 mmHg, (b) 

symmetrical waves with an amplitude above 10 mmHg, and (c) intermediate waves, 

which have the same frequency as symmetrical waves, but the amplitude is the same 

as in plateau waves [157–159]. A recent study [154] shows that B waves are 

categorized into different subclasses according to shapes and amplitudes. These 

classifications may be used as supplementary evidence that the traditional waveform 

categories do not address waveforms identified in the clinical practice today. The B 

waves’ amplitude and the frequency and pulse wave parameters help to categorize 

them. They are based on the three subpeaks: P1, P2, P3 systolic peak, tidal peak, and 

dicrotic peak [160].  

Martinez-Tejada et al. [154] explain the disagreement with the nomenclature 

and definitions chosen to describe B waves. Various titles were utilized to define a 

similar fact and to demonstrate the features and structural differences of the wave or 

the cause of their appearance. This enhances the chance of confusion around the 

mathematical modeling of B waves and makes the model more complicated. The 

nature of complex terminologies made the selection or development of an analysis 

tool that can be used to define them. B wave identification may be a path that enables 

enhanced understanding of ICP variations from the normal to the severe condition 

state. However, the concentration of the existing estimation resources on determining 

B waves imposes a restraint of losing the data linked to other essential waveform 

variations. Hence, the occurrence of ICP that may include essential data on the 

physiological method influencing the brain is possibly ignored. However, the 

terminology selected for this thesis uses the slow wave term as we are using a 

frequency range of 0.33 to 3 waves/min of slow-wave extraction from ABP and ICP 

waves. 

Two main applications from the data given by the slow pressure waves are 

assessing intracranial volume-pressure relationships, which has been proposed since 

1989 [161], and the quantification of vasoreactivity, the CA. The understanding of 

autoregulation may be essential mostly in the management of ICH after TBI. ICH and 

damage to CA are prominent reasons for cerebral ischemia [161]. However, losing 

specific or overtime autoregulation value [162,163] under severe or moderate TBI is 

unclear [164,165], and the functionality of slow ICP waves is not sufficiently 

determined. The greater amplitude and longer duration waves may reduce the CBF, 

maybe at a specific location or in the entire brain by decreasing the CPP or decreasing 

microcirculation because of a greater intraparenchymal pressure. 
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Fig. 2.10. Presentation of different B waves sub-classification patterns. Line 1 and 2 

shows B waves with an amplitude lower and higher than 10 mmHg, respectively. Line 3 
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depicts the B waves with plateau waves. Line 4 shows examples of asymmetrical B waves 

[154] 

Measuring the waves to identify and to address these events seems to be 

indicated; however, the threshold, the time period, before the medical care remains to 

be detected even though the time of 5 or 15 min [166,167] was proposed. These days, 

ICP and ABP estimation are utilized for measuring the CPP. 

As shown in the literature, the quantification of the slow pressure waves also 

seems useful in treating hydrocephalus for determining the excellent patient outcome. 

A reduction in B waves was proposed as a goal in the treatment of hydrocephalus 

[168]; however, the waves’ pathological character is yet to be demonstrated.  

Above all, the problems such as the methodology, terminology, problem 

definition, moving artifact and sensor touching the arterial wall (create much noise), 

and, hence, artifacts, in obtaining the arterial and cranial signal (slow-wave), all of 

these require serious attention, as not much of the research is being conducted on these 

aspects. This thesis work shall bring all these to the attention, especially the quality of 

the signal.  

The detailed analysis will be described in Chapter 4, and the experimental 

analysis and application is outlined in Chapters 5 and 6.  

3. METHODOLOGY  

There is a significant resemblance within the methodologies in the three studies 

provided in this thesis. Two of the three methods retrospectively studied an already 

collected TBI patient database to produce unique understanding associated with: 1) 

selection of the best possible filter for artifact rejection; 2) Applied FIR (Parks–

McClellan) filtering to estimate the pressure reactivity index of intensive care patients 

and the final study where applied ultrasonic attenuation to measure the blood volume, 

considered as a surrogate of ICP to estimate the volumetric reactivity index (VRx2) 

and to compare that with the already existing ultrasonic time of flight method (VRx1), 

in a healthy volunteer.  

All the studies detailed in this thesis are described within their corresponding 

chapter. There are significant overlaps in many of the methodological aspects across 

the studies. Mathematical tools, such as MATLAB for signal processing and SPSS for 

statistical analysis, have been used to prepare the methodologies of this thesis. The 

methods are listed in Table 3.1. 

3.1 Patients and Volunteers  

3.1.1 Retrospective patient data  

The retrospectively gathered data that was used in two of the methods included 

in this dissertation were collected from 60 adult TBI patients admitted to the 

Republican Vilnius University Hospital (Lithuania) between 2016 and 2019. ICP was 

recorded by Codman CP, and ABP was measured in the artery by ABP monitor Baxter 

Healthcare, CA, USA.  Each patient exhibited a clinical need for ICP monitoring; ICP 

and additional computerized bedside signal recordings are within this database. The 

computerized data storage protocol was reviewed and approved by Vilnius Regional 
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Ethics Committee of Biomedical Studies (Vilnius, Lithuania) with Approval No. 

158200-15-801-323.  

The benchmarks to include the patient data for the studies were at least 2–3 

hours of invasive ICP and ABP measurement, the presence of the Glasgow Coma 

Scale (GCS) score with the outcome data where 1 corresponds to death, 2 corresponds 

to a vegetative state, 3 corresponds to severe disability, 4 corresponds to moderate 

disability, and 5 corresponds to a good recovery.  

All the patients were anesthetized during this timeframe; patients were treated 

per protocol aiming to maintain ICP below 20 mm Hg and CPP above 70 mm Hg. In 

particular, ICP was controlled by using stepwise positioning, sedation, 

ventriculostomy drainage, and hypothermia.  

3.1.2 Healthy volunteer data  

The collected data from healthy volunteers utilized and presented in this thesis 

is part of a new database of 43 healthy volunteers (volunteers with healthy or intact 

autoregulation) data collected at the Health and Telematics Science Institute, Kaunas 

University of Technology. The computerized data storage protocol was reviewed and 

approved by Kaunas Regional Ethics Committee which approved the study with 

Approval No. BE-2-49 (16 November 2017), Kaunas, Lithuania. The ABP data from 

43 healthy volunteers was collected continuously with an ABP monitor (Finapres 

Nova) that displayed the ABP signal. Out of 43 healthy volunteers, 33 were male, and 

10 were female in the age range from 18 to 36 years of age1.  

For intracranial blood volume (IBV) recording, a noninvasive ultrasonic 

monitor developed by the Health Telematics Science Institute of Kaunas University 

of Technology (Kaunas, Lithuania) was used. Moreover, data recording and 

processing were accomplished by using ICM+ software (Cambridge Enterprises Ltd., 

Cambridge, UK). The real-time estimation of the noninvasive CA indexes from ABP 

and IBV was achieved. All the recorded data was analyzed in real-time/overtime1. 

Volunteers were ruled out of the study if they were minor, missing prior mental 

ability to give consent, or were not able to securely undergo transcutaneous measuring 

because of a skin disease, known or unknown medical conditions, or allergies. Before 

the study, written informed consent was filled following a discussion with the 

patients’ family member or representative or a professional clinical consultant. See 

Table 3.1 details of the methods used in the thesis and the study subjects’ condition 

when participating in the study.  

 

 

 

 
1 This paragraph may contain some similar information as publication “Comparative Study of Novel Noninvasive 

Cerebral Autoregulation Volumetric Reactivity Indexes Reflected by Ultrasonic Speed and Attenuation as Dynamic 

Measurements in the Human Brain.” Brain Sci. 2020, 10, 205 



45 

 

Table. 3.1. List of the methods presented in the thesis and the clinical condition of the 

study subjects  

Chap

ter 

Study Title Patient/ 

Volunteer 

Demographics 

 

Condition 

Studied 

Retrospective or 

Prospective 

4 Methods of Artefact 

removal: Multiple 

filter comparison for 

selection of best 

artifact rejection filter 

(Analysis) 

Two patients 

(Age range: 18–

45 years, 

admission 

GOS: 1–4) and 

two healthy 

volunteers (Age 

range: 18–36) 

TBI/Healthy Retrospective 

 

 

5 

Association Between 

Patient’s Clinical 

Outcome, and Quality 

of ABP(t) and ICP(t) 

Signals for CA 

Monitoring 

60 patients 

(Age range: 18–

45 years, 

admission 

GOS: 1–5) 

 

 

TBI 

 

Retrospective 

 

 

6 

Applicability of 

Novel Noninvasive 

Cerebral 

Autoregulation 

Volumetric Reactivity 

Indexes by Ultrasonic 

Attenuation as 

Dynamic 

Measurements in the 

Human Brain 

 

 

60 patients 

(Age range: 18–

36 years) 

 

Healthy 

 

Prospective 

3.2 Data Acquisition and processing  

3.2.1 TBI patient data processing  

ICP was measured with an invasive intraparenchymal microsensor inserted 

and/or fixated under the frontal cortex (Codman CP), and ABP was measured in the 

artery with an ABP monitor (Baxter Healthcare, CA, USA). The data was collected 

with software (ICM+, Cambridge Enterprise, Cambridge, UK), and one-minute 

trends were stored. Further data processing was done in the MATLAB software.  

The recorded raw data was 50 Hz taken from the ABP and ICP wave to extract 

slow-wave components in between 0.0083–0.033 Hz range. The recorded signal was 

first decimated to a 1 Hz sampling frequency, considering the frequency ranges 
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associated with the cerebral vasogenic activity [169,170,171] and then filtered with a 

moving average filter and a FIR (PM) filter.  

 
Fig. 3.1. Block diagram of TBI patient’s data processing  
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The filters were designed with similar essential parameters (the sampling 

frequency, cut off frequency, etc.), where -3 dB cut off frequency (0.5 Hz) was used 

because most of the (slow-wave oscillation) energy associated with the spectral 

representation within the wave with a period from 30 s up to 120 s [8,172], a 

bandwidth range of 0.0083–0.033 Hz (slow-wave frequency range), filter length (N) 

was 7, and the 6th order filter was used because it provides narrower transition zones 

with greater attenuation and a sharper (steeper) cutoff, which is highly useful when 

the artifact frequency is close to the ABP/ICP/IBV signal frequency, the stepwise data 

processing is illustrated in Fig.3.1. 

After the slow waves from ABP and ICP waves had been filtered, the 

autoregulation index (PRx) was calculated as the Pearson correlation of 30 

consecutive 10-second average values of slow ABP and ICP, as shown in Equation 3.  

 

PRx = Pearson Correlation = Slow ABP + Slow ICP        (3) 
 

3.2.2 Noninvasive healthy volunteer data processing   

The data from 43 healthy volunteers was collected continuously with an ABP 

monitor (Finapres Nova) that displayed the ABP signal, where 33 were male, and 10 

were female out of 43 in the age range from 18 to 36 years.  

IBV was monitored with an ultrasonic monitor developed by the Health 

Telematics Science Institute at Kaunas University of Technology (Lithuania). Data 

recording was done by using ICM+ software (Cambridge Enterprises Ltd., 

Cambridge, UK) 1. Further data processing was done with MATLAB software.  

The recorded raw data was 50 Hz taken from ABP and ICP waves. To extract 

or isolate slow-wave components in between 0.0083–0.033 Hz range, the recorded 

signal was first decimated to a 1 Hz sampling frequency, considering the frequency 

ranges associated with cerebral vasogenic activity [169,170,171] and then filtered with 

the Bandpass and FIR (Parks–McClellan) filtering with a bandwidth of 0.0083–

0.033 Hz to extract ABP’s slow waves and IBV(t). The correlation coefficient was 

obtained from the bandpass filtered spectra of both channels’ slow waves1. 

Afterword’s volumetric reactivity index was calculated by moving Pearson 

correlation between slow ABP and the IBV (ICP surrogate) wave, as shown in 

Equations 4 and 5:  

 

VRx1 = Pearson Correlation = Slow ABP + Slow IBV (TOF channel)       (4) 

 

VRx2= = Pearson Correlation = Slow ABP + Slow IBV 

                                                 (Attenuation channel)                                               (5) 

 

 
1This paragraph may contain some similar information as publication “Comparative Study of Novel Noninvasive 
Cerebral Autoregulation Volumetric Reactivity Indexes Reflected by Ultrasonic Speed and Attenuation as Dynamic 

Measurements in the Human Brain.” Brain Sci. 2020, 10, 205 
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Table 3.2. Neuromonitoring Modalities Utilized for Data Capture and Analysis.  

Modality Measuring 

method 

Transducer Software Secondary 

Parameter 

Intracranial 

Pressure 

Invasive Codman 

microsensor ICP 

transducer 

(Codman & 

Shurtleff, M.A., 

U.S.A.) 

ICM+ Mean ICP PRx 

 

Intracranial 

blood volume 

(IBV) 

Noninvasive Novel 

noninvasive 

ultrasonic 

monitor by the 

Health 

Telematics 

Science Institute 

at Kaunas 

University of 

Technology 

(Lithuania) 

ICM+ IBV (Intracranial 

blood volume) 

Arterial Blood 

Pressure 

Invasive Datex-Ohmeda 

(GmbH, 

Duisburg, 

Germany) and 

Finapres Nova 

ICM+ Mean ABP 

4. METHODS OF ARTIFACT REMOVAL: SELECTION OF BEST FILTER 

FOR CA MONITORING  

4.1 Existing Methods of Artifact Removal 

Low-pass filtering is one of the known techniques for artifact removal. The low-

pass filter is mostly used for stationary signals which have a frequency spectrum over 

time consistently. On the contrary, Adaptive filtering [145] is one of the known 

filtering approaches currently being used. The adaptive filters need a reference signal, 

but this reference signal is not an ICP monitoring option. This technique, applicable 

to ECG, does not apply to ICP signals. Wavelet transformation is also known for 

effective artifact removal in biomedical signals [145]. However, the best performance 

can only be obtained with an optimal basis function. 

On the other hand, the use of ICP waveform analysis to translate technologies 

into the clinical setting includes acquiring the data from the invasive intracranial 

sensor and obtaining non-artifact ICP waveforms and the translation of ICP waveform 

analysis into a clinical environment. These contaminants can be categorized as high-

frequency or low-frequency noise, high-frequency noise inserted by amplifiers, 

whereas the patient environment inserts low-frequency noise [146]. 
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Several existing solutions to artifact detection and removal from neuro and 

cardiovascular based physiological signals (ABP and ICP) exist, such as threshold-

based, stability-based, or template matching, and filtering-based artifact rejection also 

by generative deep learning mathematical neural network model and reconstruction 

and quantification technique. However, the accuracy and precision of these filtering 

approaches are still uncertain.  

In the past decade, there have been several developments by using different 

models to detect and remove the artifact(s) from the physiological signals, such as 

Decomposing the ICP monitoring signal with Empirical Mode Decomposition (EMD) 

[145]. Due to its high efficiency, EMD is commonly being used for non-stationary 

non-linear signals. An iterative filtering technique was further proposed to filter out 

artifacts from the decomposed ICP signals. The proposed iterative filter was robust 

(with robust statistics) [145].  

The combined use of an advanced autoencoder (stacked convolutional 

autoencoder, SCAE) and a CNN method first detects the ABP pulse onset, thereby 

allowing the detection of the ICP pulse onset and the segmentation of each pulse 

waveform [137]. Moreover, a self-maintained artifact detection system combines a 

convolutional variational autoencoder deep neural network that avoids costly manual 

annotation [138]. 

On the contrary, Prof. Thomas Heldt from Massachusetts Institute of 

Technology proposed a novel method of automatic artifact rejection by quantification 

of the signal quality and the reconstruction of the ABP/ICP waveform, which thus  

was one of the prominent proposed methods. This method presents an algorithm for 

the quantification of the signal quality, and the reconstruction of the ABP waveform 

in noise corrupted segments of the measurement. The algorithm was tested on ABP 

waveform signals containing invasive radial artery ABP and noninvasive ABP 

waveforms (See Figs. 4.1 and 4.2) [139]. 

 

Fig. 4.1. Example of ABP reconstruction in a Finapres ABP waveform affected by 

periodic recalibration [139] 
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Fig. 4.2. Example of reconstruction of an ABP signal influenced by noise, where the 

blue waveform represents an authentic ABP waveform, and the red represents the 

reconstructed signal [139] 

A most widely accepted and used filtering technique in biomedical, 

cardiovascular, and neurophysiological signals is the moving average data filter. It is 

being used to filter intracranial and arterial pressure waves to avoid the time domain 

artifacts. The moving average filter is a common filter used for random noise with a 

sharp step response. This makes it one of the best filters for the time-domain filtering. 

However, the moving average is an inefficient filter for frequency-domain signals, 

where it has a poor ability to distinguish frequencies of one band from another [173]. 

However, where the mean values of every ABP(t) and ICP(t) signal were filtered 

by using the moving average filter, it has been used widely for pressure reactivity 

estimation. The most used approaches for artifact rejection/removal are listed in Table 

4.1. 

Table 4.1. List of existing artifact removal methods [137–146,149] 

Methods for 

artifact 

removal 

Principle of the 

method 

Proposed by Limitation 

Moving 

average 

Filtering 

Averaging filter Marek et al., 

Cambridge 

University. 

The window size of 

the filter must be 

large. This will 

induce latency in the 

signal passing 

through the filter. 
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Convolutional 

variational 

autoencoder 

deep neural 

network  

Neural network Seung-Bo Lee et al., 

Department of Brain 

and Cognitive 

Engineering, Korea 

University, Seoul 

Some artifact 

misclassification of 

individual pulse 

waveforms may still 

occur and could lead 

to significantly high 

false-positive rates 

Empirical 

Mode 

Decomposition 

(EMD) 

After decomposition, 

the empirical process 

that decomposes a 

signal into multiple 

components, the large-

amplitude oscillations 

in the Intrinsic Mode 

Functions (IMF) 

component align 

perfectly with the 

artifacts in the original 

ICP signal 

Mengling Feng et 

al., Massachusetts 

Institute of 

Technology 

It may miss the 

relatively ‘shorter’ 

artifacts 

Automatic 

artifact 

removal 

Convolutional 

variational 

autoencoder deep 

neural network 

Tom Edinburgh et 

al., Department of 

Applied 

Mathematics and 

Theoretical Physics, 

University of 

Cambridge, United 

Kingdom 

Other signals are not 

so clear-cut to assign 

as an artifact 

categorically 

Signal quality 

quantification 

and 

decomposition 

Signal decomposition Thomas et al., 

Massachusetts 

Institute of 

Technology 

The temporal 

duration of all the 

beats of a noisy 

segment is the same. 

Second, within the 

same window, the 

same template is used 

to reconstruct all 

noisy beats 

Deep brain 

recordings 

Wave_clus algorithm Ivan Gligorijevic et 

al, Dept. of 

Electrical 

Engineering, 

Katholieke 

Universiteit Leuven, 

Belgium 

Random small spikes 

may be left 

undetected 
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Spatial filters Topographies Nicole Ille et al., 

Biomagnetism, 

Department of 

Neurology, 

University of 

Heidelberg 

Artifact 

topographies result in 

the distortion of 

spatially correlated 

signal activity 

Among all the existing methods, the standard and widely accepted approach for 

artifact removal is the moving average proposed by Prof. Marek from Cambridge 

University.  

4.2 Analysis  

Considering the problems mentioned above, including false alarming with 

artifacts in neurophysiological signals and the limitations in the currently existing 

methods, it is essential to select the best filtering approach to obtain the best possible 

information from the ABP and ICP waves.  

As we know, the short period means of ABP(t) and ICP(t) is needed to calculate 

the PRx [6,7,11]. The most widely used was the moving average method. It has been 

argued that FIR (Parks–McClellan) filtering approaches for short-term means of 

ABP(t) and ICP(t) could be of higher quality than the moving average, whereas the 

impact of the FIR (Parks–McClellan) filtering approach on PRx/VRx has never been 

evaluated previously. Hence, we analyzed ABP(t) and ICP(t) signals with different 

filters and compared the Pressure reactivity index and the volumetric reactivity from 

outcomes and noninvasive VRx outcomes, to select a higher quality filtering approach 

based on their pressure reactivity and volumetric reactivity index.  

4.2.1 Data processing  

Two patient data out of 60 TBI patients and two healthy volunteer data were 

included for filtration analysis recorded by using an ICP intraparenchymal transducer 

(Codman microsensor ICP transducer). The ABP was invasively measured by using 

an ABP monitor (Datex-Ohmeda).  

On the other hand, two healthy volunteer data out of 43 were included for 

filtration analysis, collected continuously by an ABP monitor (Finapres Nova) that 

displayed the ABP signal. IBV monitoring was done by a novel noninvasive ultrasonic 

monitor from Kaunas University of Technology (Kaunas, Lithuania). Data recording 

were done by using ICM+ software (Cambridge Enterprises Ltd., Cambridge, UK), 

further data processing was done in MATLAB.  

The recorded raw data was 50 Hz taken from ABP and ICP waves. To extract 

or isolate slow-wave components in between 0.0083–0.033 Hz range, the recorded 

signal was first decimated to a 1 Hz sampling frequency, considering the frequency 

ranges associated with cerebral vasogenic activity [169,170,171] and then filtered 

with five filters including the moving average filter, FIR (PM) filter, Kalman filter, 

Butterworth low pass filter, and Chebyshev filter. All the filters were designed with 

similar essential parameters (sampling frequency, cut off frequency, etc.), where -3 

dB cut off frequency (0.5 Hz)  was used because most of the (slow-wave oscillation) 

energy associated with the spectral representation within the wave with the period 
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from 30 s up to 120 s (0.0083 to 0.033 Hz) [8,172], a bandwidth range of 0.0083–

0.033 Hz (slow-wave frequency range), filter length (N) was 7, and the 6th order filter 

was used because it provides narrower transition zones with greater attenuation and a 

sharper (steeper) cutoff, which is very useful when the artifact frequency is close to 

the ABP/ICP/IBV signal frequency.  These low pass filters were tested for comparison 

purposes to obtain the best possible filter for slow-wave filtering or extraction.  

Furthermore, the moving mean (average) values of ABP and ICP waveform 

were estimated for 5 s. The estimation was done by employing the moving averaging 

methodology, and PRx1 was estimated as a linear Pearson correlation for a two-hour 

period of the mean arterial pressure (MAP) and ICP. Similarly, a non-invasive 

technology, ICP(t), was replaced with IBV(t). 

The moving average filter was used as a reference to the filter comparison. 

Moreover, TBI patient demographic (Glasgow Output Scale – GOS) reference was 

used for identifying the specific patient’s clinical outcomes.  

4.3 Outcomes of the analysis  

All the five-filter data from the same patient was used to estimate the Pressure 

reactivity index (Fig. 4.3. A, B) and volumetric reactivity index (Fig. 4.3. C, D), where 

the widely used moving average (red color) was considered as reference. The pressure 

reactivity for Patient 01, in Fig. 4.3.A, shows that the moving average filter and the 

FIR-Parks–McClellan (blue color) filter has shown almost the same dynamics with 

clear impaired autoregulation. In contrast, Kalman (green color), Butterworth 

(magenta color), and Chebyshev filter (black color) showed an intermediate range of 

autoregulation.  

The pressure reactivity index for Patient 11, in Fig.4.3B, shows that the moving 

average and the FIR (Parks–McClellan) filter range are in the intermediate 

autoregulation index. In contrast, other filters (Kalman, Butterworth, and Chebyshev 

filters) showed a range of autoregulation more towards impaired CA, where FIR 

(Parks–McClellan) seems to be of a slightly higher quality than the moving average 

in terms of their PRx outcome. 

The volumetric reactivity index in non-invasive Volunteer Number 29 in Fig. 

4.3.C shows that the moving average (red color) filter and the FIR Parks–McClellan 

(blue color) filter have almost the same dynamics with clear intact autoregulation. In 

contrast, other (Kalman (green color), Butterworth (magenta color), and Chebyshev) 

(black color) filters also showed the intact range of autoregulation, but their VRx 

ranges were shifted more towards intermediate autoregulation. 

The volumetric reactivity index for Volunteer 37, in Fig. 4.3. D shows that the 

moving average (red color) filter and the FIR Parks–McClellan (blue color) filter have 

almost the same dynamics with clear intact autoregulation. In contrast, other Kalman 

(green color), Butterworth (magenta color), and Chebyshev (black color) filters also 

showed the intact range of autoregulation, but their VRx ranges were more towards 

intermediate autoregulation, where FIR (Parks–McClellan) seems slightly higher and 

better than the moving average in their PRx outcome, see Fig.4.3 (C, D).  
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(A) (B) 

  

(C)  (D) 

Fig.4.3. Filter comparison in patients with impaired cerebral autoregulation 

(CA) (A), Intermediate CA (B), Invasive PRx (Traumatic patient) and intact CA 

(C, D) Noninvasive VRx (Healthy Volunteer) 

4.4  Summary of the Chapter  

In order to select the best possible filtration of neurophysiological signals to 

avoid the false alarm in the intensive care unit, five filters were tested.  Among the 

five filters, when compared with the moving average filter, FIR (Parks–McClellan) 

filter, Kalman filter, Butterworth low pass filter, and Chebyshev filter, the FIR (Parks–

McClellan) filter showed the autoregulation correctly and was the most similar to the 

widely used moving average.  

The pressure reactivity (PRx) curves were compared in invasive patient data, 

where Patient 01 had a clinical outcome as impaired autoregulation (GOS Score 1 = 

death), and FIR (Parks–McClellan) filter and Moving average showed the impaired 

outcome clearly; similarly, in Patient 11, the autoregulation was intermediate, and 

both moving averages and FIR (Parks–McClellan) filter depict that.  

On the other hand, volumetric reactivity curves (VRx) were compared in non-

invasive volunteer data, where Volunteer 29’s FIR (Parks–McClellan) filter and the 
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Moving average filtering showed the intact outcome clearly; similarly, in Volunteer 

37, the autoregulation was intact, and both moving average and FIR (Parks–

McClellan)  filter depicts that in comparison with the other proposed filtering 

methods.  

The above outcomes reflect that the FIR (Parks–McClellan) filtering approach 

is of a higher quality (an increased signal to noise ratio) than the Kalman filter, the 

Butterworth low pass filter, the Chebyshev filter, and a slightly higher quality than the 

moving average. Hence, the FIR (Parks–McClellan) method would be selected for 

further autoregulation index estimation studies. Moreover, the detailed comparison of 

these two filters (moving average and FIR) is performed in Chapter 5 below.   

5. PRESSURE REACTIVITY INDEX AND QUALITY OF ABP(t) AND ICP 

(t) SIGNALS FOR CA MONITORING AFTER TRAUMATIC BRAIN 

INJURY  

This chapter is based on data presented in the publication2. 

5.1 Association between Cerebral Autoregulation Index (Pressure Reactivity), 

Patient’s Clinical Outcome, and Quality of ABP(t) and ICP(t) Signals for CA 

Monitoring  

5.1.1 Background of the study   

Severe traumatic brain injury (TBI) is one of the primary causes of traumatic 

death worldwide. In Europe alone, 2.5 million people suffer TBI every year, with one 

million being admitted to hospital. Approximately 30–35% of deaths result from such 

injuries, though it should be noted that some patients suffer from disabilities 

[174,175]. More attention and research are required to better understand and improve 

the management of severe TBI. 

The main objective of clinical TBI studies is to improve the management of 

severe TBI, and the main factor that influences treatment outcomes is cerebral 

autoregulation (CA) [175,176–179]. Autoregulation has been previously described as 

a balancing act between vasoconstriction and vasodilation, as the cerebrovascular 

bed’s resistance accepts slow dynamic changes in cerebral perfusion pressure. CA 

impairment is most likely to influence the outcomes, and, thus, it is essential to explore 

CA over time [4,11] continuously. 

Czosnyka et al. described the relationship between slow changes in the mean 

arterial blood pressure (ABP) and intracranial pressure (ICP), which led to a better 

understanding of the relationship between cerebral perfusion pressure (CPP) and 

cerebral blood flow (CBF) by using the PRx [109,110]. This index is most commonly 

obtained by calculating the Pearson correlation between slow-wave ABP and ICP 

 
2 Bajpai BK, Preiksaitis A, Vosylius S, Rocka S. Association Between the Cerebral Autoregulation Index (Pressure 
Reactivity), Patient's Clinical Outcome, and Quality of ABP(t) and ICP(t) Signals for CA Monitoring. Medicina. 

2020;56(3):143. Published 2020 Mar 20.  
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[179–181]. With intact CA, slow increases in ABP cause vasoconstriction, which is 

followed by a decrease in ICP, resulting in a negative PRx; however, while CA is 

impaired, a rise in luminal ABP leads to passive cerebrovascular dilation and increases 

in cerebral blood volume and ICP. In such cases, the correlation coefficient (PRx) 

between ABP and ICP is positive [182,183]. 

The pressure reactivity index’s critical threshold has been suggested and 

recommended by various researchers (i.e., a PRx above 0.2 or 0.25 is associated with 

the impaired status, and close to zero or a negative PRx associated with intact 

autoregulation) [16,96,101,184–188]. Among these PRx thresholds, PRx for survival 

(0.25) and that for the favorable outcome (0.05) proposed by Sorrentino et al. [185] 

represent the reliable threshold for the estimation of survival and achieving a favorable 

outcome. 

Moreover, a recent study by Akhondi-Asl et al. [189] found that PRx can only 

be evaluated when there are slow but sufficient changes in ABP(t) and ICP(t) waves. 

The results revealed the sensitivity of the PRx calculation towards small slow wave 

changes in ABP(t) and ICP(t), and only slight PRx variance was observed [182], 

which indicated that if ABP(t) and ICP(t) waves changed with the filtering approach, 

the diagnostic value of the PRx may change as well. 

The short period means of ABP(t) and ICP(t) are needed to calculate the PRx 

[176–188]. The most common approach uses the moving average. It has been argued 

that another filtering approach (FIR Parks–McClellan filter) for short period means of 

ABP(t) and ICP(t) is higher in terms of quality than using the moving average to 

estimate the mean pressure [190]. However, the impact of the FIR filtering approach 

on PRx has not been evaluated yet. Therefore, we analyzed ABP(t) and ICP(t) signals 

with an FIR filter and compared the results with the quality of the signal using 

Czosnyka et al.’s moving average. The sensitivity and specificity of the PRx were 

evaluated, with the quality of the signal based on the clinical outcomes. The Glasgow 

outcome scale (GOS) score after hospital discharge (GOSHD) was used as the clinical 

reference (the mortality and survival). GOS outcomes were taken as the reference for 

the dichotomous outcome for sensitivity, specificity, and ROC curve estimation. The 

patient’s outcome was defined by using the following values: 1 (death), 2 (persistent 

vegetative state), 3 (severe disability), 4 (moderate disability), and 5 (low disability) 

[6]. 

A single CA impairment event lasts for approximately 5 min and is strongly 

associated with postoperative cognitive dysfunction and cognition deficits [191], 

which means that a CA monitor must have a time resolution of one minute or less, 

corresponding to the duration of the output reaction of a filter to an input step function 

for ABP(t) or ICP(t)). Such a CA monitor would show the start of severe CA 

impairment with a delay of about 1 min. In this case, a filter with a 1 min time window 

would be applicable.  

 

5.1.2 Data analysis  

The recorded raw data was 50 Hz taken from ABP and ICP waves. To extract 

or isolate slow-wave components in between 0.0083–0.033 Hz range, the recorded 
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signal was first decimated to a 1 Hz sampling frequency, considering the frequency 

ranges associated with cerebral vasogenic activity [169,170,171] and then filtered 

with the following two filters: 

A. Moving average data filter: The mean values of every ABP(t) and ICP(t) 

signal were calculated for 5 s. The calculation was performed by using the moving 

average, and PRx1 was calculated as a linear Pearson correlation for a 5 min time 

window between 60 consecutive values of the mean arterial pressure (MAP) and ICP. 

The data points included in the analysis were between 50 and 120 mmHg for ABP 

and ICP values that were greater than zero. The average PRx1 was used for the 

sensitivity estimation of the ABP(t) and ICP(t) signal quality. This was considered as 

the first method employed for sensitivity estimation. 

B. FIR Parks–McClellan data filter: In FIR (Parks–McClellan) filtering, the 

mean ABP and ICP were obtained by continuous filtering with a 1 min period of 

filtering, and PRx2 was calculated as the linear Pearson correlation coefficient with 5 

min segments of ICP and ABP signals. The FIR (Parks–McClellan) filter was 

designed with -3 dB cut off frequency (0.5 Hz)  and was used because most of the 

(slow-wave oscillation) energy associated with the spectral representation within the 

wave with the period from 30 s up to 120 s [8,172], a bandwidth range of 0.0083–

0.033 Hz (slow-wave frequency range), filter length (N) was 7, and the 6th order filter 

was used because it provides narrower transition zones with greater attenuation and a 

sharper (steeper) cutoff, which is very useful when the artifact frequency is close to 

the ABP/ICP/IBV signal frequency. The Parks–McClellan algorithm for designing 

FIR (Parks–McClellan) filters [192] was used to obtain mean pressure, which had 

never been used for PRx estimation. There are certain advantages to using the FIR 

(Parks–McClellan) filter, such as not increasing the computational costs, due to lower 

sensitivity to artifacts, shorter delays, and higher sensitivity to acute events. With FIR 

(Parks–McClellan) filters, it is easy to enforce the linear phase constraint if it is stable, 

and the duration of disruptions is limited to the impulse response duration, which is 

the filter length [192]. 

5.1.3 Statistical analysis 

Statistical analysis was performed by using the software package SPSS (IBM Inc., 

New York, USA), Version 20. Patients included in the study were grouped into those who 

survived and those who did not. For each group, the average values for PRx1 (from 

Czosnyka et al.’s moving average filtering) and PRx2 (from FIR Parks–McClellan 

filtering) were created (Table 5.1). An independent t-test was used to compare the 

categorical outcomes (i.e., survivors/non-survivals based on GOS outcomes) and the 

continuous outcome. 

Two additional Tables (Tables 5.2 and 5.3) were created for the sensitivity and 

specificity calculations with true positive (TP), true negative (TN), false positive (FP), 

and false-negative (FN) from the PRx outcome of both filtering methods. The GOS 

scale (i.e., a GOS value of 1 corresponding to death and a GOS value greater than 1 

indicative of survival [6]) was considered as the reference clinical outcome. The GOS 

outcomes were taken as the dichotomous outcomes for true positive (TP), true 
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negative (TN), false positive (FP), and false-negative (FN) estimation, hence, for 

sensitivity and specificity.  

Two ROC (receiver operating characteristic) curves were constructed in one 

window for 60 patients for each filtering method to compare the effectiveness of the 

two filtering methods. The area represented the diagnostic accuracy of the ROC curve 

under the curve (AUC). AUC values closer to 1 indicated that the screening measures 

were reliable [193–197]. 

5.1.4 Outcomes of the analysis  

Both PRx values from Czosnyka et al.’s moving average filtering (PRx1) and 

FIR (Parks–McClellan) filtering (PRx2) were estimated for comparative purposes for 

all 60 TBI patients. The demographic patient data is shown in Table 5.1, where, among 

60 patients, 34 male and nine female patients were survivors, while 13 male and four 

female patients did not survive (fatal outcomes). Moreover, the comparative pressure 

reactivity index of two hours of PRx1 (Czosnyka et al.’s moving average filtering) 

and PRx2 (FIR-Parks–McClellan filtering) are presented in Fig. 5.1. A–D, including 

patients with impaired CA (A), intermediate CA (B, C), and intact CA (D). 

Table 5.1. Demographic characteristics, clinical findings, and averaged values 

of data from monitoring TBI patients. 

 Survival Fatal Total p-value 

Number of 

patients 
43 17 60 - 

Sex 

(male/female) 
34/9 13/4 47/13 - 

Age, mean 

(SD), years 
36.84 (16.09) 

43.25 

(11.64) 
38.52 (15.35) 0.028 

GCS, median 6 (4-7) 5 (4–6) 5,50 (5-6) 0.015 

Average 

PRx1 

(moving 

average 

0.08 (0.31) 0.21 (0.34) 0.11 (0.31) 0.007 
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filtered), 

mean (SD) 

Average 

PRx2 (FIR-

Parks–

McClellan  

filtered), 

mean (SD) 

−0.01(0.36) 0.26 (0.22) 0.01(0.37) 0.001 

GCS, Glasgow coma scale; PRx, pressure reactivity index; SD, standard 

deviation; TBI, traumatic brain injury. 

  
(A) (B) 

  
(C) (D) 

Fig. 5.1. Example of a two-hour period of PRx1 (moving average filtering) 

and PRx2 (FIR Parks–McClellan filtered data) comparison in patients with 

impaired cerebral autoregulation (CA) (A), intermediate CA (B, C), and intact CA 

(D). 



60 
 

5.1.5 Sensitivity and specificity 

As shown in Table 5.2, patients were grouped according to PRx outcomes, 

where the PRx2 from the FIR (Parks–McClellan) filtering approach included 12 

patients with true positives, 35 with true negatives, 8 with false positives, and 5 with 

false negatives, which reflected a sensitivity of 70% and a specificity of 81% (by the 

FIR Parks–McClellan filtering approach). 

Table 5.2. 2x2 matrix (FIR Parks–McClellan filtered data PRx2) 

Outcome 

Impaired 

Autoregulation/Non-survivors 

(Fatal) 

Intact 

Autoregulation/Survivors 

Positive test 

(GOS * 1) 

(True positive) 

12 (M-9, F-3) 

(False positive) 

8 (M-6, F-2) 

Negative test 

(GOS *>1) 

(False negative) 

5 (M-5, F-0) 

(True negative) 

35 (M-27, F-8) 

* GOS, Glasgow scale estimation of clinical outcome; M, male; F, female 

Sensitivity = True Positive/(True positive + False negative) = 12/17 = 70% 

Specificity = True Negative/(False positive + True negative) = 35/43 = 81% 

Table 5.3. The 2 × 2 matrix (moving average PRx1) 

Outcome 
Impaired Autoregulation/ 

Non-survivors (Fatal) 

Intact autoregulation/ 

Survivors 

Positive Test 

(GOS * 1) 

(True positive) 

10 (M-8, F-2) 

(False positive) 

13 (M-10, F-3) 

Negative test 

(GOS *>1) 

(False negative) 

7 (M-5, F-2) 

(True negative) 

31 (M-25, F-6) 

* GOS, Glasgow scale estimation of clinical outcome; M, male; F, female 

Sensitivity = True Positive/(True positive + False negative) = 10/17= 58% 

Specificity = True Negative/(False positive + True negative) = 35/43= 72% 
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As shown in Table 5.3, patients were grouped according to PRx outcomes, 

where PRx1 from Czosnyka et al.’s moving average filtering approach included 10 

patients with true positives, 31 with true negatives, 13 with false positives, and 7 with 

false negatives, which reflected 58% sensitivity and 72% specificity by the FIR 

(Parks–McClellan) filtering approach. 

 

5.1.6 Receiver operating characteristic curve  

The ROC curve was constructed from 60 patients’ PRx data by using both 

filtering approaches, true positives (PRx associated with impaired autoregulation), 

and true negatives (PRx associated with intact autoregulation), where true positives 

and true negatives were plotted against each other for the ROC curve from Tables 5.2 

and 5.3. 

 

 

Fig. 5.2. ROC curves for both methods’ PRx values, moving average 

filtering, and FIR (Parks–McClellan) filtering. FIR (Parks–McClellan) filtered 

(PRx) shows a higher diagnostic accuracy with a larger area under the curve 

(AUC) compared to the moving average (PRx). 

For the moving average of PRx1, the ROC curve (red) had an area under the 

curve (AUC) of 0.661 with a sensitivity of 58%, a specificity of 72%, and a 

significance level of 0.054. The area under the ROC curve had a standard error of 

0.075 and a 95% confidence interval of 0.515–0.807, as shown in Fig. 5.2 and 

Table 5.4 (ROC curve from both methods’ PRx values, moving average filtering, and 
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FIR (Parks–McClellan) filtering). For the FIR (Parks–McClellan) filtered PRx2, the 

ROC curve (blue) had an area under the curve (AUC) of 0.785, with a sensitivity of 

70%, a specificity of 81%, and a significance level of 0.001. The area under the ROC 

curve had a standard error of 0.058 and a 95% confidence interval of 0.671–0.900, as 

shown in Fig.5.2 and Table 5.4 (ROC curve from both methods’ PRx values, moving 

average filtering, and FIR Parks–McClellan filtering). 

Table 5.4. Results for the area under the ROC curve (AUC) obtained for the 

moving average and FIR (Parks–McClellan) filter criterion values and 

coordinates of the ROC curve (as shown). 

Test Result 

Variable(s) 
Area Std. Error * 

Asymptotic 

Significance. ** 

Asymptotic 95% 

Confidence Interval 

Lower 

Bound 

Uppe

r Bound 

Moving 

Average 

(PRx) 

0.661 0.075 0.054 0.515 0.807 

FIR Parks–

McClellan 

Filtered 

(PRx) 

0.785 0.058 0.001 0.671 0.900 

* Under the nonparametric assumption. ** Null hypothesis: true area = 0.5. 

FIR (Parks–McClellan) filtered (PRx2) shows higher diagnostic accuracy with a 

higher area under the curve (AUC) compared to the moving average (PRx). 

5.1.7 Independent t-test 

Independent t-tests between categorical (survivals and non-survivals based on 

the GOS outcome) and the continuous PRx from the moving average PRx showed a 

significance level (Significance (two-tailed)) of 0.040, with a 95% confidence interval 

of 0.01428–0.57685 and a standard error of 0.13921).  

Table 5.5. Results for the independent t-test obtained from the moving average 

and FIR (Parks–McClellan) filter PRx criterion values and coordinates of the 

ROC curve  

Test 

Variab

le (s) 

t Sig. df 
Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% 

Confidence Interval 

Lower Upper 

javascript:showdiv('d42','d43','table1');
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Movin

g 

averag

e PRx 

2.123 0.054 40.319 0.040 0.29557 0.13921 0.01428 0.57685 

FIR 

(Parks

–

McCle

llan) 
PRx 

3.743 0.000 27.370 0.001 0.45484 0.12151 0.20568 0.70401 

 

The FIR (Parks–McClellan) filtered data PRx showed a significance level (Sig. 

(two-tailed)) of 0.001 with a 95% confidence interval of 0.20568–0.70401 and a 

standard error of 0.12151. This t-test indicated that FIR (Parks–McClellan) filtering 

had a higher significance and a lower standard error than moving average filtering, as 

shown in Table 5.5. 

5.1.8 Discussion 

In this study, the association between the CA index (PRx) associated with a 

patient’s clinical outcomes (from the GOS scale) and the quality of the signal to 

estimate the CA index (PRx) was estimated. Czosnyka et al. described the relationship 

between slow changes in mean ABP and ICP, which led to the development of the 

relationship between CPP and CBF by using the PRx [177,178]. This index was 

obtained by calculating the Pearson correlation between slow-wave ABP and ICP 

[178–181]. With intact CA, slow increases in ABP caused vasoconstriction, which 

was followed by a decrease in ICP, resulting in a negative PRx. However, while the 

CA was impaired, a rise in luminal ABP led to passive cerebrovascular dilation and 

increases in the cerebral blood volume and ICP. In such cases, the correlation 

coefficient (PRx) between ABP and ICP was positive [182]. 

The short period means of ABP(t) and ICP(t) were essential for estimating the 

PRx [176–188]. According to prior studies, ICP signals are often polluted by a 

significant number of artifacts. Artifacts contaminate an average of 5% of data points 

in the collected ICP signals, and, in some cases, more than 20% of signals can be 

polluted [198]. The most common approach employed to obtain a short period means 

is the moving average. It has been argued that FIR (Parks–McClellan) filters for the 

short period means of ABP(t) and ICP(t) are higher in quality than the moving average 

to estimate the mean pressure [190]. Akhondi-Asl et al. stated that the PRx could only 

be evaluated when there are slow but sufficient changes in ICP and ABP waves. This 

shows the PRx calculation’s sensitivity to slow-wave changes, and only a slight PRx 

variance can be seen with small slow wave changes [189]. In other words, if there are 

higher or lower wave changes in ABP(t) and ICP(t), the diagnostic PRx value would be 

different. 

Hence, we used the FIR (Parks–McClellan) filters for the PRx estimation, which 

is an essential index for CA monitoring. In our study, we evaluated the sensitivity and 

specificity of the PRx, basing the quality of the signal on the clinical outcomes. The 



64 
 

Glasgow outcome scale (GOS) score after hospital discharge (GOSHD) was used as 

a clinical reference (mortality versus survival). GOS outcomes were taken as the 

reference for the dichotomous outcome for sensitivity, specificity, and ROC curve 

estimation. The patient’s outcome was defined by using the following five-point scale: 

1 (death), 2 (persistent vegetative state), 3 (severe disability), 4 (moderate disability), 

and 5 (low disability) [6]. 

From the ROC curve, the FIR (Parks–McClellan) filter method revealed a 

sensitivity of 70%, a specificity of 81%, an area under the ROC curve of 0.78, and a 

significance level of p = 0.001, with a standard error of 0.058. These results were 

higher than those found with the moving average method, which had a sensitivity of 

58% and a specificity of 72%. The area under the ROC curve was 0.661, and the 

significance level was p = 0.054. The area under the ROC curve revealed a standard 

error of 0.075. An AUC closer to 1.0 is ideal for discriminative values between healthy 

and sick patients [193–197]. The ROC curve reflected that the FIR (Parks–McClellan) 

filter approach was better than the moving average method for ABP and ICP signal 

filtering. The t-test reflected that FIR (Parks–McClellan) filtering results featured a 

higher significance level (0.001) and a lower standard error (0.12151) than the moving 

average (significance level 0.040, with a standard error of 0.13921), as shown in Table 

5.5. 

FIR (Parks–McClellan) filtering resulted in a higher time resolution because of 

the filter with a 1 min time window. A single CA impairment event is approximately 

5 min long and is strongly associated with postoperative cognitive dysfunction and 

cognition [191]. That means that CA monitoring must have a time resolution of 1 min 

or less, which is the duration of the output reaction of the filter to an input step function 

of ABP(t) or ICP(t)). Such CA monitoring would show the start of severe CA 

impairment with a delay of about 1 min. 

5.1.9 Summary of the chapter  

The association between the sensitivity of the PRx, brain-injured patient’s 

clinical outcome, and the quality of ABP(t) and ICP(t) indicated that the FIR (Parks–

McClellan) filtering approach was more sensitive for discriminating between the two 

clinical outcomes, namely, intact (survival) and impaired (death) cerebral 

autoregulation for TBI treatment decision making. ABP(t) and ICP(t) signal analysis 

in TBI patients is particularly essential to minimize the risk of uncertain diagnostic 

values (intact or impaired) of the PRx. 

5.1.10 Limitations of the Study  

This study was conducted on a small population of patients (60 patients). A 

validation study with a much larger population is still necessary. Furthermore, there 

is no gold standard for the cerebral autoregulation monitoring method. Another 

essential factor for producing more concrete results is the comparison of PRx 

outcomes with various filtering approaches and various alternative methods. 
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6. NON–INVASIVE CA MONITORING TECHNOLOGY (ULTRASONIC 

TIME OF FLIGHT THROUGH A HUMAN HEAD AND ATTENUATION 

IN THE BRAIN)  

This chapter is based on data presented in the publication3 

6.1 Comparative Study of Novel Noninvasive Cerebral Autoregulation 

Volumetric Reactivity Indexes Reflected by Ultrasonic Speed and Attenuation as 

Dynamic Measurements in the Human Brain 

6.1.1 Background of the research  

The mechanisms of cerebral autoregulation remain poorly understood, 

especially in humans. Cerebrovascular autoregulation refers to the brain’s ability to 

maintain constant cerebral blood flow (CBF) with changes in the cerebral perfusion 

pressure (CPP) [198] based on cerebral metabolism independent of fluctuations in the 

systemic arterial blood pressure (ABP). This process is controlled by multifactor 

mechanisms, including myogenic, metabolic, and neurogenic metabolic mechanisms 

[199–201].  

Cerebral autoregulation (CA) is the primary factor that influences treatment 

outcomes in brain trauma patients [6,175,176,202]. When CA is impaired, the 

outcomes for traumatic brain injury (TBI) patients are significantly impacted. 

Autoregulation has been described as a balancing act between vasoconstriction and 

vasodilation because the resistance of the cerebrovascular bed accepts slow dynamic 

changes in cerebral perfusion pressure. CA’s impairment has the most significant 

influence on these outcomes, which means that it is essential to explore CA 

continuously over time [4,202].  

Several existing methods are used to estimate CA status based on measuring 

fluctuations in CPP and CBF along with cerebral vascular resistance changes in CPP 

(or ABP) [65,203–205]. Generally, currently existing CA assessment methods are 

based on applying the surrogate physiological parameters that make it practically 

impossible to replace them with noninvasive CBF monitoring. The objective of 

clinically invasive methods for assessing continuous CA is to determine the pressure 

reactivity index (PRx) by the moving Pearson’s correlation coefficient (r) between the 

slow waves of ABP(t) and ICP(t) over a time window of a few minutes. With intact 

CA, slow increases in ABP cause vasoconstriction, which is followed by a decrease 

in ICP, resulting in a negative PRx; however, while CA is impaired, a rise in luminal 

ABP can lead to passive cerebrovascular dilation and an increase in cerebral blood 

volume and ICP. In such cases, PRx will be positive [177,178,206]. It has been found 

that PRx values above a critical level associated with brain vascular deterioration can 

cause death [182,207]. The crucial threshold for PRx was suggested and 

 
3 Bajpai, B.K.; Zakelis, R.; Deimantavicius, M.; Imbrasiene, D. Comparative Study of Novel Noninvasive Cerebral 
Autoregulation Volumetric Reactivity Indexes Reflected by Ultrasonic Speed and Attenuation as Dynamic 

Measurements in the Human Brain. Brain Sci. 2020, 10, 205 
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recommended by various scientists (i.e., with values above 0.2 or 0.25 for PRx being 

associated with impaired status and those close to zero or negative values being 

associated with intact autoregulation) [185–188].  

PRx is one of the widely used indexes for CA monitoring [182,185,206–208], 

as no gold standard exists. However, an important limitation of this approach is that 

it is invasive (i.e., ICP sensors must be inserted into brain ventricles or the parenchyma 

tissue). 

All other existing noninvasive methods attempt to find a surrogate parameter 

that could replace CBF monitoring to calculate the related CA index [209]. Among 

several noninvasive methods, the transcranial Doppler (TCD) method for assessing 

CA noninvasively is primarily used. The middle cerebral artery (MCA) for blood 

velocity is used instead of CBF to estimate the TCD, depending on the autoregulation 

index (Mx) as a moving correlation coefficient between the MCA and ABP. Similarly, 

other methods, such as near-infrared spectroscopy (NIRS), are used to estimate the 

correlation coefficient between the measured local oxygen saturation and ABP. These 

are referred to as the cerebral oximetry (Cox or Tox) index [209, 210] and the 

hemoglobin volume index (HVx), which are monitored with a moving linear 

correlation of the blood pressure to the cerebral blood volume near-infrared 

spectroscopy [211]. The local dependency is a limitation of these noninvasive 

methods [208].  

A novel noninvasive technology (Certification (CE) marked device) was 

developed by the Health Telematics Science Institute at Kaunas University of 

Technology (Kaunas, Lithuania). ICP(t) slow waves were replaced by IBV(t) slow 

waves to estimate the CA status which was included in the calculation of the 

noninvasive volumetric reactivity index VRx(t) as a moving correlation coefficient 

between the slow IBV(t) and ABP(t) waves [208]. The clinical applicability of the 

VRx has been proven by several clinical studies conducted by the Health Telematics 

Science Institute at Kaunas University of Technology (Kaunas, Lithuania), such as 

the noninvasive ultrasonic VRx based on time-of-flight with the invasive PRx on 61 

patients with brain injuries and showed excellent coincidence with reflect 

autoregulation [208]. Another comparative study with 11 patients with brain injuries 

revealed a significant relationship associated with VRx and PRx outcomes [212], 

which indicated that VRx reflects autoregulation the same way as PRx. Additionally, 

the applicability of the noninvasive IBV estimation technique for cerebrovascular 

autoregulation monitoring reflected the similarity between invasive ICP and 

noninvasive IBV [181,213,214]; these were used to derive the reactivity indexes 

(PRx, VRx). In this study, we investigated novel noninvasive ultrasonic methods 

developed by the Health Telematics Science Institute at Kaunas University of 

Technology (Kaunas, Lithuania) based on real-time monitoring of the ultrasound 

speed and compared that with attenuation dynamics. We aimed to determine 

similarities in both the time-of-flight and attenuation channels to use VRx2 

(attenuation-based index) as an alternative technology. This is closely similar to the 

time-of-flight technology related to the acoustic path, and this path crosses arterioles 

(small vessels) responsible for autoregulation, while attenuation shows this integrated 

reaction of small vessels to the changes in the blood pressure.  
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The clinical applicability of novel noninvasive ultrasound attenuation based 

VRx2 is comparable with the time-of-flight based VRx1, which is already in use for 

clinical studies. The attenuation ultrasound-based VRx2 is an attractive, cost-effective 

alternative to the time-of-flight based VRx1 and even less expensive than TCD 

(transcranial Doppler) and potentially easy for hardware miniaturization. A 

comparative study was performed by determining VRx1 and VRx2 calculations. 

6.1.2 Cerebral autoregulation assessment 

CA status was monitored by using a novel noninvasive ultrasonic monitor 

developed by the Health Telematics Science Institute at Kaunas University of 

Technology (Kaunas, Lithuania) for real-time monitoring of the ultrasound speed and 

attenuation dynamics in the human brain. The technology provides real-time 

information regarding IBV changes and waves in the cerebral vessels responsible for 

CA [181,213,214]; such changes and waves are causes of the intracranial pressure 

(ICP(t)) changes and waves [214]. The novel technology idea was based on the 

possibility of measuring intracranial blood volume changes and waves inside the 

acoustic path that crosses the human head, while applying an ultrasonic time-of-flight 

method, see Fig. 6.1 [215]. The speed and attenuation of ultrasound reflect the density 

of blood, brain tissue, and cerebrospinal fluid volumes inside an acoustic path. 

According to the database of the IT’IS (Information Technologies in Society) 

Foundation (Switzerland, 2019) [216], the values of ultrasound speed (± standard 

deviation) in blood, brain tissue, and cerebrospinal fluid were 1578.2 (± 11.3) m/s, 

1546.3 (± 20.2) m/s, and 1505.5 (± 3.5) m/s, respectively. The Ultrasonic time-of-

flight technology measures the time of short ultrasound pulses are transmitted through 

the human head with picosecond resolution and the attenuation of such pulses.  

The method is based on the transmission of short ultrasonic pulses from one side 

of the head and the receiving on the other side of the ultrasonic pulses which were 

propagated through the external tissues, skull, and intracranial media. We are 

detecting the ultrasound time-of-flight variations [215,217] and ultrasound 

attenuation variations caused by the volume changes of intracranial media (the 

cerebrospinal fluid, brain parenchyma tissue, arterial and venous blood) inside the 

parenchymal acoustic path. The acoustic is measured as echo, and the ultrasonic 

signals are used for transmission through the human head.  

Similarly, in order to obtain an attenuation channel surrogate (IBV), a short 

pulse of ultrasonic time of flight traveling through the acoustic medium of human 

head measuring changes in the blood volume was received at the other side of the 

head as shown in Fig. 6.1, where adding an additional detector of amplitude at the end 

of the receiver was attempted.  

Both (Time of flight and attenuation) monitoring results reflect the changes of 

the blood and cerebrospinal fluid volume inside the acoustic path in different ways, 

reflected by intracranial ultrasound speed and attenuation changes caused by cardiac 

pulsation and respiration processes, cerebrospinal blood flow autoregulation 

processes, and other intracranial dynamic phenomena. However, both channels 

reacted to the physiology in the same way, see Figs. 6.2, 6.3, and 6.4. 
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Fig. 6.1. Technological description of the ultrasonic time of flight 

measurement [215]  

The usual invasive CA monitoring is based on ABP(t) and the ICP(t) slow-wave 

correlation index PRx(t) calculation [64,177,218–220]. In the new noninvasive 

technology, ICP(t) slow waves were replaced with IBV(t) slow waves, and the CA 

status was estimated by calculating the noninvasive VRx(t) as a moving correlation 

coefficient between the slow waves of IBV(t) and ABP(t). Slow ABP(t) and IBV(t) B 

waves with a period of 0.5–2.0 minutes reflecting the vasogenic activity of 

cerebrovascular autoregulation and was used for VRx(t) calculations [181,213,214]. 

A head frame including a pair of ultrasonic transducers on either side of the head 

was positioned so that the acoustic path crossed the intracranial media, including 

parenchyma and brain ventricles, but avoiding large arteries and veins. IBV(t) changes 

and slow waves caused by vasodilatation and vasoconstriction mechanisms reflected 

the changes in the parenchymal vessels’ diameter responsible for maintaining a 

relatively stable CBF [181,213]. The vasoconstriction of arterioles and capillary 

vessels was the physiological autoregulatory reaction to the increased mean arterial 

blood pressure (MAP). The blood volume inside the acoustic path decreased in these 

cases, while that monitored by the speed of ultrasound also decreased [191]. The 
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capability to sense the overall integrated volumetric reactions of the brain and 

increased temporal resolution of CA monitoring were the primary advantages of this 

ultrasonic method compared with other methods based on local blood volume/velocity 

monitoring by using near-infrared spectroscopy (NIRS) and Doppler technology 

applications [223–227].  

The CA status of healthy participants was continuously assessed for 15 minutes 

by monitoring the time dependence of the two noninvasively recorded VRx(t) 

indexes, including VRx1(t), which reflected ultrasound speed dynamics, and VRx2(t), 

which reflected ultrasound attenuation dynamics. The ABP(t) slow-wave reference 

signal was taken from a noninvasive ABP(t) Finapres Nova monitor. Negative values 

of both VRx(t) < 0 corresponded to the intact CA status, and positive VRx(t) values 

> 0 indicated CA impairment [211,212,218–221]. Two-minute moving averages of 

both VRx(t) were used to obtain a temporal resolution of CA impairments that were 

at least two times higher than those obtained with NIRS or Doppler CA monitors. 

During cardiopulmonary bypass (CPB), continuous slow MAP(t) waves with a stable 

period of T=60 seconds were generated by periodic (60 seconds) 20-second breath-

holds. This type of periodic modulation of O2/CO2 saturation in the cerebral blood 

created reference MAP(t) slow waves and the speed of ultrasound and ultrasound 

attenuation slow waves as cerebrovascular blood flow autoregulatory reactions (two 

informative signals for two VRx(t) index calculations). 

6.1.3 Data analysis  

The recorded data was bandpass filtered to extract the slow waves of ABP(t) 

and IBV(t) (of the attenuation and time-of-flight channels). The correlation coefficient 

was estimated between the bandpass filtered spectra of both channels’ slow waves.  

On the other hand, the FIR (Parks–McClellan) filter was also used to extract the 

slow waves of ABP(t) and IBV(t) (for the attenuation and time-of-flight channels). 

Moreover, the correlation coefficients were estimated between the FIR filtered spectra 

of both channels’ slow waves. 

After slow-wave correlation studies, noninvasive volumetric reactivity indexes 

(VRx1 and VRx2) were calculated as a moving correlation coefficient between the 

slow waves of IBV(t) and ABP(t) waves from the time-of-flight and attenuation 

channel. Slow ABP(t) and IBV(t) B waves were obtained. Two separate sets of 

volumetric indexes (VRx1 and VRx2) were estimated, one set from the bandpass filter 

and the other set from the FIR (Parks–McClellan) filter. The volumetric indexes were 

then compared to determine the differences in both channels’ CA outcomes with 

different filtration approaches.  

Additionally, before slow-wave filtering, hyperventilation and breath-holding 

tests were performed for vasoconstriction and vasodilation dynamics for a few 

seconds to determine whether both channels are reacted to the physiology in the same 

way, when the arterial blood pressure (ABP) was the same. Furthermore, pulse waves 

for the 10-second window were also extracted from both the time-of-flight and 

attenuation channels for comparison purposes.  
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6.1.4 Statistical analysis 

Statistical analysis was performed by using the SPSS (IBM Inc., New York, 

USA) Version 20 software package. A linear regression analysis of VRx1 and VRx2 

was performed. VRx1 and VRx2 data was averaged during each simultaneous 

monitoring session to produce one value per participant (43 data points). Pearson’s 

correlation coefficient between VRx1 and VRx2 averaged data was calculated with a 

3-minute time window used for each monitoring session.  

6.1.5 Outcome of the analysis 

Before slow-wave filtering, the pulse wave for the 10-second window was 

extracted from both the time-of-flight and attenuation channels, which indicated that 

both channels had a similar reaction to the physiology, as shown in Fig. 6.2(a) and 

(b). Furthermore, hyperventilation and breath-holding tests were performed for 

vasoconstriction and vasodilation dynamics for a few seconds by time-of-flight and 

attenuation ultrasonic noninvasive CA monitoring (see Figs. 6.3 and 6.4). They also 

reflected that both channels reacted to the physiology in the same way when ABP was 

the same. 

The noninvasive VRx1, which reflected ultrasound speed dynamics, and VRx2, 

which reflected ultrasound attenuation dynamics, indexes were recorded for 43 

healthy participants. The monitoring sessions were performed for 15 minutes for each 

participant. The correlation between the slow waves extracted from the time-of-flight 

and attenuation channels was as shown in Table 6.1where, the participants were 

grouped according to the correlation outcomes between the time-of-flight and 

attenuation channels, where correlation from the FIR (Parks–McClellan) filtering 

approach had 33 participants with a correlation of more than 0.5 (higher correlation) 

and ten participants with less than 0.5 (low) correlation. 

Table 6.1. Correlation outcome between slow waves of TOF and attenuation 

channels. 

Correlation 

outcome (r) 

Band-Pass Filtered 

Slow Wave 

FIR (Parks–

McClellan) Filtered Slow 

Wave 

>0.5 31 participants 33 participants 

<0.5 to 0 12 participants 10 participants 
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Fig. 6.2. Intracranial volumetric pulse waves (causes of ICP waves) 

noninvasively and simultaneously recorded by (a) the ultrasonic time-of-flight 

recording method and (b) the attenuation recording method inside an acoustic path 

which is crossing the skull and the brain 
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Fig. 6.3. Vasoconstriction dynamics of intracranial blood vessels caused by 

hyperventilation test and recorded by (a) the time-of-flight and (b) attenuation 

channels of the ultrasonic noninvasive CA monitor 
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Fig. 6.4. Vasodilatation dynamics of intracranial blood vessels caused by 

the breath-holding test and recorded by the (a) time-of-flight and (b) attenuation 

channels of the ultrasonic noninvasive CA monitor 

By contrast, bandpass filtering found 31 participants with a correlation of more 

than 0.5 (higher correlation) and 12 participants with less than 0.5 (low), which 

reflected a significant correlation in the ultrasound speed dynamics’ (TOF) slow 

waves and ultrasound attenuation’s slow waves. Examples of comparisons between 

both channels’ slow waves with correlations for a three-minute window are shown in 

Fig. 6.5. Furthermore, examples of comparisons between VRx1 and VRx2 over 15-
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minute monitoring periods are shown in Fig. 6.6. VRx1 and VRx2 parameters 

estimation ranges are from -1 to +1; meanwhile, the range shown in Figs. 6.6, 6.7, and 

6.8 is from -1 up to 0 because the healthy volunteers were having intact autoregulation 

(below 0); therefore, the -1 up to 0 range was chosen for representation. 

  

(a) (b) 

Fig. 6.5. Examples of three-minute periods of slow waves extracted from 

time-of-flight and attenuation dynamics; comparison of participants with (a) 

excellent correlation by the bandpass filter and (b) excellent correlation by the FIR 

(Parks–McClellan) filter 

 
 

 

(a) (b) 

Fig.6.6. Comparison window for volumetric reactivity indexes (VRx1 and VRx2) 

for 15-minute time with (a) an excellent correlation by the bandpass filter and (b) an 

excellent correlation by the FIR (Parks–McClellan) filter 

Three-minute time-averaged (per participant in 43 pairs) VRx1 and VRx2 

indexes were used for linear regression, where the correlation coefficient between 

VRx1 and VRx2 averaged 0.730, with a 95% confidence interval of 0.501–0.895, and 
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a statistical significance of less than 0.0001 in the studied population. Similarly, in the 

FIR (Parks–McClellan) filtered data, the correlation coefficient between VRx1 and 

VRx2 averaged 0.769, with a 95% confidence interval of 0.611–0.909 and a statistical 

significance of less than 0.0001 in the studied population (see Fig. 6.7a and b). 

The linear regression plots between the pairs of VRx1 and VRx2 indexes were 

averaged per participant’s monitoring sessions, as shown in Fig. 6.7a, and b. There 

were significant statistical similarities between both the ultrasound speed dynamics 

(time-of-flight), ultrasound attenuation dynamics, and their CA indexes (VRx1 and 

VRx2), while the FIR (Parks–McClellan) filtered approach exhibited slightly higher 

correlation outcomes compared to the bandpass filtration. The standard deviation of 

the difference between VRx1 and VRx2 was 0.1647, and the bias between VRx1 and 

VRx2 was −0.3444 by bandpass filtering; while in FIR (Parks–McClellan) filtered 

data, the standard deviation of the difference between VRx1 and VRx2 was 0.1382, 

and the bias between VRx1 and VRx2 was −0.3669 (see Fig. 6.7a and 6.7b). 

Fig. 6.7. Comparison of VRx1 and VRx2 indexes by regression analysis. (a) 

Bandpass filtering. The correlation coefficient between VRx1 and VRx2 indexes 

is denoted as r = 0.730. The statistical significance is p < 0.0001. (b) FIR (Parks–

McClellan) filtering. The correlation coefficient between VRx1 and VRx2 

indexes is r = 0.769. The statistical significance is p < 0.0001 

Bland–Altman plots between the pairs of VRx1 and VRx2 indexes averaged per 

participant’s monitoring sessions are shown in Fig. 6.8a, and b. All these outcomes 

reflected a good agreement between the ultrasound speed dynamics (TOF) and the 

ultrasound attenuation dynamics-based indexes (VRx1, VRx2).  

 

  
(a) (b) 
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(a) (b) 

Fig. 6.8. Comparison of VRx1 and VRx2 indexes by Bland–Altman plots. 

(a) Bandpass filtering. The standard deviation of the difference between the 

indexes is SD 0.1647. Bias is −0.3444. (b) FIR (Parks–McClellan) filtering. The 

standard deviation of the difference between the indexes is SD 0.1382. Bias is 

−0.03669 

6.1.6 Discussion 

CA status analysis was conducted for healthy participants by monitoring the 

time dependence of noninvasively recording the two VRx(t) indexes, including 

VRx(t)1, which reflected ultrasound speed dynamics, and VRx(t)2, which reflected 

ultrasound attenuation dynamics. As there was no gold standard for noninvasive CA 

monitoring, VRx (ultrasound speed dynamics), time-of-flight was chosen as a 

reference index, CE marked, and already used for clinical studies. 

Changes in IBV values consist of slow respiratory and pulse waves and are 

associated with ICP changes [191]. Hence, the similar reaction to physiology by both 

the channel’s (time of flight and attenuation) pulse wave, vasoconstriction, and 

vasodilation was evidence of similarity in both channels, Figs. 6.2–6.4 indicate that 

both channels (time-of-flight and attenuation) reacted to the physiology in the same 

way; we keep in mind the artifacts which were filtered by the bandpass and FIR 

(Parks–McClellan) filtration.  

However, there were some differences between the channels. For example, if 

the surplus of oxygen provoked IBV change due to hyperventilation, there was too 

much oxygen in the blood, which caused vasoconstriction. Hence, the volume 

decreased in both channels, although the difference was small. This slight difference 

showed that the attenuation channel was slightly different (Fig. 6.2), which may be 

due to a number of factors, such as differences in transmission or differences in 

monitoring attenuation and time-of-flight channels because a different parameter of 

the dynamic media was measured. Generally, if the blood volume increased, both 

channels indicated an increment, and if the blood volume went down, both channels 

should indicate a fall. 

We created a classifier; the classifier had two states: impaired (autoregulation 

reactivity index from 0 to 1), and intact (autoregulation reactivity index from -1 to 0). 
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We took an already existing classifier, (VRx1) time-of-flight, clinically tested 

[208,212], as a reference to create another inexpensive classifier, an attenuation-based 

reactivity index (VRx2). We compared both classifiers to find out whether they 

provided the same diagnostic information. We used linear regression and Bland–

Altman methods to compare the agreement between these two methods. Linear 

regression showed significant correlation of 0.731, p<0.0001, 95% confidence 

interval [0.501–0.895] in the bandpass filter. FIR (Parks–McClellan) filtering had a 

slightly higher correlation of 0.769, p<0.0001, 95% confidence interval [0.611–

0.909].  

On the other hand, Bland–Altman’s direct comparison proved that both 

classifiers yielded intact cerebral autoregulation values, as both curves of VRx1 and 

VRx2 had outcomes from −1 to 0 (see Fig. 6.8a and 6.8b), which was intact 

autoregulation [211,212,218–221] as we already knew that we were using healthy 

subjects for the study, which guaranteed an intact outcome.  

The average of both VRx(t) values was used to achieve a temporal resolution of 

CA impairments’ detection that was at least two times higher than that of NIRS or 

Doppler CA monitoring. The capability to sense the overall integrated volumetric 

reactions of the brain and the increased temporal resolution of CA monitoring were 

the primary advantages of this ultrasonic method compared with any other methods 

based on the local blood volume/velocity monitoring using near-infrared spectroscopy 

(NIRS) and Doppler applications [222–227].  

Several studies have been conducted that compared invasive CA indexes, 

though most of them were compared against the invasive PRx. However, this study 

provided a comparison of two noninvasive volumetric reactivity indexes to show that 

the novel attenuation-based volumetric reactivity index (VRx2) could be used as an 

alternative to the time-of-flight based volumetric reactivity index (VRx1), where 

VRx1 (based on time-of-flight) is already being tested in (dynamic conditions) 

traumatic brain injury patients, against PRx, and it is already in use for clinical studies. 

Time-of-flight studies [171,175] indicated that the VRx1 (TOF channel) output signal 

highly correlated with invasive PRx(t), which could be used for comparison with the 

attenuation channel’s signal in healthy participant studies. However, it would be 

recommended in the future to test the attenuation channel directly in traumatic brain 

injury patients against PRx.  

6.1.7 Summary of the chapter   

This comparative study of the noninvasive ultrasonic volumetric reactivity 

indexes VRx1 (time-of-flight) and VRx2 (attenuation) monitoring was based on the 

ultrasonic time-of-flight and ultrasonic attenuation measurement of IBV dynamics, 

which showed a significant correlation. VRx2 (attenuation) could be used as a 

noninvasive cerebrovascular autoregulation index in the same way as VRx1 and could 

be used to reflect essential information related to the CA status. Compared with a 

bandpass filter, the FIR (Parks–McClellan) filter had slightly higher correlation 

outcomes between the two indexes.  
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6.1.8 Limitations of the study  

This study was conducted on a small population of participants (only 43 

participants). A validation study with a much larger population of healthy participants 

is necessary. Furthermore, there is no gold standard for the cerebral autoregulation 

monitoring method. Another essential factor in producing more concrete results is the 

comparison of the volumetric reactivity index (VRx1 and VRx2) outcomes with 

various filtering approaches and various methods. It would be recommended in the 

future to test the attenuation channel directly in traumatic brain injury patients against 

PRx. 

7.  CONCLUSION AND RESEARCH OUTLOOK  

7.1 Discussion and Outcomes  

In the case of the absence of a ‘gold standard’ classifier to classify the two states: 

impaired (autoregulation reactivity index from 0 to 1) and intact (autoregulation 

reactivity index from -1 to 0), the only way to test the reliability of the CA monitors 

is by patient treatment outcome analysis; therefore, in the case of our TBI patient CA 

analysis, we use the Glasgow outcome scale (GOS) score after hospital discharge 

(GOSHD) as the patient treatment outcome reference for the CA (the intact and 

impaired) state. GOS outcomes were taken as the reference for the dichotomous 

outcome for sensitivity, specificity, and ROC curve estimation. The patient’s outcome 

was defined by using the following: 1 (death), 2 (persistent vegetative state), 3 (severe 

disability), 4 (moderate disability), and 5 (low disability). The reliability of this patient 

treatment outcome analysis method is higher as the reference was taken from the 

actual patient outcomes from GOS where it is commonly known that the inter-rater 

reliability of the total Glasgow coma scale is p=0.81.  

On the other hand, in the case of the non-invasive classification of the CA status, 

we created a classifier, where we took an already existing classifier, (VRx1) time-of-

flight, clinically tested [208,212], as a reference to create another inexpensive 

classifier, the attenuation-based reactivity index (VRx2). We compared both 

classifiers to find out whether they provided the same diagnostic information. The 

reliability of this non-invasive classifier was higher to classify the outcome into two 

classes (intact versus impaired) because we were using a healthy volunteer for the 

study, which guaranteed an intact outcome of the healthy volunteer, where VRx1 is 

already being tested in TBI in comparison with invasive CA monitoring.  

In-depth knowledge of cerebrovascular physiology and fundamental cerebral 

hemodynamics is required for the current management of severe TBI. 

Neuromonitoring methods, for example, ABP, ICP, and IBV measurements, allow 

clinicians or neuro-physicians, or neuroscientists, the possibility for the examination 

and identification of morphological and functional defects that have a negative impact 

on the patient outcomes. Over a period, invasive (PRx) from FIR (Parks–McClellan) 

filtered ABP and ICP slow wave is modified to a better approximate to the currently 

used filtration methods.  
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Non-invasive ultrasonic attenuation dependent variables have been employed to 

regular patient monitoring methods (for example, VRx1 and VRx2) to offer alternate 

slow wave measures of cerebral autoregulation with an increased focus on the CBV 

signal analysis. It has enabled new derived parameters to be modified to better, more 

reliable and cost-effective than their invasive counterparts. The growth of the non-

invasive neuro-measurements outside the neurocritical care environment has an 

enormous possibility for the outcome forecast in ICU management; these monitoring 

approaches produce a more comprehensive patient description without any extra 

hazard.  

7.2 Main Results  

This dissertation evaluated the clinical implementation of usable 

neurophysiological slow-wave filtering techniques and the application of the novel 

noninvasive neuromonitoring techniques in acute brain injury.  

In Chapter 2, the core mechanisms and clinical descriptors of cerebral 

autoregulation and the role of slow waves were introduced and evaluated in the 

context of both invasive and noninvasive neuromonitoring parameters that are being 

used in the prediction of patient mortality following acute brain injury: Chapter 3 

outlined the methodologies of the work presented in this thesis.  

In Chapter 4, the impact of artifact(s) in the arterial and cerebral signal and a 

comparison of filters for the selection of the best filter for artifact rejection were 

described in several distinct patient populations. To select the best possible filtration 

of neurophysiological signals to avoid the false alarm in the intensive care unit, five 

filters were tested.  Among the five filters, the FIR (Parks–McClellan) filter showed 

the autoregulation correctly and was most similar to the widely used moving average.  

 In Chapter 5, the quality of ABP and ICP indicates that the FIR (Parks–McClellan) 

filtering approach was more delicate for distinguishing among clinical results, intact 

(alive), and impaired (dead) in CA for TBI treatment decisions.  

In Chapter 6, the noninvasive ultrasonic volumetric reactivity VRx1 (time-of-

flight) and VRx2 (attenuation) monitoring study showed a significant correlation 

between VRx1 and VRx2. VRx2 (attenuation), which could be used as an alternative 

index in the same way as VRx1 and could also be used to estimate the noninvasive 

CA status. In comparison with bandpass filtering, the FIR (Parks–McClellan) filter 

had slightly higher correlation outcomes between both VRx1 and VRx2 indexes. 

While Attenuation (VRx2) based CA monitoring, ultrasonic technology is attractive 

as it is a cost-effective method.  

7.3 Limitations to the study 

Various essential limitations of all of the clinical studies submitted in this 

dissertation must be considered before the outcome’s generalization.  

- The patient data for most points estimated the same large, overlapping clinical 

monitoring database separated into different sets to meet the requirements of the 

comparison study in question.  

- Reports on the clinical conditions and other nursing or clinical treatment are 

not regularly presented in the dataset, so it is almost not possible to attribute 
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detectable ICP/IBV or ABP trends as a result of TBI rather than to any other 

clinical manipulations that happen with the target to treat no steady patients.  

- The continuous prospective data obtained from a different patient/volunteer 

from ICU settings, this sample size was significantly smaller to conclude the risk 

of mortality. A validation study on a larger population is necessary.  

- There is no gold standard present for the cerebral autoregulation monitoring 

method, hence, there is no standard gold reference.  

- To produce more concrete results, it is essential to compare invasive PRx 

outcomes with various filtering methods.  

- The impact of a sedative on the slow arterial blood pressure waves was not 

analyzed, and data analysis was not considered, which may cause higher pressure 

reactivity index values by higher or lower sedative doses to make the patient sleep.  

- Only healthy volunteer data was used for a comparative study of the 

noninvasive volumetric reactivity index (attenuation and time of flight). 

- It would be suggestive in the future to test the attenuation channel directly in 

traumatic brain injury patients against PRx. However, we do not have the resources 

and time at the moment to invest.   

- Different existing parameters that could impact neuromonitoring indexes 

have not been taken into account in this dissertation, for example, brain tissue 

oxygenation, mechanical ventilation, and microdialysis. The interaction of these 

parameters with the ultrasonic attenuation-based indexes and CA has not been 

estimated, although these relationships could provide insight into the future 

development of the outcome forecasting techniques.  

7.4 Summary of the Research Outlook 

7.4.1 Filtering of slow neurophysiological waves in CA 

The presentation of the results from the filtering and estimation of the 

sensitivity and specificity of the slow wave in association with cerebral 

autoregulation introduced the concept of the signal quality estimation and 

enhancement in neuromonitoring and their impact as an alarm in the intensive care 

unit. Although not evaluated within the scope of this thesis, the comparative 

analysis of other invasive neuromonitoring modalities in the general intensive care, 

the estimators of cerebral autoregulation is of great interest to future studies of 

outcome prediction. Additionally, it will serve as a comparative study of various 

filtration techniques on a large population and data spanning over a longer period.  

7.4.2 Non-Invasive ultrasonic attenuation based on autoregulation monitoring  

The advancement of non-invasive approximation of the conventional invasive 

estimators of cerebral autoregulation (i.e., PRx and ICP) offers the potential to 

extend neuromonitoring inside and outside of the clinical care settings. These 

variables can be determined based on non-invasive ultrasonic attenuation signal 

evaluation. The use of ultrasonic attenuation in the clinical care environment poses 

no risk of infection or discomfort to patients and can swiftly depict cerebral 

hemodynamics in real time. If attenuation (VRx2) based measurement can be 

expanded to clinical patients in the future, real-time attenuation (VRx2) can detect 
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and track the variations or changes in the hemodynamics of brain physiology. IBV 

observation (and attenuation-based autoregulation index) could then be used for 

patient-specific care plans, instead of speculating on the research trends. Also, 

attenuation-based monitoring is a technology which is easy to implement and, on 

top of that, is cost-effective as it is even cheaper than TCD, and it could be a key 

market for developing nations.  

7.5 Overall Conclusions   

1. Among the five filters – the moving average filter, the FIR (Parks–

McClellan) filter, the Kalman filter, the Butterworth low pass filter, the 

Chebyshev filter – the FIR (Parks–McClellan) filter showed the autoregulation 

correctly and was most similar to the widely used moving average. The above 

outcomes reflect that the FIR (Parks–McClellan) filtering approach is higher 

in quality than the Kalman filter, the Butterworth low pass filter, the 

Chebyshev filter, and slightly better than the moving average in terms of the 

reactivity index estimation. Therefore, the FIR (Parks–McClellan) method was 

selected for our autoregulation index estimation studies.  

2. The relation between the sensitivity of the PRx, TBI patient’s clinical 

outcome, and the quality of ABP and ICP shows that the FIR Parks–McClellan 

type filtering method (featuring a sensitivity of 70% and a specificity of 81%) 

was more sensitive towards autoregulation than the moving average filter (58% 

sensitivity and 72% specificity).  

3. Two methods – VRx1 based on time-of-flight and VRx2 based on 

ultrasonic attenuation – were compared in the comparative study of the 

noninvasive ultrasonic volumetric reactivity indexes, which showed the 

correlation coefficient of 0.769 with a statistical significance p<0.0001 by the 

FIR (Parks–McClellan) filtering method. This reflects a significant correlation, 

thus VRx2 can be used as a noninvasive CA index in the same way as VRx1. 

Additionally, the FIR (Parks–McClellan) filter had slightly higher correlation 

(0.769) outcomes than the bandpass filtering method (0.730), among both 

indexes.  

4. The attenuation based (VRx2) noninvasive CA monitoring 

technology is attractive because it is 3 times more cost effective than the TOF 

based (VRx1) CA monitoring while offering the same reliability as TOF CA 

monitoring.  

The most important finding of this doctoral thesis is the explanation of the 

improving slow ABP/ICP signal quality (sensitive and specific towards CA) for 

better cerebrovascular autoregulation by automatic elimination of artifacts in the 

arterial line and by the FIR (Parks–McClellan) filtering developed under this thesis. 

It has been demonstrated in the process of both invasive and noninvasive subjects 

(patient/healthy volunteer) analysis.   
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