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NOMENCLATURE 

Literature review 

 a – the constant amplitude of harmonic oscillations;  

ia and ib  – Fourier coefficients; 

AIC – Akaike information criterion; 

te – the forecast error; 

F̂  – a stepped moiré grating function with pitch  ;  
 nH   – the Hankel matrix (the catelecticant matrix with constant skew diagonals) ; n 

is the order of the square matrix; 

 ss FH ̂;ˆ  – time-averaging operator;  

 dI   –  d-th order of homogenous nonstationary process; 

0J  – the zero order Bessel function of the first kind; 

L – the lag operator mtt

m xxL  ; 

 yxM ,  – the grayscale level of the surface at point  yx, ; 

 yM  – the grayscale level of the surface at point y ; 

m  – the H-rank of the sequence  0; Zkxk  ; 

MAE – average of absolute forecasting errors; MAPE – average of percentage absolute 

forecasting error; ME – average of forecasting errors; MSE – average of squared 

forecasting errors; 

 2;0 N  – Gaussian distribution; 

jip ,
– the grayscale level of an appropriate image based on two images (i and j) 

geometric or algebraic superposition;  

PSO – particle swarm optimization method; 

q  – the order of moving average MA(q) model; 

ir  – the i-th root of the zero order Bessel function of the first kind;  

RMSE – root of average of squared forecasting errors; 

 ksssS ,,, 21   – k segmentation S is a partition of  n,,2,1   into k not-overlapping 

intervals or segments such that     11,,  ibibi tts  , where ib  is the beginning of the 

i-th segment; 

is  – the amplitude of oscillation at the center of the i-th fringe; 

 xSig  – the sigmoid function; 

SES – simple exponential smoothing; 

SIC – Schwarz information criterion; 

T  – the exposure time; 

 ntttT ,,, 21  –  time series sequence T consisting of n observations, Rti  .  

 xu  – the amplitude of harmonic oscillations; 
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 iDiii vvvV ,,, 21  – particle’s speed in D-dimensional space; 

  – the cyclic frequency; 

jiw , , jw – connection weights (artificial neural network (ANN) model parameters); 

pi ,,2,1,0  , qj ,,2,1,0  ; p is the number of input nodes; and q is the number of 

hidden nodes; 

 iDiii xxxX ,,, 21   – particle’s coordinates in D-dimensional space; 

tx  – the value of process (of the time series) at time t; 

tx  – moving average process; 

tx  – the first difference of the process at time t. 

Greek symbols 
  – smoothing factor ( 10  ); 

0 , 1  – coefficients of autoregressive process AR(1); 

  – deterministic trend coefficient; 

}{ i  – uncorrelated random shocks with zero mean and constant variance; 

  



q

i

i

i LL
0

  – linear combination of lagged MA(q) process coefficients; 

i  – moving average MA(q) model coefficients; 

  – the pitch of the moiré grating; 

  – the mean of the process tx ; 

s̂  – a triangular waveform time function with oscillation amplitude s;  

k  – characteristic roots of the Hankel matrix, rk ,,2,1  ; 

2  – the variance of the process tx ; 

i  – AR(p) model coefficients; 

  



p

i

i

i LL
0

 –  linear combination of lagged AR(p) process coefficients; 

}{ i – the World decomposition coefficients, that satisfies inequality .
1

2 


i

i

Advanced and chaotic visual cryptography 

ka , kb – Fourier coefficients; 

A   – the amplitude of harmonic oscillations of deformable moiré grating; 

C , C – the infimum and the supremum of the grayscale grating function; 

E – the averaging operator; 

dE  – the envelope function modulating the stationary grating; 

 xF – grayscale grating function; 

 xF
~

– harmonic grating function; 
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 xF – stepped grating function; 

 txFd ,  – the deformed moiré grating; 

 xF nm, – m-pixels of n-grayscale levels grating function; 

 xF – the norm of the grayscale grating function; 

sH – time averaging operator; 

0J – zero order Bessel function of the first kind; 

kL   – the coefficient of linearly increasing pitch moiré grating; 

 xps – the density function of the time function  ts ; 

 P – the Fourier transform of the density function  xp ; 

 P
~

– the envelope function in chaotic visual cryptography; 

nr – the n-th root of the zero order Bessel function of the first kind; 

ky – grayscale levels of grayscale grating function  xF nm, ; 

Greek symbols 

 – the average of the grayscale grating function; 

 – the optimality criterion for a grayscale grating function; 

 – size of a pixel in digital screen; 

 – the crossover coefficient in genetic algorithms; 

 – the pitch of the grating; 

 – the crossover coefficient in genetic algorithms; 

 ts – time function, describing dynamic deflection from the state of equilibrium; 

 ts
~

– time function, describing harmonic oscillations process; 

 ts̂ – time function, describing triangular waveform type oscillation process; 

 – the standard deviation of a grayscale grating function; 

 jt  – discrete normally distributed numbers at time t; 

 nmF , – the fitness function of a perfect grayscale grating function; 

Short-term time series segmentation and forecasting 

a – coefficient determining the penalty proportion; 

 mF 210 ,,,    – the fitness function; k – the additive noise; 

Hr – the H-rank of the sequence;  

I – the identity matrix; 

s – the averaging window in moving averaging algorithm; 

kx~  – the sequence described by an algebraic progression; 

 – the prediction error level;  

i  – the penalty coefficient;  

 A – the spectrum of a square matrix A. 
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INTRODUCTION 

Visual cryptography is a cryptographic technique which allows visual 

information to be encrypted in such a way that the decryption can be performed by 

the human visual system, without any cryptographic computation. Naor and Shamir 

introduced this concept in 1994. They demonstrated a visual secret sharing scheme, 

where the image was split up to n transparent shares so that only someone with all n 

superimposed shares could decrypt the image, while any 1n  shares revealed no 

information about the original image. Since 1994 many advantages in visual 

cryptography have been done, but all these schemes are based on the concept of image 

splitting into n separate shares – until dynamic visual cryptography scheme (based on 

geometric time-averaged moiré) was proposed in 2009. 

Geometric moiré is a classical in-plane whole-field nondestructive optical 

experimental technique based on analysis of visual patterns produced by superposition 

of two regular gratings that geometrically interfere. The importance of the geometric 

moiré phenomenon is demonstrated by its vast number of applications in many 

different fields of industry, civil engineering, medical research, etc. Dynamic visual 

cryptography is an alternative image hiding method that is based not on the static 

superposition of shares (or geometric moiré images), but on time-averaging geometric 

moiré. This method generates only one picture, and the secret image can be interpreted 

by human visual system only when the original encoded image is harmonically 

oscillated in a predefined direction at strictly defined amplitude of oscillation. If one 

knows that the secret image appears while harmonically oscillated, trial and error 

method can reveal secret image. Additional security measures are implemented, 

where the secret image can be interpreted by a naked eye only when the time function 

describing the oscillation of the encoded image is a triangular waveform. 

Experimental implementations of dynamic visual cryptography require 

generation of harmonic oscillations – the secret image is leaked in a form of moiré 

fringes in the time-averaged image. Unfortunately, experimental generation of the 

harmonic motion is not a straightforward task. A nonlinear system excited by 

harmonic oscillations could result into a chaotic response. Therefore, the concept of 

chaotic dynamic visual cryptography is an important problem both from the 

theoretical and practical points of view. The ability to construct image hiding 

cryptography scheme based on chaotic oscillations can be exploited in different 

vibration related applications. 

The feasibility of chaotic dynamic visual cryptography is one of the main topics 

discussed in this dissertation. Theoretical relationships and computational 

experiments are derived and discussed in details, though real-world experiments 

remain a complicated task – simply because the human eye  cannot perform averaging 

in time with long expose times – the eye can capture an averaged image usually only 

not longer than a split of a second. Therefore a tool for short-term time series 

segmentation is a necessity for an effective experimental implementation of chaotic 

dynamic visual cryptography. 

Time series segmentation is a general data mining technique for summarizing 

and analyzing sequential data. It gives a simplified representation of data and helps 
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the human eye to catch an overall picture of data. A proper segmentation of time series 

provides a useful portrait of the local properties for the investigating and modelling 

non-stationary systems. There are plenty time series segmentation methods based on 

statistical information analysis.  The prime requirements of these methods are based 

on necessity to have long data sets, though acquiring long data sets is not usually 

possible. The question of whether it is still possible to understand the complete 

dynamics of a system if only short time series are observed is raised and analyzed. A 

new segmentation technique based on the concept of skeleton algebraic sequences is 

presented in this dissertation. This technique not only detects the moment of potential 

change in evolution of the process. It also classifies skeleton sequences into separate 

classes. This segmentation technique is based on evaluation of short-term time series 

forecasting errors. Time series forecasting is an important task in many fields of 

science and engineering. There are plenty forecasting methods that require long data, 

but short-term time series analysis remains an important field of research. The concept 

of skeleton algebraic sequences has been introduced in 2011 and has successfully 

exploited for the prediction of short real-world time series. An improved algorithm 

with internal smoothing procedure for short time series prediction is presented in this 

dissertation. This procedure enabled to reach a healthy balance between excellent 

variability of skeleton algebraic sequences and valuable properties of predictors based 

the moving average method.  

Object of the research:  
1. Analytic relationships and modelling algorithms for the construction and 

analysis of chaotic dynamic visual cryptography and image hiding 

techniques based on moiré interference effects. 

2. Chaotic dynamic visual cryptography realizations based on stationary 

chaotic processes. 

3. Segmentation models of chaotic processes based on the assessment of short-

term time series forecasting errors.  

 The aims of the research: 
1. To construct, analyze and apply mathematical models and new algorithms 

for the construction and analysis of the chaotic dynamic visual cryptography 

and new image hiding techniques. 

2. To construct and analyze mathematical models in order to identify the 

models of time series dynamics and to apply these models for the 

segmentation and forecasting of short-term time series. 

To achieve these aims, the following tasks are solved in the dissertation: 

1. To construct an improved dynamic visual cryptography scheme with 

enhanced security based on near-optimal moiré grating, when the time 

function determining the process of oscillation is periodic and comply with 

specific requirements for the image hiding process. 

2. To construct dynamic visual cryptography scheme based on the 

deformations of the cover image according to a predetermined periodic law 

of motion. 
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3. To construct and implement chaotic visual cryptography scheme which 

visualizes the secret image only when the time function determining the 

process of oscillation is chaotic. 

4. To construct and implement an improved security chaotic visual 

cryptography technique based on near-optimal moiré grating. 

5. To construct a short-term time series segmentation methodology based on 

short-term time series forecasting errors. 

6. To construct a short-term time series forecasting technique based on the 

variability of Hankel transformation and properties of skeleton algebraic 

sequences. 

Methods and software of the research: 

Construction of the models of the investigated systems is based on mathematical 

and statistical analysis as well as on the known facts of optical experimental geometric 

and time-averaging moiré and further development of the moiré theory.  

The methods and algorithms of construction and visualization of chaotic 

dynamic visual cryptography are based on mathematical and statistical analysis, 

numerical methods, principles of operators’ calculus and principles of digital images 

processing. 

The methods of mathematical, geometrical, statistical and algebraic analysis 

theory are used in the research. Practical adoption of algebraic analysis is performed. 

Programming tools used for research are Matlab2010b and standard toolboxes 

(Image processing Toolbox, Image Acquisition Toolbox, Statistics Toolbox, and 

Econometrics Toolbox), statistical packet SPSS v.16. 

Programming tools created by the author. Classical recommendations are taken 

into account for programming soft computing algorithms.  

 Scientific novelty and practical significance of the research: 

1. A novel strategy for the construction of the optical moiré grating is 

developed: genetic algorithms are used for the selection of a near-optimal 

grating and a periodic law of motion which is employed for the decoding of 

the secret image.  

2. A new deformable dynamic visual cryptography technique based on the 

deformation of cover images is developed. This scheme could be 

implemented for the fault identification and control in micro-opto-

mechanical systems, where a stochastic cover moiré image could be formed 

on the surface of movable components. 

3. A chaotic dynamic visual cryptography scheme is developed.  The secret 

image is decoded if the cover image is oscillated according to a chaotic law. 

This scheme can be exploited for visual monitoring of chaotic oscillations. 

4. A novel short-term time series segmentation algorithm based on the 

forecasting errors is developed. The combinatorial algorithm for the 

identification of stationary segments and based on the forecasting error 

levels is constructed. The developed algorithm can be used to identify the 

segments of short-term time series – when the application of statistical 

information about the evolution of the process is simply impossible due to 

the lack of the available data. 
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5. An improved short-term time series forecasting technique for the 

identification of pseudo-ranks of the sequence is developed. The practical 

importance of the model is based on its ability to forecast short-term time 

series contaminated by noise.  

Author presents for the defense: 

1. Novel modifications of dynamical visual cryptography for near optimal 

moiré gratings.  

2. Novel dynamic visual cryptography scheme based on deformable moiré 

gratings. 

3. Novel modifications of dynamical visual cryptography when the encoded 

image can be decoded if the cover image does perform chaotic oscillations 

with predefined parameters. 

4. Novel short-term time series segmentation algorithm based on algebraic 

relationships. 

5. Novel modification of short-term time series forecasting technique based on 

internal smoothing. 

Approbation of the research:  

11 scientific papers have been published on the subject of the dissertation, 

including 7 papers listed in the ISI database with the citation index, other papers are 

presented in the international conferences and the exhibition “KTU Technorama 

2014” (presentation “The application of dynamic visual cryptography for human 

visual system research” has won the third place). 

The structure and volume of the dissertation: 

Doctoral dissertation consists of an introduction, 3 main chapters, conclusions, 

references, list of publications. Doctoral dissertation consists of 152 pages. The main 

part of the dissertation contains 73 figures, 3 tables, and 250 entries in the reference 

list. 
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1. LITERATURE REVIEW   

1.1. Visual cryptography  

 1.1.1. Moiré techniques and applications 

Geometric moiré is a classical in-plane whole field optical non-destructive 

experimental technique based on examination of visual patterns produced by 

superposition of two regular gratings that geometrically interfere [1, 2]. Equal-spaced 

parallel lines, arrays of dots, concentric circles, etc. are typical examples of moiré 

gratings. The gratings typically are superposed by direct contact, by reflection, by 

shadowing, or by double-exposure photography [3, 4]. Moiré patterns are used to 

measure variables such as displacements, rotations, curvature, and strains throughout 

the viewed area.  

One of the most important tasks in moiré pattern analysis is the analysis of the 

distribution of moiré fringes. The research includes interpretation of experimentally 

produced fringes patterns and determination of appropriate moiré fringes 

displacements at centerlines. Moiré fringes in a pattern can be identified using manual, 

semi-manual or fully automatic computational techniques [1]. Moiré pattern synthesis 

requires the generation of a predefined moiré pattern. The synthesis process involves 

the production of such two images that the required moiré pattern appears when those 

images are superimposed [5].  

The term moiré comes from French, where it refers to watered silk. The moiré 

silk consists of two layers of fabric pressed together. If the silk is bent and folded, the 

two layers move with respect to each other, causing the appearance of interfering 

patterns [1]. Lord Rayleigh was the first who used the moiré for reduced sensitivity 

testing by looking at the moiré between two identical gratings to determine their 

quality [6]. 

The most common use of moiré, that is to determine strains and displacements 

that act in and parallel to the plane of analysis, is presented in this chapter. In-plane 

moiré is typically conducted with gratings of equally spaced parallel lines. One set of 

lines is applied to a flat surface of the specimen to be analyzed (Fig. 1.1(b)), and a 

second set (called the reference grating) is put in contact with a specimen grating (Fig. 

1.1(a)). When the specimen is loaded, or moved, interference patterns such as that 

shown in Fig. 1.1(c) are generated. If the lines of the specimen grating are initially 

interspaced between the lines of the reference grating, the overall field appears dark. 

Under load, any region of the specimen that does not move remains dark. If a region 

moves half the distance between the grating lines, the specimen and grating lines will 

overlap, leaving a light space between each pair of overlapping lines, and that region 

of the specimen will appear lighter than it was before loading. If a region moves the 

whole distance between lines, it will be as dark as an unmoved portion [1].  

http://www.sciencedirect.com/science/article/pii/S0030401809003629#bib4
http://www.sciencedirect.com/science/article/pii/S0030401809003629#bib1
http://www.sciencedirect.com/science/article/pii/S0030401809003629#bib5
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Fig. 1.1. (a) Reference grating; (b) Grating on the surface of the specimen 

 in the deformed state; (c) Moiré fringe pattern 

The distance between grating lines is called the pitch and is denoted by . The 

motion causes the light-dark sequence to be repeated in steps of . The dark regions 

are usually called fringes. 

The basis for the moiré fringe technique is the superposition of a reference 

grating onto a deformed grating. Gratings can be superposed by physical contact of 

gratings or double-exposure photography [1]. 

Physical superposition of gratings is the most obvious method, in which an un-

deformed master grating is laid directly onto a deformed specimen grating thus 

producing moiré fringes, which are then recorded by a camera [7, 8]. Another simple 

form of a physical superposition of the gratings is to photograph specimen grating 

before loading, and then load and re-photograph. In this way, two images are obtained. 

If at least one of those images has transparent regions, direct contact provides pattern 

of interference fringes. The grayscale level based on geometric superposition is 

counted by the following equation: 

},min{ 212,1 ppp  ; (1.1) 

where ip is a grayscale level of an appropriate image. Therefore, the grayscale level of 

the interference fringes corresponds to the darkest grayscale level of two 

superimposed gratings.   

Superposition of gratings by double-exposure is the other optical way to contact 

the specimen and reference grating [1]. A simple form of optical contact is to 

photograph the specimen grating before loading, load, and re-photograph the same 

specimen grating on the same film, producing a double-exposure. The unloaded 

specimen grating serves as the reference grating. When developed, the double-

exposure film will be the moiré pattern of the in-plane displacement component of the 

specimen grating. The following equation calculates the grayscale level based on 

algebraic superposition: 

 212,1
2

1
ppp  . (1.2) 

Moiré grating formed on the surface of a one-dimensional structure in the state 

of equilibrium can be interpreted as a periodic alteration of black and white colors: 
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  
























 yyyM







 2cos
2

cos1
2

1
; (1.3) 

where   is the pitch of the grating, y  is the longitudinal coordinate;  yM  is the 

grayscale level of the surface at point y . Numerical value 1 of the function in Eq. 

(1.3) corresponds to white color; numerical value 0 corresponds to the black color; all 

the intermediate values to grayscale levels. 

Time-averaging geometric moiré is an optical experimental technique when the 

moiré grating is formed on the surface of an oscillation structure and time averaging 

techniques are used for the registration of time averaged patterns of fringes. A one-

dimensional model illustrates the formation of time-averaging fringes. It is assumed 

that the deflection from state of equilibrium varies in time: 

 

       txutxu sin, ; 
(1.4) 

where   is the cyclic frequency;   is the phase and  xu  is the amplitude of harmonic 

oscillations at point x .  

Then, the time-averaged grayscale level can be determined like [9]: 
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where T  is the exposure time; 0J  is the zero order Bessel function of the first kind. 

Time-averaged fringes will form at such x  where   0
2

0 







xuJ




. The relationship 

between the amplitude of harmonic oscillations, fringe order and the pitch of the 

grating takes the following form: 

  ii rxu 


2
; (1.6) 

where ir  is the i-th root of the zero-order Bessel function of the first kind; iu  denotes 

the amplitude of oscillation at the center of the i-th fringe. 

Computationally reconstructed pattern of time-averaged fringes is shown in Fig. 

1.2. Static moiré grating is constructed in the interval 50  y  ( 2.0 ); the 

background is white. It is assumed that   xxu  . Therefore, moiré grating gets blurred 

as the amplitude of harmonic oscillations increases (the x-axis), though the decline of 

contrast of the time-averaged image is not monotonic. It is modulated by the zero-

order Bessel function of the first kind (Eq. (1.5)). 

 Time-averaged fringes form around the areas where the amplitude of oscillation 

satisfies the relationship (Eq.(1.6)). Zero-order Bessel function of the first kind is 

plotted in the bottom part of Fig. 1.2. It can be noted that the frequency of oscillations 

does not effect to the formation of fringes (Eq. (1.5)). The exposure time has to be 

long enough to fit in a large number of periods of oscillations (or must be exactly 

equal to one period of oscillation).  
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Fig. 1.2. Pattern of time-averaged fringes at 2.0 ;   xxu   (A) Grayscale time-averaged 

image. (B) Zero-order Bessel function of the first kind; vertical dashed lines interconnect the 

centers of time-averaged fringes and roots of the Bessel function [57] 

G. Cloud has shown that vector graphics software, like CorelDraw, can be 

employed to create moiré patterns [10]. He introduced a detailed implementation for 

construction of moiré grating and gave an overview of standard functions that can be 

used for rotation, elongation and other deformations of the analyzed moiré gratings.  

Any software of technical computing with its own programming language and 

its own graphical libraries (for example, Matlab) or any free-standing programming 

language can be used for simulation of both static and time-averaged moiré patterns. 

Such a construction of certain moiré patterns usually comprises a numerical model of 

the system coupled with optical and geometrical parameters of the measurement set-

up [11]. 

Visualization of additive-type moiré and time-average fringe patterns using the 

continuous wavelet transform is developed in [12]. 

Time-averaged patterns produced by stochastic moiré gratings are presented in 

[13]. 

Interpretation of moiré phenomenon in the image domain is proposed in [14]. 

The waveform of the line families is analyzed to obtain the angle, the period, and the 

intensity profile of moiré fringes in the image domain.  

The interpretation of visible moiré phenomenon in the image domain is 

proposed in [15]. The analysis of the Fourier series expansion presents an initial 

criterion for distinguishing the real moiré and pseudo-moiré cases. The interpretation 

is significant for the visible real and pseudo-moiré effects, both in the multiplicative 

superposition and the additive superposition composed from periodic sinusoidal 

gratings and binary gratings in the image domain. The approach also considers the 

coexistence of the real moiré and pseudo-moiré cases.  



19 

 

Moiré effects can be applied in many different fields, including strain analysis, 

optical alignment, metrology etc. The moiré fringe method of experimental strain 

analysis is applied primarily to solve problems that cannot be solved easily. Typical 

problems include: measurements of micro- and nano-structures, high-temperature 

measurements, measurement of large elastic and plastic strains without reinforcing 

effects in thin films, low-modulus materials, absolute measurements of strain to 

establish properties of materials, long-term-stability measurements or measurements 

of relatively big structures (civil engineering) over extended period of time. 

The projection moiré method that allows to measure the relief of an object or 

out-of-plane displacements is presented in [16]. The application of geometric moiré 

in large deformation of 3-D models is discussed in [17]. 

Recent applications using moiré in the fields of material characterization, 

micromechanics, microelectronics devices, residual stress, fracture mechanics, 

composite materials, and biomechanics are presented in [18]. A detailed research of 

moiré fringe method with reference to its application in strain analysis is described 

and reviewed in [19].  High precision contouring with moiré and related methods is 

reviewed in [20]. 

1.1.2. Classical visual cryptography and advanced modifications 

Visual cryptography is a cryptographic technique which allows visual 

information (text, pictures, etc.) to be encrypted in such a way that the decryption can 

be performed by the human visual system, without any cryptographic computation – 

a simple mechanical operation is enough to perform the decryption. Naor and Shamir 

pioneered visual cryptography in 1994 [21]. They determined a visual secret sharing 

scheme, where an image was broken up into n  shares so that only someone with all 

n  shares could decrypt the image while anyone with any 1n  shares would not 

reveal any information about the original image. Each share was printed on a separate 

transparency, and the decryption was performed by overlaying the shares. Only if all 

n shares were stacked together, the original image would appear. The original 

encryption problem can be considered as a 2 out of 2 visual secret sharing problem. It 

is recommended to use 4 sub-pixels arranged in 22  arrays where each share has 

one of the visual forms in Fig. 1.3. 

 

 

Fig. 1.3. Sub-pixels arranged in horizontal, vertical and diagonal pairs of  22  arrays for a 

pixel sharing [21] 

Every pixel of encrypted information is divided into 4 sub-pixels. Due to the 

contrast a number of white and black pixels in each array should be the same.  A white 
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pixel is splitted into two identical arrays from the list, and a black pixel is shared into 

two complementary arrays from the list. Any single pixel of encrypted image in 

Share1 is a random choice of 1 out of 6 arrays (Fig. 1.3). The array for each pixel in 

Share2 depends on if a black or a white pixel is encoded. If is a white pixel is encoded 

– the array should be the same as in Share1 and if there is a black pixel – the array 

should be complementary. When two shares are superimposed together, the image is 

either medium grey (which represents a white pixel) or completely black (which 

represents a black pixel) in Fig. 1.4 [21]. 

 
Fig. 1.4. Basic 22  visual cryptography scheme: the original secret image while 

encrypted is divided into two transparent parts – Share1 and Share2; the decoded image 

reveals when two shares are stacked together 

It is obvious that the original visual cryptography scheme is applicable only for 

binary images. Moreover, the size of the share image is expanded since each pixel of 

the secret image is mapped onto an array consisting of several pixels. Such pixel 

expansion leads to the degradation of the contrast in the reconstructed secret images. 

Since basic model of visual cryptography have been proposed, many related studies 

are trying to solve these problems and extend the basic visual cryptography scheme. 

Extended visual cryptography that constructed black and white images as shares using 

hyper-graph colorings is offered as a better method with respect to pixel expansion 

[22]. A halftone visual cryptography with blue-noise dithering principles improves 

visual quality of halftone shares [23]. Visual cryptography scheme for images with g 

grey levels is analyzed, and necessary and sufficient condition for halftone scheme is 

given in [24].  A hybrid half-toning technique with shares inter-pixel exchanging 

using a secondary image is proposed in [25]. Contrast-enhanced visual cryptography 

techniques based on additional pixel patterns are presented in [26]. 

A visual secret-sharing scheme without image size expansion was proposed by 

Chen et al. [27]. The proposed scheme significantly improved the quality of the 

reconstructed secret image compared to classical visual cryptography scheme. A size 

invariant visual cryptography scheme for gray-scale images is proposed in [28]. 
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Decoded gray-scale images of this scheme have higher and clearer contrast with any 

unexpected contrast. The newest improvements addressing pixel-expansion and 

image quality problem are proposed in [28-31].  

Colored visual cryptography scheme that can be easily implemented on the basis 

of black and white visual cryptography is presented by Yang and Laih in [32]. 

Improved visual cryptography schemes for color images are proposed in [33, 34]. 

Probabilistic visual secret sharing schemes for color and grey-scale images are 

proposed in [35]. 

A visual secret sharing scheme that encodes a set of two or more secrets into 

two circle shares such that none of any single share leaks the secrets and the secrets 

can be obtained by stacking the first share and the rotated second shares with different 

rotation angles is proposed by Shyu et al. [36]. It is the first result that discusses the 

sharing ability in visual cryptography up to any general number of multiple secrets in 

two circle shares. A multi-secret visual cryptography scheme for 2 out of 2 case when 

secret images can be obtained from share images at aliquot stacking angles is proposed 

in [37]. A general k out of n shares multi-secret visual cryptography scheme for any k 

and n with satisfied security and contrast conditions is proposed in [38]. Visual secret 

sharing technique for multiple secrets without pixel expansion is presented in [39]. 

It can be summarized that the main concept of visual cryptography techniques 

based on these features: 

 Multiple shares scheme: secret image is encrypted into n shares; 

 Security scheme: original image would appear only if all n shares are 

superimposed exactly together, but any combination of superimposed 1n  

shares does not reveal any information about the original image; 

 Encryption scheme: mathematical algorithms are necessary to encrypt the original 

image; 

 Decryption scheme: human visual system can perform the decryption without aid 

of computers, only mechanical operation is necessary to superimpose the shares. 

The main applications of visual cryptography includes such fields as secure 

banking operations and electronic commerce transactions schemes. The authenticity 

of the customer signature is based on stacking shares owned by the costumer and the 

financial institution [40]. A credit card payment scheme using mobile phones based 

on visual cryptography is developed in [41].  

Another significant field of visual cryptography applications is biometric 

privacy. Visual cryptography technique is adapted onto the area of authentication 

using fingerprints. Automatic access control systems deal with falsification and large 

database problems.  Dividing fingerprint image into two shares, where one share is 

kept by the person in the ID card, another share (that is the same for all participants) 

is saved in the database helps to compare the stacked image with the provided fresh 

fingerprint [42]. Privacy of digital biometric data such as face and fingerprint images 

and iris codes can be ensured by dividing data into two separate shares and storing in 

two separate database servers [43]. 

Multimedia security and copyright protection is also significant field of visual 

cryptography applications. Attacks resisting video watermarking scheme based on 

visual cryptography and scene change detection in discrete wavelet transform domain 
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is proposed in [44]. Resolution variant visual cryptography technique for Street View 

of Google Maps is similar to watermarking technique. This secret sharing scheme can 

be used to recover specific types of censored information, for example, vehicle 

registration numbers [45]. Though the main fields of visual cryptography are 

restricted in various forms of information security, visual cryptography can be applied 

in young children education. Counting teaching system based on visual cryptography 

is described as fun and curiosity stimulating system [46]. 

1.1.3. Visual cryptography based on moiré techniques 

Moiré techniques can be applicable for the cryptography and the protection of 

documents. The main applications of the moiré effects for the authentication of 

documents and their protection against counterfeiters are presented in [47]. Moiré 

based methods can offer solutions to this problem because they can be integrated in 

the document without gaining additional production costs.  

Low-frequency moiré fringe patterns are employed as a secure numerical code 

generator. These moiré patterns are experimentally gained by the superposition of two 

sinusoidal gratings with slightly distinct pitches. The numerical code could be used as 

standard numerical identification in robotic vision or transmition of security 

numerical keys [48, 49]. 

A halftone image security processing method based on moiré effect is developed 

in [50]. Some graphic information are hidden in the pre-copy color images, and then 

the images are yielded by means of laser printers and traditional printing proof. When 

the specific detecting film is in the right position and angle, the hidden image can be 

clearly observed.  

One of the first attempts to implement moiré patterns in visual cryptography was 

introduced by Desmedt and Le [51]. They provided a scheme where moiré patterns 

occur when high-frequency lattices are combined together to produce low-frequency 

lattice patterns. As in classical cryptography, the secret image was randomized into 

two shares and direct superposition revealed the secret information. There were three 

different moiré schemes proposed by Desmedt and Le: lattice rotation, lattice smooth 

and dot orientation. Lattice rotation scheme produced visible boundary problem, 

while in lattice smooth rotation scheme the artifacts standout and became too much 

visible. In dot orientation scheme, diamond shape dots are used to encode a white 

pixel by superimposing two squares onto the shares whose dots are oriented at 

different angles. Dot patterns that are of the same angle are used to encode the black 

pixel. This produces two different moiré patterns for the white and black dots. That 

means this scheme uses the moiré patterns to recover the secret embedded image. 

Rodriguez presents another technique using computational algorithms based on 

optical operations for image encryption and decryption [52]. In this technique, an 

image is encrypted by a fringe pattern. This fringe pattern is generated by a 

computational algorithm as a cosine function, which added in its argument the 

intensity image as a reflectance map. The result of the encryption process is a fringe 

pattern deformed according to the image reflectance map. The decryption method is 

performed creating a moiré fringe pattern. To carry it out, the encrypted image is 

overlapped with a key fringe pattern. This key code is an undeformed fringe pattern, 
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which is generated at the same frequency of the encrypted image. The obtained moiré 

pattern is a modulation function, whose envelope corresponds to an approximate 

version of the original image. Low pass filter is applied to extract the envelope on the 

moiré pattern.  

Hidden images constructed on color honeycomb with tiny hexagons moiré 

patterns are presented in [53]. The base pattern is a color honeycomb pattern with red, 

blue and white hexagons. The screen pattern is a monochrome honeycomb pattern 

with a transparent area. If these images are overlapped without shift and rotation, there 

can be seen only red hexagons through the transparent part of the screen. However, 

by rotating the screen at an overlapping angle, a spotted moiré pattern is generated, 

and the spatial frequency periodically changes with the overlapping angle. Because of 

the spatial frequency being different on the area of the target image from the 

background image, the secret image is clearly visible at the overlapping angles 0 and 

30 degrees. 

An advantage technique using computational algorithms based on optical 

operations on moiré patterns for image encryption and decryption is developed in [54]. 

In this technique, the image is encrypted by a stochastic geometric moiré pattern 

deformed according to the image reflectance map. The stochastic geometrical moiré 

pattern and the pixel correlation algorithm are used to encrypt the image. An important 

factor of encryption security is that stochastic moiré grating can be deformed in any 

direction.  

A technique based on oil optical operations and oil moiré patterns for image 

hiding is developed in [55]. The encryption is performed by deforming a stochastic 

moiré grating in accordance to the grayscale levels of the encrypted image. The quality 

of the decrypted image is better-compared to decryption methods based on the 

superposition or the regular and deformed moiré gratings.  

Contrast enhancement in moiré cryptography framework was developed in [56]. 

Though moiré cryptography introduced by Desmedt and Van Le produce good quality 

shadows without pixel expansion, the secret message is revealed as a moiré pattern, 

not as a gray level image, whereas the gray level image simultaneously observable 

corresponds to the cover picture. Nevertheless, gray level cover pictures can suffer 

from a lack of contrast. The contrast of the cover picture in both the shadow images 

and the stacked shadow image has been highly enhanced by randomizing the 

orientable halftone cell. In this way, the number of quantization levels is increased as 

the square of the width of the halftone cell. As the moiré phenomenon responsible of 

the visibility of the message is decoupled from the half-toning of the cover image, it 

does not affect the visualization of the message, and it can contribute to the cerebral 

separation with the cover picture. 

In all reviewed researches, moiré techniques are employed on two or more 

shares visual cryptography, and though they produced good quality shadows without 

pixel expansion, many of these techniques meet security problems. A detailed analysis 

of security and quality issues of visual cryptography schemes is provided in chapter 

1.5. 
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1.1.4. Dynamic visual cryptography based on time-averaged fringes produced 

by harmonic oscillations  

The visual cryptography decoding technique, requiring only one secret image is 

considered as an expansion of traditional visual cryptography scheme. The main 

principle of basic visual cryptography scheme is to encode the secret image with the 

aid of a computer, but decode without computing device is maintained in dynamic 

visual cryptography. Dynamic visual cryptography technique is based on the decoding 

scheme when the secret image is embedded into a moiré grating and can be interpreted 

by a human visual system only when the image is oscillated in a predefined direction 

at strictly defined parameters of oscillation [57]. The main features of dynamic visual 

cryptography are these: 

 Secret visual information is embedded into stochastic moiré grating. 

 Secret information can be revealed only when encoded image is oscillated by a 

predetermined trajectory of the motion at strictly defined amplitude of the 

oscillation. 

 Mathematical algorithms are necessary to encrypt the original image, but the 

decryption is performed by human visual system. 

 It is only one share visual cryptography technique. 

Image hiding based on optical time-averaging moiré technique is presented in 

[57]. Time-averaged digital images are constructed as an integral sum: 
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where  yxM ,  is the grayscale level of the surface at point  yx, ;   is the pitch of 

the grating; a is the constant amplitude of oscillation; T  is the exposure time; n –  the 

whole number of k frames. Every frame represents the deflection from the state of 

equilibrium and averages of many frames are calculated to form time-averaged digital 

images. 

The encryption scheme is based on the relationship of the pitch of the grating 

, the amplitude of oscillation a and the roots ir  of zero-order Bessel function of the 

first kind: 

ira 


2
. (1.8) 

 Let the process of the encoding is presented by an example. The static secret 

image consists of two parts: the secret information area and the background. The 

encoding algorithm is proposed in detail in [57].  

A secret text “KAUNAS” is encoded in a background moiré pattern. The 

magnitude of the amplitude is selected to decrypt the image, and the pitch of the 

background image 0  can be selected such what ensures that the background moiré 

grating will not disappear in the time-averaged image. Next, the pitch for the 

encrypted text is selected. The digital image is constructed as a set of vertical columns 
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of pixels, where every vertical column corresponds to a set of grayscale pixels. 

Variation of the grayscale level in the area of the background image corresponds to 

the pitch 0 . Variation of the grayscale level in the areas occupied by the encrypted 

secret text must correspond to one of the pitches calculated from Eq. (1.8). 

Contrasting boundaries of a background image and encrypted image can reveal 

secret information. In order to avoid discontinuities, appropriate phases of the 

harmonic variation of the grayscale levels are selected in different zones of the digital 

image (Fig. 1.5). The boundaries of the encrypted image and the background image 

should match [57].  

 

Fig. 1.5. Matching of phases at boundaries of the background image and the encrypted 

image; variations of grayscale levels before the matching (A) and after the matching (B) are 

shown [57] 

Another security scheme is based on stochastic phase deflection at the top of 

adjoining vertical columns of pixels. The procedure is illustrated in Fig. 1.6, where 

two adjoining vertical columns of pixels are presented after the initial random phase 

at the top of the image (at left in Fig. 1.6) are already assigned. Gray shaded zones in 

Fig. 1.6 are plotted different as it is operated with two different columns of pixels. For 

secure cryptography scheme it is important to match the phases at boundaries of the 

background and the encoded image.  

 

Fig. 1.6. Illustration of the procedure of stochastic deflection of phases for adjoining 

columns of pixels (A) and (B) [57] 

http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig5
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig5
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig5


26 

 

The embedded text “KAUNAS” is seen as a pattern of gray time-averaged 

fringes in Fig. 1.7 A (only at appropriate amplitude). Properly pre-selected magnitude 

of the amplitude transforms the moiré grating into gray regions in the zone of the 

secret text. But the moiré grating in the background is not transformed into a gray area 

(Fig. 1.7 A). Alternatively, the background can be transformed into a gray zone at 

appropriate amplitude (only one single pitch is used to construct the background moiré 

grating). Fig. 1.7 B shows the decoded text which can be clearly distinguished in the 

gray background. It is impossible to visualize the image if either the zones 

corresponding to the secret text or the background is not transformed into gray time-

averaged fringes (Fig. 1.7 C). The ripples at the top and the bottom of images in Fig. 

1.7 are produced by time averaging of boundaries. These ripples are wider, if the 

amplitude is higher. 

 
Fig. 1.7. Computational decryption of the encrypted text at three different amplitudes 

of harmonic oscillations forms moiré fringes in the encrypted image (A); the background 

image (B) and reveals no information (C) [57] 

The overall dynamic visual cryptography encoding scheme can be generated by 

the following structural polynomial time complexity algorithm: 

 

Input: Secret in digital binary image form. 

Output: Cover image. 

 

1. Read the secret digital image. 

2. Select the number of pixels comprising the moiré grating for the background 

and for the secret.  

3. For every column of pixels: 

    Select a random initial phase of the moiré grating and continue until the 

boundary of the secret; 

    Equalize the phases of the moiré gratings at the boundary between the 

boundary and the secret; 

    Continue the process until the end of the columns. 

 

Numerical reconstruction of a time-averaged image when the original image 

performs uni-directional oscillations can be interpreted as a calculation of the integral 

sum when the number of nodes in the time axis approaches to infinity (Eq. (1.7)). It 

can be noted that the integration interval can be reduced to interval [−π/2; π/2]. 

Computational procedure of the formation of a time-averaged image is illustrated in 

Fig. 1.8. Firstly, the exposure time T  is split into n  sub-intervals. Secondly, the 

http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig7
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig7
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig7
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig7
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig7
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig7
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fd6
http://www.sciencedirect.com/science/article/pii/S0030401809003629#fig8
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original image is shifted from the state of equilibrium; the deflection equals to a 

momentary value of the harmonic time function tasin . Finally, all n  shares (in fact 

the same original but shifted image) are averaged into the time-averaged image.  

Since an arithmetic average in the integral sum is calculated, such superposition 

of shares is considered as an additive superposition. While classical visual 

cryptography scheme uses the overlapping of shares (geometric superposition) [21]. 

The modification of dynamic visual cryptography based on angular oscillations 

is proposed in [58]. Moiré grating in the constructed image is formed as the set of 

concentric circles around internal image point, and stochastic phase deflection is used 

to prevent direct interpretation of the secret text. Secret image can be interpreted by a 

human visual system only when the image is harmonically oscillated at strictly 

defined amplitude of oscillations in an angular movement around a predefined axial 

point.  

 

 
Fig. 1.8. A schematic diagram illustrating computational construction of a time-

averaged image [57] 

The necessity of additional security scheme was required because trial and error 

method could be applied to reveal a secret image. One could choose tuned parameters 

of oscillation, i.e. amplitude of harmonic oscillations, and the secret image is leaked.  

 1.1.5. Image hiding based on time-averaged fringes produced by non-harmonic 

oscillations 

An image encoding method which reveals the secret image not only at precisely 

adjusted parameters of the oscillation, but requires that the time function determining 

the process of oscillation would fulfil the specific requirements is developed in [59]. 

The secret image is encoded into a stepped moiré grating, and the phase 

matching, and stochastic initial phase deflection algorithms are used. If a stepped 

grayscale function is oscillated by a triangular waveform type deflection function, the 

time-averaged image is: 
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where  ss FH ̂;  is time-averaging operator; F  is a stepped moiré grating function 

with pitch  ; s̂  is a triangular waveform time function with oscillation amplitude s; 

ia  and ib  are Fourier coefficients. Time-averaged fringes will form at any amplitude

2

j
s j  ; ,2,1j . 

Visual decoding of the encoded image (Fig 1.9) is performed when the image is 

oscillated around the state of equilibrium by a triangular waveform type function. But 

the most important aspect of the presented encoding method is that the decoding 

cannot be produced by harmonic oscillations. The secret image will not be leaked at 

any amplitude of harmonic oscillations. 

 
Fig. 1.9. The secret image (A) is encoded into the stepped background moiré grating 

(B). Computational visualization of the secret image (C) [59] 

1.2. Time series segmentation algorithms 

Time series segmentation is a general data mining technique for summarizing 

and analyzing sequential data. Time series segmentation algorithms are employed, but 

not limited to solve these main tasks: 

 To detect stationary or non-stationary (or quasi-stationary) regimes of time series; 

 To support change (or break) points detection; 

 To support fast exact similarity search; 

 To give a simplified representation of the data, giving savings in data storage 

place; 

 To help the human eye to catch an overall picture of the data; 

 To create an accurate approximation of time series, by reducing its 

dimensionality; 

 To apply a simplified mathematical models to appropriate not overlapping 

homogeneous segments. 

The main goal in time series segmentation is to divide the sequence into a small 

number of homogeneous not overlapping segments, such that the data in each segment 

be described by a simple model. This problem is called dimensionality reduction, i.e. 

reduction of the number of data point of original time series. Moreover, in most 



29 

 

computer science problems, representation of the data is the key to the efficient 

solutions. The other goal, as it was mentioned above, is to detect change points of 

different, usually non-stationary regimes of time series. These two approaches are 

presented in vast number of scientific publications. 

Definition of time series segmenting. Let a time series sequence T consisting 

of n observations exists:  ntttT ,,, 21  , where Rit . A k segmentation S is a 

partition of  n,,2,1   into k not-overlapping intervals or segments  ksssS ,,, 21  , 

such that     11,,  ibibi tts  , where ib  is the beginning of the i-th segment. 

One of the simplest method of time series segmentation is sampling, presented 

by Astrom in 1969 [60]. There is assumed that an optimal choice of equal spacing step 

h in time series of N samples exists.  

The method, called piecewise aggregate approximation (PAA), is based on 

average value of each segment to represent the corresponding set of data points [61, 

62]. An adaptive version of piecewise constant approximation, where the length of 

each segment is not fixed, is proposed in [63]. 

The idea to split time series into most representative segments, and fit a 

polynomial model for each segment is presented in [64]. One of the most known time 

series representation method is piecewise linear representation (PLR), i.e. an 

approximation of a time series of length n  with k  straight lines. The PLR as time 

series segmentation algorithm was adapted in [63]. Following this approach, the PLR 

segmentation problems can be described in several approaches: 

 Time series produce the best representation using only k  segments. 

 Time series produce the best representation such that the maximal error for any 

segment does not exceed user specified threshold. 

 Time series produce the best representation such that the combined error of all 

segments does not exceed user specified threshold. 

Time series segmentation algorithms can be classified into one of the following 

three categories [63]: 

 Sliding windows: a segment is expanded until it exceeds some error level. The 

process is repeated with the next data point that does not belong to the newly 

approximated segment. The advantage of this algorithm is its simplicity and the 

fact that it is an online algorithm. If a linear approximation is considered, there 

are two ways to find the approximated line: linear approximation and linear 

regression, taken to be the best fitted in the sense of the least square [64]. 

 Top down: the time series is recursively partitioned until some stopping criteria 

is met. This algorithm works by considering every possible partitioning of time 

series at splitting it at the best location. Both new segments are then tested to see 

if their approximation error is below the some user-specified threshold. If not, the 

top down algorithm recursively continues to split the subsequences until all 

segments have approximation errors below the threshold. As a segmentation 

approach this method is used in [65]. 

 Bottom-up: starting from the most precise possible approximation, segments are 

merged until some stop criteria are met. This algorithm is a natural complement 
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to the Top Down algorithm. The algorithm begins by constructing the most precise 

possible approximation of the time series, so that n/2 segments are used to 

approximate time series of length n. Next, the cost of merging each pair of 

adjacent segments is evaluated, and the algorithm starts to iteratively merge the 

lowest cost pair until some stopping criteria are met. The bottom-up algorithm has 

been used in [66]. 

Usually, the data do not fit a linear model and the estimation of the local slope 

creates over-fitting. Piecewise linear time series segmentation method that adapts time 

series model with varying polynomial degree is proposed in [67] as a better 

alternative. The adaptive model provides a more precise segmentation than the 

piecewise linear model and does not increase the cross-validation error or the running 

time. The functionality of the proposed model was tested on synthetic random walks, 

electrocardiograms, and historical stock market prices. 

Terzi and Tsaparas [68] have also classified the segmentation methods into three 

approaches: 

 Heuristics for solving a segmentation algorithm problem faster than the optimal 

dynamic programming algorithm, with promising experimental results but no 

theoretical guarantees about the quality of result. 

 Approximation algorithms with provable error bounds are compared to the 

optimal error. 

 New variations of the basic segmentation problem, imposing some modifications 

or constraints on the structure of the representatives of the segments. 

Most of the publications published on time series segmentation fall into 

heuristics category. 

Stationarity is an important factor in the theoretical treatment of time series 

procedures. The evolution of complex systems in many cases can be considered being 

composed of stationary or quasi-stationary intervals in which time-varying pseudo-

parameters remain more and less unchanged. In general, a proper segmentation of 

time series provides a useful portrait of the local properties for investigating and 

modelling non-stationary systems. The standard theoretical data analysis approaches 

usually rely on the assumption of stationarity and it is important to detect stationary 

time series intervals. For example, a well-known ARMA model is a stationary time 

series model. Furthermore, the assumption of stationarity is the basis for a general 

asymptotic theory: it ensures that the increase of the sample size leads to more 

information of the same kind which is the basis for an asymptotic theory to make 

sense. On the other hand, many time series from natural and social phenomena exhibit 

non-stationarity. Special techniques, such as taking differences or the consideration 

of the data on small time intervals have been applied to make an analysis with 

stationary techniques possible. If one abandons the assumption of stationarity, the 

number of possible models for time series data explodes. For example, one may 

consider ARMA models with time varying coefficients.  

A non-stationary time-series segmentation method based on the analysis of the 

forward prediction error is presented in [69]. Likelihood ratio test based on the 

adaptive Schur filter forward prediction error allows the partition of the time-series 
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into homogeneous segments by considering its second-order statistics. The 

functionality of the proposed method is performed with simulated signals. 

A hybrid evolutionary segmentation method of non-stationary signals based on 

fractal dimension and genetic algorithms is presented in [70]. Kalman filter is applied 

to reduce the noises and fractal dimension helps to detect the changes in the amplitude 

and frequency of the signal. The proposed method is applied to synthetic and real-

world signals. 

An adaptive segmentation tool for non-stationary biomedical signals is proposed 

in [71]. The implementation is based on the recursive least-squares lattice algorithm 

with ability to select system order and the threshold functions. Another adaptive 

segmentation algorithm based on wavelet transform and fractal dimension is proposed 

in [72]. 

The problem of modeling a non-stationary time series using piecewise 

autoregressive (AR) processes is provided in [73]. The break points of the piecewise 

AR segments and the orders of the appropriate AR processes are unknown. The 

minimum description length principle is applied to compare if various segmented AR 

fits to the data. A combination of the number of segments, the lengths of the segments, 

and the orders of the piecewise AR processes is defined as the optimizer of an 

objective function, and a genetic algorithm is employed to solve this optimization 

problem. An on-line segmentation algorithm based on piecewise autoregressive (AR) 

processes is presented in [74]. The algorithm splits up non-stationary time series into 

piecewise stationary stochastic signal. Selection of fitting AR model is based on 

Akaike's Information Criterion and Yule-Walker equations. A recursive segmentation 

procedure for multivariate time series based on Akaike information criterion is 

proposed in [75].  

Segmentation algorithm for non-stationary time series where each segment is 

described by compound Poisson processes with different parameters is proposed in 

[76]. The method is applied to financial time series. 

A fully non-parametric segmentation algorithm is introduced in [77]. 

Kalmogorov-Smirnov statistic, which measures the maximal distance between the 

cumulative distributions of two samples, is used as an estimate of discrepancy 

between segments. This helps to test whether two samples come from the same 

distribution without any specification of the distribution.  

The problem of estimating multiple structural breaks in a long-memory 

fractional autoregressive integrated moving-average (FARIMA) time series is 

considered in [78]. The number and the locations of break points, the orders and the 

parameters of each regime are assumed to be unknown. A selection criterion based on 

the minimum description length principle is proposed and a genetic algorithm is 

implemented for its optimization.  

Segmentation algorithm which prevents over-segmentation in long-range fractal 

correlations is presented in [79]. This algorithm systematically detects only the break 

points produced by real non-stationarity but not those created by the correlations of 

the signal. The segmentation method is tested to the sequence of the long arm of 

human chromosome 21, which has long-range fractal correlations. Similar results 

have been achieved when segmenting all human chromosome sequences, showing the 
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existence of previously unknown huge compositional superstructures in the human 

genome.  

Segmentation algorithm for algebraic progressions is proposed in [80]. It is 

shown that it is possible to segment sequence finding a nearest algebraic progression 

to an each segment of a given sequence. The proposed segmentation technique based 

of the concept of the rank of a sequence that describes exact algebraic relationships 

between elements of the sequence. Numerical experiments with an artificially 

generated numerical sequence are used to illustrate the functionality of the proposed 

algorithm. 

Time series streams segmentation is also an important problem in data mining 

tasks, because time-series stream is a common data type in data mining. Time series 

segmentation algorithms can be classified as batch or online. As it was mentioned, 

simple sliding window approach can be considered as online segmentation algorithm, 

though more advanced modifications are presented in recent years. 

An online algorithm based on sliding window and bottom-up (SWAB) 

approaches is presented in [63]. The SWAB scales linearly with the size of dataset 

and requires only constant space producing high quality approximations. Empirical 

comparisons showed this algorithm to be superior to all others in the literature. 

An on-line segmentation method for stream time series data based on turning 

points detection is presented in [81]. The turning points are extracted from the 

maximum or minimum points of the time series stream. 

Another segmentation technique, which can be used in a streaming setting is 

proposed in [68]. An alternative constant-factor approximation algorithm DNS have 

outperformed other widely-used heuristics.  

Online segmentation algorithm based on polynomial least-squares 

approximations is presented in [82]. The paper presents SwiftSeg, a technique for 

stream time series segmentation and piecewise polynomial representation. Least-

squares approximation of time series in sliding time windows in a basis of orthogonal 

polynomials are used to segment time series. The computational effort depends only 

on the degree of the approximating polynomial and not on the length of the time 

window. SwiftSeg suits for many data streaming applications offering a high accuracy 

at very low computational costs. 

Parameter-free, real-time, and scalable time-series stream segmenting algorithm 

(PRESEE), which greatly improves the efficiency of time-series stream segmenting 

is presented in [83]. The PRESEE is based on minimum description length and 

minimum message length methods, which segment the data automatically. The 

PRESEE test results on empirical data show that the algorithm is efficient for real-

time stream datasets and improves segmenting speed nearly ten times.  

An on-line exponential smoothing prediction based segmentation algorithm is 

presented in [84]. The algorithm is based on sliding window model and exponential 

smoothing method to evaluate the arriving new data value of streaming time series. 

Statistical characteristics of prediction error are used to evaluate the fitness to the 

segment. 

Choosing the number of segments remains a challenging question. An extensive 

experimental studies on model selection techniques, Bayesian Information Criterion 
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(BIC) and Cross Validation (CV) are presented in [85]. The segments are identified 

with different means or variances and results are given for real DNA sequences with 

respect to changes in their codon. 

The methodology that deals with the uncertainty in the location of time series 

change points is presented in [86]. The evaluation of exact change point distributions 

conditional on model parameters via finite Markov chain, and accounting for 

parameter uncertainty and estimation via Bayesian modelling and sequential Monte 

Carlo. 

The applications of time series segmentation algorithms include such fields as 

hydrometeorology [87], finance [88, 89, 90], especially, when it is necessary to catch 

overall picture in macroeconomics [91, 92, 93], physics [77], biology systems [94, 

95]. Segmentation methods are widely used to detect changes in human vital systems 

[96, 97], especially, to analyze encephalograms (EEG) [98, 99] and 

electrocardiograms (ECG) [100, 101].  

Time series segmentation algorithms need some methods to evaluate the quality 

of fit for a potential segment. A measure commonly used in conjunction with linear 

regression is sum of squares or the residual errors, i.e. by taking all the vertical 

differences between the best fit line and the actual data points. Some the most popular 

metrics are discussed in chapter 1.3.5 (Metrics to measure forecasting accuracy). 

Another commonly used measure of goodness of fit is the distance between the best 

fit line and the data point furthest away in the vertical direction.  

1.3. Time series forecasting models and algorithms 

Time series forecast is a challenging problem in many fields of science and 

engineering. Conditionally, time series forecasting could be classified into long-term 

time series forecasting techniques and short-term time series forecasting techniques. 

In general, the object of time series prediction techniques is to build a model of the 

process and then use this model to extrapolate past behavior into the future. One can 

classify forecasting methods into smoothing techniques like moving average and 

exponential smoothing [102-105], model based methods like ARIMA [106-109], 

artificial intelligence methods like ANN (Artificial Neural Network) based models 

[110-114], etc. It is agreeable that no single method will outperform all others in all 

situations. A short review of forecasting methods and their methodology is reviewed 

in this chapter. 

Stationary is the main request in model based time series forecasting [106, 115]. 

Stationary time series are characterized by having a distribution that is independent of 

time shifts. This is so called strong stationary. Generally, in practical applications, it 

is required that the mean and variance of forecasting processes are constant and the 

correlation is only lag dependent (covariance or weak stationary). One of the most 

fundamental results of model based time series analysis is Wold decomposition 

theorem [116]. It denotes that any stationary process can be written as an infinite sum 

of weighted random shocks 


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

 
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ititttttx   ; (1.10) 
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where tx  is the process at time t,   is the mean of the process; }{ i  are uncorrelated 

random shocks with zero mean and constant variance, and the coefficients }{ i  

satisfies 


1

2

i

i .  

One of the essential idea of the Box–Jenkins (1970) approach to time series 

analysis was their recognition that it was possible to approximate a wide variety of 

}{ i  weight patterns occurring in practice using models with only a few parameters. 

This idea of parsimonious models that led them to introduce the autoregressive 

moving average (ARMA) models [106]. 

The simplest stationary time series process is the white noise [115]. The serially 

independent normal white noise (or Gaussian white noise) is the fundamental building 

block from which all others models are constructed: 

ttx  ,  2,0~  Nt ; (1.11) 

where t  are serially uncorrelated, independent and normally distributed random 

shocks with zero mean and constant variance 2 .  

1.3.1. Model-based time series forecasting methods  

One of the well-known and widely applied stationary time series model is first 

order autoregression model AR(1) : 

ttt xx   110 ,  2,0~  Nt ; (1.12) 

where 0 , 1  –  model coefficients. It is proved that if unit root requirement is fulfilled, 

i.e. 11  , the autoregression model is covariance stationary. 

 Typical example of nonstationary time series model is the random walk model.  

ttt xx  1 ,  2,0~  Nt . (1.13) 

The random walk with drift is a model of stochastic trend. The trend is driven 

by stochastic shocks and on average it grows each period by the drift 0  

ttt xx   10 ,  2,0~  Nt . (1.14) 

Generally, the model with shift and deterministic time trend can be written as 

ttt txx   110 ,  2,0~  Nt ; (1.15) 

where   is deterministic trend coefficient. This model is used a benchmark of 

Dickey-Fuller test to determine whether a unit root is present in an autoregressive 

model [117,118]. The finite-order moving average process MA(q) is an 

approximation of the Wold (Eq. 1.10) representation, which is an infinite-order 

moving average process. The general finite order moving average process of order q 

or MA(q): 

    tt

q

qqtqtttt LLLx    θθ1θθθ 12211  , 

 2,0~  WNt ; 
(1.16) 

http://en.wikipedia.org/wiki/Unit_root
http://en.wikipedia.org/wiki/Autoregressive
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where L is the lag operator mtt

m xxL  , i  – model coefficients,   



q

i

i

i LL
0

 . 

The general finite order autoregressive process of order p or AR(p): 

tptpttt xxxx    2211 , or 

    tt

p

t xLLLxL   p

2

211   

 2,0~  WNt ; 

(1.17) 

where i  – model coefficients,   



p

i

i

i LL
0

 . 

The ARMA(p,q)  process consists of multiple moving average and 

autoregressive lags: 

tptpttptpttt xxxx    θθθ 22112211  ; 

 2,0~  WNt . 
(1.18) 

ARMA processes can be applied to stationary time series, but, practically, real-

world time series are nonstationary. The type of nonstationary behavior is typically 

encountered in many applications is of the type where the level changes, but the 

process nevertheless exhibits homogeneity in the variability. In such cases, the (first) 

difference 1 ttt xxx , may be stationary. It is refered as being first order 

homogenous nonstationary process, or  1I . Another type of nonstationarity 

encountered in practice is when both the level and the slope of a time series are 

nonstationary, but the variability otherwise exhibits homogeneity. In that case, it is 

necessary difference the data twice. The second difference is defined as 

21

2 2   tttt xxxx . If the second difference is stationary and homogeneous, it is a 

homogeneous nonstationary process of the second order, or  2I . Higher order  

differencing is seldom in practice. 

Generally, ARIMA(p,d,q)   model is expressed like:  

     tt

d
LxLL  1 . (1.19) 

The selection of the model sometimes is more art than science. In any modeling 

effort, we should always keep in mind that the model is only an approximation of the 

true behavior of the system in question. Statistical models contain parameters that 

have to be estimated from the data. It is important to employ models with as few 

parameters as possible for adequate representation. As opposed to simpler models, 

more complicated models with the prodigal use of parameters lead to poor estimates 

of the parameters. Models with large number of parameters will tend to overfit the 

data, meaning that locally they may provide very good fits; however, globally, that is, 

in forecasting, they tend to produce poor forecasts and larger forecast variances [119]. 

If it is necessary to forecast very short time series, it is helpful to understand the 

minimum sample size requirements when fitting statistical models to such data. The 

number of data points required for any statistical model depends on at least two things: 

the number of model parameters to estimate and the amount of randomness in the data 
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[120]. Box-Jenkins recommendation of sample sizes of at least 50-100 repeat 

observations is shown to be reasonable [120].  

The general Box-Jenkins model building process is shown in Fig.1.10.  The first 

step is to visualize data. If there is an obvious nonstationary, the time series should be 

differentiated. For stationarity the augmented Dickey–Fuller unit root test is used. 

Model identification step is based on two approaches: one can examine plots of 

autocorrelation (ACF) and partial autocorrelation (PACF) functions or fit different 

possible models and use goodness of fit statistic, for example, Akaike Information 

Criterion (AIC) to select better model [121]: 

  TeTkAIC
T

t

t



1

22exp ; (1.20) 

where k is the number of free model parameters to be estimated; T is the number of 

data points of time series; the forecast error is te . In comparison with AIC, Schwarz 

Information Criterion (SIC) is also used [122]: 

  TeTkTSIC
T

t

t



1

2
. (1.21) 

The object of model estimation is to minimize the sum of squares of errors. 

Widely used metrics to measure forecast errors are defined in chapter 1.3.5.  

 

 

Fig. 1.10. The Box-Jenkins model building process [106] 
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Model validation is based on examination of residuals. The Ljung–Box test 

[123] checks if the data are independently distributed, i.e. the correlations in the 

population from which the sample is taken are 0, so that any observed correlations in 

the data result from randomness of the sampling process. The statistical significance 

of correlation coeficients should be evaluated. Jerque-Berra test [124] is used to test 

the normality of residuals. Finally, the estimated model is used to generate forecasts 

and usually the confidence limits of the forecasts.   

1.3.2. Forecasting based on algebraic methods 

For short-term time series forecasting the Hankel matrices can be used. A new 

approach to the identification of a numerical sequence and the concept of the Hankel 

rank of a sequence is proposed in [125]. The necessary and sufficient conditions of 

this concept are proved in [126].  

Let a sequence of real or complex numbers is given: 

   0210 ;:,,, Z kxxxx k . (1.22) 

The Hankel matrix (the catelecticant matrix with constant skew diagonals)  nH  

constructed from the elements of this sequence is defined as follows: 
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; (1.23) 

where the index n denotes the order of the square matrix. The determinant of the 

Hankel matrix is denoted by   nn Hd det ; 1n . The rank of the sequence  0; Zkxk  

is such natural number  0; Z kxHrm k  that satisfies the following condition [126]: 
 

0kmd ; (1.24) 

for all Nk ; but  
0nd . 

Let us assume that the rank of the sequence is   mkxHr k  0; Z ; m . Then 

the following equality holds true [126]: 
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  ; ,2,1,  jjjn ; (1.25) 

where characteristic roots Ck ; rk ,,2,1   can be determined from the 

characteristic equation  
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; (1.26) 

the recurrence indexes of these roots kn  ( Nkn ) satisfy the equality 

mnnn r  21 ; coefficients Ckl ; rk ,,2,1  ; 1,,1,0  knk   can be 
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determined from a system of linear algebraic equations which can be formed from the 

systems of equalities in Eq. (1.25).  

The set of characteristic roots    C  kmxxx 1210 ,,,  ; Ck ; rk ,,2,1  ; 

mnnn r  21 ; 1m  is associated to the finite sequence 1210 ,,, mxxx   which is 

denoted as the base fragment of the algebraic progression [126].    

1.3.3. Forecasting based on smoothing methods 

Smoothing techniques do not require best-fitting models and do not generally 

produce optimal forecasts. A pre-specified model is applied on the data. But these 

techniques are useful in situations when model-based forecasting techniques cannot 

be used. First, available samples of data are very small where degrees of freedom are 

very limited as to render any estimated model of dubious value. Smoothing techniques 

require no estimation or minimal estimation. Secondly, smoothing techniques require 

little attention, especially, when data are too immense.  They are sometimes called 

automatic forecasting methods, and they are often useful for forecasting voluminous, 

high-frequency data. Finally, smoothing techniques do produce optimal forecasts in 

certain conditions, which turn out to be related to the presence of unit roots in the 

series being forecast.  

The simple moving average process is denoted as  
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;  (1.27) 

where s is the smoothing parameter, the width of averaging process; the larger is s, 

the more smoothing is done. The drawback of the moving average method – the first 

1s values are lost. The smaller s – the worse effect of moving average, but better 

reaction to time series variability and vice versa. If parameter s is relatively large, the 

model is equivalent to mean value model. The parameter s is selected so that 

forecasting error be smaller and better data representation is completed. If 1s , then 

the model is the random walk model (Eq. 1.13), in some references called as naïve 

method [127]. If it is necessary to discount the distant past more heavily than the 

recent past, the weighted moving average model can be applied: 





s

i

itit xx
0

 ; (1.28) 

where weights 1 i . 

Another simple smoothing technique is simple exponential smoothing method 

(SES). Exponential smoothing assigns exponentially decreasing weights over time. 

00 xS  ,  

  11 1   ttt SxS  ; 
(1.29) 

where 10   is smoothing factor [115]. If smoothing factor   is close to 1, past 

data have a significant influence on future forecasts. If smoothing factor   is close 

to 0, the smoothing is relatively slow. The selection of smoothing factor   is trial-

and-error process based on smallest forecasting errors. Simple exponential smoothing 
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does not work well when there is a trend in the data [115]. In such situations, Holt-

Winters (1960) double exponential smoothing is used: 

  111 1   tttt bSxS  , 

    11 1   tttt bSSb  ; 
(1.30) 

where 10   is smoothing factor and 10    is trend smoothing factor. 

Smoothing techniques produce point forecasts only, with no attempt to exploit 

the stochastic structure of the data to find a best-fitting model, which could be used to 

produce interval or density forecasts in addition to point forecasts.  They may produce 

optimal point forecasts for certain special data generating process, but it is not 

assumed that whose special data-generating processes are the truth [115].  

1.3.4. Forecasting based on artificial neural networks (ANN) 

Artificial neural networks (ANN) are one of the most important types of 

nonparametric nonlinear time series models and they are successfully employed in 

time series forecasting, including chaotic Mackey-Glass [128,129], financial [130], 

stock market [131], electric load [132], hydrologic [133] time series. Neural networks 

have been advocated as an alternative to traditional statistical forecasting methods 

[129]. 

One of the most significant advantages of the ANN models over other classes 

of nonlinear models is that ANNs can approximate a large class of functions with a 

high degree of accuracy [134,135]. Their power comes from the parallel processing 

of the information from the data. After learning the data presented to them (a sample), 

ANNs can often correctly infer the unseen part of a population even if the sample data 

contain noisy information [136]. Opposed to the traditional model-based methods, no 

prior assumption of the model form is required in the model building process. Instead, 

data-driven self-adaptive network model is largely determined by the characteristics 

of the data.  

Single hidden layer feed forward network is the most widely used model form 

for time series modeling and forecasting [110]. The model is characterized by a 

network of three layers of simple processing units connected by acyclic links (Fig. 

1.11) [136]. The relationship between the output tx  and the inputs  pttt xxx  ,,, 21   

has the following mathematical representation: 
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 



1 1

,,00 ; 
(1.31) 

where jiw ,  and jw , pi ,,2,1,0  , qj ,,2,1,0   are model parameters called 

connection weights; p is the number of input nodes; and q is the number of hidden 

nodes; te – the forecast error. 

http://en.wikipedia.org/wiki/Trend_estimation
http://en.wikipedia.org/wiki/Exponential_smoothing#cite_note-NIST-1
http://www.sciencedirect.com/science/article/pii/S0957417409004850#fig1
http://www.sciencedirect.com/science/article/pii/S0957417409004850#fig1
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Fig. 1.11.  Single hidden layer feed forward neural network structure [136] 

The ANN model of (1.28) performs a nonlinear functional mapping from the 

past observations to the future value tx : 

  tptttt ewxxxfx   ,,,, 21  ; (1.32) 

where w is a vector of all parameters and  f  is a function determined by the network 

structure and connection weights. The sigmoid function is often used as the hidden 

layer transfer function, i.e., function which determines the relationship between inputs 

and outputs of a node and a network. 

 
 x

xSig



exp1

1
 (1.33) 

Thus, the neural network is equivalent to a nonlinear autoregressive model. 

Zhang (1998) summarized that linear and hyperbolic tangent (tanh) functions for 

hidden and output ANN layers are also widely used in time series forecasting [110]. 

Note that expression (Eq. 1.31) implies one output node in the output layer, which is 

typically used for one-step-ahead forecasting.  

Disadvantages. In practice, simple network structure that has a small number 

of hidden nodes often works well in out-of-sample forecasting. This may be due to 

the over-fitting effect typically found in neural network modeling process. It occurs 

when the network has too many free parameters, which allow the network to fit the 

training data well, but typically lead to poor generalization. In addition, it has been 

experimentally shown that the generalization ability begins to deteriorate when the 

network has been trained more than necessary, that is when it begins to fit the noise 

of the training data [137]. 

Noise. Every model has limits on accuracy for real problems. For example, if 

one consider only two factors: the noise in the data and the underlying model, then 

the accuracy limit of a linear model such as the Box-Jenkins is determined by the 

http://www.sciencedirect.com/science/article/pii/S1568494610002759#eq0010
http://www.sciencedirect.com/science/article/pii/S1568494610002759#eq0010
http://www.sciencedirect.com/science/article/pii/S1568494610002759#bib0280
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noise in the data and the degree to which the underlying functional form is nonlinear. 

With more observations, the model accuracy cannot improve if there is a nonlinear 

structure in the data. In ANNs, noise alone determines the limit on accuracy due to its 

capability of the general function approximation. With a large enough sample, ANNs 

can model any complex structure in the data. Hence, ANNs can benefit more from 

large samples than linear statistical models can. It can be noted that ANNs do not 

necessarily require a larger sample than is required by linear models in order to 

perform well.  ANN forecasting models perform quite well even with sample sizes 

less than 50 while the Box-Jenkins models typically require at least 50 data points in 

order to forecast successfully [138, 110]. 

1.3.5. Combined and hybrid methods for short-term time series forecasting 

Improving time series forecasting accuracy is an important, but challenging task 

for forecasters. The classical well-known forecasting models and techniques are 

reviewed, though the future of time series forecast methods can be based on the 

construction and the analysis of hybrid models and combining research [139]. 

Clements in his editorial suggested more work on combining time series forecast 

methods as one possible direction for future research [140]. A combination of models 

and methods generally performs better than individual forecast: simple rules for 

combining forecasts, such as averages, work as well as ‘optimal weights’ based on the 

past performances of the individual forecasts [140]. Both theoretical and empirical 

findings have indicated that integration of different models can be an effective way of 

improving upon their forecasting performance, especially when the models in the 

ensemble are quite different [141]. 

Hibon and Evgeniou confirmed the hypothesis based on empirical experiments 

that when one chooses among methods and their combinations, overall the chosen 

individual method may have significantly worse performance than the chosen 

combination [142].  

Artificial neural networks (ANNs) can be combined with other time series 

forecasting methods like autoregressive integrated moving average (ARIMA) models 

to take advantage of the unique strength of ARIMA and ANN models in linear and 

nonlinear modeling [134, 135]. ARIMA is one of the most widely used linear models 

in time series forecasting. ANNs can be an alternative to the traditional linear 

methods. A hybrid methodology that combines both ARIMA and ANN models takes 

advantage of the unique strength of ARIMA and ANN models in linear and nonlinear 

modeling and improves the forecasting accuracy [143]. Another effective hybrid 

method as an alternative for artificial neural networks that combines the ARIMA 

models and artificial neural networks is proposed in [144]. The ARIMA model is used 

to generate the necessary data, and then a neural network is used to determine a model 

to capture the underlying data generating process and predict the future, using 

preprocessed data. The combination of exponential smoothing model, ARIMA, and 

the back propagation neural network model for stock index forecasting is proposed in 

[145]. Artificial neural network based models for short-term traffic flow forecasting 

using a hybrid exponential smoothing and Levenberg-Marquardt algorithm are 

presented in [146]. A hybrid methodology that combines the multilayer perceptron 
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neural networks and Holt exponential smoothing models to forecast stock market time 

series is proposed in [147]. Many of the hybrid ARIMA-ANN models firstly apply an 

ARIMA model to given time series data, then evaluate the error between the original 

and the ARIMA-predicted data as a nonlinear component, and model it using an ANN. 

Babu and Reddy firstly use a moving-average filter, and then applies ARIMA and 

ANN model [148]. The comparison analysis between the proposed and other hybrid 

ARIMA-ANN models showed that the proposed hybrid model has higher prediction 

accuracy. 

Short-term time series forecasting procedures include different techniques and 

models. The use of general exponential smoothing to develop an adaptive short-term 

forecasting system based on observed values of integrated hourly demand is explored 

in [149]. Short-term load forecasting with exponentially weighted methods is 

proposed in [150]. Applications of neural network techniques to short-term load 

forecasting are reviewed in [151]. Another short-term load forecasting based on a 

semi-parametric additive model is presented in [152]. A similar day-based wavelet 

neural network method to forecast tomorrow's load is proposed in [153]. Artificial 

neural network (ANN) and Markov chain (MC) are used to develop a new ANN-MC 

model for forecasting wind speed in very short-term time scale [154]. Short-term 

electricity prices hybrid forecast model that detaches high volatility and daily 

seasonality for electricity price based on empirical mode decomposition, seasonal 

adjustment and ARIMA is developed in [155]. A novel hybrid approach, combining 

adaptive-network-based fuzzy inference system, wavelet transform and  particle 

swarm optimization for short-term electricity prices forecasting in a competitive 

market on the electricity market of mainland Spain is presented in [156]. The radial 

basis function ANN with a nonlinear time-varying evolution particle swarm 

optimization (PSO) algorithm are used to forecast one-day ahead and five-days ahead 

of a practical power system in [157]. PSO algorithms are employed to adjust 

supervised training of adaptive ANN in short-term hourly load forecasting in [158]. 

A new class of moving filtering techniques and of adaptive prediction models that are 

specifically designed to deal with runtime and short-term forecast of time series which 

originate from monitors of system resources of Internet based servers is developed in 

[159].  

In spite of numerous amount of forecasting models and techniques, there cannot 

be a universal model that will predict everything well for all problems and there will 

probably not be a single best forecasting method for all situations [160]. 

The main objective of the short-term time series methodology proposed in this 

dissertation is to enhance the algebraic predictor by employing internal smoothing 

procedure that enable reaching a healthy balance between variability of skeleton 

algebraic sequences and valuable smoothing properties of predictors based on the 

moving averaging methods. The goal is to develop such a predictor which could 

produce reliable forecasts for short time series — in situations when the available data 

is not enough for such predictors as ARIMA or short term time series nonlinear 

forecasting methods such as neural networks or support vector machines. 
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1.3.6. Metrics to measure forecasting accuracy 

Accuracy measures are used to evaluate the performance of forecasting 

methods. Measurement errors can be classified into: scale-dependent errors, 

percentage error, relative errors and scale free errors [161,162]. Regardless of how the 

forecast was produced, the forecast error te  is simply  

ttt oxe  ; (1.34) 

where tx  is a true value of time series element and to  is an appropriate observed 

value. 

One of the simplest scale-dependent measurement method is based on the 

average of forecasting errors: 
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This metric cannot properly compare different forecasting methods, because it only 

shows if averaged process is positive or negative. 

A better comparison method is based on the average of absolute forecasting 

errors: 





N

i

te
N

MAE
1

1
. (1.36) 

One of the most widely-used metric is mean squared error:   
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Due to appropriate comparison based on scale units of data, a squared root of mean 

square error (RMSE) is used: 
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(1.38) 

Historically, the RMSE and MSE have been popular, largely because of its 

theoretical relevance in statistical modelling, however, they are more sensitive to 

outliers than MAE [162]. 

Percentage errors have the advantage of being scale dependent, so they are 

frequently used to compare forecast performance between different time series. The 

most commonly used metric is mean percentage error (MAPE): 
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(1.39) 

It is obvious that he MAPE has problems when the series has values close to (or 

equal to) zero. 

In this dissertation RMSE (Eq. 1.38) and MAE (Eq. 1.36) metrics are used. The 

relative performance comparison of different time series methods is also possible, 

because the considered time series are transformed into interval [0; 1].  
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1.4. Evolutionary algorithms 

1.4.1. Genetic algorithms 

Genetic algorithms (GA) and evolutionary algorithms (EA) were introduced by 

Holland (1975) and Rechenberg (1973). By imitating basic principles of nature they 

created optimization algorithms which have successfully been applied to a wide 

variety of problems in engineering, operation research, physics, economics, social 

sciences, art, etc. Genetic and evolutionary algorithms and their modifications are 

applied as an optimization tool in bioinformatics [163], game theory [164,165], neural 

networks [166,167], time series forecasting [168-170], visual cryptography [171,172], 

etc.  

In artificial intelligence, an evolutionary algorithm (EA) is a subset of 

evolutionary computation, a generic population-based meta-heuristic optimization 

algorithm. Genetic algorithm is a search heuristic that belong to the larger class of 

evolutionary algorithms and imitates the process of natural selection used to generate 

solutions to optimization and search problems. These methods generate new points in 

the search space by applying operators to current points and statistically moving 

toward more optimal places in the search space. Researchers have proposed many 

different variants of genetic algorithms in the literature. For illustrating the basic 

functionality of GA the traditional standard simple genetic algorithm proposed by 

Goldberg (1989) is used [173]. The schematic diagram of genetic algorithms is 

presented in Fig. 1.12. 

A. Initialization. Initial population of chromosomes is generated for searching 

global optimal solution. Usually, the population is generated randomly, allowing the 

entire range of the search space. The parameters that are the population size, the 

crossover and mutation probabilities, the maximum number of generations and the 

termination criterion have to be specified at the initialization process. 

B. Evaluation. Every chromosome is evaluated by the fitness function. Fitness 

value may be determined by an objective function or by a subjective judgment specific 

to the problem. As the generations pass, the members of the population should get 

closer to the solution. 

C. Selection. Selection is one of the most important operations in the GA 

process. The selection operator mainly works at the level of chromosomes. The 

goodness of each individual depends on its fitness value determined by an objective 

function. Different selection mechanisms work well under different situations. There 

are such widely used selection algorithms as roulette wheel selection, rank selection, 

tournament selection, steady state selection, Boltzmann selection and elitism 

selection.  

D. Crossover. The crossover operator is a genetic operator that combines 

(mates) two chromosomes (parents) to produce a new chromosome (offspring). The 

idea of crossover is based on the assumption that the new chromosome may be better 

than both of the parents if it takes the best characteristics from each of them. Crossover 

occurs during evolution according to a user definable crossover probability. There is  

a number of crossover operators such as: single point crossover, two points’ crossover, 

intermediate crossover, arithmetic crossover, heuristic crossover [174]. 

http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Evolutionary_computation
http://en.wikipedia.org/wiki/Metaheuristic
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Heuristic_(computer_science)
http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Natural_selection
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Problem
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E. Mutation. Mutation is genetic algorithm operator that operates with a 

chromosome and randomly modifies the value of a random gene with some mutation 

probability. The role of mutation in genetic algorithm is to restore lost or unexplored 

tic material into the population to prevent premature convergence of the GA to local 

solution.  

F. Termination. The process of C-E is repeated until a termination condition 

has been reached. The most popular termination criterion is reached predefined 

number of generations. But there are some other stopping criteria like elapsed 

evolution time, reached fitness threshold and fitness, population or gene convergence 

[175]. 
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Fig. 1.12. The schematic diagram of genetic algorithms. 

The genetic algorithm may have a tendency to converge towards local optima 

rather than the global optimum of the problem for specific optimization problems, and 

given the same amount of computation time, simpler optimization algorithms may 

find better solutions than genetic algorithms [176]. 

1.4.2. Particle swarm optimization algorithm 

Particle swarm optimization algorithm (PSO) is an evolutionary computation 

technique based on the social behavior metaphor, first introduced by Eberhart and 

Kennedy in 1995 [177]. Particle swarm optimization is a meta-heuristic procedure and 
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belongs to the family of swarm intelligence computational techniques, inspired by 

social interaction in human beings and animals (especially bird flocking and fish 

schooling). Particle swarm optimization algorithm and its modifications are widely 

used as an optimization tool to solve nonlinear large-scale optimization problems in 

many fields of science and engineering such as electric power systems [178,179,180], 

neural networks [181,182,183], time series forecasting [184, 185], etc.  

The particle swarm is an algorithm for finding optimal regions of complex 

search spaces through the interaction of individuals in a population of particles. Each 

individual in PSO is treated as a volume-less particle (a material point) in the D-

dimensional space. The i-th particle is represented by its coordinates as

 iDiii xxxX ,,, 21  , mi ,,2,1  , where m is the population’s size. The previous 

position giving the best fitness value of the i-th particle in its flight trajectory is 

recorded as  iDiii pppp ,,, 21  . The index of the best particle among all particles in 

the population is represented by symbol g. The velocity of the i-th particle is 

represented as  iDiii vvvV ,,, 21  . The particles are manipulated according to the 

following equations: 
   

mivxx

xprcxprcvwv

ididid

idgdidididid

,,2,1;

;2211




 (1.40) 

where 1r  and 2r  are two random variables uniformly distributed in the interval [0,1]; 

1c  and 2c  are two positive acceleration constants, cognitive acceleration coefficient 

and social acceleration coefficient respectively, representing weightings of the 

stochastic terms that pull each particle toward the particle’s best and the global best; 
w  is the inertia weight balancing the global and local search. In the original PSO 

inertia weight was not introduced, i.e. 1w . The inertia weight was brought in to 

control the balance between the global and the local exploration abilities [186]. A 

large inertia parameter ensures a global search, while a small inertia parameter 

facilitates a local search. 

Early studies of original PSO algorithm showed that particles’ velocities needed 

to be limited to control their trajectories. In order to solve this problem, a constriction 

factor K was introduced by Clerc [187]: 
    
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 (1.41) 

where  42/2 2 K  and 21 cc  ; 4 . 

Empirical studies with benchmark functions showed that PSO parameters 

significantly affect its computational behavior [186]. The first formal analysis of a 

simple particle swarm system presented by Ozcan and Mohan [188]. Later, the particle 

swarm optimization algorithm was analyzed using standard results from the dynamic 

system theory and graphical parameter selection guidelines was derived by Trelea 

[189] and van den Berg [190].The stochastic convergent condition of the particle 

swarm system and corresponding parameter selection guidelines were derived in [191, 

192]. These recommendations of the PSO parameters selection are described in detail 

in subsequent sections. 
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In comparison with the genetic algorithm (GA), the PSO algorithm is easier to 

implement and there are fewer parameters to adjust, the PSO has a more effective 

memory capability than the GA and the PSO is more efficient in maintaining the 

diversity of the swarm, because in the GA, the worse solutions are discarded and only 

the good ones are saved [176]. On the other hand, if one needs to find an optimum of 

discrete values, GA algorithm can be more convenient.  

1.5. Quality and security aspects of visual cryptography schemes  

The analysis of various visual cryptography techniques includes various aspects 

of cryptography such as quality and security issues. The necessity to compare classical 

and dynamic visual cryptography techniques requires a comprehensive analysis. As it 

was mentioned above – visual cryptography is a cryptographic technique which 

allows visual information (pictures, text, etc.) to be encrypted in such a way that 

decryption becomes a mechanical operation that does not require a computer. The 

process of cryptography involves these steps: the plaintext is encrypted, the ciphertext 

is sent through the communication channel, and then the decryption is performed to 

reveal the plaintext. The same process in ensured in the visual cryptography scheme: 

a digital image serves as a plaintext, encryption involves creating shares of the image 

which in a sense will be a piece of the image, and then shares are sent to the respective 

holders (participants). Decryption involves printing the shares on transparences and 

bringing together an appropriate mechanical combination of these shares. The main 

principle of visual cryptography is that human visual system is enough to decode the 

secret – no additional computations are necessary. One transparency serves as a key, 

other transparencies (or a printed pages) are considered as a ciphertext. Separately, 

these shares contain random noise. The main advantages of visual cryptography 

encryption process – encryption doesn’t require any NP-hard problem dependency 

[193].  Decryption is advantageous for its simplicity – a person unknown to 

cryptography can decrypt the image. Visual cryptography scheme eliminates complex 

computation problem in the decryption process, and the secret images can be restored 

by mechanical stacking operation. This property makes visual cryptography 

especially useful for the low computation load requirement [194]. Classical visual 

cryptography scheme is totally secure – infinite computation power can’t predict the 

message.  

Dynamic visual cryptography resembles traditional visual cryptography 

schemes [57, 59]. The process of dynamic visual cryptography involves the same 

steps as used in classical visual cryptography. A digital image serves as a plaintext, 

encryption involves embedding of the secret image into the stochastic moiré grating, 

and then the encrypted cover image is sent to the receiver. Decryption involves 

mechanical oscillation of the cover image. Time averaged image of the oscillating 

cover image produces a pattern of time-averaged moiré fringes which are directly 

interpreted by the human visual system. Parameters of the oscillation which are used 

to decrypt the secret serve as the key, a ciphertext is a single printed cover image. 

Decryption algorithm is not required, but a person unknown that the cover image 

needs to be oscillated cannot reveal the secret message. The mechanical operation that 

performs the decryption to reconstruct the plaintext is implemented with a shaker-
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table. A finite computation power can predict the message embedded in the cover 

image, but dynamic visual cryptography is not prone to cheating (what is not true for 

classical visual cryptography).  Static cover image resembles a picture of the random 

noise; only mechanical oscillation of the cover image does reveal the secret. The main 

difference between dynamic visual cryptography and classical visual cryptography is 

that dynamic visual cryptography is one share cryptographic technique and 

mechanical operation to decrypt the image is based on oscillations – not a simple 

geometric superposition of the shares. Dynamic visual cryptography doesn’t require 

any NP-hard problem dependency on encryption process [57, 59]. 

Cryptography aspects of information security such as confidentiality, data 

integrity, entity authentication and data origin authentication are essential in visual 

cryptography as well [195, 196]. Horng et al. have proved that cheating is possible in 

visual cryptography [197]. More secure visual cryptography schemes are provided by 

numerous authors and require additional operations to ensure the confidentiality. A 

visual cryptography secret sharing scheme allows a secret to be shared only among 

authorized participants – any unauthorized participants cannot recover the secret. A 

malicious participant can generate the fake shares and the fake image appears when 

genuine shares and fake shares are superimposed [197, 198].  

One of the most common ways to prevent cheating is extended visual 

cryptography schemes that combine traditional visual cryptography with 

authentication characteristics. It means that the participants should be able to verify 

the integrity of the shares before decoding the secret. Huang and Chang present a non-

expanded visual cryptography scheme with the extra ability of hiding confidential data 

to prevent the detection of information by reversing the first share and stacking the 

other share [199]. The other way to prevent cheating is based on the construction of 

the shares that makes harder for the cheaters to predict the structure of the shares of 

the other participants [197]. De Prisco and De Santis’s proposed a cheating prevention 

scheme without a complementary image, where the cheaters cannot indicate the actual 

value of other participant’s subpixels [200]. Chen etc. proposed a scheme that is 

effective against cheating without the more expansion for a pixel, where the number 

of the black patterns is used to check whether a share is fake or not [201]. Liu et al. 

[202] presented a scheme that avoids usual cheating prevention drawbacks: the 

necessity of an online trusted authority, or additional shares for the purpose of 

verification, or pixel expansion and contrast reduction of the original visual 

cryptography scheme. 

While traditional visual cryptography schemes of n shares deal with possibility 

to cheat and additional security operations are required to deal with this problem – 

dynamic visual cryptography has an advantage as one participant is enough to 

implement the decoding process. The secret image is embedded into one share (cover 

image) and oscillation of the cover image reveals the secret. 

Other possible attacks against visual cryptography include blurring, sharpening, 

motion blurring, cropping, filtering and compression. Advanced visual cryptography 

schemes implemented on watermarking schemes that are robust to possible attacks 

are presented in [203, 204].  
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The analysis of attacks on dynamic visual cryptography schemes is presented in 

[205]. It was demonstrated that dynamic visual cryptography is robust to random 

noise, Gaussian blur, inappropriate angle of oscillations and vertical shift of secret 

share columns, though it is sensitive to the horizontal shift of rows of pixels.  

There are various measures and parameters on which performance of visual 

cryptography scheme depends, such as the pixel expansion, contrast, accuracy, 

computational complexity, meaningfulness or meaningless of the generated shares, 

types of secret images (binary or color) and number of secret images (either single or 

multiple) encrypted by the scheme [206-210]. Originally Naor and Shamir suggested 

two main parameters: pixel expansion and contrast [21]. Pixel expansion refers to the 

number of subpixels in the generated shares that represents a pixel of the original input 

image. It represents the loss in resolution from the original picture to the shared one. 

Contrast is the relative difference in weight between combined shares that come from 

a white pixel and a black pixel in the original image. The contrast of reconstructed 

image based on original Naor and Shamir scheme is 50%. Jung-San Lee et al. advised 

security, pixel expansion, accuracy and computational complexity as performance 

measures [211]. Security is satisfied if each share reveals no information of the 

original image and the original image cannot be reconstructed if there are fewer than 

k shares collected. Accuracy is considered to be the quality of the reconstructed secret 

image and evaluated by peak signal-to-noise ratio (PSNR) measure. A high PSNR 

implies high accuracy of the secret image sharing scheme. Computational complexity 

concerns the total number of operations required both to generate the set of shares and 

to reconstruct the original secret image. Both classical and dynamic visual 

cryptography algorithms are polynomial time computable – a detailed analysis of non-

expansible visual cryptography algorithm complexity is provided in [212]. 

Contrast is essential within visual cryptography because it determines the clarity 

of the recovered secret by the human visual system. Hofmeister et al. present a linear 

solution to the optimal contrast problem. An approach based on coding theory helps 

to provide an optimal tradeoff between the contrast and the number of subpixels [213]. 

Ito’s scheme removes the need for this pixel expansion – the number of subpixels in 

a shared pixel is equal to one. The recovered secret can be viewed as the difference of 

probabilities with which a black pixel in the reconstructed image is generated from a 

white and black pixel in the secret image, but the contrast of recovered image reduces 

[214]. Some schemes present methods which do not work with printed transparencies 

and these rely on computation in order to recover the secret. In this respect, high 

quality secret recovery is possible, however it is preferred if the scheme works with 

printed transparencies. A possible option for improving the efficiency of visual 

cryptography is to use the XOR operation. Tuyls et al. [215] present a method that 

allows traditional stacking of the shares on transparencies, but improves the overall 

share quality. The scheme has favorable properties, such as, good resolution and high 

contrast, but XOR operation cannot be implemented mechanically without additional 

computational efforts.  

Dynamic visual cryptography scheme is size invariant visual cryptography 

scheme – the size of the share is the same as original image. The quality of the contrast 

of dynamic visual cryptography is based on the difference between the pitches of 
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moiré grating embedded at the background and the secret areas. Contrast differences 

of the background and the secret image are highest when the pitch of moiré grating of 

the secret image is located as far as possible from the pitch of the background [216]. 

But still the contrast of dynamic visual cryptography remains an important issue, 

because the secret image is interpreted as time-averaged moiré fringes – gray zones 

of embedded secret (the zones of revealed secret information are completely black in 

traditional visual cryptography). This phenomenon yields the necessity to construct 

special digital contrast enhancement algorithms, because grayscale levels at 

centerlines of fringes depend on the geometrical location of these fringes and 

traditional contrast enhancement algorithms fail. Moving average based contrast 

enhancement technique that is applied for visualization of time-averaged fringes 

produced by time-averaged moiré is presented in [217]. This technique is successfully 

implemented in dynamic visual cryptography schemes [57, 59]. 

A specific aspect of dynamic visual cryptography deals with is the sensitivity to 

the oscillation parameters. Dynamic visual cryptography is based not on the static 

superposition of moiré images, but on the formation of time-averaged geometric 

moiré fringes. The secret is leaked when parameters of oscillations are appropriately 

tuned. Malicious participant can decode the secret by trial and error, if only he knows 

that he has to shake the share (and also knows the direction of oscillations). The 

standard deviation of grayscale level in time-averaged image quantifies the 

development of time-averaged moiré fringes [218]. This measure defines the 

sensitivity of the decryption of dynamic visual cryptography. The level of the standard 

deviation of the time-averaged image showed that the human eye can interpret the 

secret image if the standard deviation is not higher than 1% of the width of the interval 

of grayscale levels of the cover image [216].  

The capacity of a visual cryptography scheme is considered as a maximum 

number of secret images embedded into the shares. Naor and Shamir scheme can 

embed only one secret image. The maximal size of the hidden information is related 

to the size of an image.  Advanced visual cryptography schemes can embed a greater 

number of secret images into a given image area, which are reconstructed by rotating 

one of the stacked shares [219]. Most of visual secret sharing for multiple secrets 

schemes decrease the contrast of recovered images while the amount of secret image 

encryption increases and additional encryption techniques are necessary to improve 

the quality of the recovered image. A novel hybrid encryption algorithm, which splits 

the embedding and camouflaging aspects of the encryption process into distinct 

phases to adjust the camouflaging density according to the size and thickness of the 

ciphertext font, ensures the quality of multiple secrets schemes [220]. Therefore, a 

great challenge remains with respect to improving the secret message capacity and the 

visual quality of any visual cryptography scheme. 

Dynamic visual cryptography is a one-share technique, therefore only one piece 

of information can be encrypted in the cover image. The ability to embed more than 

one secret into single share that can be revealed with different oscillation parameters 

remains the object of the future research. 
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1.6. Concluding remarks  

All visual cryptography schemes can be characterized by the same principle that 

computational algorithms are necessary to encrypt the image, but the process of the 

decryption can be implemented without a computer – a simple mechanical operation 

and human visual system are enough for the decryption. Traditional visual 

cryptography or moiré cryptography schemes are based on the stacking of two or more 

random looking shares, while dynamic visual cryptography is a single share technique 

and the decryption is based on the mechanical oscillation operation in a predefined 

direction at strictly defined parameters of these oscillations. Though visual 

cryptography can be used in a number of important information security applications, 

an introduction of oscillations into visual cryptography schemes opens new 

possibilities for potential applications of this scheme for optical monitoring of 

vibrating structures and testing the human visual system itself. It can be an effective 

optical technique for the control vibration generation equipment [216].  But it is well 

known that a periodic force applied to nonlinear system can cause a chaotic response 

[221]. That creates the necessity to construct dynamic visual cryptography schemes 

based on chaotic oscillations. A computational framework for digital implementation 

of dynamic visual cryptography is the main aim of the research. That step involves 

the development of near-optimal moiré gratings, deformed moiré gratings for the 

enhanced security of the secret image. Chaotic dynamic visual cryptography opens 

new directions for the applicability of image hiding techniques in a wide pool of 

scientific and engineering applications and requires solving a number of important 

mathematical and physical problems – which do form the core of this dissertation.  
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2. ADVANCED DYNAMIC VISUAL CRYPTOGRAPHY 

The necessity to investigate features of dynamic visual cryptography and to 

develop theoretical models and computational framework for digital implementation 

is the base of this dissertation. This approach helps to create advanced enhanced 

security schemes of dynamic visual cryptography and opens new possibilities to a 

wide range of applications.   

This chapter of dissertation can be divided into two parts, where quantitative 

and qualitative schemes of enhanced dynamic visual cryptography are presented. The 

modification with enhanced security based on near-optimal moiré grating, where the 

time function determining the process of oscillation is triangular waveform, is 

developed in chapter 2.1.  A novel dynamic visual cryptography scheme based on the 

deformations of the cover image, where the time function determining the process of 

oscillation is harmonic, is presented in chapter 2.2.   

2.1. Image hiding based on near-optimal moiré gratings 

The image hiding method based on time-averaging moiré is proposed in [57]. 

This dynamic visual cryptography scheme is based not on static superposition of 

moiré images, but on time-averaging geometric moiré. This method generates only 

one picture which serves as a plaintext; the secret image can be interpreted by the 

human visual system only when the original encoded image is harmonically oscillated 

in a predefined direction at strictly defined amplitude of oscillation. Parameters of the 

oscillation which are used to decrypt the secret serve as the key, a ciphertext is a single 

printed cover image. This method resembles a visual cryptography scheme because 

one needs a computer to encode a secret, and one can decode the secret without a 

computing device. The secret is leaked from encoded picture when parameters of the 

oscillation are appropriately tuned. In other words, the secret can be decoded by trial 

and error – if only one knows that he has to shake the slide. Therefore, additional 

image security measures based on classical visual cryptography scheme are 

implemented in [57], particularly breaking up the encoded image into two shares. 

Oscillation of any of the shares separately does not reveal the secret. Two shares must 

be superimposed and then oscillated harmonically before the secret image can be 

interpreted. 

The image encoding method which reveals the secret image not only at exactly 

tuned parameters of the oscillation, but also requires that the time function 

determining the process of oscillation must comply with specific requirements is 

developed in [59]. This image hiding method based on time-averaging moiré and non-

harmonic oscillations does not reveal the secret image at any amplitude of harmonic 

oscillations. Instead, the secret is leaked only at carefully chosen parameters of this 

specific time function (when the density function of the time function is a symmetric 

uniform density function). It can be noted that the key to decrypt the image has 

additional security parameter – specific time function. Stepped (black and white) 

moiré gratings are used in [57] to encode the secret image. The main objective of the 

research is to determine if a better moiré grating exists compared to the stepped 

http://www.sciencedirect.com/science/article/pii/S0030401811004433#bb0070
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grating. The criteria for the optimality of the moiré grating is straightforward: no time-

averaged fringes should develop when this grating is oscillated harmonically, and the 

secret image should be leaked when the grating is oscillated by the triangular 

waveform time function whose density function is a symmetric uniform density 

function [222].  

2.1.1. Initial definitions and optical background 

A one-dimensional moiré grating is considered and some requirements must be 

fulfilled for a grayscale function. 

Definition 1. Function  xF  is a grayscale grating function if the following 

requirements hold: 

 Requirement1. The grating is a periodic function;    xFxF   ;   is the pitch 

of the grating. 

 Requirement2.   10  xF ; 0 corresponds to the black color, 1 corresponds to 

the white color and all intermediate numerical values of the grating correspond to 

an appropriate grayscale level. 

 Requirement3.  xF  has only a finite number of discontinuity points in every 

finite interval  ba; ; ba   (  xF is an integrable function).  

A harmonic function  
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are used for the construction of grayscale grating functions for image hiding 

applications in [57, 59].  

An m-pixels grayscale grating function  xF nm,  is defined as follows: 

 
 





















 





j

m

k
xj

m

k
yxF knm
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    when,, ; (2.3) 

where ky , mk ,,2,1  ; Zj are grayscale levels assigned accordingly from a set of 

discrete grayscale levels comprising n elements distributed uniformly in the interval 

[0;1]. The pixel’s length is 
m


; m pixels fit into the period of the grayscale grating 

function. For example,  xF 256,22  represents a grayscale grating function which period 

accommodates 22 pixels and the grayscale level of every pixel can be selected from 

256 different levels.  

The following parameters are used for the characterization of grayscale grating 

functions. The supremum and the infimum of the grayscale functions: 
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 xFC sup ; (2.4) 

 

 xFC inf . (2.5) 

The average of the grayscale functions:  
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The norm of the grayscale functions: 
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Following relationships hold: 

  10  CxFC ; Rx , (2.8) 
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1
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The grayscale function  xF  can be expanded into the Fourier series: 
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(2.10) 

Coefficients of the Fourier expansion and parameters for different grayscale 

grating functions read: 

1. For the harmonic grayscale grating function  xF
~

: 
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(2.11) 

2. For the stepped grayscale grating function  xF : 
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3. For the m-pixels grayscale grating function  xF nm, : 
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Definition 2. The time averaging operator sH  is defined as: 

     ;
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s
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ss dttxF
T

FxH   (2.14) 

where t is time; T is the exposure time;  ts  is a function describing dynamic 

deflection from the state of equilibrium; s is a real parameter; 0s ; Rx . 

Two different time functions  ts  are used. The first one describes the process 

of harmonic oscillations: 

     tsts sin
~

; (2.15) 

where s is the amplitude;  is the angular frequency and  is the phase of harmonic 

oscillations. Another time function describes the triangular waveform type 

oscillations: 
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where s is the amplitude;  is the frequency and  is the phase of triangular waveform 

type oscillations. Both functions can be easily implemented experimentally – any 

shaker table with appropriate control instrumentation can execute harmonic and 

triangular waveform type oscillations.  

The averaging operators are [59]: 
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and 
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where 0J  is zero order Bessel function of the first kind.  

Thus, for harmonic time function  ts
~

, time averaging operator is: 
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The proof follows immediately from (2.17). It can be noted that this is a well 

know result in optical engineering. A time averaged geometric moiré fringe is formed 

at such amplitudes of harmonic oscillations where 0
2

0 







sJ




. In other words, the 

explicit relationship between the amplitude of harmonic oscillation, the pitch of the 

grating and the order of the time-averaged fringe takes the following form: 

nn rs 


2 ;  ,2,1n ; (2.20) 

where the fringe order n is determined using manual, semi-manual or fully automatic 

fringe enumeration techniques, ns is the amplitude of oscillations, nr is the n-th root 

of zero order Bessel function of the first kind. 

Definition 3. The mean of a time-averaged grayscale grating function is defined as: 
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where E is the averaging operator.  

Corollary 1.  
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The proof follows from (2.17) and (2.18).  

Definition 4. The standard deviation of a time-averaged grayscale grating function is: 
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Corollary 2. The standard deviation of a grayscale grating function oscillated 

harmonically reads: 
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But the standard deviation of a grayscale grating function oscillated by a 

triangular waveform time function reads: 
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Corollary 3.     0ˆ;inf ss
s

FxH   for any grayscale grating function.  

Time-averaged fringes generated by a harmonic grating function oscillated 

harmonically are shown in Fig. 2.1(a); the solid line and black circles in Fig. 2.1(b) 

illustrate the zero order Bessel function of the first type 







sJ



2
0  and its roots. Time-
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averaged fringes produced by a non-harmonic grating function oscillated by a 

triangular waveform function are shown in Fig. 2.1(c); the dashed line and empty 

circles in Fig. 2.1(b) illustrate the function 
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 and its roots.  

Corollary 4.     0
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FxH   if and only    xFxF
~

  or   cxF   for all x; 

10  c . 

 

 

 

Fig. 2.1. Patterns of time-averaged fringes produced by a harmonic moiré grating (λ = 0.1) 

oscillated harmonically (a) and by a non-harmonic grating oscillated by a triangular 

waveform type time function (c). The line drawing in part (b) illustrates appropriate envelope 

functions and their roots; vertical dashed lines mark centerlines of corresponding time-

averaged fringes 

2.1.2. The construction of the optimality criterion for  xF nm,  

The results of Corollary 3 and Corollary 4 are used in [59] for hiding an image 

in a stepped moiré grating. Since coefficients of the Fourier expansion of a stepped 

moiré grating are described by (2.12), Corollary 4 yields:  

    0
~

;inf ss
s

FxH  . (2.27) 
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In other words, time-averaged moiré fringes will not develop when a stepped moiré 

grating is oscillated harmonically at any amplitude of oscillations and the embedded 

secret image cannot be decrypted by harmonic oscillations (Fig. 2.2). Triangular 

waveform type oscillations, on the contrary, enable effective visual decryption of the 

secret image. 

 

Fig. 2.2. Undeveloped time-averaged fringes produced by the stepped moiré grating (a) and 

the near-optimal moiré grating (b); the pitch of both gratings is λ = 0.1; both gratings are 

oscillated harmonically. Full time-average fringes develop when the near-optimal moiré 

grating is oscillated by a triangular waveform time function (c) 

Therefore the magnitude    ss
s

FxH 
~

;inf  can be considered as a measure of 

the quality of the encryption. The higher is this number, the harder is to interpret the 

embedded image when it is oscillated harmonically. The aim of the research is to find 

out if the stepped moiré grating  xF  is an optimal grating (in the sense described 

above) or it is possible to find another grayscale grating function for which the lowest 

value of the standard deviation of the time-averaged image produced by harmonic 

oscillations is higher compared to the stepped moiré grating.  

As mentioned previously, a grayscale grating function for which the lowest 

value of the standard deviation of the time-averaged image produced by harmonic 

oscillations is maximal is sought in this chapter. Unfortunately, this is a very complex 

problem of variational optimization. But digital representations of grayscale grating 

functions is considered only with m-pixels grayscale grating functions. That simplifies 

the optimization problem considerably. 

Also, it can be noted that it is not likely that very large amplitudes ( s ) would 

be used for the decryption of the embedded image [57, 59]. Thus further simplification 
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of the optimization problem is possible – the minimal value of the standard deviation 

will be sought in the interval of amplitudes 1S  surrounding the amplitude 
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The variation of standard deviations of  xF
~

 and  xF  in the interval 1S  is 

illustrated in Fig. 2.3. 

Definition 5. The optimality criterion  F  for a grayscale grating function F is 

defined as follows: 

     ss
Ss

FxHF 
~

;min
1

 . (2.29) 

It is clear that   0
~
F . On the other hand,   0467.0F  (at 2744.0min s ; Fig. 

2.3) is the lower bound of the optimization procedure. 

2.1.3. Perfect grayscale grating functions 

The optimization problem   F
nmF


,

max


 could be commenced, but first the 

definition of a perfect grayscale grating function should be introduced. 

Definition 6.  xF  is a perfect grayscale grating function if four additional 

requirements hold true besides the requirements raised in the Definition1: 

 Requirement 4. The grating spans through the whole grayscale interval: 1C ; 

0C . 

 Requirement 5. The average grayscale level in a pitch of the grating equals to 

exactly the middle grayscale level between the white and the black colors: .5.0  

 Requirement 6. The norm of the grayscale grating function must be at least equal 

to the half of the norm of the harmonic grayscale grating:    


1~

2

1
 xFxF . 

 Requirement 7. The pitch of the grating  must be easily identifiable. The main 

peak of the discrete Fourier amplitude spectrum at 


2
 must be at least two times 

higher compared to all other peaks: 
222

1

2

1 2 jj baba   for all ,3,2j . 
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Fig. 2.3. The variation of standard deviations of the harmonic grayscale grating function (the 

dashed line) and the stepped grayscale grating function (the thin solid line) oscillated 

harmonically; the thick solid line on the s-axis denotes the interval S1; the empty circle 

denotes the amplitude smin where the standard deviation   ss FxH 
~

;
min

 of the time-averaged 

image reaches its minimum in S1 

The necessity of the introduction of perfect grayscale grating functions is 

reasoned by the peculiarities of the decryption procedure and the formation of time 

averaged moiré fringes (Fig. 2.4). The Requirement 4 forces to use the whole range 

of discrete grayscale levels. The Requirement 5 demands that the grayscale level in 

the center of a time-averaged fringe is equal to 0.5. The Requirement 6 does not 

allow grayscale functions which slightly vary around 0.5 and have only few black and 

white pixels in a pitch of the grating. The Requirement 7 demands that the pitch of a 

grating must be clearly visible by a naked eye. Otherwise, parasitic time averaged 

moiré fringes may form at different amplitudes if, for example, the second peak of the 

discrete Fourier amplitude spectrum at  


4
 is comparable to the main peak at 



2
. 

Corollary 5.  xF
~

 and  xF  are perfect grayscale functions.  

Proof. The proof for  xF
~

 is trivial. The proof for  xF  is also straightforward: 

 


1

2

1
xF , thus the Requirement 6 holds. Coefficients of the Fourier expansion 

of  xF  read: 0,,, 210 aaa ; 
  


12

2
12

k
b k ; 02 kb ; ,2,1k . So, 



2
1 b ; but 

k
bk



2
 ; ,3,2k . Thus, the Requirement 7 holds also. End of proof.  

It is clear that  xF nm,  is not necessarily a perfect grayscale grating function. 
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Fig. 2.4. Illustrations of not perfect grayscale grating functions: (a) – the Requirement 4 does 

not hold; the whole range of grayscale levels is not used; (b) – the Requirement 5 does not 

hold; the average grayscale level in a pitch does not equal to 0.5; (c) – the Requirement 6 

does not hold; the norm of the grayscale grating function is too small; (d) – the Requirement 

7 does not hold; the secondary harmonic is too high 

Stepped grayscale grating functions comprising 22 pixels in the pitch of the 

grating are used to encode digital images in [59]. Here also 22 pixels are used in the 

pitch of the grating; 22m . Next, if one chooses 256 different discrete grayscale 

levels that would increase the complexity of the solving problem even for evolutionary 

algorithms. Instead, as a compromise, 32 different discrete grayscale levels are used 

in order to reduce the complexity of the problem and still can be used for practical 

implementations. All possible discrete grayscale levels of ky  can be enumerated as

31

j ; 31,,2,1,0 j . 

Now, finding an optimal perfect 22-pixels grayscale grating function is a 

straightforward task. All possible functions  xF 32,22  should be generated and checked 

if a currently generated function is perfect. If it is a perfect function,  32,22P  should 

be computed. The highest value of  32,22P  produced after the full sorting algorithm 

will correspond to the optimal moiré grating. Unfortunately, this full sorting strategy 

is unrealistic due to the limited computational resources even after the above-

mentioned simplifications and reductions. Naturally, the alternative objective is to 

seek near-optimal moiré gratings. Evolutionary algorithms are used for that purpose. 

2.1.4. The construction of evolutionary algorithms 

An evolutionary algorithm is constructed in such way that every chromosome 

represents one period of a grayscale function  xF 32,22 . The length of each chromosome 
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is 22; every gene is an integer number between 0 and 31. The value of each gene 

represents a grayscale level for the respective pixel. The fitness of a chromosome is 

estimated by calculating  32,22F  (Eq. 2.29). Since it is operated with perfect moiré 

gratings only, the fitness function  32,22F  takes the following form: 

 
 

   




perfect. is  if 

perfect;not  is  if           0

32,2232,22

32,22

32,22
xFF

xF
F


 (2.30) 

The initial population comprises n randomly generated chromosomes with 

values of genes uniformly distributed over the interval [0; 31]. The fitness of each 

perfect chromosome is evaluated and an even number of chromosomes is selected to 

the mating population. A random roulette method is used for the selection of 

chromosomes. The chance that the chromosome will be selected to the mating 

population is proportional to its fitness value. Nevertheless, a probability that a 

chromosome with a low fitness value will be selected is not zero. Also, several copies 

of the same chromosome are allowed. All chromosomes are paired when process of 

mating is over.  

The crossover between two chromosomes is executed for all pairs in the mating 

population. A one-point crossover method is used and the location of this point is 

random. A crossover coefficient κ characterizes a probability that the crossover 

procedure will be executed for a pair of chromosomes.  

In order to avoid convergence to one local solution a mutation procedure is used. 

The mutation parameter μ ( 10   ) determines the probability for a chromosome 

to mutate. The quantity of chromosomes which are exposed to the mutation procedure 

is calculated as  nnm  round . Then mn  chromosomes are selected randomly and 

one gene of each chromosome is changed by a random number  r32mod ; here   

is the gene value before the modification; r  is a random integer uniformly distributed 

over the interval  31;0 .  

In general, the selection of parameters of evolutionary algorithms is an empirical 

process, though some common principles are described in [223]. The following 

parameters of the evolutionary algorithm must be pre-selected: the crossover 

coefficient ; the mutation parameter ; the size of the population n and the number 

of generations. Recommendations for a classical model of an evolutionary algorithm 

[160] are used in this research. The crossover coefficient  will be selected from an 

interval  8.0;6.0  and the mutation parameter   from an interval  3.0;0 .  

There are no definitive methods of establishing how many generations an 

evolutionary algorithm should run for. The most reliable method of deciding on this 

is trial and error, although some recommendations to determine the number of 

generations are suggested [223]. 40 generations are used in this model, since further 

increase of the number of generations does not show improvement in the number of 

successful trials.  

In order to tune numerical values of parameters  and  an artificial problem is 

constructed – a best perfect grayscale grating function  xF 5,6  is sought (comprising 6 

pixels in a period; each pixel can acquire one of 5 discrete grayscale levels). 



63 

 

Computational costs of a full sorting algorithm for a problem of such size are not high.  

A full sorting algorithm let us find out that the grayscale levels of the best perfect 

grayscale grating are:  434010
4

1
  and the fitness function value is 

057831.0 . 

A single execution of an evolutionary algorithm produces one grayscale grating 

function. Clearly, the fitness of the generated function cannot be higher than 0.057831. 

On the other hand, the outcome depends on the initial population of chromosomes 

(among other random factors). Therefore, the evolutionary algorithm (at fixed values 

of parameters) is executed for 10 times and calculate how many times the fitness of 

the produced grayscale grating function is equal to 0.057831 (the number of 

successful trials is denoted by k). As noted previously, the fitness is calculated only 

for perfect grayscale grating functions (Eq. 2.30). For example, the objective 

parameter  of the grating  402044
4

1
  is 057831.00587.0  , but its fitness 

is set to zero because this grating is not perfect. 

It can be noted that only about 7.8 % of all grayscale grating functions  xF 5,6  

are perfect grayscale grating functions. A random population of 500 chromosomes 

yields in average 39 perfect gratings. It is fixed 500n  (both the mating, initial and 

the current population). Simulation results are presented in Table 2.1;   5,6FE   

denotes average fitness function calculated for 10 trials. Initially 05.0  is fixed and 

experiments with 6.0 , 0.7 and 0.8 are performed. The number of successful trials 

is highest at 7.0 ; moreover the highest  5,6F  is also produced at 7.0 . The 

experiment is continued with 01.0 , 0.1, 0.2 and 0.3 (at 7.0 ). Best results are 

produced at 3.0 (Table 2.1). 

Table 2.1. The number of successful trials k and the average fitness function   5,6FE   for 

different values of the crossover coefficient  and the mutation parameter  

κ μ E(Φ(F6,5)) k 

0.6 0.05 0.0505 3 

0.7 0.05 0.0521 4 

0.8 0.05 0.0507 3 

0.7 0.01 0.0516 3 

0.7 0.1 0.0521 4 

0.7 0.2 0.0541 6 

0.7 0.3 0.0549 7 

0.7 [0.05; 0.5] 0.055 7 

 

The fact that the fitness is calculated only for perfect grayscale grating functions 

and that only a low average percentage of perfect functions exist in the initial random 

population poses a threat that the evolutionary algorithm will converge to local 

maximum without spanning the whole set of perfect grayscale grating functions. 

Therefore the mutation procedure is modified introducing the incremental 
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magnification of the parameter  in every consecutive generation. The first generation 

starts with 05.0  and is gradually increased up to 0.5 in the final generation. 

Though the number of successful trials is the same compared to the same experiment 

at 7.0  and 3.0 , the maximum fitness of the best perfect grating is 

considerably higher (Table 2.1). 

The values of evolutionary algorithm are fixed ( 7.0  and incremental 

increase of  from 0.05 till 0.5) and the calculations are continued with grayscale 

grating functions comprising 22 pixels and 32 discrete grayscale levels, but the size 

of the population is 20000n  and the number of generations is 10 now. The 

evolutionary algorithm is executed 5 times; the best generated perfect grating is 

selected then. The general scheme of executed genetic algorithm is shown in Fig. 2.5. 

 

Initialize

Population

n=20000 

chromosomes of 22 

genes with values 

0,1, ,31
 Selection

A random roulette 

method

Crossover

A one-point crossover

κ=0.7

Mutation

 μ [0.05;0.5]

Termination

Criterion

10 generations

Yes

No

 Evaluation

A chromosome is a perfect 

function

Solution

 Near optimal 

grascale function

Update current

population

 

Fig. 2.5. The schematic diagram of genetic algorithms to find out the near-optimal 

grayscale function  xF 32,22  

The best generated near optimal perfect grayscale grating function  xF 32,22 that 

will be used to encode a secret image is shown in Fig.2.6 (a). 
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Fig. 2.6. Near optimal perfect grayscale grating functions  xF 32,22  (a) and   xF 32,21  (b) 

represented in line graphs and in grayscale level charts 

2.1.5. Image hiding in near optimal perfect grayscale gratings 

As mentioned previously, the goal of this research is to find an optimal perfect 

grayscale grating which can be effectively used for image hiding based on time-

averaged moiré fringes produced by triangular waveform type oscillations. But the 

secret image encoding and decoding scheme remains the same as in [57, 59] (any new 

modifications are not provided). The secret image should be leaked in a form of a 

pattern of time-averaged moiré fringes when the encoded original image is oscillated 

in a predefined direction at strictly defined amplitude of triangular waveform type 

oscillations (Fig.2.2(c)). Moreover, the secret image should not be revealed at any 

amplitude of harmonic oscillations. The basic goal remains similar to objectives raised 

in [59]. The main difference now is in the structure of the grayscale grating which 

holds the embedded secret image. A stepped grayscale grating does not produce a 

time-averaged moiré fringe at any amplitude of harmonic oscillations [59]. But a 

stepped grayscale grating yields an array of undeveloped time-averaged fringes when 

the amplitude of harmonic oscillations sweeps over a preset frequency range. Of 

course, such undeveloped fringes cannot be used for image hiding applications – it 

would be hard to interpret the embedded image even at preselected amplitude of 

harmonic oscillations. Anyway, the near-optimal perfect grayscale grating  xF 32,22  

can be considered as a strong advancement of the security of the encryption – the 

undeveloped time-averaged fringes produced by harmonic oscillations are even less 

interpretable (Fig. 2.2(b)). What is even more important, the slope of the undeveloped 

fringe produced by  xF 32,22  is much smaller compared to the slope of the undeveloped 

fringe produced by the stepped grayscale grating (Fig. 2.7). 
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Fig. 2.7. The variation of standard deviations of grating functions oscillated harmonically: 

the dotted line represents the harmonic grayscale grating function; the dotted-dashed line – 

the stepped grayscale grating function; the thin solid line – the optimal perfect grayscale 

grating function   xF 5,6  ([0 1 0 4 3 4]/4); the dashed line – the optimal not perfect grayscale 

grating function  xF 5,6  ([4 4 0 2 0 4]/4). The thick solid line on the s-axis denotes the 

interval S1; the empty circle denotes the amplitude where the standard deviation of the time-

averaged perfect grayscale grating function reaches its minimum in S1 

It can be noted that two different gratings are used to embed a secret image into 

the background image; one pitch of the grating is used to form the background of the 

secret image; another pitch is exploited to form the zones inherent to the secret image. 

In this research the near optimal grayscale grating  xF 32,22  is used for the background; 

the pitch of this grating is 76.10   mm (22 pixels fit into 1.76 mm). It is clear that it 

is impossible to change the pitch of  xF 32,22  without changing the size of each 22 

pixels forming the near optimal grayscale grating; the number of pixels in the grating 

is changed instead. The procedure is straightforward – the grayscale grating used for 

the secret image is constructed from  xF 32,22  by deleting one pixel (the pitch then 

becomes 64.1
22

21
76.11  mm). The produced grayscale grating  xF 32,21  must be a 

perfect grayscale grating, thus the pixel which numerical grayscale value is nearest to 

0.5 is deleted (Fig. 2.6(b)).  

The secret image (the plaintext) which will be embedded into the background 

moiré grating is illustrated in Fig. 2.8. The encoded secret image (the ciphertext) is 

shown in Fig. 2.9; the size of the digital image is 80 x 48 mm (1890 x 1134 pixels); 

the pitch of the background moiré grating is 76.10   mm; the pitch at zones inherent 

to the secret image is 68.11  mm. Stochastic initial phase deflection and phase 

regularization algorithms [57] are used to hide the secret image into the background.  
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Fig. 2.8. The secret image 

 

Fig. 2.9. The secret image encoded into the background moiré grating 

The secret image can be decrypted when the encoded image is oscillated by a 

triangular waveform type time function. The secret image can be visualized in two 

alternative ways. Time-averaged moiré fringe forms at the region occupied by the 

secret image and it appears in a form of a gray even zone in a noisy background when 

the amplitude of triangular waveform oscillation is 84.0
2

1 


s  mm (Fig. 2.10). It 

can be noted that time-averaged moiré fringes will form too when the amplitude of 

triangular waveform oscillations will be ,
2

1js j   ,...3,2j . However the small 

elements of the secret image may disappear in the time-averaged image at higher 

amplitudes of oscillations. Alternatively, the background turns into a time-averaged 

moiré fringe and the secret image is leaked as a noisy area in the even background at 

88.0
2

0 


s  mm (Fig. 2.11).  
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Fig. 2.10. Computational decryption of the secret image when the encoded image is 

oscillated by a triangular waveform type time function at 84.0
2

1 


s mm

 

Fig. 2.11. Computational decryption of the secret image when the encoded image is 

oscillated by a triangular waveform type time function 88.0
2

0 


s  mm 

The contrast of time-averaged moiré fringes can be enhanced using special 

algorithmic techniques (Fig. 2.12) [57], but the decryption can be performed by the 

human visual system, without the aid of computers. The secret image can be 

interpreted by a naked eye when the frequency of oscillations is high enough and the 

human visual system cannot follow rapidly oscillating objects. It can be noted that the 

frequency of oscillations does not have any influence to the process of decryption (Eq. 

2.17) and (Eq. 2.18). Visual decryption is determined only by the amplitude of 

oscillations and the time function controlling the trajectory of motion in one period of 

oscillations – these two serve as a key of decryption.   
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Fig. 2.12. Contrast enhancement of the decrypted image 

The secret image cannot be leaked when the amplitude of triangular waveform 

oscillations in not pre-selected accordingly; the time-averaged image at 04.1s  mm 

is shown in Fig. 2.13. Moreover, the secret image cannot be leaked if the encoded 

image is oscillated harmonically. This statement holds for any amplitude of harmonic 

oscillations. The time averaged image at amplitude of harmonic oscillations 

6433.0
2

11 


r
s  mm is shown in Fig. 2.14. 

 
 

Fig. 2.13. The secret image cannot be leaked when the amplitude of triangular 

waveform type oscillations in not pre-selected accordingly; the time-averaged image is 

shown at s=1.04 mm 
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Fig. 2.14. The secret image cannot be leaked when oscillations are harmonic; the time-

averaged image is shown at amplitude 6433.0s  mm 

The PSNR metric between the original image (Fig. 2.8) and the decoded image 

(Fig. 2.10) is 9.7312. The contrast of time-averaged moiré fringes can be enhanced 

using special algorithmic techniques (Fig. 2.12) [57], but the decryption can be 

performed by the human visual system, without the aid of computers. The PSNR 

between the original image (Fig. 2.8) and the contrast enhanced image (Fig. 2.12) is 

13.1292. This assessment is not very favorable to the proposed technique. It is obvious 

that better results could be achieved by other visual cryptography techniques. 

Anyway, one must keep in mind that the proposed technique is based on the formation 

on time-averaged moiré fringes. Thus a straightforward comparison between classical 

and dynamic visual cryptography techniques is irrelevant. The proposed dynamic 

visual cryptography scheme works well with larger objects; smaller details are blurred 

due to the shorter moiré gratings which are used to encode the secret image. Inevitable 

oscillations around the state of the image’s equilibrium cause optical blur at 

boundaries of the secret image. What is more important, a whole number of periods 

of the moiré grating may not fit into a smaller component of the secret image. This is 

a definite drawback of the proposed technique. Anyway, the proposed technique has 

a number of advantageous features. This is a single share method; no overlapping of 

any shares is required for the formation of the secret image. In this respect a worse 

value of the PSNR can be compensated by the added-value of the functionality of the 

proposed scheme. The proposed method is not a moiré hash function [224] and the 

small change in the initial data (the secret image) does not cause the avalanche effect 

in the encrypted image. The proposed technique works well when the size of the secret 

geometrical objects is few times greater than the length of one period (pitch) of the 

near optimal moiré grating. A small change in one of few pixels in the secret image 

would have no effect to the decoded image.  

Time needed to encrypt a secret image can be measured using a specific 

computational platform. The decryption can be performed completely visually 
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(without a computer) so the assessment of the computational decryption time is 

irrelevant (though the decryption time is comparable to the encryption time). The size 

of the digital image in Fig. 2.10 is 1890×1134 pixels; it takes 11.8 s to encrypt the 

secret image; the computational tool used in the experiments is AMD SempronTM 

Processor 3400+, 1.81 GHz, 512 MB RAM. 

2.1.6. Concluding remarks on near-optimal moiré gratings 

The applicability of image hiding techniques based on time-averaged moiré 

fringes is extended. The near-optimal moiré grating provides additional security of 

the encoded image, while the decoding procedure is kept completely visual. The main 

objective of this research was to optimize the process of encoding, thus one did not 

focus on the aspects of the human perception of the vibrating image; computational 

experiments have been performed only. A detailed analysis on experimental 

implementation of dynamic visual schemes and human perception aspects is provided 

in [216]. 

The shape of the waveform is optimized, where the criterion of optimality is 

based on the magnitude of the derivative of the standard deviation at the amplitude 

corresponding to the formation of the first moiré fringe. The standard deviation is 

computed as the variation of grayscale levels around the mean grayscale level in the 

time averaged image while the derivative of the standard deviation in respect to the 

amplitude of a piece-wise uniform waveform defines the applicable interval of 

amplitudes for visual decryption of the secret image. Experimental implementation 

showed that the secret image is interpretable if the standard deviation is not higher 

than 0.01 [216]. 

The developed image hiding technique resembles visual cryptography method, 

though the secret image is not split into shares; all information on the secret is kept in 

one image. The interplay between moiré gratings, stochastic initial phase scrambling 

and phase regularization algorithms are used to encode the secret into the carrier 

image. It is important to note that a computer is not necessary to decode the image – 

a naked eye can interpret the embedded secret if the encoded image is oscillated in a 

predefined direction at predefined amplitude and according to a predefined time 

function. Though the contrast is not a strength side of the proposed scheme – it can be 

applied as an effective optical technique for the control vibration generation 

equipment. 
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2.2. Image hiding in time-averaged deformable moiré gratings  

Time averaged geometric moiré can be exploited not only for the optical 

analysis of vibrating structures but also for the synthesis of a predefined pattern of 

time-averaged fringes. Such type of image hiding technique when the secret image 

leaks in a form of a time-averaged moiré fringe in an oscillating non-deformable cover 

image was presented in [57]. Stochastic moiré grating is used to embed the secret into 

a single cover image – the secret can be visually decoded by a naked eye only when 

the amplitude of the harmonic oscillations does correspond to an accurately 

preselected value. The fact that a naked eye cannot interpret the secret from a static 

cover image makes this image hiding technique similar to visual cryptography – 

special computational algorithms are required to encode the image, but the decoding 

is completely visual. The difference from visual cryptography is that only a single 

cover image is used and that it should be oscillated in order to leak the secret. And 

though the cover image is not cryptographically secure such fusion of time averaged 

geometric moiré and visual cryptography deserves the title of dynamic visual 

cryptography [57]. Different measures have been exploited to increase the security of 

dynamic visual cryptography. Near-optimal moiré gratings [222], triangular 

waveforms [59] have been used as additional security measures of the scheme (chapter 

2.1). It is important to note that visual decoding of all these dynamic visual 

cryptography schemes is based on a non-deformable moiré grating – the cover image 

is oscillated, but not deformed. A natural question does arise if dynamic visual 

cryptography scheme could be implemented on a deformable moiré grating and a new 

type of mechanical operation that ensures the decryption of the secret image could be 

considered as additional parameter of the dynamic visual cryptography key. The 

research based on this assumption is presented in chapter 2.2.   

2.2.1. A non-deformable moiré grating with a constant pitch.       

Let us consider a one-dimensional harmonic moiré grating: 

  







 xxF



2
cos

2

1

2

1
;  (2.31) 

where  is the pitch of the grating; 0 corresponds to the black color, 1 corresponds to 

the white color and all intermediate numerical values of  xF  correspond to an 

appropriate grayscale level. Let us assume that this moiré grating is painted on the 

surface of one-dimensional non-deformable body. Also, let us assume that this body 

oscillates around the state of equilibrium (without being deformed) and the deflection 

from state of equilibrium does not depend on x: 

       tatutxu sin, ;  (2.32) 

where  is the cyclic frequency, φ is the phase and a is the amplitude of oscillation. 

The resultant time-averaged image reads [57]:   
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(2.33) 
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where T is the exposure time; 0J  is the zero order Bessel function of the first kind. 

The original moiré grating is mapped into a time-averaged fringe (  
2

1
xF ) when 

0J  becomes equal to zero. In other words, the explicit relationship among the pitch of 

the moiré grating , the amplitude of harmonic oscillations a and the consecutive 

number of the time-averaged moiré fringe k reads:       

kk ra 


2
; ,2,1k ;  (2.34) 

where kr  is the k-th root of 0J ; ka  is the discreet value of the amplitude which results 

into the k-th time-averaged fringe in the time-averaged image.   

2.2.2. A deformable moiré grating with a constant pitch 

Now let us consider the same moiré grating (Eq. (2.31)) plotted on the surface 

of a one-dimensional deformable body. Let us assume that the left end of this linear 

deformable body is motionlessly fixed at 0x  and the right end is free at 1xx   in 

the state of equilibrium. Let us assume that the amplitude of harmonic oscillations is 

equal to 1Ax  at 1xx  . Now the deflection from state of equilibrium does depend on 

x: 

     tAxtxu sin, ; 10 xx  .  (2.35) 

The instantaneous shape of the deformed grating dF  reads: 

    xFtxuxFd  , . (2.36) 

It would be tempting to express dF  is the following explicit form: 

    txuxFtxFd ,,  , (2.37) 

but such transition leads to a crude mathematical error [224] – such explicit expression 

holds only if  txu ,  does not depend on x. Otherwise (if one wishes to construct an 

explicit form of dF ), it is necessary to express x in terms of z from the following 

equality:   

  ztxux  ,   (2.38) 

Luckily, it is possible to solve (2.38) when Eq. (2.35) holds. Thus, the explicit 

instantaneous expression of dF  reads [224]: 

 
     
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, . (2.39) 

Now, the time-averaged image reads: 

      






2

00

,
2

1
,

1
lim dttxFdttxF

T
xF d

T

d
T

d .  (2.40) 

Unfortunately, the definite integral in Eq. (2.40) cannot be expressed in a form 

comprising ordinary functions. Nevertheless, an explicit expression of Eq. (2.40) is 

constructed in [224] in a form of infinite function series: 
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(2.42) 

where the factorial structure  nm  is defined as follows: 

  1:0 m ;   mm :1 ;      11  nmmmm m  ; 0Zm ; Nn . (2.43) 

Direct interpretation of Eq. (2.41) is impossible due to the interplay of infinite 

functional series. Computational interpretation of  xFd  is presented in [224] and 

suggests that the formation of time-averaged fringes induced by an oscillating 

deformable moiré grating is somewhat similar to Eq. (2.33) under the assumption that 

the amplitude a increases continuously with x. This fact can be illustrated by the 

following reasoning. Eq. (2.39) yields: 
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. (2.44) 

Let us assume that A is not large. Note that Eq. (2.39) is defined only at 10  A  

(a singularity exists at 1A ). Then, neglecting higher order terms, results into the 

following approximation of (2.44): 
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It is easy to prove that 
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because the sine function is an odd function. Then,  
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Therefore, time-averaged moiré fringes induced by an oscillating deformable 

grating with a constant pitch do form at such x where: 

A

r
x k





2
 ; ,2,1k , (2.48) 

and the envelope function dE  modulating the stationary grating can be approximated:   
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The oscillation of the deformable one-dimensional moiré grating in time is 

illustrated in Fig. 2.15(a); time-averaged grayscale levels are presented in Fig. 2.15(b) 

and(c); the envelope function (2.49) is illustrated in Fig. 2.15(d). A naked eye cannot 

see any approximation errors in (2.49).   

 

Fig. 2.15. Geometric representation of time-averaged fringes induced by a deformable digital 

moiré grating with a constant pitch; 2.1  mm; 02.0A . The oscillation of the deformable 

one-dimensional moiré grating in time is illustrated in part (a); the time-averaged image (in 

grayscale levels) is illustrated in part (b); one-dimensional time-averaged grayscale levels are 

shown in part (c); the envelope function  xEd  is shown in part (d) 

2.2.3. A deformable moiré grating with a variable pitch 

Dynamic visual cryptography is based on the formation of time-averaged moiré 

fringes in the areas occupied by the secret image in the encoded cover image (when 

the cover image is oscillated according to a pre-determined law of motion). In other 

words, the whole observation window comprising a constant pitch non-deformable 

moiré grating is transformed into a continuous time-averaged fringe. But that in not 

the case for a constant pitch deformable moiré grating (Fig. 2.15) – several localized 

time-averaged fringes may form in the observation window. That is completely 

unsatisfactory for dynamic visual cryptography.  

The question is simple – is it possible to construct such a moiré grating which 

would be transformed into a continuous time-averaged fringe when the oscillations 

are governed by equation Eq. (2.35). An intuitive answer suggests a variable pitch 

deformable moiré grating – the amplitude of oscillation varies continuously from 0 at 

the left boundary of the one-dimensional structure till the maximum at the right 

boundary of the observation window. From the mathematical point of view, the 
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envelope function dE   should become equal to 0.5 for all 10 xx  .  That is possible 

if and only if 0
2

0 







AxJ




. In other words, the pitch of the moiré grating must be a 

linear function of x: 

Lx ; (2.50) 

where L can obtain one of the discrete values of kL : 

k
k

r

A
L

2
 ; ,2,1k .  (2.51) 

The assumption Eq. (2.50) is clear and natural – the higher is the amplitude of 

oscillations, the larger must the pitch of the moiré grating. Unfortunately, such an 

assumption does not work – the deformable moiré grating Eq. (2.39) cannot be formed 

because the grating degenerates into a constant:  
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2.2.4. A deformable moiré grating with a step-incremental pitch 

As shown previously, a continuous linear variation of the pitch of the moiré 

grating results into a degenerate optical model. Therefore, a step-incremental pitch is 

constructed instead of assuming a continuous variation of the pitch. The number of 

finite-length intervals can be preselected at the beginning of the computational 

experiment – but the pitch of the moiré grating is constant in the domain of every 

interval. Moreover, the phase regularization algorithm [57] is employed in order to 

avoid phase jumps at the boundary points between adjacent intervals (the 

reconstructed composite moiré grating is formed as a continuous function (Fig. 2.16).  

 

Fig. 2.16. The formation of a moiré grating with a step-incremental pitch 

Such an approach for the formation of the moiré grating with a step-incremental 

pitch can be extended to a scheme where the length of the interval becomes equal to 
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the distance between adjacent pixels. A schematic diagram illustrating the formation 

of such an “extreme” moiré grating is presented in Fig. 2.17 by a thick gray curve. 

The size of the intervals on the x-axis corresponds to the size of a pixel; kp  

corresponds to the k-th pixel. First, equation (2.50) is used for the calculation of the 

pitch of the moiré grating at the center of the k-th pixel – the corresponding constant 

pitch grating is illustrated by a thin black line in Fig. 2.17.  

 

Fig. 2.17. The formation of a deformable moiré grating with a step-incremental pitch 

The pitch of the moiré grating is then calculated at the center of the  1k -st 

pixel – the corresponding constant pitch grating is illustrated by a gray dashed line in 

Fig. 2.17. But the phase of the moiré grating in the zone occupied by the  1k -st 

pixel is not arbitrary – it is selected in such a way that the composite grating is a 

continuous function (Fig. 2.17). The process is continued until the composite moiré 

grating is constructed in the whole domain 10 xx   - the reconstructed variable pitch 

moire grating and its optical representation are shown in Fig. 2.18 parts (a) and (b). 

Note that the variable pitch deformable moiré grating does not degenerate into a 

constant – though equation (2.50) does hold true and 1.0
2

1


r

A
L


. The singularity of 

the grating at 0x  does not disappear – the resolution of the digital image in Fig. 

2.18 (a) is too low to reconstruct fast variation of the grayscale level in the left side of 

the image.  

         

Fig. 2.18. A variable pitch moiré grating (a); and its optical representation (b) 
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In analogy to the computational experiment performed with the constant pitch 

deformable moiré grating (Fig. 2.15) the variable pitch deformable moiré grating is 

oscillated and its time-averaged image is reconstructed (Fig. 2.19). The image in Fig. 

2.19 part (b) does not show a fully developed time-averaged moiré fringe – that can 

be explained by the composite structure of the moiré grating. Nevertheless, the 

deviations from 0.5 are rather small – a naked eye cannot see any fluctuations in the 

optical representation of the time-averaged image in Fig. 2.19 part (c).  

 

Fig. 2.19. The oscillation of the variable pitch deformable moiré grating in time. One period 

of oscillations is illustrated in part (a); time-averaged grayscale levels and the optical 

interpretation of the time-averaged image are shown in parts (b) and (c) accordingly 

2.2.5 Dynamic visual cryptography based on a variable pitch deformable moiré 

grating 

The formation of one row of pixels in the cover image is illustrated in a 

schematic diagram in Fig. 2.20. Let us assume that the secret image occupies the 

central part of the row ( 157  x ) and the background image must be formed 

elsewhere (at 70  x  and 2015  x ). Also, let us assume that the background 

image is constructed using moiré grating with the variable pitch x05.00   (Fig. 

2.20(a)) and the secret image – with the variable pitch x1.01   (Fig. 2.20(b)). Note 

that such large difference between  and  in Fig. 2.20 is selected only for 

illustrative purposes. The first and the third parts of Fig. 2.20(a) are plotted on a white 

background – these parts are copied and pasted into the composite moiré grating 

shown in Fig. 2.20(c). Analogously, the central part (corresponding to the location of 

the secret image) is copied from Fig. 2.20(b) and pasted to Fig. 2.20(c). In fact, such 

pasting procedure is not trivial – the phase regularization algorithm is used in order to 

equalize the phases of the composite moiré grating at the points of intersection 

between different gratings (that allows avoiding phase jumps in the composite 

grating). 

0 1
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Fig. 2.20. The formation of the composite moiré grating: non-shaded parts from (a) and (b) 

are copied into (c); the phase regularization algorithm is employed at the boundaries 

The applicability of variable pitch deformable moiré gratings for dynamic visual 

cryptography applications is illustrated by the following computational example. Let 

us assume that the secret image is represented by a dichotomous non-convex shape 

shown in Fig. 2.21. Variable pitch x05.00   is used for the background and variable 

pitch x06.01   is used for the secret image. Stochastic initial phase distribution [57] 

is employed for all rows of pixels in order to encode the cover image (Fig. 2.22). Note 

that moiré gratings in every row of pixels are continuous functions. The stochastic 

initial phase algorithm does not destroy the structure of the moiré grating in every 

row. Moreover, it does not alter the boundary between the background and the secret 

image. But it is impossible to see what secret picture (the plaintext) is encoded into 

the static cover image (the ciphertext) by a naked eye. 

 

Fig. 2.21. The secret image 
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Fig. 2.22. The secret image embedded into the cover image 

The visual decoding of the cover image can be executed by employing 

oscillations that deform the cover image according to the motion law described by Eq. 

(2.35). In other words, the left side of the cover image must be motionlessly fixed; the 

right side of the deformable structure should be oscillated according to Eq. (2.35).  

The secret image embedded into the cover image is leaked in the time-averaged 

image when the parameters of oscillations do satisfy relationship (Eq. (2.51)). It is 

impossible to see the secret image in Fig. 2.23 – the amplitude A = 0.021 does not 

permit the formation of well-developed time-averaged moiré fringes. But the 

appropriate selection of the amplitude (A = 0.019) enables an effective visual 

decryption of the secret (Fig. 2.24). The visual quality of the leaked secret in Fig. 2.24 

can be enhanced by employing contrast enhancement techniques – the decoded secret 

image is clearly visible in Fig. 2.25.    

 

Fig. 2.23. The secret image 
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Fig. 2.24. The secret image embedded into the cover image 

 

Fig. 2.25. The contrast enhancement of the time averaged image 

The formation of the secret image can be illustrated by setting different exposure 

times (fully developed time-averaged moiré fringes leak the secret image at the full 

period of oscillation in Fig. 2.24). One quarter, one half and three quarters of the 

period yield non-fully developed moiré fringes, which are illustrated in Fig. 2.26. The 

limit of the resolution of the proposed visual cryptography scheme is another 

important feature characterizing the applicability of this technique. All graphical 

primitives of the secret image are embedded into the stochastic moiré grating of the 

cover image. Therefore, the size of the smallest manageable detail of the secret image 

is directly related to pitch of the moiré grating. Thus, instead of measuring the size of 

the details in pixels or millimeters, the size of the embedded object to the pitch of the 

moiré grating is compared. 
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Fig. 2.26. The formation of the secret image as the exposure time varies from one quarter of 

the period (a); half of the period (c); three quarters of the period (e) and the full period (Fig. 

2.24). Contrast enhanced time-averaged images are shown in parts (b), (d) and (f) 

respectively 

It is assumed that a square object represents the secret image and is embedded 

into the cover image. Also, it is assumed that the variation of the pitch of the moiré 

grating along the x-axis is slow – the pitch of the moiré grating is set to be constant 

(Fig. 2.27). Four computational experiments are used to illustrate the decryption of 

the secret image—when the size of the square is equal to 
2


 by 

2


 (Fig. 2.27(a));   

by   (Fig. 2.27 (b)); 
2

3
 by 

2

3
 (Fig. 2.27 (c)) and 2  by 2  (Fig. 2.27 (d)). The 
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amplitude of oscillation is set to 
1

2
ra




 , which guarantees the formation of the time-

averaged moiré fringe inside the square. Every part of Fig. 2.27 represents two digital 

images — the time-averaged image of the cover image (on the left) and the contrast 

enhanced time-averaged image (on the right). It is clear that the practical application 

of the proposed scheme requires that the smallest component of the secret image must 

occupy an area whose size is not less than a single pitch of the moiré grating (Fig. 

2.27 (b)). On the other hand, the maximal amount of information depends on how 

many geometrical objects that should be similar length as the pitch of the grating can 

be embedded in the secret image. For example, 8  by 8  size image would be 

necessary to embed a minimal size interpretable chess board. 

 

Fig. 2.27. A schematic illustration of the minimum size of the secret image embedded into 

the cover moiré grating: the size of the square object is 
2


by 

2


 (a);  by   (b); 

2

3
by 

2

3
 (c) and 2 by 2  (d). Time-averaged images of the cover image are shown on the left; 

contrast enhanced time-averaged images are shown on the right 

2.2.6. Concluding remarks on deformable moiré gratings 

The proposed image hiding technique reveals the secret when the cover image 

is deformed according to harmonic oscillations. No image splitting and no 

superposition of shares is required for decoding of the secret image, as all the 

information is stored in a single cover image. Moreover, the secret image can be 

observed by the naked eye only when the cover image performs predetermined 

oscillations. Computational simulations are performed for the illustration of optical 

effects. Building an experimental optical model is a more demanding task as 

compared with the dynamic visual cryptography scheme based on non-deformable 

gratings. The main difference in the proposed image hiding scheme from already 

developed image hiding techniques based on oscillating cover images [57, 59] is in 

the type of oscillations. The secret image will not be leaked if the cover image 

oscillates as a non-deformable body in any direction, with any amplitude, and with 



84 

 

any waveform. The necessary condition for visual decoding of the secret is the 

condition that the cover image must be deformed according to a predetermined 

periodic law of motion. This additional mechanical operation can be considered as 

additional security parameter to complement the dynamic visual cryptography key. 

The principle of deformable cover image opens a completely new application area for 

optical control techniques in vibrating deformable structures. The development and 

practical implementation of such techniques is a definite objective of future research. 

Optical applications could be implemented in micro-opto-mechanical systems, where 

a stochastic cover moiré image could be formed on the surface of the cantilever. The 

secret image would be leaked when the tip of the cantilever oscillated at a 

predetermined amplitude (even though an optical microscope would be required to 

see the secret image).  

2.3. Concluding remarks  

The advanced dynamic visual cryptography scheme based on near-optimal 

moiré grating provides additional security of the encoded image – the secret image is 

less interpretable if the cover image is oscillated harmonically. The main criterion to 

optimize the moiré grating is based on the magnitude of the derivative of the standard 

deviation at the amplitude corresponding to the formation of the first moiré fringe. 

Evolutionary algorithms are used to find a near-optimal moiré grating that is used to 

embed into cover image. All the secret information is embedded into one cover image 

that serves as a ciphertext. Stochastic initial phase scrambling and phase 

regularization algorithms are used to encode the secret. It is important to note that a 

computer is not necessary to decode the image – a naked eye can interpret the 

embedded secret as time-averaged moiré fringes if the encoded image is oscillated in 

a predefined direction at predefined amplitude and according to a predefined time 

function (these three conditions serve as a key). 

Another advanced dynamic visual cryptography scheme based on deformable 

moiré grating provides additional security level – the secret is revealed if the cover 

image is harmonically deformed in a predefined direction at predefined amplitude. 

Additional mechanical operation (deformation of the cover image) can be considered 

as new parameter to complement the key. All the secret information is embedded into 

one cover image that serves as a ciphertext. Special algorithms are used to embed the 

secret. Stochastic initial phase scrambling and phase regularization algorithms are 

used to encode the secret. 

In spite of different type of mechanical operations that are applied for the 

presented advanced dynamic visual cryptography schemes, they have one important 

characteristic in common – the revealed secret image is interpreted as fully developed 

moiré fringes. Does a framework for dynamic visual cryptography can be extended if 

moiré fringes cannot fully develop? 
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3. CHAOTIC VISUAL CRYPTOGRAPHY  

Dynamic visual cryptography schemes can be exploited for optical control of 

harmonically vibrating systems [216]. But it is well known that a periodic force 

applied to a nonlinear system can cause a chaotic response. A computational 

framework for digital implementation of dynamic visual cryptography based on 

chaotic oscillation would open new ways for practical applications. However, chaotic 

oscillations do not produce fully developed time-average moiré fringes [225] and 

different approach should be considered to implement dynamic visual cryptography 

encryption scheme.   

The construction and implementation of chaotic visual cryptography scheme, 

which visualizes the secret image only when the time function determining the process 

of oscillation is chaotic, is presented in chapter 3.1. Additional implementation of a 

chaotic visual cryptography technique based on near-optimal moiré grating is 

provided in chapter 3.2. 

Secret image can only be revealed instantly in stationary regimes of oscillations, 

therefore a tool for short-term time series segmentation is a necessity for an effective 

experimental implementation of chaotic dynamic visual cryptography. The 

construction of a short-term time series segmentation algorithm based on short-term 

time series forecasting errors is presented in chapter 3.4. Short-term time series 

forecasting algorithm, based on the identification of pseudo-ranks of the sequence and 

internal smoothing procedure is developed in chapter 3.5.  

3.1. Image hiding based on chaotic oscillations 

3.1.1. Optical background and theoretical relationship 

The main objective of the research, presented in this chapter, is to investigate 

the feasibility of chaotic dynamic visual cryptography where the time function 

determining the deflection of the encoded image from the state of equilibrium is a 

Gaussian process with zero mean and pre-determined variance [226]. 

One-dimensional moiré grating is considered and a stepped grayscale function 

is defined as follows 

  















 xxF



2
sinsign5.05.0 ; (3.1) 

where   is the pitch of the moiré grating; the numerical value 0 corresponds to the 

black color; 1 corresponds to the white color and all intermediate values correspond 

to an appropriate grayscale level. F(x) can be expanded into the Fourier series Eq. 

(2.10) with coefficients Eq. (2.12). 

The described one-dimensional moiré grating is oscillated in the direction of the 

x-axis and time-averaging optical techniques are used to register the time-averaged 

image. Time-averaging operator sH  describing the grayscale level of the time-

averaged image is defined in Eq. (2.14). 

It is shown in [59] that if the density function  xps  of the time function  ts

does satisfy the following requirements: 
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   0xp s  when sx  ;    xpxp ss  ; Rx ; 0s  (3.2) 

then the time-averaged image of the moiré grating oscillated according to the time 

function  ts  (as the exposure time T tends to infinity) reads: 
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2
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2
;

1

0 ; (3.3) 

where Ps denotes the Fourier transform of the density function ps(x). The time-

averaged image can be interpreted as the convolution of the static image (the moiré 

grating) and the point-spread function determining the oscillation of the original 

image [227]. 

The main objective in this research is to construct an image hiding algorithm 

based on the principles of dynamic visual cryptography [57] where the time function 

describing the oscillation of the encoded image is chaotic. It means that the decryption 

of the embedded secret image should be completely visual, but the decoding should 

be possible only when the encoded image is oscillated chaotically. It is proved that 

harmonic oscillations cannot be used for visual decryption of the secret image if it is 

embedded into a stepped moiré grating due to the aperiodicity of roots of the zero 

order Bessel function of the first kind [57]. 

It is well known that the motion of the registered object (or the registering 

camera) causes the motion-induced blur [228]. Gaussian blur is one of the common 

factors affecting the quality of the registered image in an optical system [229]. And 

though the computational deblurring of contaminated images (and of course 

computational introduction of the Gaussian blur to original images) is a well-explored 

topic of research, the presented approach is different from the cryptographic point of 

view. The Gaussian blur will be used to decrypt the encoded images. Since such an 

approach requires the development of specialized encoding algorithms, it will be 

concentrated on the effects taking place when the motion blur is caused by chaotic 

oscillations. The latter fact requires detailed analysis of time-averaging processes 

occurring during the Gaussian blur; such simplified approaches when contributions of 

pixels outside the 3  range around the current pixel are ignored cannot be exploited 

in the present computational setup. 

If  t is a Gaussian normal ergodic process with zero mean and 2 variance. 

Then, the density function  xp  reads: 

  









2

2

2
exp

π2

1




x
xp  (3.4) 

and the Fourier transform of  xp  takes the following form: 

    









2

2

1
exp P . (3.5) 

Then, the time-averaged image of the moiré grating oscillated by a Gaussian 

time function takes the following form: 
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Equation (3.6) describes the formation of the time-averaged image as the 

exposure time tends to infinity and the oscillation of original moiré grating is governed 

by the function  t . But the experimental implementation of such oscillations on a 

digital computer screen would cause a lot of complications. First of all, digital screens 

are comprised from an array of pixels – thus interpretable deflections from the state 

of equilibrium must be aliquot to the size of a pixel. Secondly, digital screens have 

finite refresh rates – thus infinite exposure times cannot be considered as an acceptable 

option. In that sense, the simulation of optical effects caused by chaotic oscillations is 

much more difficult compared to harmonic (or periodic) oscillations where a finite 

number of steps per period of oscillation can be considered as a good approximation 

of the time-averaging process. Therefore, a detailed investigation of time-averaging 

processes caused by chaotic oscillations is necessary before the algorithm for the 

encoding of a secret image can be discussed. 

3.1.2. Computational representation of chaotic oscillations 

A Gaussian process can be approximated by a discrete scalar series of normally 

distributed numbers: 

   2,0~  Nt j , ,2,1j ; (3.7) 

where the density function of the Gaussian distribution (Eq. 3.4). As mentioned 

previously, the stepped moiré grating  xF can be displaced from the state of 

equilibrium by a whole number of pixels only. The size of a pixel is denoted as 

 0 . It is assumed that the refresh rate of the digital screen is m Hz. Then, each 

instantaneous image of the displaced moiré grating will be displaced for 
m

t
1



seconds. The schematic diagram of the computational realization of discrete chaotic 

oscillations is shown in (Fig. 3.1) where t denotes time; x denotes the longitudinal 

coordinate of the one-dimensional moiré grating; empty circles show the distribution 

of  jt  (a new random number is generated at the beginning at every discrete time 

interval); denotes the height of a pixel; thick solid lines in the right part of the figure 

show the deflection of the moiré grating from the state of equilibrium; columns  kh

illustrate discrete probabilities of the deflection from the state of the equilibrium. 

Since the distribution of  is Gaussian, the height of the k-th column  kh reads: 
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Note that    khkh   . Thus the value of the discrete density function governing the 

statistical deflection from the state of equilibrium is equal to zero everywhere except 

points ; Zk .  



 jt

k
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As mentioned previously, it is necessary to compute the discrete Fourier 

transform of  xp  in order to construct the time-averaged image of the moiré grating 

deflected by such a discrete Gaussian law. Thus, 

            
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 (3.9) 

where  P
~

 denotes the discrete analogue of  P  (Eq. 3.5). 

 

 

Fig. 3.1. The schematic diagram of the computational realization of discrete chaotic 

oscillations: t denotes time; x denotes the longitudinal coordinate of the one-dimensional 

moiré grating; empty circles show the distribution of θ(tj) (a new Gaussian random number is 

generated at the beginning of every discrete time interval Δt); ɛ denotes the height of the 

pixel; thick solid intervals in the right part of the figure illustrate the deflection of the moiré 

grating from the state of equilibrium; columns hɛ(k) illustrate discrete probabilities of the 

deflection from the state of equilibrium 

3.1.3. Considerations about the size of a pixel 

First of all the relationship in Eq. (3.9) is investigated when the size of the pixel 

tends to zero  0 and the standard deviation is fixed. According to the mean value 

theorem for the definite integral: 
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But, 
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This is an important result stating that  P
~

 converges to  P  as the size of a 

pixel tends to zero. Nevertheless, it is important to take into account the value of   

when chaotic oscillations are simulated on a particular computer display.  

Alternatively, it is possible to check opposite limit when   (at fixed ). It is 

clear that   10lim 





h  and   0lim 


kh


for ,2,1 k . Thus, 
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All generated discrete random numbers  jt  will fall into the central pixel of 

the stationary moiré grating if the size of the pixel is large compared to the standard 

deviation . Then the moiré grating will remain stationary at the state of equilibrium 

and the time-averaged image will be the image of the stationary grating (the 

characteristic function modulating time-averaged fringes is equal to one then). 

3.1.4. Considerations about the standard deviation   

It is considered the situation when 0 (at fixed ). Now,    xxp 0
0

lim 

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The moiré grating will not be displayed from the state of equilibrium if the 

standard deviation is so small that all random numbers fall into vicinity of the 

central pixel of the stationary grating. 

Finally, the situation when  (at fixed  ) is considered. Now, 
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Therefore,   0
~

lim 





P . Instantaneous displacements of the moiré grating from 

the state of equilibrium will be very large then. Thus the moiré grating will be evenly 

blurred along the whole axis of the displacements and the time-averaged image will 

become gray (   5.0;lim 





FxH ). 

3.1.5. Simulation of chaotic oscillations on a computer screen 

It is important to verify if a realistic computational setup can be applied for the 

simulation of chaotic oscillations on the computer display. HP ZR24w digital display 

is used; the physical height of the pixel is 0.27 mm (the one-dimensional moiré grating 

is placed in the vertical direction). 20 pixels represent one pitch of the moiré grating 

(10 pixels are black and 10 pixels are white). Thus, the pitch of the one-dimensional 

stepped moiré grating is 5.4 mm in the vertical direction. The theoretical envelope 

function which modulates the first harmonic of the moiré grating  xF is described by 

Eq. (3.5). But Eq. (3.11) is used to simulate the shape of the envelope function  P
~

 

(note that is replaced by for the first harmonic of the moiré grating): 
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The shape of the envelope function  P
~

 is numerically reconstructed for 

4.5,1.4,8.2,5.1,27.0  (Fig. 3.2). All computations are performed at  204.5  . 

A human eye cannot see any differences between the envelope function  P
~

 and 

the theoretical envelope function at 27.0  (Fig. 3.2). For example, the difference is 

    00191.0
~

   PP  at 27.0  and 1 . Thus, it can be noted that 27.0  is 

sufficiently small for the digital implementation of chaotic oscillations if only the 

pitch  is not smaller than 20 . 

 

Fig. 3.2. Numerically reconstructed envelope functions  P
~

 for different pixel sizes: 

4.5,1.4,8.2,5.1,27.0  
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The concept of dynamic visual cryptography is introduced in [57] and is based 

on the formation of time-averaged moiré fringes in zones occupied by the secret image 

when the cover image is oscillated in a predefined law of motion. This concept cannot 

be exploited for dynamic visual cryptography based on chaotic oscillations because 

the time averaged fringes do not form when the cover image is oscillated chaotically 

– the image is continuously blurred as the standard deviation   increases.  

Therefore it is necessary to employ other techniques which would enable visual 

decryption of the secret from the cover image. It is kept  the encryption method used 

in [57] where one-dimensional moiré gratings with the pitch 4.5200    mm is used 

in the regions occupied by the background and the pitch 92.5221    mm is used 

in the regions occupied by the secret image. In other words, the direction of deflections 

of the cover image from the state of equilibrium is determined – all deflections must 

be one-directional and that direction must coincide with the longitudinal axis of the 

one-dimensional moiré grating. Stochastic initial phase deflection and boundary phase 

regularization algorithms [57] are used to encode the secret image into the cover 

image. 

3.1.6. Visual decryption of the secret image 

Chaotic oscillations do not generate time-averaged moiré fringes; the image 

becomes blurred at increasing standard deviation. But the slope of the envelope 

function governing the process of chaotic blurring depends on the pitch of the grating. 

Thus, it is possible to find such standard deviation   that the value of  P
~

 becomes 

lower than for  200   but remains higher than for  221   (Fig. 3.3). The value 

of  describes such situation when the naked eye interprets the time-averaged moiré 

image as an almost fully developed time-averaged fringe.  

 

Fig. 3.3. Image hiding based on chaotic oscillations: envelope functions are illustrated in part 

A at  200  and at  221  . The zoomed image in part B illustrates the optimal 

standard deviation   (marked by the vertical dashed line) when the secret is interpreted as 

an almost developed time-averaged moiré fringe, while the background is still interpreted as 

a stochastic moiré grating, 03.0 guarantees the satisfactory interpretation of a time-

averaged moiré fringe 
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Strictly speaking, the particular value of  should be preselected individually 

and may depend on many different factors as the experimental set-up and the quality 

of the static moiré grating. The selected 03.0  can be considered as a safe margin 

for the satisfactory interpretation of a time-averaged moiré fringe [216]. The vertical 

dashed line in Fig. 3.3 denotes the optimal standard deviation   which should result 

into the best visual decryption of the secret image when the cover image is oscillated 

chaotically – the secret image should be interpretable as a time-averaged fringe, while 

the background should still be visible as an undeveloped fringe. 

3.1.7. Computational experiments 

First of all the secret image (the plaintext) is selected to be encoded into the 

background moiré grating (Fig. 3.4). The employed encoding algorithms are described 

in [57]; the encoded cover image (the ciphertext) is shown in Fig. 3.5.  

 

 

Fig. 3.4. The secret image 

 

 
 

Fig. 3.5. The secret image encoded into cover moiré image 

Next, discrete random numbers    2,0~  Nt j  are generated and time-averaged 

images are plotted at 2.1 (Fig. 3.6; the standard deviation is too small to ensure 

visual decryption of the secret image); at 25.2  (Fig. 3.7; the standard deviation is 
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optimal for visual decryption of the secret image) and at 1.3  (Fig. 3.8; the 

standard deviation is too high to ensure visual decryption of the secret image). 

 

 

Fig. 3.6. The time-averaged cover image at 2.1  does not leak the secret  

 

 

Fig. 3.7. The time-averaged cover image at 25.2  leaks the secret; the exposure time is 

1T s; 
60

1
t (s) 

 

Fig. 3.8. It is hard to interpret the secret from the time-averaged cover image at 1.3  
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Note that the time-averaged image in Fig. 3.7 does not reveal the secret image 

in the form of a time-averaged moiré fringe. The optical effect can be explained by 

the fact that the exposure time was limited to 1 second (the length of the discreet set 

of random numbers used to construct the time-averaged image is 60). The secret image 

becomes well-interpretable in the stochastic moiré background as the exposure time 

tends to the infinity (the length of the discreet set of random numbers is 6000 in Fig. 

3.9); the secret image can be highlighted using digital enhancement techniques for the 

visualization of time-averaged moiré fringes (Fig. 3.10). 

 
 

Fig. 3.9. The time-averaged cover image leaks the secret as the exposure time tends to 

infinity; 25.2  

 

 
 

Fig. 3.10. Contrast enhancement helps to highlight the secret image 

Finally it can be mentioned that simple computational blur (a standard image 

editing function in such packages as Photoshop) cannot be used to reveal the secret 

from the cover image. It is selected 75.63   isotropic Gaussian blur (Fig. 3.11) – but 

the blurred image does not reveal the secret because the geometric structure of moiré 

grating lines is damaged in the process. 
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Fig. 3.11. Isotropic Gaussian blur cannot be used to reveal the secret because the 

geometric structure of moiré grating lines is damaged in the process 

The PSNR between the original image (Fig. 3.4) and the decoded image (Fig. 

3.9) is 6.2298; the PSNR between the original image (Fig. 3.4) and the contrast 

enhanced image (Fig. 3.10) is 7.7493. The size of the digital image in Fig. 3.10 is 

1204×703 pixels; it takes 6.1 s to encrypt the image; the computational tool used in 

the experiments is AMD SempronTM Processor 3400+, 1.81 GHz, 512 MB RAM. 

3.1.8. Concluding remarks 

The proposed dynamic visual cryptography scheme based on chaotic 

oscillations can be considered as a safer image hiding scheme if compared to 

analogous digital image hiding techniques where the secret image can be visually 

decrypted as the cover image is oscillated by a harmonic, a rectangular or a piece-wise 

continuous waveform. The proposed image hiding algorithm does not leak the secret 

if the cover image is oscillated at any direction and at any amplitude of the harmonic 

waveform, for example. This technique requires sophisticated encoding algorithms to 

encode the secret image, but the decryption is completely visual and does not require 

a computer. The potential applicability of the proposed technique is not limited by 

different digital image hiding and communication scenarios. Interesting possibilities 

exist for visual control of chaotic vibrations. Dynamic visual cryptography is 

successfully exploited for visual control of harmonically oscillating structures and 

surfaces. But it is well known that complex nonlinear systems exhibit chaotic 

vibrations even at harmonic loads. Moreover, complex loads in aerospace applications 

rarely result in harmonic structural vibrations. Therefore, the ability of direct visual 

interpretation of chaotic vibrations would be an attractive alternative for other control 

methods. One could print the encrypted cover image and glue it in the surface which 

vibrations should be controlled. No secret image could be interpreted when the surface 

is motionless. The digital image encoding scheme can be preselected in such a way 

that the secret image (for example two letters “OK”) would appear when the 

parameters of chaotic vibrations would fit into a predetermined interval of acceptable 

values. Such experimental implementation of the dynamic visual cryptography based 

on chaotic oscillations is provided in [230]. This whole-field non-destructive zero 

energy method can be effectively exploited for optical assessment of chaotically 

vibrating structures.  
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3.2. Near-optimal moiré grating for chaotic dynamic visual cryptography  

It is important to note that the selection of the moiré grating and type of 

oscillation must be pre-chosen before the secret image is encrypted into the cover 

image. Not every moiré grating produces time-averaged fringes. It is shown in [59] 

that the stepped moiré grating does not produce time-averaged moiré fringes when the 

encoded image is harmonically oscillated even at appropriate amplitude and direction 

of oscillations. Image hiding technique based on time-average fringes produced by 

rectangular waveforms and near-optimal moiré gratings is presented chapter 2.1. 

Evolutionary algorithms are used here to find near optimal moiré grating.  

The main objective of this presentation is to develop a framework for chaotic 

dynamic visual cryptography –  it is completely unclear what types of moiré gratings 

could be advantageous for chaotic oscillations. Therefore, the second objective 

presented in this chapter is to identify a near-optimal moiré grating and to demonstrate 

its applicability for chaotic visual cryptography. 

3.2.1. Optical background and construction of the grayscale function 

One-dimensional moiré grating is considered and the requirements for the 

perfect grayscale function  xF  are provided in chapter 2.1.1. and chapter 2.1.3 

(Definition 1 and Definition 6).  

It is considered that m-pixels grayscale grating function   knm yxF ,  (where x 

belongs to a closed interval
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mk ,,2,1   are grayscale levels) can be applicable for chaotic visual cryptography 

presented in chapter 3.1. The size of a single pixel is 
m


; m pixels fit into one period 

of the grayscale function. 

Let us consider a situation when the described one-dimensional moiré grating is 

oscillated in the direction of the x-axis and time-averaging optical techniques are used 

to register the time-averaged image.  Time-averaging operator sH  describing the 

grayscale level of the time-averaged image is defined in Eq. (2.14).  It is shown in 

[59] that if the density function )(xps  of the time function )(ts  is symmetric, then 

the time-averaged image of the moiré grating reads as Eq. (3.3). 

Let us require that )(t  is a Gaussian normal ergodic process with zero mean 

and 2  variance. The oscillation of a grayscale grating function  xF nm,  according to 

the Gaussian time function is considered. Therefore, the standard deviation of such 

time-averaged image reads: 
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The next step is the definition of the fitness function for every grayscale function

 xF 32,22 . 22 pixels were used in a pitch stepped moiré grating (  xF 2,22 ) for the 

background and 20 pixels were used in a pitch stepped moiré grating (  xF 2,20 ) for 

the secret image in near optimal stepped function case. The same principle is used 

now – except that grayscale functions will be  xF 32,22  and  xF 32,20 . In fact, it is 

necessary to define the fitness function only for  xF 32,22  – the function   xF 32,20  can 

be produced from  xF 32,22  by deleting two pixels which grayscale levels are closest 

to the value 0.5.  

It is well known that chaotic oscillations do not produce time-averaged moiré 

fringes [225]. Anyway, the proposed visual cryptography scheme should be based on 

the differences between time-averaged images of   xF 32,22  and  xF 32,20  (even though 

time-averaged fringes would not form). The human eye does interpret a time-averaged 

moiré fringe if its standard deviation (Eq. (3.18)) is less than 0.03 [216]. This value is 

fixed for chaotic oscillations and marked as  in Figure 3.12.  

First of all one must compute the decay of the standard deviation s of the time-

averaged image formed by  xF 32,22  at increasing standard deviation  of the Gaussian 

time function. 

This decay of the standard deviation s is illustrated by a thick solid line in Fig. 

3.12. Next  xF 32,22 is truncated to  xF 32,20  and the decay of s is computed again; it is 

illustrated by a thick dotted line in Fig. 3.12.  

 
Fig. 3.12. Computation of the fitness value for  xF 32,22 . Decay of the standard deviations of 

the time-averaged images of  xF 32,22  and  xF 32,20  are illustrated in the thick solid line and 

the dashed solid line accordingly. The fitness value   xF 32,22  is shown in thin vertical 

solid line 

As soon as one of the two lines intersect the level , the optimal value of  is 

fixed for the best visual reconstruction of the encoded image. Moreover, the difference 

between standard deviations of time-averaged-images produced by  xF 32,22  to 

 xF 32,20  is computed (shown by a thin solid vertical line in Figure 3.12). This 
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difference between standard deviations is denoted as   xF 32,22  as the fitness of a 

grayscale function. Note that the fitness value can be computed for any grayscale 

function (not necessarily the perfect function). Also, one do not know which line (the 

solid or the dashed line) will intersect the -level first; the most important is just the 

absolute value of the difference between the standard deviations    032,22 xF . The 

higher is the fitness value, the better is the visual difference between the time averaged 

image of the background and the secret.  

Now, the selection of the best perfect grayscale function is fully defined. 

Unfortunately, a brute force full sorting algorithm is simply impossible due to the 

limited computational resources. Naturally, the alternative task is to seek near-optimal 

moiré gratings and use evolutionary algorithms for that purpose.  

The genetic algorithm is constructed for the identification of a near-optimal 

perfect grayscale function in such a way that every chromosome represents one period 

of the function  xF 32,22 . The length of each chromosome is 22; every gene is an integer 

number between 0 and 31 and represents a grayscale level for the respective pixel. 

The initial population, the selection and mutation procedure is constructed as in 

chapter 2.1.4. 

The best result of finding near-optimal perfect grayscale grating function 

 xF 32,22  is presented in Figure 3.13 (a). This perfect grayscale function is used for 

image hiding based on chaotic visual cryptography. 

 

Fig. 3.13. Near-optimal perfect grayscale functions: a)  xF 32,22  and b)  xF 32,20  

As mentioned previously, the main objective of this research is to find a near-

optimal perfect moiré grating which can be adapted for image hiding based on time-

averaged moiré fringes produced by chaotic oscillations.  

The structure of the encoded cover image is analogous to the one used in [57]. 

Two moiré gratings are selected: the first for the secret image and the second for the 

background of the secret image. The pitch of the moiré grating of the secret image is 

94.527.0220  mm and the pitch of the moiré grating used for the background is 
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40.527.0201  mm (the size of a pixel is assumed to be 0.27 mm for the monitor 

HP ZRW24; two different values 22 ant 20 indicate the size of the pitches of moiré 

gratings used for the secret image and for the background). Stochastic phase deflection 

and phase regularization algorithms are used to embed the secret into the cover image.  

3.2.2. Computational experiments 

The dichotomous image in Fig. 3.14 will be used as a secret image in 

computational experiments with chaotic visual cryptography. The encoded cover 

image is shown in Figure 3.15. A human eye cannot distinguish the secret from the 

background.  

The secret image cannot be visualized using harmonic oscillations at any 

amplitude. But it can be revealed using chaotic oscillations at 2.2 . The pure grey 

moiré fringes do not appear in a time-averaged image, but the difference between the 

background and the secret image is clearly visible (Fig. 3.16). Of course, the secret 

image is not leaked if  is substantially different from 2.2, nor for other non-chaotic 

waveforms. 

 
 

Fig. 3.14. The dichotomous secret image 

 

 
 

Fig. 3.15. The encoded cover image 
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Fig. 3.16. Computational decryption of the secret image when the encoded image is 

oscillated chaotically by the Gaussian law at 2.2  

 

 
 

Fig. 3.17. Contrast enhancement of the decoded image 

Though the boundaries between the secret image and the background are visible 

in Figure 3.16, it would be advantageous to use contrast enhancement techniques for 

highlighting the leaked image; the highlighted secret image is shown in Figure 3.17.   

The PSNR metric between the original image (Fig. 3.14) and the decoded image 

(Fig. 3.16) is 4.2138. The size of the digital image in Fig. 3.14 is 1000×600 pixels; it 

takes 7.2 s to encrypt the secret image; the computational tool used in the experiments 

is AMD SempronTM Processor 3400+, 1.81 GHz, 512 MB RAM. 

3.3. Concluding remarks on chaotic visual cryptography 

One can generate a sample series of random Gaussian variable for the 

implementation of a computational experiment. But if a practical experimental 

implementation is considered, the situation becomes more complicated. For example, 

if an image is labeled on a shaker table, a secret image leaks at a certain range of 
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parameters – any other stationary, or a non-stationary signal, would not reveal the 

secret. Moreover, an uncontrolled chaotic signal can damage the technological 

equipment. 

If one uses nonlinear systems as the generators of chaotic processes, the 

situation becomes more complicated. For example, even harmonic oscillations may 

result into complex chaotic reactions. What would happen if one would investigate a 

process with variable characteristics in time? In that case the presented methodology 

would not work because dynamical characteristics would change in time and the 

principles with tuned parameters would not be applicable. Therefore, it is necessary 

to identify intervals of stationarity in the time scale. Fig. 3.18 illustrates the necessity 

of the segmentation to successfully implement dynamic visual cryptography scheme 

based on chaotic oscillations. The first part of the signal (part a) is a stationary 

Gaussian normal ergodic process with zero mean and standard deviation 2.1 . The 

cover image that is oscillated by the predefined law of motion do not leak the secret 

image. Next, a stationary Gaussian normal ergodic process with zero mean and 

standard deviation 25.2  is constructed – the secret image is revealed in a form of 

well-developed pattern of time averaged moiré fringes. But a stationary Gaussian 

normal ergodic process with zero mean and standard deviation 1.3  (part c) blurs 

the image and the secret image is hardly interpretable (it is proved when  ). 

Finally a non-stationary process (part d) do not reveal the secret.

 

Fig. 3.18. The diagram of three different stationary (a-c) and one non-stationary (d) segments 

and corresponding implementation of chaotic visual cryptography encryption 

Time series segmentation, i.e., identification of stationary regimes, is a classical 

method in statistics and signal theory. There are plenty of methods, but majority of 

them are applied only for long time series. But in visual cryptography the time 

exposure is relatively short, because the human eye captures a secret image in less 

than a second. A relatively short segments are necessary, so it is necessary to construct 

models to identify stationary segments in a time series. The construction of a short-

term time series segmentation methodology based on short-term time series 

forecasting errors is provided in the following part of the dissertation. 
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3.4.The construction of the algebraic segmentation algorithm 

Algebraic segmentation of short non-stationary time series is presented in 

chapter 3.4. The proposed algorithm is based on the algebraic one step-forward 

predictor which is used to identify a temporal near-optimal algebraic model of the 

real-world time series. The nonparametric identification of quasi-stationary segments 

is performed without the employment of any statistical estimator.  

It is well known that long data sets are one of the prime requirements of time 

series analysis techniques to unravel the dynamics of an underlying system, though 

acquiring long data sets is often not possible. The question of whether it is still 

possible to understand the complete dynamics of a system if only short (but many) 

time series are observed and if a single long time series can be generated from these 

short segments using the concept of recurrences in phase space is addressed in [231]. 

The main idea of proposed algebraic segmentation is based on the identification of 

skeleton algebraic sequences representing local models of short time series. In that 

sense this methodology is somewhat similar to the switching state-space model 

introduced in [232] and the adaptive segmentation technique proposed in [233]. AR 

predictor is used in the pioneering work of Bodenstein and Praetorius [233] to monitor 

the error rate of a one-step predictor in order to detect abrupt changes and then to use 

that information for the segmentation of the time series. Since then many AR based 

techniques have been implemented for time series segmentation. The proposed 

approach also belongs to the class of methods originated by [233]. But the main 

advantage of proposed methodology is based on the concept of skeleton algebraic 

sequences. Moreover, the method is not only based on detection of the moment of a 

potential change in the evolution of the process. This technique classifies skeleton 

sequences into separate classes (what enables an effective application of a novel 

combinatorial algorithm). 

3.4.1. The time series predictor based on skeleton sequences 

The concept of skeleton algebraic sequences has been introduced in [234] and 

has been successfully exploited for the prediction of short real-world time series. In 

this dissertation this algebraic one step-forward prediction technique is exploited for 

the nonparametric segmentation of short non-stationary real-world time series. 

The idea was based on the assumption that the sequence  ,,, 210 xxx is produced 

by adding noise  ,,, 210  to some unknown algebraic progression  ,~,~,~
210 xxx  (the 

H-rank of that algebraic progression is assumed to be equal to m). In other words, the 

sequence  

kkk xx ~
; ,2,1,0k    (3.19) 

is an algebraic progression and this sequence is some sort of a skeleton sequence 

determining the global dynamics of the time series. Then, according to Eq. (3.2): 
   0

~
det 1 mH ;  (3.20) 

where 
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Corrections k ; mk 2,,2,1,0   had to be identified before any predictions could 

be made. Since the goal was to minimize any distortions of the original time series, 

the fitness function for the set of corrections  m210 ,,,    was introduced in [234]: 
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(3.23) 

If the original time series is an algebraic progression and 
 

0det 1 mH , the 

fitness function reaches its maximum at 0210  m   (   0,,0,0 F  then). 

The parameter a determines the penalty proportion between the magnitude of the 

determinant and the sum of weighted corrections (both penalties have the same weight 

when 1a ). Coefficients m210 ,,,    determine the tolerance corridor for 

corrections m210 ,,,   . All corrections would have the same weight if 0b . The 

larger is b, the higher is the weight for the correction of the observation at the present 

moment compared to past moments. In other words, the toleration of changes for the 

present moment is smaller compared to the toleration of changes for previous 

moments. That corresponds to the supposition that the importance of the observation 

depends on its closeness to the present moment.   

It can be observed that such a prediction strategy based on the identification of 

skeleton algebraic sequences and the fitness function described by Eq. (3.22) works 

well for short time series and outperforms many other predictors if a day-ahead local 

maximum and local minimum must to be considered. In general, the variability of the 

time series forecasted by the described technique is an advantageous factor (though a 

number of trials are necessary before an averaged estimate of the prediction can be 

produced). 

3.4.2. The artificial time series 

Firstly, to validate the proposed segmentation algorithm, an artificial time series 

is constructed. The artificial scalar time series comprises 191 elements (Fig. 3.19). 

The first segment of the series represents a periodic sequence. The period length is 8 

and elements in the period are: 0.5, 0.7, 0.1, 0.9, 0.3, 0.2, 0.8 and 0.4. The period is 

repeated 6 times; the length of the first segment is 48 elements.   
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The second segment is constructed as a periodic sequence with the trend. The 

periodic part comprises 5 elements: 0.6, 0.2, 0.7, 0.1 and 0.4. A step 0.05 is added 

consecutively to every element in this segment. Thus, elements in the first part of the 

segment read: 0.6, 0.25, 0.8, 0.25, 0.6; elements in the second part read: 0.85, 0.5, 

1.05, 0.5, 0.85; the process is repeated 7 times (this segment comprises 35 elements).  

The third segment comprises 4 periods of 11 elements (2.5, 1.9, 2.7, 1.7, 2.1, 

2.0, 1.5, 2.6, 1.8, 2.3, 1.5). The fourth segment contains 28 elements – the periodic 

sequence 1.5, 0.6, 1.1, 0.8 is repeated 7 times. Finally, 9 elements (0.2, 0.7, 0.4, 0.9, 

0.1, 0.8, 0.5, 0.3, 0.6) are repeated 4 times in the fifth segment. The algebraic H-ranks 

are shown at appropriate segments in Fig. 3.19(b).  

The generated artificial time series cannot be considered as a good 

representation of a real-world process simply because of explicit algebraic 

relationships between elements of the sequence (at appropriate segments). In order to 

test the functionality of the segmentation algorithm on realistic signals we add the 

uniformly distributed noise in the interval  15.0;15.0 to all elements of the generated 

sequence – the graph of the sequence with the additive noise is shown as a solid line 

in Fig. 3.19(a).  

 
Fig. 3.19. The artificial time series constructed from 5 stationary segments. The 

dashed line represents the noiseless time series and the solid line stands for the time series 

with the additive noise evenly distributed in interval [-0.15, 0.15] (part (a)). Numerical 

values of H-ranks at appropriate segments of the noiseless time series are illustrated in part 

(b) 



105 

 

3.4.3. One-step forward algebraic prediction of time series 

As mentioned previously, the time series prediction algorithm based on the 

identification of skeleton algebraic sequences is used for the segmentation of the time 

series. But instead of trying to identify the most appropriate H-rank of the time series 

at the beginning of the prediction process, the prediction at different preset values of 

the H-rank is performed.  

The selection of the effective range of H-ranks is the first step of the 

segmentation algorithm. In general, this selection can be free, though too wide range 

of H-ranks would raise the computational costs required by the proposed technique. 

It is preselected 123  Hr  for the artificial time series with additive noise.  

The schematic diagram of the prediction process is illustrated in Fig. 3.20. For 

a given sequence  ,,, 210 xxx  let us assume that the H-rank is set to m. Then, 

according to Eq. (3.20), 12 m  elements are required to form the Hankel characteristic 

equation (the first block of 12 m  elements is illustrated as the top gray-shaded block 

in Fig. 3.20). Note that it is not checked if the determinant of the Hankel matrix 
  mHdet  is equal to zero. The prediction algorithm is used and the skeleton sequence 

is extrapolated by one element into the future: 12
~

mx  is the algebraic prediction of the 

sequence  mxxx 210 ,,,   (Fig. 3.20). Next, the observation window is shifted by one 

element forward and 22
~

mx  is predicted (Fig. 3.20). The process is continued until the 

last element of the original data sequence is predicted. It must be noted that the first 

element one can predict is 12
~

mx . The higher is the preselected H-rank m, the larger 

amount of data is necessary to accumulate in order to perform the first prediction.  

 
Fig. 3.20. The schematic diagram illustrating the one step-forward prediction 

technique exploited in the segmentation algorithm; it is assumed that mHrs  for the whole 

time series 
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The next step is the selection of the tolerable error level  for the algebraic 

prediction of the analyzed time series. The basic idea of the proposed technique is 

straightforward: the preselected algebraic model is sufficiently accurate if the 

extrapolation errors of the prediction are lower than . Initially 2015.1  is selected 

for the artificial time series with the additive noise and perform the prediction of this 

time series for Hr = 3, 4, , 12 (Fig. 3.21).  

The lower bound of the effective range of H-ranks is predetermined by the fact 

that the condition 3Hr  results into primitive time sequences. On the other hand, the 

length of the vector of corrections  k  is equal to 25 already at 12Hr  (what raises 

computational costs of the prediction algorithm). At least 25 elements of the original 

time series are required in order to produce a single one step-forward forecast at

12Hr . It is entailed that the number of elements required to make at least one step-

forward prediction (at the highest H-rank) should not be larger than 20% of the whole 

time series. Then, the upper bound of the effective range of H-ranks ( 12Hr ) is a 

decent selection for a short time series comprising about 150 elements. 

 

Fig. 3.21. Absolute prediction errors for the artificial time series with the additive noise at 

3Hr  (part (a)); 4Hr  (part (b)); …; 12Hr (part (j)). Horizontal dashed lines in all 

parts represent the acceptable level of prediction errors 2015..1 . The percentage of 

successful predictions (when the absolute error is lower than  ) is shown for every H-rank. 

(a) 89.0p , (b) 8.0p , (c) 76.0p , (d) 71.0p , (e) 82.0p , (f) 77.0p , (g) 

75.0p , (h) 85.0p , (i) 86.0p , (j) 81.0p  
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3.4.4. Combinatorial aspects of the segmentation algorithm 

Before defining an explicit rule for the selection of , the combinatorial aspects 

of the segmentation algorithm is described. A certain level  is preset at the beginning 

of the computational experiment. If the absolute prediction error kmkm xx   22
~  is 

lower than  ( ,2,1k ) a black dot is plotted; otherwise a white dot is left unmarked 

at appropriate value of k (horizontal dotted lines in Fig. 3.22). The adjacent black dots 

merge forming black line intervals. Such computational experiments are performed 

for all values of m in the effective range of H-ranks (Fig. 3.21).  

The percentage of successful predictions (when the absolute prediction error is 

lower than ) is computed for every H-rank ( 89.0p  in Fig. 3.21(a) denotes that 89% 

of predictions were successful at 3Hr ). 

 

Fig. 3.22. The result of the segmentation algorithm for the artificial time series with the 

additive noise for 4923.0  (part (a)); 2015.1  (part (b)); and 5712.2  (part (c)) 

A schematic diagram of combinatorial segmentation algorithm for the 

identification of longest continuous black intervals in the effective range of H-ranks, 

at a predefined level of prediction errors  is illustrated in Fig. 3.23 (this diagram is 

constructed for illustrative purposes only and does not represent any particular time 

series).  

http://www.sciencedirect.com/science/article/pii/S0925231213005341#f0015
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Fig. 3.23. The illustration of the combinatorial segmentation algorithm. Horizontal lines in 

part (a) show intervals where algebraic prediction errors are lower than the preset level δ  

(the height of a line stands for the appropriate H-rank). The gray-shaded area in part (a) 

illustrates the longest continuous line interval which is associated to a separate segment in 

part (b). The process is continued through parts (b–d) until the whole sequence is split into 

separate segments. Thin lines show intervals where prediction errors are smaller than δ ; 

thick solid lines represent the result of the segmentation algorithm 

 

Step A. Set the level  ( > 0) and perform the algebraic forecasting of the given 

data series at different preselected ranks. Mark intervals of the time series where the 

forecasting errors were lower than . Such marking is schematically illustrated in Fig. 

3.5(a) (the vertical axis stands for the H-rank m). For example, the interval  50 ; tt  is 

associated to the lowest H-rank in the effective range of H-ranks; the interval  21;tt  

is associated to the highest H-rank in the schematic diagram in Fig. 3.23(a). Note that 

these marked intervals may overlap for different H-ranks. Also, some intervals can be 

left unassociated to any particular H-rank. For example, forecasting errors in the 
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interval  87 ;tt  are higher than  for all m in the effective range of H-ranks (Fig. 

3.23(a)).  

Step B. Identify the longest continuous interval (in the whole range of effective 

H-ranks). The longest interval  74 ;tt  is marked by a gray shaded area in Fig. 3.23(a).  

Step C. Denote the marked interval as the segment associated to the according 

H-rank; erase all information about other H-ranks in the marked segment. The marked 

segment is illustrated by a thick solid horizontal line in Fig. 3.23(b). 

Step D. Identify the longest continuous interval in the zones not occupied by the 

marked segments (return back to step B). The longest interval  40 ;tt  is marked by a 

gray shaded area in Fig. 3.23(b). 

Step E. Continue until all possible intervals are marked as segments. The 

interval  40 ;tt  is associated to the according H-rank in Fig. 3.23(c). The last marked 

interval in Fig. 3.23(c) is  98 ; tt . Finally, the segmentation algorithm identifies four 

distinct segments:  40 ;tt ;  74 ;tt ;  87 ;tt  and  98 ; tt  in Fig 3.23(d). Note that the 

unmarked interval  87 ;tt  is not associated to any particular H-rank. 

3.4.5. The strategy for the selection of  

The results of the segmentation for the artificial time series contaminated with 

noise are illustrated in Fig. 3.22 by thick solid lines. It is clear that the plotted 

dichotomous lines of prediction errors in Fig. 3.22 would be sparse if  is considerably 

lower than the average level of absolute prediction errors (Fig. 3.22(a)). On the 

contrary, continuous intervals of acceptable predictions would be long if  is much 

higher than the average level of absolute prediction errors (Fig. 3.22(c)). One has to 

identify the appropriate level of  which would result into a realistic segmentation 

(Fig. 3.22(b)). Note that the darker lines in Fig. 3.22 represent the H-rank for that 

segment as identified by the proposed segmentation algorithm. 

The selection of the acceptable level of absolute prediction errors  is illustrated 

by the diagram in Fig. 3.24. As mentioned previously, the algebraic prediction of the 

time series and absolute prediction errors is performed and plotted for every single H-

rank in the effective range of H-ranks. A particular level of  is fixed and the 

percentage of satisfactory predictions is computed in terms of  (note that  is the 

same for all H-ranks in Fig. 3.21). Such computations are repeated for different values 

of  and the percentage of average satisfactory predictions p is calculated as the 

arithmetic mean for all H-ranks in the effective range of H-ranks (Fig. 3.24). It is clear 

that 0lim
0




p


 for real-world time series because the inevitable noise does not allow 

the exact reconstruction of the algebraic model of the time series. On the other hand, 

p saturates to 1 (corresponding to 100 %) when  reaches the level of highest absolute 

prediction errors (Fig. 3.24). The values 5.0p ; 0.8 and 0.95 result into 4923.0 ; 

1.2015 and 2.5712 (Fig. 3.24).  
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Fig. 3.24. A diagram illustrating the selection of the acceptable level of prediction errors  – 

thin solid lines represent percentages of successful predictions of the artificial time series 

with the additive noise for different H-ranks. The thick solid line represents the average of all 

percentages for a fixed . The average percentage 5.0p  corresponds to 4923.0  

(marked as (a)); 8.0p corresponds to 2015.1  (marked as (b)); 95.0p corresponds to 

5712.2  (marked as (c)) 

As mentioned previously, different levels of absolute prediction errors  result 

into different segmentations of the original time series. Fig. 3.22 illustrates the 

segmentation of the artificial time series with the additive noise at 4923.0 ; 1.2015 

and 2.5712. The nearest segmentation corresponding to the original formation of the 

artificial time series is observed at 8.0p . Thus this value of p is fixed and continue 

with the segmentation experiments with real-world time series.  

So far, such a selection of the parameter p is based only on computational 

experiments with the artificial time series contaminated with noise. Nevertheless, 

segmentation experiments with other artificial time series (different algebraic 

sequences, different levels of additive noise) also suggest that 8.0p  is an optimal 

choice for the segmentation of a time series with an embedded deterministic law. The 

variation of H-ranks and the evolutionary strategy for the identification of nearest 

algebraic skeleton sequences help to construct an effective deterministic algorithm for 

unsupervised segmentation. The parameter p  plays a role of a criterion which is used 

to declare the fact that a previously assumed algebraic model cannot be longer 

extrapolated outside the identified segment. Moreover, this dimensionless parameter 

does not directly depend on such factors as the signal range, the signal-noise ratio, 

absolute prediction errors. The parameter p depends on   – but the range of   is not 

predetermined at the beginning of the segmentation experiment. The value 8.0p  

serves as a good conciliation among two extremities – the situation when prediction 

errors are unacceptable almost everywhere (at any H-rank) and the situation when 

prediction errors are acceptable everywhere for all possible H-ranks. The proposed 

segmentation algorithm is not only robust to noise – it does not breakdown even if it 

is used to segment the noise itself, though such segmentation may not have a direct 
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physical meaning because the prediction errors are several times higher than the signal 

itself. 

It is well known in the statistical literature that estimating the rank of noise 

contaminated data is very difficult [235]. A straightforward identification of the H-

rank in our model becomes an ill-posed problem because a random sequence does not 

possess a finite H-rank (otherwise a deterministic algebraic law generating the random 

sequence could be reconstructed). It is well known that the summation of two 

sequences results into the H-rank not lower than the maximum H-rank of one of the 

sequences [236]. Therefore, the H-rank of noise contaminated data is infinite. 

Nevertheless, near-optimal identification of skeleton sequences in noise contaminated 

data enables an efficient reconstruction of the underlying algebraic model [234]. The 

results of the segmentation of the noise contaminated data presented in Fig. 3.8 

demonstrate the robustness of the proposed technique. Moreover, the proposed 

method is capable to identify the H-rank as soon as the number of elements is 

sufficient to reconstruct the underlying algebraic model. 

3.4.6. Computational experiments with real-world time series 

The standard Odonovan7.dat time series describing 70 consecutive readings of 

batch chemical process [237] (Fig. 3.25(a)) are used to test the functionality of the 

proposed segmentation algorithm. This time series is short because the available 

number of elements is too small for training any classifiers or networks. Nevertheless, 

the proposed algorithm copes well with the segmentation task. Percentages of 

satisfactory predictions in the effective range of H-ranks ( 123 Hr ) are illustrated 

in Fig. 3.25(b). The average percentage of satisfactory predictions 8.0p  results into 

the absolute prediction error level 76.3  (Fig. 3.25(b)). The combinatorial 

segmentation algorithm (at 76.3 ) produces the segmentation illustrated in Fig. 

3.25(c).  

Computational experiments with a standard BARISON.DAT time series 

describing monthly basic iron production in Australia in thousand tons in the time 

period between January 1956 and August 1995 [237] are proposed (210 available 

discrete data points are plotted in Fig. 3.25(d)). Percentages of satisfactory predictions 

in the effective range of H-ranks ( 123  Hr ) are illustrated in Fig. 3.25(e). The 

average percentage of satisfactory predictions 8.0p  results into the absolute 

prediction error level 9374.0  (Fig. 3.25(e)). The combinatorial segmentation 

algorithm (at 9374.0 ) produces the segmentation illustrated in Fig. 3.25(f).  

The produced segmentation results provide a deep physical insight into 

evolution of the real-world time series. It is possible to observe intervals where 

algebraic laws governing the evolution of the process are stationary. Also it is possible 

to identify potential changes in the evolution of the process but there is no way for the 

current methodology to estimate how abrupt the changes are. 

 

 

http://www.sciencedirect.com/science/article/pii/S0925231213005341#f0040
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Fig. 3.25. The segmentation algorithm of odonovan7.dat and barinson.dat time series. The 

odonovan7.dat time series is illustrated in part (a); average percentages of successful 

predictions are shown as a thick solid line in part (b); 8.0p corresponds to 76.3 . The 

result of the segmentation is presented in part (c). The barinson.dat time series is illustrated 

in part (a); average percentages of successful predictions are shown as a thick solid line in 

part (b); 8.0p corresponds to 9374.0 . The result of the segmentation is presented in 

part (c) 

3.4.7. Comparisons with other segmentation techniques 

A comparative assessment of the functionality of the proposed technique with 

other typical segmentation methods is required in order to understand if our 

methodology does outperform other methods or not, and under which conditions does 

it happen.  

The quality of segmentation techniques is mostly measured indirectly using the 

least-squares error that an approximation algorithm makes when reconstructing the 

segments of a time series given by segmentation. Another category contains 

algorithms which aim at performing a segmentation when the characteristics of the 

time series change in a certain way. This category contains applications, such as 

segmentation for higher efficiency, indexing long time series, or finding perceptually 

important points (breaking points) and other user-specified points [238].  

The first comparison is performed with the segmentation method based on 

switching state-space models [232]. This model combines and generalizes two of the 

most widely used stochastic time series models – the hidden Markov model and the 

linear dynamical system. It is demonstrated in [232] that switching state-space models 

are useful in modeling time series which have nonlinear dynamics characterized by 
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several different regimes. To illustrate this point, Ghahramani and Hinton examined 

a psychological data set from a patient tentatively diagnosed with sleep apnea, which 

is a medical condition in which patients intermittently stop breathing during sleep, 

which results in a reflex arousal and gasps of breath. The data was obtained from the 

repository of time series data sets associated with Santa Fe Time Series Analysis and 

Prediction Competition and is described in detail in Rigney et al. [239]. The task is 

simple – it is necessary to highlight the fact that the respiration pattern in sleep apnea 

is characterized by at least two regimes – no breathing and gasping breathing. Note 

that Ghahramani and Hinton used samples 6201–7200 for training and 5201–6200 for 

testing [232]. The proposed methodology does not require any training at all – one 

can start the segmentation right from the first samples. Thus the segmentation 

algorithm is applied to samples 5201–5401; segmentation results are presented in Fig. 

3.26. It can be noted that our methodology does not produce only two different types 

of segments. Therefore, though it is easy to locate no breathing regimes in our 

segmentation results, the location of gasping breathing regimes is more difficult 

compared to the results produced by [232]. That can be considered as a definite 

drawback of our methodology. On the other hand, the original time series is rather 

simple (from the point of the segmentation process). No breathing and gasping 

breathing regimes can be easily identified by a naked eye; a sophisticated 

segmentation method is not necessary for the interpretation of data. The proposed 

methodology outperforms the switching state-space model from that point of view – 

it is possible to locate algebraic relationships also in the gasping breathing regimes. It 

is well known that time series representing human physiological data are chaotic 

[240]. No algebraic relationship (linear or nonlinear) can describe long-term evolution 

of a chaotic signal [236]. In that sense our segmentation results provide a deeper 

insight into the evolution of the process than a simple classification into two different 

states (Fig. 3.26 (b)).  

 

Fig. 3.26. Segmentation results for the patient breathing data during sleep; the time 

series is shown in part (a); segmentation results are illustrated in part (b) 

http://www.sciencedirect.com/science/article/pii/S0925231213005341#f0055
http://www.sciencedirect.com/science/article/pii/S0925231213005341#f0055
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The second comparison is performed with the segmentation method proposed 

by Aksoy et al.[241]. The time series has a length of 131 years and consists of the 

annual total precipitation data (in mm) at Fortaleza, Brazil, for period 1849–1979 

[242]. The segmentation results produced by [241] single out the following intervals: 

1848–1893, 1894–1897, 1898–1962 and 1963–1979, which is the highest order 

segmentation accepted by the Scheffe test. With the exception of the 4 year segment 

during the period 1893-1896, the annual precipitation if Fortaleza can be considered 

stable for more than a century until 1962, after which an increase is observed up to 

the end of the period, 1979. The proposed segmentation methodology has singled out 

the following intervals: 1848–1873, 1875–1896, 1898–1912, 1912–1938, 1939–1962 

and 1963–1979 (Fig. 3.27 (a-b)). Thus, the proposed methodology was able to detect 

the major change points located in [242] but still managed to find additional change 

points. Therefore, it may be concluded that proposed methodology is more sensitive 

to changes in process evolution compared to [241]. 

The last comparison is performed with the time series segmentation method with 

shifting means hidden Markov models [243]. The experiment is performed with the 

Senegal River annual discharge data, measured at the Bakel station for the years 1903–

1988 [244]. The results of segmentation are shown in Fig. 3.27 (c-d). The algorithm 

[243] produces breaks at years 1921, 1938, 1949 and 1967. The proposed 

methodology is able to detect the break at 1920 (1921), 1938, 1967 but is not able to 

locate the break at 1949. It is well known that no single time series prediction method 

will outperform all others in all situations.  

 

Fig. 3.27. Segmentation results for the annual total precipitation data (in mm) at 

Fortaleza, Brazil, for period 1849–1979: the time series is shown in part (a); segmentation 

results are illustrated in part (b). Segmentation results for the Senegal River annual discharge 

data, measured at the Bakel station for the years 1903–1988: the time series is shown in part 

(c); segmentation results are illustrated in part (d) 

The proposed prediction methodology is tightly related to the one step forward 

algebraic predictor introduced in [243]. Thus, poor prediction may result into poor 

segmentation. And though our segmentation methodology does show rather 

promising results, it is natural to expect that there exist other segmentation methods 

which do outperform our results. 

http://www.sciencedirect.com/science/article/pii/S0925231213005341#f0060
http://www.sciencedirect.com/science/article/pii/S0925231213005341#f0065
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3.4.8. Concluding remarks 

It is important to note that the proposed segmentation algorithm is based on an 

efficient computational strategy. Algebraic predictions are made for different H-ranks 

only once. All further computations are performed with absolute prediction errors, but 

the predictions do not need to be repeated. The acceptable level of prediction errors 

  is varied from 0 to the maximum absolute prediction error and the percentages of 

successful predictions are computed for the already available data. Computations 

show that the average percentage of successful predictions p=0.8 yields an optimal 

value of   – the optimality is considered as the closest segmentation to the underlying 

intervals of quasi-stationarity. 

In general, one could perform additional tuning of the parameter p – but a large 

database of time series with known segmentation results should be available for that 

purpose. Unfortunately, almost all available segmentation results of real world time 

series are more or less empirical. Different authors compare the functionality of their 

segmentation algorithms, but a “standard” segmentation cannot be found (known) 

beforehand expect for an artificial time series (possibly contaminated by noise).  

The proposed segmentation algorithm uses the one step-forward algebraic 

predictor that is based on the concept of H-ranks. In other words, the predictor 

identifies a near-optimal algebraic model of the time series and extrapolates that 

model into the future. The proposed segmentation algorithm is based on the 

identification of changes in the mimicking algebraic model of the time series. 

The proposed algorithm belongs to the class of level-set computational 

algorithms. It is not necessary to compute statistical estimators of the prediction 

quality. Instead the time series are classified into dichotomous intervals according to 

one step forward predictions. But instead of simply detecting the moment when 

absolute prediction errors exceed a predefined level, a strategy applicable for 

nonparametric identification of quasi-stationary segments is developed. It is possible 

to use the same algebraic predictor and move with one step-forward forecasts until the 

prediction error at some point becomes higher than a preset level. Then, one should 

have to identify a new best fitting H-rank for the next interval and continue until the 

prediction error exceeds the preset level again. Unfortunately, such an approach 

possesses two serious drawbacks. The first one is related to the accumulation of data 

before the algebraic prediction can be commenced (2m+1 data points are required for 

the algebraic prediction at HrS=m). Thus, relatively long intervals between adjacent 

segments would be left without an association to any segment. The second drawback 

is related to a rather complex identification of the best-fitting H-rank. The proposed 

strategy liberates the user from the necessity of searching a best-fitting H-rank. 

Predictions are performed for all different H-ranks (in a pre-selected range) and a 

combinatorial level-set based algorithm is used for the identification of appropriate 

segments. Such segmentation has a deep physical meaning. The bouts of quasi-

stationarity are identified; the evolution of the process is governed by a fixed algebraic 

law in each reconstructed segment. The proposed segmentation algorithm does not 

apply formal algebraic relationships for the observed data. It reveals that the hidden 

structure of the time series is able to identify potential changes in the evolution of the 
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process and exploits predictability as a tool for the characterization of complexity 

[245]. 

3.5. The construction of the algebraic forecasting algorithm 

Short-term time series forecasting procedures include different techniques and 

models. An algebraic prediction technique based on the Hankel rank for the 

identification of the skeleton algebraic sequences in short-term time series is 

developed in [234]. Such an approach is used to extract information about the 

algebraic model of the process and then to use this model to extrapolate past behavior 

into future. It has been demonstrated in [234] that such algebraic predictor can be 

effectively used for the estimation of local minimums and maximums in day-ahead 

forecasting applications. It is agreeable that no single method will outperform all 

others in all situations. It is shown in [234] that the proposed predictor is outperformed 

(for some real-world time series) by such simple standard techniques as the moving 

average or the exponential smoothing method – if only the averaged prediction errors 

are considered.  

The main objective of this research is to enhance the algebraic predictor 

proposed in [234] by modifying the procedure for the identification of the skeleton 

algebraic sequences. The main goal is to employ the procedure of internal smoothing 

which should enable reaching a healthy balance between excellent variability of 

skeleton algebraic sequences and valuable properties of predictors based on the 

moving averaging method. The goal is to develop such a predictor which could 

produce reliable forecasts for short time series that implicates skeleton algebraic 

sequences – in situations when the available data is not enough for such predictors as 

ARIMA or short term time series nonlinear forecasting methods such as neural 

networks or support vector machines.  

3.5.1. One-step forward algebraic prediction of time series 

Let us assume that m2  observations are available for building a model of the 

process and then using this model to extrapolate the past behavior into the future: 

12210 ,,,, mxxxx  ; (3.24) 

where 12 mx  is the value of the observation at the present moment. Let us assume that 

the sequence  0; Zkxk   is an algebraic progression and its H-rank is equal to m. Then 

it is possible to determine the next element of the sequence mx2  from the following 

equality: 
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where the only unknown is mx2  (the horizon of the prediction is equal to 1). 

Unfortunately, real world series are usually contaminated with more or less noise. 
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Thus, such a straightforward assumption that the sequence  0; Zkxk   is an algebraic 

progression does not hold in practice (a random sequence does not have a rank).  

3.5.2. The proposed scheme 

The basic idea of the proposed forecasting scheme can be described by the 

following considerations.  Algebraic relationships will be identified in the available 

observation data. But the forecast will be smoothed – instead of trying to make a 

straightforward projection of this algebraic model into the future (as it is done in [234] 

(chapter 3.4.1)). A conciliation between the variability of the skeleton algebraic 

sequences and the smoothness of the averaged estimates is the basic modification of 

the proposed forecasting scheme.    

Let the sequence 12210 ,,,, mxxxx   is considered (Eq. (3.24)). It is clear that a 

straightforward identification of the next element mx2  using Eq. (3.25) is not 

applicable due to the unavoidable additive noise in real world time series (the original 

sequence is illustrated by a thick solid line in Fig. 3.28; the straightforward forecast 

of mx2  is shown by an empty circle).  

An often used industrial technique to remove inherent random variation in a 

collection of data is the simple moving average smoothing (MA): 
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s

x ;  (3.26) 

where kx  is a smoothed value at the moment k; s is the averaging window. In general, 

the width of the averaging window should be preselected for each time series and is 

not related to the length of the skeleton algebraic sequence (the averaging window is 

illustrated by a horizontal arrow in Fig. 3.12). The smoothed value mx2  is shown by a 

gray-shaded circle in Fig. 3.28 at mk 2 .  

 

Fig. 3.28. The schematic diagram illustrating the proposed method of prediction: circles 

denote the original time series; 12  mk  is the present moment; the thick solid line 

denotes a straightforward algebraic prediction according to Eq. (3.7) (the result of this 

prediction is illustrated by a white circle at mk 2 ); the averaging window is denoted by 

gray-shaded circles (the smoothed prediction is illustrated by a gray-shaded circle at mk 2

); vertical intervals denote the tolerance corridor for the corrections of the original time 

series; the dashed line denotes the corrected skeleton algebraic sequence; the black circle 

denotes the final prediction 
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The fitness function for the set of corrections  1210 ,,, m  : 
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mx2
~

 is the solution of Eq. (3.25); mx2  is the smoothed moving average (the result of 

Eq. (3.26)) and the parameter 0a  determines the penalty proportion between the 

sum of weighted corrections and the difference of forecasts based on skeleton 

algebraic sequences and moving averages (both penalties have the same weight when 

1a ).   0,,0,0 F  if 0210  m   and the algebraic forecast mx2
~

 is equal 

to the forecast nx2  produced by the MA method. In general, the goal is to maximize 

the fitness function by making small corrections to the sequence of observations and 

produce a forecast close to the smoothed moving average. It is clear that 1
12

0






m

k

k ; 

1212100   mm   ; the penalties for corrections 1210 ,,, m   are 

illustrated by corresponding intervals in Fig. 3.28. The algebraic sequence 

12210
~,,~,~,~

mxxxx   is illustrated by a thick dotted line in Fig. 3.28; the forecast nx2
~

 is 

shown as a black circle in Fig. 3.28.  

It can be noted that an arithmetic average between a straightforward forecast 

mx2
~

 and the smoothed moving average mx2  is not computed. As mentioned 

previously, real-world time series are unavoidably contaminated with more or less 

noise. Thus the rank of such time series does not exist and the straightforward 

computation of the forecast mx2  does not have any physical (moreover mathematical) 

motivation. Instead, the goal is to reconstruct the nearest skeleton algebraic sequence 

to the original series. Moreover, this skeleton algebraic sequence should produce a 

forecast close to the smoothed average computed for the last data of the original series. 

In other words, a scheme of algebraic prediction with the internal smoothing is 

constructed. Particular details about the construction of the computational algorithm 

and the selection of its parameters will be given in the following sections. 

3.5.3. Effects of the additive noise 

It is clear that a random sequence does not have an H-rank (otherwise algebraic 

relationships governing the evolution of this random sequence could be derived). If 

the rank of a sequence   mZkxHr k  0;  and a sequence  0; Zkk   is a random 

sequence, then    0; ZkxHr kk   [246]. As mentioned previously, the proposed 
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forecasting method is based on the identification of underlying skeleton algebraic 

progression in real-world time series contaminated by the inherent noise.  

The concept of the pseudospectrum of a square matrix is thoroughly investigated 

in [246]. Analogous reasoning in regards to pseudo H-rank could help to understand 

the effects introduced by the additive noise to the underlying algebraic relationships 

governing the evolution of sequences (even though the H-rank of the sequence with 

the additive noise does not exist).  

The spectrum of a square matrix A, denoted as  A , is the set of Cz  where 

the resolvent   1
 AzI  does not exist or is unbounded [247] (I is the identity matrix). 

For each 0 , the -pseudospectrum of A is defined by [247]: 

      EEEAzzA     with  somefor    :C .  (3.29) 

In analogy to the classical definition of the spectrum of a square matrix the H-

spectrum of the base fragment of the algebraic progression is defined as the set of 

characteristic roots k  of the characteristic equation. Then, for each 0 , the -H-

pseudospectrum is the subset on the complex plane comprising all possible locations 

of characteristic roots of the perturbed original sequence: 
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There is a principal difference between Eq. (3.29) and Eq. (3.30) – the Hankel 

matrix is not perturbed, but the elements of the base fragment of the algebraic 

progression instead (the motivation can be explained by the fact what the extrapolation 

of the sequence is explored). Moreover, the conflict associated to the nonexistence of 

the H-rank of the algebraic progression contaminated with additive noise is avoided. 

The element mx2  is not defined (and do not perturbed). This element can be solved 

from the equation 
  01 md . Thus the H-rank of the perturbed sequence remains 

equal to the H-rank of the unperturbed sequence. Another difference is based on the 

fact that the perturbing matrix E in the classical definition of the pseudospectrum 

comprises complex numbers while the perturbing vector comprising real numbers 

only is employed. As mentioned previously, this can be explained by the fact that real 

time series are extrapolated only. 

The computation of the -H-pseudospectrum requires finding roots of the 

perturbed characteristic equation (Eq. (1.26)). The m roots of the polynomial of degree 

m depend continuously on the coefficients (though the problem of approximating the 

roots given the coefficients is ill-conditioned). The coefficients of the polynomial are 

appropriate adjuncts of the determinant. But 

         21detdetdet  OEAtrAAEA   . (3.31) 

Thus, following properties hold for a small perturbation of the base fragment of 

the algebraic progression in the described computational setup: 

 it does not change the H-rank of the sequence; 



120 

 

 the -H-pseudospectrum converges continuously to the H-pseudospectrum as 

0 ; 

 all roots of the perturbed characteristic polynomial are either real numbers or 

complex conjugate numbers because all elements of the perturbed base fragment of 

the algebraic progression are real. 

In other words, the removal of corrections 1210 ,,, m    from the real-world 

time series (although based on the evolutionary strategy) is a well-posed problem.  

Example 1. A simple computational example is used to illustrate the concept of 

the -H-pseudospectrum. Let us consider a periodic sequence  ,2,1,1,2,1,1   with 

the period equal to 3 ( 3m ). Then, elementary computations yield characteristic roots 

for this sequence: 11  ; i
2

3

2

1
2   and i

2

3

2

1
3   (all roots for a periodic 

sequence are located on the unit circle in the complex plane). Now the constant  is 

fixed and 1000 vectors of corrections  510 ,,,    such that  
2510 ,,,   are 

constructed. A random number generator is used for the construction of such vectors: 

kk e
eee

2510 ,,, 


  ; 5,0k  where ke  are random numbers distributed uniformly in 

the interval  1;1 . Characteristic roots for the perturbed sequence are calculated for 

every correction and plotted in the complex plane. The contour plotter and different 

grayscale levels are used to illustrate different regions of the -H-pseudospectrum 

(Fig. 3.29).  

It is interesting to note that the first root of the perturbed sequence remains real 

while the other two roots are still complex conjugate (the necessary condition for the 

perturbed sequence to remain real). The perturbed sequence is no longer periodic, but 

the -H-pseudospectrum converges continuously to the H-pseudospectrum as 0 .  

 
Fig. 3.29. The -H-pseudospectrum of a periodic sequence  ,2,1,1,2,1,1  . 

Smooth convergence to the H-pseudospectrum is observed as   tends to 0 
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3.5.4. A simple numerical example  

Let the concept of the proposed forecasting scheme is illustrated by a simple 

numerical example. Let four observations are available: 10 x ; 21 x ; 02 x  and 

23 x . Let the averaging window 2s ; then the smoothed prediction is 14 x . The 

straightforward algebraic forecast is 14 x  because 0

120

202

021





. For the 

simplicity it is assumed that 1a  and 0b . Then it is necessary to find such 

corrections k ; 3,2,1,0k  that maximize the value of the fitness function defined by 

Eq. (3.9). Eq. (3.7) yields the value of the algebraic forecast:  

           

   2120

12303
2
2312

4
21

221222~








x .

  

(3.32) 

It is necessary to determine such values of k ; 3,2,1,0k  that the value of the 

fitness function  3210 ,,, F  is optimal. The lowest bound of the fitness function is 

  5.0~
1

0,,0,0
22





mm xx

F  . But the selection of the optimal corrections k ; 

3,2,1,0k  is not a trivial task even for this simple example. The situation would 

become much more complex in case of realistic prediction scenarios. Therefore the 

development of a reliable and an efficient optimization strategy becomes a subject of 

the primary importance for the successful implementation of such a forecasting 

strategy.  

3.5.5. Parameter selection in PSO 

It is clear that the prediction of an algebraic sequence by the proposed algebraic 

forecasting method with internal smoothing cannot be exact. The direct computation 

of the “forecast” using Eq. (3.25) is of course analytic (i.e. exact). But the fitness 

function in Eq. (3.27) does not comprise a term representing the determinant of the 

Hankel matrix. In other words, the exact forecast of an exact algebraic sequence is 

impossible because the value of the forecast can be far from the smoothed average 

(note that the exact prediction of an algebraic sequence works well with the fitness 

function in Eq. (3.27)). As mentioned previously, there does not exist one method 

which would outperform all others, in all situations. It is natural to expect that the 

proposed method should work well with such signals where the noise – signal ratio is 

rather high.  

An artificial test time series to tune parameters of the proposed forecasting 

algorithm and a periodic sequence is formed (numerical values of seven elements in 

a period are selected as 0.5; 0.7; 0.1; 0.9; 0.3; 0.2; 0.8); this sequence represents a 

skeleton algebraic sequence. Random numbers uniformly distributed in the interval 
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 15.0;15.0  are added to all elements of that sequence.  This test time series will be 

used for testing the functionality of the proposed method.  

The first task is to identify the H-rank of the time series (incorrect identification 

of an appropriate H-rank may lead to substantial prediction errors). Eq. (3.25) is used 

to solve mx2
~

 without using any corrections or moving averages ( mx2
~

 does not 

necessarily coincide with mx2 ). Then the observation window is shifted by one 

element forward and again use Eq. (3.25) to solve the next element 12
~

mx . Such direct 

one-step forward forecasting is repeated for 50 times; root mean square errors (RMSE) 

of such direct algebraic prediction are shown in Table 3.1. Best results are produced 

at 7m  (the dimension of the characteristic Hankel matrix is 8), thus it is assumed 

that the H-rank of the test time series is 7.  

Table 3.1. RMSE of the direct algebraic prediction for the test time series at 

different m  
m 4 5 6 7 8 

RMSE 1.2960 2.1512 21.5646 0.1967 28.7332 

9 10 11 12 13 14 

1.0214 3.4570 18.4699 7.2924 18.4942 1.3620 

The averaging window s for the simple moving average smoothing (Eq. (3.26)) 

and the penalty proportion parameter a must be selected in the next step (the parameter 

b is set to 0). The test time series will be used again, but evolutionary algorithms will 

be used now to identify the near-optimal the set of corrections  1310 ,,,   .   

Particle swarm optimization (PSO) techniques have been successfully employed 

in [234] for the identification of the skeleton algebraic sequence. In this research PSO 

are also used for the selection of a near-optimal set of corrections. And though despite 

numerous research efforts the selection of the parameters of PSO remains mostly 

empirical and depends on the topology of the target function and/or on the structure 

of the fitness function, it is fixed 6.0w  and 7.121  cc  as recommended by Trelea 

[189] ( 1c  and 2c  are two positive constants, called acceleration constants, 

representing weightings of the stochastic acceleration terms that pull each particle 

toward the particle’s best and the global best; w is the inertia weight balancing the 

global and the local search). There have been no definitive recommendations in the 

literature regarding the swarm size in PSO. Eberhart and Shi [177] indicated that the 

effect of the population size on the performance of the PSO method is of minimum 

significance. Most researchers use a swarm size of 10 to 60, but there are no 

established guidelines. For the purpose of comparing the efficiency of the predictor 

developed in [234] and the proposed method, the swarm size that is used for PSO is 

fixed to 50 particles. 

It is clear that a new set of near-optimal corrections  1210 ,,, m   is generated 

every time when the PSO algorithm is executed. Thus the PSO algorithm is executed 

100 times, compute the forecasted value of mx2
~

 (100 different estimates of mx2
~

 are 

produced in the process) and calculate root mean square errors (RMSE) between the 
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true value of mx2  and 100 forecasted estimates of mx2
~

. Moreover, the observation 

window is shifted by one step forward and repeat 100 trials again. Such procedures 

are repeated 50 times, all RSME estimates are arithmetically averaged. Results of 

computational experiments are presented in Table 3.2.  

As mentioned previously, such computational experiments are performed at 

different s (the time averaging window) and a (the penalty proportion parameter). The 

selected discreet values of the parameter a are these: 
m4

1
; 

m2

1
; 

m

1
; 

2

1
; 1; 2; 

2

m
; m; 

2m and 4m ( 7m  for the test time series), while ms 2,,3,2  . Note that the index 

of k  runs from 0 to 12 m ; thus the maximum number of available elements for the 

simple moving average smoothing is m2 . The best prediction result (RMSE = 0.1768) 

is produced at 1a  and 7s  (Table 3.2). Thus these values of parameters are fixed 

( 1a  and ms  ) and will be used for the prediction of other time series (the H-rank 

m must be identified for each individual time series before any predictions could be 

commenced). The selection of the optimal value of parameter b is extensively 

discussed in [234]; the near-optimal value b = 1 in APIS scheme is adopted too.  

Table 3.2. RMSE of the algebraic prediction for the test time series with internal 

smoothing at different s (the time averaging window) and a (the penalty proportion 

parameter); m = 7  
s / a 1/4m 1/2 m 1/ m 1/2 1 2 m /2 m 2 m 4 m 

2 0.2222 0.2257 0.2168 0.1948 0.1953 0.1933 0.1948 0.1960 0.1962 0.2025 

3 0.2209 0.2197 0.2126 0.1940 0.1914 0.1908 0.1940 0.1982 0.2022 0.2041 

4 0.2113 0.2157 0.2114 0.1912 0.1893 0.1911 0.1912 0.1952 0.1992 0.2033 

5 0.2079 0.2047 0.2123 0.1930 0.1840 0.1871 0.1930 0.1962 0.1963 0.2052 

6 0.2100 0.2127 0.2124 0.1963 0.1866 0.1915 0.1963 0.1986 0.2026 0.2012 

7 0.2004 0.1995 0.1971 0.1951 0.1768 0.1833 0.1951 0.1978 0.1975 0.2011 

8 0.2120 0.2056 0.2055 0.1940 0.1822 0.1879 0.1940 0.1987 0.1976 0.2053 

9 0.2108 0.2077 0.200 0.1930 0.1825 0.1862 0.1930 0.2006 0.2046 0.2045 

10 0.2018 0.1977 0.2063 0.1964 0.1812 0.1887 0.1964 0.1965 0.2005 0.2002 

11 0.2038 0.2058 0.2083 0.1966 0.1809 0.1886 0.1966 0.1963 0.2003 0.2052 

12 0.1966 0.2043 0.2013 0.1951 0.1804 0.1864 0.1951 0.1945 0.1951 0.2016 

13 0.2059 0.2017 0.2043 0.1945 0.1828 0.1847 0.1945 0.1969 0.2009 0.2028 

14 0.1990 0.1977 0.1959 0.1960 0.1791 0.1857 0.1960 0.1951 0.1974 0.2006 

Finally, the overall design procedure of the proposed method can be generalized 

by the following structural algorithm: 

 

A. Preprocessing. 

(1) Identify the H-rank of the time series (the parameter m) by performing direct 

algebraic predictions (without using any corrections or moving averages) for different 

m. The smallest RMSE of the direct algebraic prediction is used for the selection of 

the optimal m.   

(2) Set the penalty proportion parameter 1a  and the averaging window for 

the simple moving average smoothing ms  . 

(3) Set the inertia weight 6.0w  and the acceleration constants 7.121  cc  for 

the PSO algorithm that is executed 100 times. 
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B. One-step forward prediction algorithm. 

(1) Compute  the smoothed moving average mx2  from  121 ,,,  mmm xxx  . 

(2) Repeat 100 times: 

 (2.1) Compute a single set of corrections  1210 ,,, m   using the 

PSO fitness function (Eq. (3.27)). The number of PSO generations is 100. 

 (2.2) Fix the algebraic forecast with internal smoothing mx2
~

. 

(3) Compute the averaged forecast of mx2
~

. 

(4) Shift the observation window by 1 step forward and return to step (B.1). 

The proposed algorithm schematically is represented in Fig. 3.30. 

 

 

Fig. 3.30. A schematic diagram of algebraic algorithm with internal smoothing 

3.5.6. The test time series with uniform noise 

Computational experiments are continued with the test time series to compare 

the functionality of the proposed forecasting technique with other methods. Direct 

algebraic prediction (without internal smoothing) is illustrated in Fig. 3.31(A); RMSE 

of such a straightforward prediction is 0.1967. The prediction performed by the 

moving average (MA) method (at 7s ) produces a higher RMSE and demonstrates 

explicit averaging features of the method (Fig. 3.31(B)). Direct algebraic forecasting  
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already outperforms MA if RMSE metrics would be considered only. But the 

variability of the predicted time series is incomparably better in Fig. 3.31(A) than in 

Fig. 3.31(B) (though some overestimates of local minima and local maxima can be 

observed in Fig. 3.31(A)). Algebraic prediction with internal smoothing (APIS) 

produces the best RMSE and the best estimates of local extremes for the test time 

series (Fig. 3.31(C)). Local fluctuations of the predicted time series by our method 

give a much better representation of the variability of the time series. For instance, 

our method would clearly outperform the MA method if one would be interested to 

identify a day-ahead local maxima and local minima. The conciliation of powerful 

algebraic variability and the smoothness of moving averaging helps to unleash the 

power of the proposed technique.  

A prediction method based on the identification of algebraic skeleton sequences 

is developed in [234]. The one-step-forward forecast of this method is constructed as 

an arithmetic average of successful trials – thus this prediction method can be denoted 

as the algebraic prediction with external smoothing (APES) in Fig. 3.31(D). By the 

way it is used the same test series as in [234]; RMSE of APES prediction is slightly 

higher compared to APIS prediction. As mentioned previously, RMSE is the only one 

indicator describing the quality of the predicted time series. APES produces worse 

estimates of the day-ahead local maximums and local minimums compared to the 

APIS forecast (Fig. 3.31).  

The functionality of APIS is compared with the predictor based on sequential 

exponential smoothing (SES) which is an often used industrial technique to remove 

inherent random variation in a collection of data. It is a simple and pragmatic approach 

to forecasting, whereby the forecast is constructed from an exponentially weighted 

average of past observations. Series of computational experiments are performed to 

identify the best value (in terms of RMSE) for the test time series – best results are 

produced at 1.0 . The test series does not contain a clearly expressed trend or 

seasonality, therefore computational experiments are run with a SES only. The 

produced RMSE is 0.2832; the results are presented in Fig. 3.31(E). 

 

 

 

 

 

 



126 

 

 

Fig. 3.31. Forecasts of the test time series by the direct algebraic predictor (A); the MA 

method (B); the algebraic predictor with internal smoothing APIS (C); the algebraic 

predictor with external smoothing APES (D); the SES method (E) and the ARIMA method 

(F) 
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Computational experiments are continued with Box-Jenkins’s time series 

autoregressive integrated moving average procedure  ARIMA(4,1,3) (Fig. 3.31(F)) as 

the experiments found the 4-1-3 architecture as the best model for this time series 

(based on model error analysis and the evaluation of Akaike and Schwarz information 

criterions). The produced RMSE of the ARIMA forecast is 0.1475 and outperforms 

APIS forecast (Fig. 3.31). Nevertheless, it can be observed that APIS method 

produces the first forecast from 14 available elements of the original sequence (m = 

7), whereas ARIMA requires a considerably longer data sequence before statistical 

parameters can be identified and the forecasting can be commenced. APIS method is 

based on the reconstruction of near-optimal algebraic skeleton sequences; 100 

different skeletons are reconstructed from 14 available elements. And though the 

computational complexity of such an approach increases, the proposed method is a 

good candidate for the prediction of very short-term data sequences.    

Note that it is preselected the individual architecture of the ARIMA model for 

each time series, while APIS parameters a and b are tuned for the artificial time series 

and a kept fixed for all other time series.  It is likely that APIS prediction results would 

be even better if parameters a and b would be also individually tuned for each time 

series. But such an individual tuning is avoided simply because the complexity of such 

forecasting strategy would increase considerably compared to the algorithm proposed 

in [234]. 

3.5.7. Computational experiments on real-world time series 

Computational experiments are continued with real-world time series. The 

functionality of the proposed APIS predictor is tested using Andrews46.dat time series 

representing the annual yield of straw on Broadbalk field at Rothamsted in the period 

of 1852-1925 [237]. Andrews46.dat time series comprises 74 positive real elements; 

this series are transformed by dividing all elements by the maximum element in this 

sequence.  

The first task is to identify the length of the base fragment of Andrews46.dat 

time series. Direct algebraic prediction yields lowest RMSE at m = 2 (Fig. 3.32(A)); 

this value is set for further analysis. As mentioned previously, 2ms  are fixed and 

MA prediction is performed (Fig. 3.32(B)). APIS and APES forecasts are shown in 

Fig. 3.32(C and D); SES forecast (the lowest RMSE is achieved at 1.0 ) is shown 

in Fig. 3.32(E).  

Odonovan1.dat time series represents consecutive yields of batch chemical 

processes [237]. All 70 elements of this series are normed by dividing all elements by 

the maximum element in this sequence. The first task is to identify the length of the 

base fragment of Odonovan1.dat time series. Direct algebraic prediction yields lowest 

RMSE at m = 3 (Fig. 3.33(A)); this value is set for further analysis. It is fixed 3s  

and MA prediction is performed (Fig. 3.33(B)). APIS and APES forecasts are shown 

in Fig. 3.33(C and D); SES forecast (the lowest RMSE is achieved at 1.0 ) is shown 

in Fig. 3.33(E).  
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Fig. 3.32. Forecasts of Andrews46.dat time series by the direct algebraic predictor (A); the 

MA method (B); the APIS method (C); the APES method (D); the SES method (E) and the 

ARIMA method (F) 
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Fig. 3.33. Forecasts of Odonovan1.dat time series by the direct algebraic predictor (A); the 

MA method (B); the APIS method (C); the APES method (D); the SES method (E) and the 

ARIMA method (F) 
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APIS forecasts of prices in the electricity market of mainland Spain during the 

winter week from February 18 to February 24, 2002 [249] are presented in Fig. 3.34. 

The functionality of the proposed algorithm was compared with different time series 

forecasting methods, but not with nonlinear forecasting methods such as neural 

networks (NN) or support vector machines (SVM).  

The electricity market time series of mainland Spain has been used to test the 

forecasting algorithm based on NN [249]. The method based on NN produces SSE

= 37.92; APIS method results into SSE = 92.58. The method based of neural 

networks clearly outperforms APIS. But neural networks need a considerable amount 

of data to train the network before the prediction can be commenced. The method 

proposed in [249] uses hourly data on electricity prices during previous 42 days (1008 

data points) to train the network. APIS uses only 48 data points to produce the 

forecast. But the Spanish electricity time series is a long time series (no shortage of 

data exists in the field of load forecasting) and the inferior model (APIS) with a small 

amount of data cannot be considered as an advantage for this time series. 

Although the search for a best time series forecasting method continues, it is 

agreeable that no single method will outperform all others in all situations. APIS could 

be considered in such forecasting applications where data scarcity is a definite 

constraint. A typical example could be gene expression data time series from 

microarray experiments [250]; such time series usually comprises 10-15 time points 

(or even fewer). Each temporal gene expression profile is individual – no associations 

with previous experiments can be made. In other words, offline training is not possible 

simply because there are no more data available. APIS could be used for one step-

forward prediction of such a short time series, while NN and SVM – not.   

 

Fig. 3.34. APIS forecasts of prices in the electricity market of mainland Spain during the 

winter week from February 18 to February 24, 2002 
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The proposed forecasting method is based on the identification of a near-optimal 

set of corrections, the reconstruction of the algebraic model of the time series and the 

extrapolation this model into the future. The identification of corrections is performed 

using PSO algorithms. A single run may not guarantee the repeatability and 

reproducibility of results since PSO is a stochastic optimization method. It is tried to 

avoid random deflections and average 100 trials for the same data set. Such averaging 

enables to smooth random deflections and helps to achieve the reproducibility of 

results.  

3.5.8. Concluding remarks 

A method for a short-term time series algebraic forecasting with internal 

smoothing is proposed in this section. It is based on the identification of skeleton 

algebraic sequences and finds a near-optimal balance between algebraic variability 

and the smoothness of moving averages. The proposed method is especially effective 

when the time series is short and there are not sufficient data to train models based on 

neural or fuzzy networks.  

So far, the parameters of the proposed forecasting algorithm (the penalty 

proportion between the magnitude of the determinant and the sum of weighted 

corrections a and the averaging window s) based on the computational experiments 

with the artificial time series are tuned; these values of parameters were used to 

forecast real-world time series also. One could expect even better results if the 

parameters a and s would be individually tuned for every time series. 

On the other hand, it is quite probable that the forecasting accuracy of the 

proposed method can be improved by the introduction of variable lengths of base 

fragments at different locations of the forecasted time series. Such computational 

procedure is directly related to the segmentation of the time series and such adaptive 

identification of the skeleton algebraic sequences remains a definite target of the 

future research. 
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CONCLUSIONS 

1. An improved dynamic visual cryptography scheme based on near-optimal moiré 

grating and non-harmonic oscillations is proposed. The proposed optimized moiré 

grating function, for which the lowest value of the standard of the time-averaged 

image produced by harmonic oscillations is higher compared to the stepped moiré 

grating, enables higher quality of encryption. 

2. The dynamic visual cryptography implemented on a deformable moiré grating is 

proposed. The deformable dynamic visual cryptography scheme enables new 

qualitative security level: the secret image is visualized when the encoded image 

is deformed according to a harmonic law of motion, but the secret information will 

not be leaked if the cover image oscillates as a non-deformable body in any 

direction, with any amplitude, and with any waveform.  

3. A novel dynamic visual cryptography scheme based on chaotic oscillations is 

proposed and developed. The secret image is visualized only when the encoded 

image is oscillated by a time function based on random Gaussian process. The 

proposed chaotic visual cryptography scheme implemented on a stepped and a 

near-optimal moiré grating is a safer image hiding scheme with respect of 

oscillations type: the secret does not leak if the cover image is oscillated at any 

direction and at any amplitude of the harmonic or any other type periodic 

waveform oscillations. The main advantage of the proposed image hiding scheme 

is based on potential practical dynamic visual cryptography applicability for visual 

control of chaotic vibrations, because complex nonlinear systems exhibit chaotic 

vibrations even at harmonic loads.  

4. A novel level-set time series segmentation algorithm based on the concept of the 

base fragment identification in algebraic sequences is proposed. The algorithm 

detects quasi-stationary regimes of short time series. The main advantage of the 

proposed segmentation methodology is based on the skeleton algebraic sequences 

that enables not only to detect the moment of potential change in evolution of the 

process, but also classifies skeleton sequences into separate classes without any 

statistical estimator. 

5. An improved short-term time series forecasting technique based on the concept of 

the base fragment identification in algebraic sequences with internal smoothing is 

proposed. The developed algebraic predictor reach a balance between variability 

of skeleton algebraic sequences and smoothing properties of predictors based on 

the moving average method compared with algebraic predictor without internal 

smoothing with respect of RMSE and MAE metrics. The proposed predictor 

produces reliable forecasts for short time series – in situations when the available 

data is not enough for such predictors as ARIMA or nonlinear forecasting methods 

such as neural networks. 
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