

KAUNO TECHNOLOGIJOS UNIVERSITETAS

PANEVĖŽIO TECHNOLOGIJŲ IR VERSLO FAKULTETAS

Edgaras Antanas Misevičius

SU V FORMOS SANDŪRINE SIŪLE SUVIRINTŲ VAMZDŽIŲ, VEIKIAMŲ VIDINIO SLĖGIO, ĮTEMPIMŲ BŪVIO TYRIMAS

Baigiamasis magistro projektas

Vadovas Doc. dr. Dainius Vaičiulis

PANEVĖŽYS, 2015

KAUNO TECHNOLOGIJOS UNIVERSITETAS

PANEVĖŽIO TECHNOLOGIJŲ IR VERSLO FAKULTETAS technologijų katedra

TVIRTINU Katedros vedėjas Doc. dr. Arūnas Tautkus

SU V FORMOS SANDŪRINE SIŪLE SUVIRINTŲ VAMZDŽIŲ, VEIKIAMŲ VIDINIO SLĖGIO, ĮTEMPIMŲ BŪVIO TYRIMAS

Baigiamasis magistro projektas Mechanikos inžinerijos (621H30001)

> Vadovas Doc. dr. Dainius Vaičiulis 2015.06.01 Recenzentas

Projektą atliko Edgaras Antanas Misevičius 2015.06.01

KAUNO TECHNOLOGIJOS UNIVERSITETAS

Panevėžio technologijų ir verslo fakultetas

(Fakultetas)

Edgaras Antanas Misevičius

(Studento vardas, pavardė)

Mechanikos inžinerijos, 621H30001

(Studijų programos pavadinimas, kodas)

Baigiamojo projekto "Su V formos sandūrine siūle suvirintų vamzdžių veikiamo vidinio slėgio, įtempimų būvio tyrimas"

AKADEMINIO SĄŽININGUMO DEKLARACIJA

2015 m. birželio 1 d. Panevėžys

Patvirtinu, kad mano Edgaro Antano Misevičiaus baigiamasis projektas tema: su v formos sandūrine siūle suvirintų vamzdžių veikiamo vidinio slėgio, įtempimų būvio tyrimas yra parašytas visiškai savarankiškai, o visi pateikti duomenys ar tyrimų rezultatai yra teisingi ir gauti sąžiningai. Šiame darbe nei viena dalis nėra plagijuota nuo jokių spausdintinių ar internetinių šaltinių, visos kitų šaltinių tiesioginės ir netiesioginės citatos nurodytos literatūros nuorodose. Įstatymų nenumatytų piniginių sumų už šį darbą niekam nesu mokėjęs.

Aš suprantu, kad išaiškėjus nesąžiningumo faktui, man bus taikomos nuobaudos, remiantis Kauno technologijos universitete galiojančia tvarka.

TVIRTINU: KTU Panevėžio technologijų ir verslo fakulteto Technologijų katedros vedėjas

Arūnas Tautkus

2015 -.....

BAIGIAMOJO PROJEKTO UŽDUOTIS

Išduota studentui: Edgarui Antanui Misevičiui

Grupė PMM 3

1. Darbo tema:

Lietuvių kalba:	Su V formos sandūrine siūle suvirintų vamzdžių, veikiamų vidinio slėgio, įtempimų būvio tyrimas
Anglų kalba:	Investigation of the stress state in pipe with V-shaped butt weld subjected to internal pressure

Patvirtinta 2015 m. vasario mėn. 13 d. dekano potvarkiu Nr. ST17-F-13-11.

2. Darbo tikslas:

Ištirti kaip įtempimų būvio komponentės suvirintame vamzdyje su V formos siūle, veikiant vidiniam slėgiui, priklauso nuo sujungimo geometrinių ir medžiagų mechaninių parametrų.

3. Reikalavimai ir sąlygos:

Nustatyti kaip įtempimų būvio komponentės priklauso nuo siūlės kampo, vidutinio siūlės aukščio, vamzdžio vidinio skersmens bei vamzdžio ir siūlės medžiagų tamprumo modulių santykio.

4. Projekto struktūra. Turinys konkretizuojamas kartu su vadovu, atsižvelgiant į BBP pobūdį.

Literatūros apžvalga, Tiriamoji dalis, Išvados ir Literatūros sąrašas.

5. Ši užduotis yra neatskiriama bakalauro baigiamojo projekto dalis.

|--|

(data)

Užduotį gavau:	Edgaras Antanas Misevičius	2015-02-11	
	(studento vardas, pavardė, parašas)	(data)	
Vadovas:	doc. Dainius Vaičiulis	2015 m. vasaris	
	(pareigos, vardas, pavardė, parašas)	(data)	

Misevičius, E.A. Su V formos sandūrine siūle suvirintų vamzdžių veikiamų vidinio slėgio, įtempimų būvio tyrimas. Magistro baigiamasis projektas / vadovas doc. dr. Dainius Vaičiulis; Kauno technologijos universitetas, Panevėžio technologijų ir verslo fakultetas, technologijų katedra.

Panevėžys, 2015. 60 psl.

SANTRAUKA

Darbe atlikta trumpa literatūros apžvalga suvirintu vamzdžių tematika. Darbe pateikta kaip suvirintame vamzdyje su V formos siūle įtempimu būvio komponentės (žiediniai, ašiniai, radialiniai, tangentiniai įtempimai ir įtempimų intensyvumas) priklauso nuo suvirinimo siūlės kampo, mechaninio nevienalytiškumo, suvirinimo siūlės aukščio ir išorinio vamzdžio spindulio. Nustatyta kad didžiausią įtaką įtempimo būvio komponentėms turi mechaninis nevienalytiškumas.

Reikšminiai žodžiai: vamzdis, V formos siūlė, vidinis slėgis, būvio komponentės.

Misevičius, E.A. Investigation of the stress state in pipe with V-shaped butt weld subjected to internal pressure. Master's final project / Supervisor assoc. prof. Dainius Vaičiulis; Kaunas university of technology, Panevėžys faculty of technology and business, department of technology.

Panevėžys 2015. 60 psl.

SUMMARY

Master final project consist of literature welded pipes theme synopsis. Work presented as welded pipe with a V – shaped butt stress state components (axial, radial, tangent, circumference stresses and stress intensity) depends on the angel of butt, mechanical heterogeneity, weld height and radius of tube. Was found that mechanical heterogeneity have greatest impact on state of stress components

Keywords : pipe, V-shape ,weld, iternal pressure, stress state

TURINYS

ĮVADAS	9
1. LITERATŪROS APŽVALGA	10
2. TYRIMAMS NAUDOTAS MODELIS	13
3. ŽIEDINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI	16
3.1. Žiedinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties	
vidiniu vamzdžio spinduliu	16
3.2. Žiedinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę ties	
siūlės viduriu	19
3.3. Žiedinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės medžiagoje	20
3.4. Žiedinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje	
medžiagoje	22
3.5. Žiedinių įtempimų pasiskirstymas išilgai sienelės storio pagrindinio metalo	
medžiagoje ties bandomo modelio pabaiga	24
3.6. Išvados	25
4. AŠINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI	26
4.1. Ašinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties	
vidiniu vamzdžio spinduliu	26
4.2. Ašinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę ties	
siūlės viduriu	29
4.3. Ašinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės medžiagoje	31
4.4. Ašinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje	
medžiagoje	33
4.5. Išvados	34
5. RADIALINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI	35
5.1. Radialinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties	
vidiniu vamzdžio spinduli	35
5.2. Radialinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę	
ties siūlės viduriu	37
5.3. Radialinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės	
medžiagoje	38
5.4. Radialinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje	
medžiagoje	40

5.5. Išvados	41
6. TANGENTINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI	42
6.1. Tangentinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties	
vidiniu vamzdžio spinduliu	42
6.2. Tangentinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę	
ties siūlės viduriu	45
6.3. Tangentinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės	
medžiagoje	47
6.4. Tangentinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje	
medžiagoje	49
6.5. Išvados	50
7. ĮTEMPIMŲ INTENSYVUMO TYRIMO REZULTATAI	51
7.1. Įtempimų intensyvumo pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties	
vidiniu vamzdžio spinduliu	51
7.2. Įtempimų intensyvumo pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę	
ties siūlės viduriu	54
7.3. Įtempimų intensyvumo pasiskirstymas išilgai kontakto plokštumos siūlės	
medžiagoje	55
7.4. Įtempimų intensyvumo pasiskirstymas išilgai kontakto plokštumos pagrindinėje	
medžiagoje	57
7.5. Išvados	58
IŠVADOS	59
LITERATŪRA	60

ĮVADAS

Statant arba eksploatuojant vamzdyną (dujotiekį, naftotiekį ar vandentiekį) dažniausiai nesandarumai atsiranda dėl montavimo broko ir netinkamo eksploatavimo (staigiai uždarant čiaupus susidaro hidrauliniai smūgiai ir kt.) [1]. Todėl projektuojant vamzdynus būtina įvertinti perkrovas atsirandančias eksploatavimo metu. Tam reikia mokėti apskaičiuoti įtempimų būvį, stiprumą ir ilgaamžiškumą bet kurioje suvirinto vamzdžio vietoje.

Daugumoje atvejų suvirintų vamzdžiu įtempimų būvis, stiprumas ir ilgaamžiškumas tyrinėjamas taikant baigtinių elementų metodą (BEM) [2, 3, 4]. Technologiniais sumetimais praktikoje dažniausiai naudojamos U, X, V ir kitos sudėtingesnės formos siūlės[5].

Darbo tikslas: naudojant BEM (su "SolidWorks Simulation") ištirti, kaip įtempimų būvio komponentės (radialiniai, žiediniai, ašiniai, tangentiniai įtempimai ir įtempimų intensyvumas) suvirintame sujungime, veikiamame vidinio slėgio, priklauso nuo siūlės kampo, mechaninio nevienalytiškumo, siūlės aukščio ir išorinio spindulio.

Tyrimų metodai: literatūros analizė, baigtinių elementų metodas (BEM), lyginamoji analizė.

Darbo aprobavimas ir publikacijos. Darbo tema buvo išdėstyta ir aptarta pranešime:

 SMD konferencija "Technologijų ir verslo aktualijos – 2015". Vykusi Panevėžyje 2015 balandžio 24d. tema "Error! Reference source not found.". Už pranešimą buvo suteiktas pažymėjimas.

Darbo apimtis ir struktūra. Baigiamąjį magistro projektą sudaro sąžiningumo deklaracija, darbo užduotis, santrauka lietuviu ir anglų kalbomis, įvadas, šeši skyriai, bendrosios išvados, literatūros sąrašas. Darbo apimtis 60 p.

1. LITERATŪROS APŽVALGA

Straipsnyje [2] autorius nagrinėja, suvirinto vamzdyno įtempimų ir deformacijų būvio komponentų priklausomybę nuo slėgio, santykinio sienelės storio ir medžiagų mechaninių savybių nevienalytiškumą, skaičiuojamoji schema pateikta 1 pav. Rengiant straipsnį autorius rėmėsi prielaidomis:

- liekamieji įtempimai būtu apdorojami terminio apdirbimo metu;
- medžiaga yra nespūdi deformuojant tiek tampriai tiek tampriai-plastiškai;
- abiejų medžiagų tamprumo modulis yra lygus.

Nustatyta, kad didėjant tampriai plastiškai deformuotai zonai kontakto plokštumoje, slėgis ir momentinis mechaninis nevienalytiškumas didėja.

Nustatytos labiausiai apkrautos zonos vamzdžio vidiniame paviršiuje:

- kietame metale kontakto plokštumoje;
- minkštame tarpsluoksnio centre.

Analitiškai apskaičiuoti [2] darbo rezultatai t.y. įtempimai ir deformacijos suvirinto vamzdžio atskirose zonose gerai sutampa su jų vertėmis, apskaičiuotomis BEM.

1 pav. Nevienalyčio suvirinto vamzdžio veikiamo vidinio slėgio, skaičiuojamoji schema [2]

Darbe [3] autorius pateikia dvisluoksnio vamzdžio, veikiamo tiek vidinio tiek išorinio slėgio, įtempimų deformacijų būvio nustatymo metodiką esant tampriam deformavimui.

Skaičiavimo schema patiekta 2 pav. Šiame darbe nustatant įtempimo ir deformacijų būvį buvo padarytos sekančios prielaidos:

- Vamzdžiai suleisti be įvaržos (nominalinis išorinis vidinio vamzdžio skersmuo yra lygus nominaliniam vidiniam išoriniam vamzdžio skersmeniui, todėl kai neveikia išorinis arba vidinis slėgis kontaktinis slėgis tarp vamzdžių lygus nuliui).
- 2. Abiejų vamzdžių medžiagos yra izotropinės ir tiesiškai tamprios.
- 3. Vamzdį veikia tik vidinis arba išorinis slėgis, t.y. ašinių, skersinių, lenkimo ir sukimo apkrovų nėra.
- 4. Veikiant išoriniam slėgui dvi sluoksnis vamzdis nepraras stabilumo, t.y. nebus nesuklups.

Darbe [3] pateikta metodika buvo patikrinta BEM. Analitinio sprendinio nesutapimas su BEM rezultatais buvo :

- įtempimų būvio komponentėms iki 0,3 %;
- deformacijos būvio komponentėms iki 0,1 %.

Šiame darbe [3] taip pat gauta, kad labiausiai apkrauta zona kiekviename vamzdžio sluoksnyje yra sluoksnio vidinis paviršius, o įtempimų intensyvumas praktiškai nepriklauso nuo Puasono koeficiento kai vamzdžio medžiagų tamprumo modulių santykis yra ribose nuo 0,1 iki 10.

2 pav. Dvi sluoksnio vamzdžio veikiamo vidinio ir išorinio slėgio įtempimų deformacijų būvio nustatymo schema [3]

Darbe [5] nagrinėjami žiedinio skerspjūvio suvirintojo sujungimo su V formos siūle įtemimų ir deformacijų nagrinėjimas esant tampriai plastiniam tempimui gniuždymui. Autorius tiria sujungimus su supaprastintos ir su realios formos siūlėmis (naudojant minkštą ir kietą siūlę).

Naudodamas BEM autorius [5] nustato:

 suvirintojo sujungimo su supaprastinta V formos siūlė įtempimai ir deformacijų priklausomybė nuo sujungimo tiriamo modelio ilgio ir atskirų sujungimo zonų medžiagų mechaninių charakteristikų yra tokios pat kaip ir sujungime su plokščia siūle.

- ties kontakto plokštuma įtempimai ir deformacijos išilgai žiedinio skerspjūvio suvirintojo sujungimo sienelės storio pasiskirsto nesimetriškai ir šis nesimetriškumas didėja didėjant siūlės kampui.
- suvirintame sujungime su minkšta supaprastinta V formos siūle minkšto metalo perkrovimo zona yra siūlės siaurojo krašto viduryje, o kietojo metalo kontakto plokštumoje ties siauruoju siūlės kraštu. Esant standžiam apkrovimui mažėjant vidutiniam santykiniam nevienalytiškumui bei siūlės kampui perkrovimo zonose deformacijos ir įtempimų būvio erdviškumas nustatytame taške didėja. Kai santykinis siaurojo krašto siūlės aukštis yra mažas, maksimalios deformacijos šioje zonoje gali išaugti iki ribinių reikšmių. Todėl eksploatuoti sujungimus su minkšta V formos siūle, kai mechaninis nevienalytiškumas su yra mažesnis nei 0,6 ir siūlės kampas didesnis nei 48 laipsniai, nerekomenduojama.

2. TYRIMAMS NAUDOTAS MODELIS

Suvirinto sujungimo skaičiuojamoji schema pateikta 3 pav.

Apkrova – pastovus vidinis slėgis.

Nagrinėjamo modelio bendras ilgis L buvo priimtas :

$$L = 6 r ; (1)$$

čia: r – vamzdžio išorinis spindulys

3 pav. Suvirinto vamzdžio su V formos siūle skaičiavimo schema: s – vamzdžio sienelės storis, r
– vamzdžio išorinis spindulys; r_a – vamzdžio vidinis spindulys L – vamzdžio ilgis; h – vidutinis siūlės aukštis; h₀ – kontakto plokštumoje formuojamos zonos aukštis; α – siūlės kampas, E_P – pagrindinė medžiaga; E_S – siūlės medžiaga

Naudojamas siūlės aukštis buvo priimtas

$$h = 1, 2 s;$$
 (2)

čia: s – vamzdžio sienelės storis.

"SolidWorks Simulation" programa dviejų medžiagų kontakte išveda ne kiekvienos medžiagos įtempimus atskirai o jų vidurkį. Todėl norint nustatyti kokie įtempimai kyla skirtingose medžiagose kontakto plokštumos zonoje modelyje buvo sukurtos nedidelės zonos kiekvienai medžiagai ties kontakto plokštuma. Šių zonų aukštis buvo priimtas (žr. 1 pav.):

$$h_0 = 0.015s$$
. (3)

Sujungimo mechaninis nevienalytiškumas įvertinamas nevienalytiškumo koeficientu

$$\gamma = \frac{E_P}{E_S};\tag{4}$$

čia: E_P – pagrindinės medžiagos tamprumo modulis; E_S – siūlės medžiagos tamprumo modulis.

Tyrimams pagrindinio metalo tamprumo modulis buvo priimtas 200 GPa. Siūlės metalo tamprumo modulio vertės pateiktos 1 lent. Tiek pagrindinio metalo, tiek siūlės metalų Puasono koeficientas buvo priimtas 0,29.

1 lentelė

Siūlės metalų tamprumo moduliai ir sujungimo mechaninis nevienalytiškumas

E ^S , GPa	γ
400,0	0,5
300,0	0,67
100,0	2,00
66,7	3,00

Nagrinėjamo modelio naudojami geometriniai parametrai pateikiami 2 lentelėje.

2 lentelė

Simbolis	Vertė pagal nutylėjimą	Kitimas					
		1	2	3	4		
Geometriniai parametrai							
S	3,20 mm						
L	285,6 mm						
r	50,80 mm	30,15 mm	38,5 mm	50,8 mm	57,15 mm		
h	1,92 mm	0,6 <i>s</i>	0,8s	1 <i>s</i>	1,2 <i>s</i>		
h_0	0,048 mm						
α	45°	0°	15°	30°	45°		
Sujungimo mechaninis nevienalytiškumas							
γ	2	0,5	0,67	2	3		

Nagrinėjamo modelio parametrai ir jų kitimo ribos

Tyrimuose naudotų parametrų vertės (jei parametras nebuvo keičiamas) pateiktos 2 lentelės stulpelyje "Vertės pagal nutylėjimą".

Ketvirtajame paveikslėlyje pavaizduoti nagrinėjamo modelio pjūviai, kuriuose buvo tirtas įtempimų būvis:

- 1-1 pjūvis siūlės ir pagrindiniame metaluose ties vidine vamzdžio sienele;
- 2-2 pjūvis išilgai sienelės storio siūlės viduryje;
- 3-3 pjūvis išilgai kontakto plokštumos siūlės metale;

- 4-4 pjūvis išilgai kontakto plokštumos pagrindiniame metale;
- 5-5 pjūvis išilgai sienelės storio pagrindinio metalo medžiagoje bandomo modelio pabaigoje.

4 pav. Nagrinėjamo modelio pjūviai 5 pav. Darbe n

5 pav. Darbe naudotos koordinačių sistemos rz ir rz'

Norint aiškiau vizualizuoti gautus rezultatus sudaroma papildoma koordinačių sistema, kuri ir bus naudojama lyginant įtempimų būvio komponentes keičiant r (3 pav. tai koordinačių sistema r'z').

Dydis r'apskaičiuojamas pagal formulę:

$$r' = r - r_a \,. \tag{5}$$

Darbe naudojami santykiniai vienetai:

$$\sigma'_{r} = \frac{\sigma_{r}}{p}; \quad \sigma'_{t} = \frac{\sigma_{t}}{p}; \quad \sigma'_{z} = \frac{\sigma_{z}}{p}; \quad \tau'_{rt} = \frac{\tau_{rt}}{p}; \quad \sigma'_{i} = \frac{\sigma_{i}}{p}; \quad (6)$$

čia: σ_r – radialiniai įtempimai; σ_t – žiediniai įtempimai; σ_z – ašiniai įtempimai; τ_{rt} – tangentiniai įtempimai; σ_i – įtempimų intensyvumas; p – vidinis slėgis vamzdyje.

Naudojant "SolidWorks Simulatio" programą suvirinto sujungimo modelyje naudoti trikampiai ašiai simetriniai izoparametriniai baigtiniai elementai. Jų kraštinių dydis kontakto plokštumos zonoje buvo apie 0,05 mm (t.y. apie 64 elementų išilgai kontakto linijos), o zonose nuo kontakto plokštumos nutolusiuose daugiau ne vamzdžio sienelės storis elementų kraštinių ilgiai buvo apie 0,8 mm (t.y. apie 8 elementus per sienelės storį).

3. ŽIEDINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI

3.1. Žiedinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties vidiniu vamzdžio spinduliu

Kaip žiedinių įtempimų σ_t pasiskirstymas išilgai 1-1 pjūvio (ties vidiniu žiedo spinduliu, išilgai vamzdžio ašies, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 6 pav. Gauta, kad σ_t vertės išilgai 1-1 pjūvio beveik nepriklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_t vertės pagrindinio metalo medžiagoje padidėjo 1,29 kartus, o siūlės medžiagoje padidėjo 1,07 karto. Didžiausios σ_t vertės pagrindinėje ir siūlės medžiagose gaunamos ties kontakto plokštuma.

6 pav. Žiedininių įtempimų σ_t priklausomybė nuo siūlės kampo α 1-1 pjūvyje: a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Kaip žiedinių įtempimų σ_t pasiskirstymas išilgai 1-1 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 7 pav. Gauta, kad σ_t vertės išilgai 1-1 pjūvio, kai siūlės metalas

standesnis už pagrindinį metalą ($\gamma < 1$) didinant mechaninį nevienalytiškumą didžiausios σ_t vertės pagrindinio metalo medžiagoje padidėjo 1,05 kartus, o siūlės medžiagoje sumažėjo 1,25 kartus. Kai pagrindinis metalas yra standesnis ($\gamma > 1$) ir mechaninis nevienalytiškumas didėja didžiausios σ_t vertės pagrindiniame metale padidėjo 1,03 karto, o siūlės medžiagoje sumažėjo 1,67 karto.

7 pav. Žiedinių įtempimų σ_t priklausomybė nuo mechaninio nevienalytiškumo γ 1-1 pjūvyje: a – siūlė yra standesnė $\gamma < 1$; b – pagrindinis metalas yra standesnis $\gamma > 1$

Žiedinių įtempimų σ_t priklausomybė nuo vidutinio siūlės aukščio h 2-2 pjūvyje pavaizduota 8 pav. Gauta, kad pakeitus siūlės aukštį h nuo 1,92 mm iki 3,84 mm didžiausios σ_t vertės pagrindinėje ir siūlės metalų medžiagose padidėjo apie 1,1 karto.

8 pav. Žiedinių įtempimų σ_t priklausomybė nuo siūlės aukščio h 1-1 pjūvyje: a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

9 pav. Žiedinių įtempimų σ_t priklausomybė nuo vamzdžio spindulio r

Žiedinių įtempimų priklausomybė nuo vamzdžio išorinio spindulio r pavaizduota 9 pav. Gauta, kad išilgai 1-1 pjūvio kai išorinis modelio spindulys r didėja nuo 30,15 mm iki 57,15 mm tuo tarpu didžiausios σ_t vertės didėja:

• siūlės metale 1,36 karto;

• pagrindiniame metale 1,88 karto.

3.2. Žiedinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę ties siūlės viduriu

Kaip žiedinių įtempimų σ_t pasiskirstymas išilgai 2-2 pjūvio (einančiame per vamzdžio sienelę ties siūlės viduriu, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 10 pav. Gauta, kad σ_t vertės išilgai 2-2 pjūvio beveik nepriklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_t vertės ties siūlės viduriu sumažėjo 1,03 karto.

10 pav. Žiedinių įtempimų σ_t priklausomybė nuo siūlės kampo α

11 pav. Žiedinių įtempimų σ_t priklausomybė nuo mechaninio nevienalytiškumo γ

Žiedinių įtempimų σ_t priklausomybė nuo mechaninio nevienalytiškumo γ pjūvyje 2-2 pateikta 11 pav. Gauti rezultatai parodo, kad mechaninį nevienalytiškumą didinant nuo 0,5 iki 3 žiedinių įtempimų didžiosios vertės mažėja, padidinus γ 6 kartus σ_t sumažėjo 5,89 karto.

Kaip žiedinių įtempimų σ_t pasiskirstymas išilgai 2-2 pjūvio (einančiame per vamzdžio sienelę ties siūlės viduriu, žr. 4 pav.) priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 12 pav. Gauta, kad pakeitus siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm didžiausios σ_t vertės padidėjo 1,16 karto.

12 pav. Žiedinių įtempimų σ_t priklausomybė nuo vidutinio siūlės aukščio h

Žiediniai įtempimai σ_t 2-2 pjūvyje keičiantis išoriniam bandomo modelio spinduliui r pavaizduoti 13 pav. kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios žiedinių įtempimų vertės padidėjo 1,94 karto.

13 pav. Žiedinių įtempimų σ_t priklausomybė nuo išorinio vamzdžio spindulio r

3.3. Žiedinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės medžiagoje

Kaip žiedinių įtempimų σ_t pasiskirstymas išilgai 3-3 pjūvio (siūlės medžiagoje einančiame per kontakto plokštumą, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 14 pav. Gauta, kad σ_t vertės išilgai 3-3 pjūvio beveik nepriklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_t vertės ties kontakto plokštuma sumažėjo 1,02 karto.

14 pav. Žiedinių įtempimų σ_t priklausomybė nuo siūlės kampo α

Kaip žiediniai įtempimai σ_t 3-3 pjūvyje priklauso nuo mechaninio nevienalytiškumo γ pateikta 15 pav. Gauti rezultatai parodo, kad kontakto plokštumoje siūlės medžiagoje padidinus mechaninį nevienalytiškumą nuo 0,5 iki 3 didžiosios žiedinių įtempimų σ_t reikšmės sumažėjo 4,52 karto.

15 pav. Žiedinių įtempimų σ_t priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip žiedinių įtempimų σ_t pasiskirstymas išilgai 3-3 pjūvio priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 16 pav. Gauta, kad pakeitus siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm didžiausios σ_t vertės padidėjo 1,12 karto.

16 pav. Žiedinių įtempimų σ_t priklausomybė nuo vidutinio siūlės aukščio h

Žiediniai įtempimai σ_t 3-3 pjūvyje keičiantis išoriniam bandomo modelio spinduliui r pavaizduoti 17 pav. kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios žiedinių įtempimų vertės padidėjo 1,92 karto.

17 pav. Žiedinių įtempimų σ_t priklausomybė nuo išorinio vamzdžio spindulio r

3.4. Žiedinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje medžiagoje

Kaip žiediniai įtempimai σ_t 4-4 pjūvyje (išilgai kontakto plokštumos pagrindinėje medžiagoje) priklauso nuo siūlės kampo α pavaizduota 18 pav. Gauti rezultatai parodo, kad keičiant siūlės kampą žiediniai įtempimai kinta nežymiai, padidinus α nuo 0° iki 45° didžiosios σ_t vertės sumažėjo 1,01 karto.

18 pav. Žiedinių įtempimų σ_t priklausomybė nuo siūlės kampo α

Žiedinių įtempimų σ_t priklausomybė nuo mechaninio nevienalytiškumo γ pjūvyje 4-4 pateikta 19 pav. Gauti rezultatai parodo, kad mechaninį nevienalytiškumą didinant nuo 0,5 iki 3 žiedinių įtempimų didžiosios vertės didėja, padidinus γ 6 kartus, σ_t padidėjo 1,27 karto.

19 pav. Žiedinių įtempimų σ_t priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip žiedinių įtempimų σ_t pasiskirstymas išilgai 4-4 pjūvio priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 20 pav. Gauta, kad padidinus vidutinį siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm didžiausios σ_t vertės padidėjo 1,1 karto.

20 pav. Žiedinių įtempimų σ_t priklausomybė nuo vidutinio siūlės aukščio h

Žiediniai įtempimai σ_t 4-4 pjūvyje keičiantis išoriniam bandomo modelio spinduliui r pavaizduoti 21 pav. kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios žiedinių įtempimų vertės padidėjo 1,9 karto.

21 pav. Žiedinių įtempimų σ_t priklausomybė nuo išorinio vamzdžio spindulio r

3.5. Žiedinių įtempimų pasiskirstymas išilgai sienelės storio pagrindinio metalo medžiagoje ties bandomo modelio pabaiga

Kaip žiediniai įtempimai σ_t 5-5 pjūvyje (išilgai sienelės storio pagrindinio metalo medžiagoje ties bandomo modelio pabaiga) priklauso nuo siūlės kampo α pavaizduota 22 pav. Gauti rezultatai parodo, kad keičiant siūlės kampą žiediniai įtempimai nekinta ir išlieka tie patys.

22 pav. Žiedinių įtempimų σ_t 5-5 pjūvyje priklausomybė nuo siūlės kampo α

Kaip žiediniai įtempimų σ_t pasiskirstymas išilgai 5-5 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 23 pav. Gauta, kad σ_t vertės išilgai 5-5 pjūvio nepriklauso nuo γ . Didinant mechaninį nevienalytiškumą bandomo modelio pabaigoje įtempimai gaunami tokie patys.

23 pav. Žiedinių įtempimų σ_t 5-5 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip žiediniai įtempimai σ_t 5-5 pjūvyje priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 24 pav. padidinus siūlės aukštį 2 kartus σ_t reikšmės išliko tos pačios. Iš to galima teigti kad siūlės aukštis nuo 0,6*s* iki 1,2*s* įtakos susidariusiems žiediniams įtempimams 5-5 pjūvyje nesudaro.

24 pav. Žiedinių įtempimų σ_t 5-5 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h

Žiediniai įtempimai σ_t 5-5 pjūvyje, keičiantis išoriniam bandomo modelio spinduliui r pavaizduoti 25 pav. kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios žiedinių įtempimų vertės padidėjo 1,96 karto.

25 pav. Žiedinių įtempimų σ_t 5-5 pjūvyje priklausomybė nuo išorinio vamzdžio spindulio r

3.6. Išvados

- 1. Gauti rezultatai parodo, kad 5-5 pjūvyje žiediniai įtempimai nepriklauso nuo α , γ ir *h*. Todėl šiame darbe įtempimų būvis 5-5 pjūvyje daugiau nebus tiriamas.
 - Gavus didžiausias žiedinių įtempimų vertes nustatyta, kad didžiausia įtaką žiedinių įtempimų vertėms turi mechaninis nevienalytiškumas γ.
 - Žiedinių įtempimų priklausomybė nuo siūlės kampo ir aukščio buvo nežymi: verčių kitimas neviršijo 1,29 karto.

4. AŠINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI

4.1. Ašinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties vidiniu vamzdžio spinduliu

Kaip ašinių įtempimų σ_z pasiskirstymas išilgai 1-1 pjūvio (ties vidiniu žiedo spinduliu, išilgai vamzdžio ašies, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 26 pav.

26 pav. Ašinių įtempimų σ_z 1-1 pjūvyje priklausomybė nuo siūlės kampo α : a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Gauta, kad σ_z vertės išilgai 1-1 pjūvio beveik nepriklauso nuo α . Kampą α pakeitus nuo 0° iki 45° didžiausios σ_z vertės pagrindinio metalo medžiagoje nepasikeitė, o siūlės metalo medžiagoje

– sumažėjo 1,28 karto. Didžiausios σ_z vertės pagrindinio ir siūlės metalų medžiagose gaunamos ties kontakto plokštuma.

Kaip ašiniai įtempimai σ_z pasiskirsto 1-1 pjūvyje prie skirtingų mechaninio nevienalytiškumo reikšmių pavaizduota 27 pav. Kai pagrindinis metalas yra standesnis už siūlės metalą ($\gamma > 1$), tai pagrindinio metalo medžiagoje σ_z yra teigiami, o siūlės medžiagoje – neigiami. Kai $\gamma < 1$ pagrindinio metalo medžiagoje σ_z yra neigiami, o siūlės medžiagoje – teigiami. Kai $\gamma < 1$, o mechaninį nevienalytiškumą padidinus 1,34 karto, didžiausios ašinių įtempimų vertės sumažėjo 1,78 karto, o kai $\gamma > 1$ ir mechaninį nevienalytiškumą padidinus 1,5 karto, σ_z padidėjo 1,5 karto.

27 pav. Ašinių įtempimų σ_z 1-1 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ : a – siūlė yra standesnė $\gamma < 1$; b – pagrindinis metalas yra standesnis $\gamma > 1$

Kaip ašiniai įtempimai σ_z 1-1 pjūvyje priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 28 pav. Siūlės aukštis keičiamas pagal 2 lentelėje nurodomas reikšmes. Norint aiškiau matyti tempimų pasiskirstymą kontakto plokštumos zonoje gautus rezultatus ašinių įtempimų kreivės išskiriamos į du grafikus: 28a pav. – pavaizduota kaip σ_z pasiskirsto per visą pjūvio 1-1 ilgį; 28b pav. – pavaizduota kaip σ_z pasiskirsto pagrindinio ir siūlės metalų medžiagose kontakto plokštumoje. Padidinus *h* nuo 0,6 *s* iki 1,2 *s* didžiausios ašinių įtempimų vertės pagrindinio metalo medžiagoje sumažėjo 2,14 karto, o siūlės metalo medžiagoje sumažėjo 1,27 karto.

28 pav. Ašinių įtempimų σ_z 1-1 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h: a - išilgai viso pjūvio; b - pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Ašinių įtempimų σ_z pasiskirstymas 1-1 pjūvyje esant skirtingiems vamzdžio išoriniams spinduliams *r* pavaizduota 29 pav. Ašiniai įtempimai susidaro tik kontakto plokštumos zonoje dėl medžiagų (pagrindinio ir siūlės metalų) tarpusavio sąveikos. Kai *r* padindėjo nuo 30,15 mm iki 57,15 mm didžiausios žiedinių įtempimų vertės padidėjo 1,4 karto.

b

29 pav. Ašinių įtempimų σ_z 1-1 pjūvyje priklausomybė nuo išorinio vamzdžio spindulio r: a - išilgai viso pjūvio; b - pagrindinio metalo ir siūlės kontakto plokštumos zonoje

4.2. Ašinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę ties siūlės viduriu

Kaip ašinių įtempimų σ_z pasiskirstymas išilgai 2-2 pjūvio (einančiame per vamzdžio sienelę ties siūlės viduriu, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 30 pav. Gauta, kad σ_z vertės išilgai 2-2 pjūvio beveik nepriklauso nuo α : kampą α didinant nuo 0° iki 30° didžiausios σ_t vertės ties siūlės viduriu nesikeičia, tačiau kai kampas α yra lygus 45° ašiniai įtempimai sienelės pradžioje (ties vidiniu vamzdžio skersmeniu) sumažėjo 1,27 karto.

Kaip ašinių įtempimų σ_z pasiskirstymas išilgai 2-2 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 31 pav. Gauta, kad σ_z vertės išilgai 2-2 pjūvio, kai siūlės metalas standesnis už pagrindinį metalą ($\gamma < 1$), didinant mechaninį nevienalytiškumą didžiausios σ_z vertės sumažėjo 1,72 karto. Kai pagrindinis metalas yra standesnis ($\gamma > 1$) ir mechaniniam nevienalytiškumui didėjant didžiausios σ_z vertės padidėjo 1,17 karto.

31 pav. Ašinių įtempimų σ_z 2-2 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip ašinių įtempimų σ_z pasiskirstymas išilgai 2-2 pjūvio (einančiame per vamzdžio sienelę ties siūlės viduriu, žr. 4 pav.) priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 32 pav. Gauta, kad pakeitus siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm didžiausios σ_z vertės padidėjo 1,83 karto.

32 pav. Ašinių įtempimų σ_z 2-2 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h

Ašinių įtempimų σ_z kitimas 2-2 pjūvyje, keičiantis išoriniam bandomo modelio spinduliui r, pavaizduotas 33 pav. Kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios ašinių įtempimų vertės padidėjo 1,58 karto.

33 pav. Ašinių įtempimų σ_z 2-2 pjūvyje priklausomybė nuo išorinio vamzdžio spindulio r

4.3. Ašinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės medžiagoje

Kaip ašinių įtempimų σ_z pasiskirstymas išilgai 3-3 pjūvio (siūlės medžiagoje einančiame per kontakto plokštumą, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 34 pav. Gauta, kad σ_z vertės išilgai 3-3 pjūvio priklauso nuo α taip: kampą α didinant nuo 0° iki 45° didžiausios σ_z vertės ties kontakto plokštuma sumažėjo 2 kartus.

34 pav. Ašinių įtempimų σ_z 3-3 pjūvyje priklausomybė nuo keičiamo siūlės kampo α

Kaip ašiniai įtempimai σ_z 3-3 pjūvyje priklauso nuo mechaninio nevienalytiškumo γ pateikta 35 pav. Gauti rezultatai parodo, kad kontakto plokštumoje siūlės medžiagoje padidinus mechaninį nevienalytiškumą nuo 0,5 iki 3 didžiosios ašinių įtempimų σ_z reikšmės sumažėjo 3,56 karto.

Kaip ašinių įtempimų σ_z pasiskirstymas išilgai 3-3 pjūvio priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 36 pav. Gauta, kad padidinus siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm didžiausios σ_z vertės padidėjo 1,14 karto, tai yra beveik nepriklauso nuo vidutinio siūlės aukščio.

36 pav. Ašinių įtempimų σ_z 3-3 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h

Ašinių įtempimų σ_z kitimas 3-3 pjūvyje, keičiantis išoriniam bandomo modelio spinduliui r, pavaizduotas 37 pav. Kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios ašinių įtempimų vertės padidėjo 2,25 karto.

37 pav. Ašinių įtempimų σ_z 3-3 pjūvyje priklausomybė nuo išorinio vamzdžio spindulio r

4.4. Ašinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje medžiagoje

Kaip ašiniai įtempimai σ_z 4-4 pjūvyje (išilgai kontakto plokštumos pagrindinėje medžiagoje) priklauso nuo siūlės kampo α pavaizduota 38 pav. Padidinus siūlės kampą nuo 0° iki 45° didžiosios σ_z vertės sumažėja 2 kartus.

38 pav. Ašinių įtempimų σ_z 4-4 pjūvyje priklausomybė nuo keičiamo siūlės kampo α

Kaip ašiniai įtempimai σ_z 4-4 pjūvyje priklauso nuo mechaninio nevienalytiškumo γ pateikta 39 pav. Gauti rezultatai parodo, kad mechaninį nevienalytiškumą didinant nuo 0,5 iki 0,67 (kai $\gamma < 1$) didžiosios σ_z vertės didėja 1,61 karto. O kai mechaninis nevienalytiškumas didinamas nuo 2 iki 3 ir ($\gamma > 1$) didžiosios ašinių įtempimų vertės išliko tokios pačios, tačiau mažiausios vertės sumažėjo 1,45 karto.

39 pav. Ašinių įtempimų σ_z 4-4 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip ašinių įtempimų σ_z pasiskirstymas išilgai 4-4 pjūvio priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 40 pav. Gauta, kad padidinus vidutinį siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm didžiausios σ_z vertės padidėjo 1,13 karto.

Ašiniai įtempimai σ_z 4-4 pjūvyje keičiantis išoriniam bandomo modelio spinduliui r pavaizduoti 41 pav. kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios ašinių įtempimų vertės padidėjo 2,25 karto.

41 pav. Ašinių įtempimų σ_z priklausomybė nuo išorinio vamzdžio spindulio r

4.5. Išvados

- 1. Nagrinėjant ašinių įtempimų priklausomybę nuo keičiamų parametrų buvo nustatyta, kad vidinėje sienelėje išilgai *z* ašies ašiniai įtempimai susidaro tik kontakto plokštumos zonoje.
- Gavus didžiausias ašinių įtempimų vertes nustatyta, kad didžiausia įtaką ašinių įtempimų vertėms turi mechaninis nevienalytiškumas y. Kontakto plokštumoje siūlės metale padidinus mechaninį nevienalytiškumą nuo 0,5 iki 3 didžiosios ašinių įtempimų reikšmės sumažėjo 3,56 karto.
- 3. Gavus ašinių įtempimų rezultatus nustatyta, kad didesni σ_z įtempimai susiformuoja ties išoriniu bandomo modelio spinduliu ir mažėja išilgai bandomo modelio sienelės atžvilgiu.
 - Ašinių įtempimų priklausomybė nuo siūlės kampo, vidutinio siūlės aukščio ir išorinio vamzdžio spindulio susidarė mažesnė nei mechaninio nevienalytiškumo, verčių kitimas neviršijo 2,25 karto.

5. RADIALINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI

5.1. Radialinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties vidiniu vamzdžio spinduli

Kaip radialinių įtempimų σ_r pasiskirstymas išilgai 1-1 pjūvio (ties vidiniu žiedo spinduliu, išilgai vamzdžio ašies, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 42 pav. Gauta, kad σ_r vertės išilgai 1-1 pjūvio nepriklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_r vertės pagrindinėje ir siūlės medžiagose gaunamos tos pačios ($\sigma'_r = -1$).

42 pav. Radialinių įtempimų σ_r 1-1 pjūvyje priklausomybė nuo siūlės kampo α

Radialiniai įtempimai σ_r 1-1 pjūvyje priklauso nuo mechaninio nevienalytiškumo γ žr. 43 pav. Gauti rezultatai parodo, kad kai mechaninis nevienalytiškumas didėja nuo 0,5 iki 2 radialiniai įtempimai yra lygus ($\sigma'_r = -1$) (žr. 43a pav.). Kai mechaninis nevienalytiškumas ($\gamma = 3$) pagrindinio ir siūlės metalų kontakto plokštumoje susidaro įtempimai kurie svyruoja nuo -0,9 iki -1,1 (žr. 43b pav.).

43 pav. Radialinių įtempimų σ_r 1-1 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ : a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Radialinių įtempimų σ_r priklausomybė nuo vidutinio siūlės aukščio h 1-1 pjūvyje pavaizduota 44 pav. Gauta, kad pakeitus siūlės aukštį h nuo 1,92 mm iki 3,84 mm didžiausios σ_r vertės pagrindinėje ir siūlės metalų medžiagose nepasikeitė ir yra lygios ($\sigma_r = -1$).

44 pav. Radialinių įtempimų σ_r 1-1 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h

Radialinių įtempimų σ_r priklausomybė nuo išorinio vamzdžio spindulio r pavaizduota 45 pav. Gauta, kad padidinus išorinį vamzdžio spindulį h nuo 30,15 mm iki 57,15 mm didžiausios σ_r vertės pagrindinėje ir siūlės medžiagose nepasikeitė ir yra lygios ($\sigma'_r = -1$).

45 pav. Radialiniai įtempimų σ_r 1-1 pjūvyje priklausomybė nuo bandomo modelio spindulio r

5.2. Radialinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę ties siūlės viduriu

Kaip radialinių įtempimų σ_r pasiskirstymas išilgai 2-2 pjūvio (einančiame per vamzdžio sienelę ties siūlės viduriu, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 46 pav. Gauta, kad σ_r vertės išilgai 2-2 pjūvio beveik nepriklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_r vertės ties siūlės viduriu išliko tos pačios.

46 pav. Radialinių įtempimų σ_r 2-2 pjūvyje priklausomybė nuo siūlės kampo α

47 pav. Radialinių įtempimų σ_r 2-2 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Radialinių įtempimų σ_r priklausomybė nuo mechaninio nevienalytiškumo γ pjūvyje 2-2 pateikta 47 pav. Gauti rezultatai parodo, kad mechaninį nevienalytiškumą didinant nuo 0,5 iki 3 radialinių įtempimų didžiosios vertės mažėja, padidinus γ 6 kartus σ_r sumažėjo 1,1 karto.

Kaip radialinių įtempimų σ_r pasiskirstymas išilgai 2-2 pjūvio (einančiame per vamzdžio sienelę ties siūlės viduriu, žr. 4 pav.) priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 48 pav. Gauta, kad pakeitus siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm didžiausios σ_r vertės išliko tokios pačios.

48 pav. Radialinių įtempimų σ_r 2-2 pjūvyje priklausomybė nuo siūlės aukščio h

Radialinių įtempimų pasiskirstymas σ_r 2-2 pjūvyje, keičiantis išoriniam bandomo modelio spinduliui *r*, pavaizduotas 49 pav. Kai *r* padindėjo nuo 30,15 mm iki 57,15 mm didžiausios radialinių įtempimų vertės išliko tokios pat.

49 pav. Radialinių įtempimų σ_r 2-2 pjūvyje priklausomybė nuo vamzdžio išorinio spindulio r

5.3. Radialinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės medžiagoje

Kaip radialinių įtempimų σ_r pasiskirstymas išilgai 3-3 pjūvio (siūlės medžiagoje einančiame per kontakto plokštumą, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 50 pav. Gauta, kad σ_r vertės išilgai 3-3 pjūvio priklauso mažai nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_r vertės ties kontakto plokštuma sumažėjo 1,11 karto.

Radialinių įtempimai σ_r 3-3 pjūvyje priklauso nuo mechaninio nevienalytiškumo γ žr. 51 pav. Gauti rezultatai parodo, kad mechaninį nevienalytiškumą didinant nuo 0,5 iki 3, radialinių įtempimų vidutinės vertės padidėjo 1,4 karto.

51 pav. Radialinių įtempimų σ_r 3-3 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip radialiniai įtempimai σ_r 3-3 pjūvyje priklauso nuo vidutinio siūlės aukščio *h* pateikta 52 pav. Gauti rezultatai parodo, kad didinant vidutinį siūlės aukštį nuo 0,6 *s* iki 1,2 *s* didžiosios radialinių įtempimų vertės kito nežymiai.. Kai siūlės aukštis *h* buvo mažiausias t.y. 0,6 *s* (1,92 mm) σ_r susidarę vidinio vamzdžio sienelėje buvo mažesni 1,11 karto.

52pav. Radialinių įtempimų σ_r 3-3 pjūvyje priklausomybė nuo siūlės aukščio h

Kaip radialiniai įtempimai σ_r 3-3 pjūvyje priklauso nuo išorinio vamzdžio spindulio r pavaizduoti 53 pav. Padidinus r nuo 30,15 mm iki 57,15 mm radialiniai įtempimai nekinta ir visos vertės išlieka tokios pačios.

5.4. Radialinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje medžiagoje

Kaip radialiniai įtempimai σ_r 4-4 pjūvyje (išilgai kontakto plokštumos pagrindinėje medžiagoje) priklauso nuo siūlės kampo α pavaizduota 54 pav. Gauti rezultatai parodo, kad keičiant siūlės kampą radialiniai įtempimai kinta nežymiai, padidinus α nuo 0° iki 45° vidutinės σ_r vertės padidėjo 1,4 karto.

54 pav. Radialinių įtempimų σ_r 4-4 pjūvyje priklausomybė nuo siūlės kampo α

55 pav. Radialinių įtempimų σ_r 4-4 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Radialinių įtempimų σ_r priklausomybė nuo mechaninio nevienalytiškumo γ pjūvyje 4-4 pateikta 55 pav. Gauti rezultatai parodo, kad mechaninį nevienalytiškumą didinant nuo 0,5 iki 3 radialinių įtempimų vidutinės vertės didėja. Padidinus γ 6 kartus, σ_r padidėjo 1,26 karto.

Kaip radialiniai įtempimai σ_r 4-4 pjūvyje priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 56 pav. Padidinus vidutinį siūlės aukštį *h* nuo 0,6 *s* iki 1,2 *s* visos σ_r vertės išlieka tokios pat.

56 pav. Radialinių įtempimų σ_z 4-4 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h

Kaip radialiniai įtempimai σ_r 4-4 pjūvyje priklauso nuo vamzdžio išorinio spindulio r pavaizduota 57 pav. Šiuo atveju radialiniai įtempimai nekinta didinant r nuo 30,15 mm iki 57,15 mm visos σ_r vertės išlieka tokios pačios.

57 pav. Radialinių įtempimų σ_r 4-4 pjūvyje priklausomybė nuo išorinio vamzdžio spindulio r

Teoriškai radialiniai įtempimai ties vidine vamzdžio sienele visada turėjo būti lygūs vidiniam slėgiui, t.y. santykiniai radialiniai įtempimai turėjo būti lygūs –1, o ties išorine vamzdžio sienele – 0. Kai kuriais atvejais tokie rezultatai nebuvo gauti. Tai galima sieti su BEM paklaidomis, kurios paprastai didžiausios gaunamos dviejų medžiagų sąlyčio vietoje [6].

5.5. Išvados

- 1. Radialiniai įtempimų priklausomybė nuo šiame darbe keičiamų parametrų verčių susidaro nežymi: didžiųjų verčių kitimas neviršijo 1,4 karto.
- Didžiausi absoliutine verte radialiniai įtempimai gaunami ties vidine vamzdžio sienele, o mažiausi (lygūs 0) – ties išorine vamzdžio sienele.

6. TANGENTINIŲ ĮTEMPIMŲ TYRIMO REZULTATAI

6.1. Tangentinių įtempimų pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties vidiniu vamzdžio spinduliu

Kaip tangentinių įtempimų τ_{rt} pasiskirstymas išilgai 1-1 pjūvio (ties vidiniu žiedo spinduliu, išilgai vamzdžio ašies, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 58 pav.

58 pav. Tangentinių įtempimų τ_{rt} 1-1 pjūvyje priklausomybė nuo siūlės kampo α a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Gauta, kad τ_{rt} vertės išilgai 1-1 pjūvio nežymiai priklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios τ_{rt} vertės pagrindinio metalo medžiagoje padidėjo 1,3 kartus, o siūlės medžiagoje

padidėjo 1,18 karto. Didžiausios τ_{rt} vertės pagrindinėje ir siūlės medžiagose gaunamos ties kontakto plokštuma.

b

59 pav. Tangentinių įtempimų τ_{rt} 1-1 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ : a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Kaip tangentinių įtempimų τ_{rt} pasiskirstymas išilgai 1-1 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 59 pav. Gauta, kad τ_{rt} vertės išilgai 1-1 pjūvio, kai siūlės metalas standesnis už pagrindinį metalą ($\gamma < 1$) didinant mechaninį nevienalytiškumą didžiausios τ_{rt} vertės pagrindinio metalo medžiagoje sumažėjo 1,6 kartus, o siūlės medžiagoje sumažėjo 1,52 kartus. Kai pagrindinis metalas yra standesnis ($\gamma > 1$) ir mechaninis nevienalytiškumas didėja, didžiausios τ_{rt} vertės pagrindiniame metale padidėjo 1,34 karto, o siūlės medžiagoje padidėjo 1,09 karto. Tangentinių įtempimų τ_{rt} priklausomybė nuo vidutinio siūlės aukščio h 1-1 pjūvyje pavaizduota 60 pav. Gauta, kad pakeitus siūlės aukštį h nuo 1,92 mm iki 3,84 mm didžiausios τ_{rt} vertės pagrindinėje medžiagoje padidėjo 1,73 karto, o siūlės medžiagoje padidėjo apie 1,17 karto.

60 pav. Tangentinių įtempimų τ_{rt} 1-1 pjūvyje priklausomybė nuo vidutinio siūlės aukščio ha – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Kaip tangentiniai įtempimai τ_{rt} 1-1 pjūvyje priklauso nuo vamzdžio išorinio spindulio r pavaizduota 61 pav. Šiuo atveju tangentiniai įtempimai kinta nežymiai, pakeitus r nuo 30,15 mm iki 57,15 mm didžiosios τ_{rt} : siūlės metale padidėja 1,1 karto, pagrindiniame metale padidėja 1,34 karto.

b

61 pav. Tangentinių įtempimų τ_{rt} 1-1 pjūvyje priklausomybė nuo tiriamo modelio spindulio r :a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

6.2. Tangentinių įtempimų pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę ties siūlės viduriu

Kaip tangentiniai įtempimai τ_{rt} 2-2 pjūvyje priklauso nuo keičiamo siūlės kampo α pavaizduota 62 pav. Šiuo atveju siūlės kampas α didėja nuo 0° iki 30°, o τ_{rt} išlieka vienodi, t. y. ($\tau_{rt} = 0$) Kai siūlės kampas α lygus 45° tangentiniai įtempimai kinta nežymiai.

62 pav. Tangentinių įtempimų τ_{rt} 2 - 2 pjūvyje priklausomybė nuo siūlės kampo α

Kaip tangentiniai įtempimai τ_{rt} 2-2 pjūvyje priklauso nuo mechaninio nevienalytiškumo γ pateikta 63 pav. Gauti rezultatai parodo, kad kai mechaninis nevienalytiškumas $\gamma < 1$ susidarę įtempimai per visa bandomo modelio pjūvį yra lygus nuliui ($\tau_{rt} = 0$), kitais atvejais didinant mechaninį nevienalytiškumą didžiosios tangentinių įtempimų vertės keičiasi nežymiai pavaizduota 63 pav.

63 pav. Tangentinių įtempimų τ_{rt} 2 - 2 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

64 pav. Tangentinių įtempimų τ_{rt} 2-2 pjūvyje priklausomybė nuo siūlės aukščio h

Kaip tangentiniai įtempimai τ_{rt} 2-2 pjūvyje priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 64 pav. Padidinus *h* nuo 0,8 *s* iki 1,2 *s* didžiausios tangentinių įtempimų vertės nepasikeitė ir buvo lygios nuliui ($\tau_{rt} = 0$), tačiau kai vidutinis siūlės aukštis buvo 0,6 *s*, susiformavo nežymus tangentinių įtempimų pasikeitimas.

Kaip tangentiniai įtempimai τ_{rt} 2-2 pjūvyje priklauso nuo tiriamo modelio spindulio r pavaizduota 65 pav. tiriamo vamzdžio išorinis spindulys yra keičiamas pagal 2 lentelėje nurodomas reikšmes. Padidinus r nuo 30,15mm iki 50,5 mm didžiausios tangentinių įtempimų vertės nepasikeitė ir buvo lygios nuliui ($\tau_{rt} = 0$), tačiau kai tiriamo vamzdžio išorinis spindulys r buvo 57,15 mm susiformavo nežymus tangentiniai įtempimai kurie yra lygus ($\tau_{rt} = -0,1$).

65 pav. Tangentinių įtempimų τ_{rt} 2-2 pjūvyje priklausomybė nuo išorinio vamzdžio spindulio r

6.3. Tangentinių įtempimų pasiskirstymas išilgai kontakto plokštumos siūlės medžiagoje

Tangentinių įtempimų τ_{rt} pasiskirstymas 3-3 pjūvyje keičiant siūlės kampą α pavaizduotas 66 pav. Kai siūlės kampas α kinta nuo 0° iki 45° didžiausios tangentinių įtempimų reikšmės 3-3 pjūvyje gaunamos bandomo modelio sienelės viduryje. Didžiosios τ_{rt} reikšmės didinant siūlės kampą α nuo 0° iki 45° padidėja 2 kartus.

66 pav. Tangentinių įtempimų τ_{rt} 3-3 pjūvyje priklausomybė nuo siūlės kampo α

Kaip tangentinių įtempimų τ_{rt} pasiskirstymas išilgai 3-3 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 67 pav. Gauta, kad τ_{rt} vertės išilgai 3-3 pjūvio, kai siūlės metalas standesnis už pagrindinį metalą ($\gamma < 1$) didinant mechaninį nevienalytiškumą didžiausios τ_{rt} vertės siūlės medžiagoje sumažėjo 2,34 karto. Kai pagrindinis metalas yra standesnis ($\gamma > 1$) ir didinant mechaninį nevienalytiškumą didžiausios τ_{rt} vertės pagrindiniame siūlės metale padidėjo 2 kartus.

Kaip tangentiniai įtempimai τ_{rt} 3-3 pjūvyje priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 68 pav. Padidinus *h* nuo 0,6 *s* iki 1,2 *s* vidutinės tangentinių įtempimų vertės sumažėjo apie 2 kartus.

68 pav. Tangentinių įtempimų τ_{rt} 3-3 pjūvyje priklausomybė nuo siūlės aukščio h

69 pav. Tangentinių įtempimų τ_{rt} 3-3 pjūvyje priklausomybė nuo modelio spindulio r

Kaip tangentiniai įtempimai τ_{rt} 3-3 pjūvyje priklauso nuo vamzdžio spindulio r pavaizduota 69 pav. Šiuo atveju tangentiniai įtempimai nekinta, padidinus r nuo 30,15 mm iki 57,15 mm visos τ_{rt} vertės išlieka tokios pat.

6.4. Tangentinių įtempimų pasiskirstymas išilgai kontakto plokštumos pagrindinėje medžiagoje

Kaip tangentiniai įtempimai τ_{rt} 4-4 pjūvyje (išilgai kontakto plokštumos pagrindinėje medžiagoje) priklauso nuo siūlės kampo α pavaizduota 70 pav. Gauti rezultatai parodo, kad keičiant siūlės kampą tangentiniai įtempimai kinta nežymiai, padidinus α nuo 0° iki 45° vidutinės τ_{rt} vertės padidėjo 1,23 karto.

70 pav. Tangentinių įtempimų τ_{rt} 4-4 pjūvyje priklausomybė nuo siūlės kampo α

71 pav. Tangentinių įtempimų τ_{rt} 4-4 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip tangentinių įtempimų τ_{rt} pasiskirstymas išilgai 4-4 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 71 pav. Gauta, kad τ_{rt} vertės išilgai 3-3 pjūvio, kai siūlės metalas standesnis už pagrindinį metalą ($\gamma < 1$) didinant mechaninį nevienalytiškumą didžiausios τ_{rt} vertės pagrindinio metalo medžiagoje sumažėjo 2 kartus. Kai pagrindinis metalas yra standesnis ($\gamma > 1$) ir mechaninis nevienalytiškumas didėja didžiausios τ_{rt} vertės pagrindiniame metale išliko tokios pat. Kai $\gamma < 1$ įtempimai τ_{rt} gaunami teigiami, o kai $\gamma > 1$ – neigiami. Kaip įtempimų τ_{rt} pasiskirstymas išilgai 4-4 pjūvio priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 72 pav. Gauta, kad padidinus vidutinį siūlės aukštį *h* nuo 1,92 mm iki 3,84 mm mažiausios τ_{rt} vertės sumažėjo 1,1 karto.

72 pav. Tangentinių įtempimų τ_{rt} 4-4 pjūvyje priklausomybė nuo siūlės aukščio h

Tangentiniai įtempimai τ_{rt} 4-4 pjūvyje priklauso nuo bandomo modelio spindulio r pavaizduota 73 pav. Šiuo atveju tangentiniai įtempimai nekinta, padidinus r nuo 30,15 mm iki 57,15 mm visos τ_{rt} vertės išlieka tokios pačios.

73 pav. Tangentinių įtempimų τ_{rt} 4-4 pjūvyje priklausomybė nuo modelio spindulio r

6.5. Išvados

- 1. Nustatyta, kad didžiausią įtaka tangentiniams įtempimams sudaro mechaninis nevienalytiškumas.
- 2. Nagrinėjant tangentinių įtempimų priklausomybę nuo keičiamų parametrų buvo nustatyta, kad vidinėje sienelėje išilgai *z* ašies tangentiniai įtempimai susidaro tik kontakto plokštumos zonoje.
- 3. Tangentinių įtempimų mažiausios vertės susidarė tiriamo modelio sienelės viduryje.

7. ĮTEMPIMŲ INTENSYVUMO TYRIMO REZULTATAI

7.1. Įtempimų intensyvumo pasiskirstymas pjūvyje, einančiame išilgai vamzdžio ties vidiniu vamzdžio spinduliu

Kaip įtempimų intensyvumo σ_i pasiskirstymas išilgai 1-1 pjūvio (ties vidiniu žiedo spinduliu, išilgai vamzdžio ašies, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 74 pav.

74 pav. Įtempimų intensyvumo σ_i 1-1 pjūvyje priklausomybė nuo siūlės kampo α : a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

Gauta, kad σ_i vertės išilgai 1-1 pjūvio beveik nepriklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_i vertės pagrindinio metalo medžiagoje padidėjo 1,03 kartus, o siūlės medžiagoje padidėjo 1,01 karto. Didžiausios σ_i vertės pagrindinėje medžiagose gaunamos ties kontakto plokštuma, o siūlės medžiagoje – pjūvyje 2-2.

75 pav. Įtempimų intensyvumo σ_i 1-1 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ : a – siūlė yra standesnė $\gamma < 1$; b – pagrindinis metalas yra standesnis $\gamma > 1$

Kaip įtempimų intensyvumo σ_i pasiskirstymas išilgai 1-1 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 75 pav. Kai siūlės metalas yra standesnis už pagrindinį metalą ($\gamma < 1$) ir didinant mechaninį nevienalytiškumą, didžiausios σ_i vertės pagrindinio metalo medžiagoje sumažėjo 1,01 kartus, o siūlės medžiagoje sumažėjo 1,23 kartus. Kai pagrindinis metalas yra standesnis ($\gamma > 1$) ir mechaninis nevienalytiškumas didėja didžiausios σ_i vertės pagrindiniame metale padidėjo 1,07 karto, o siūlės metale sumažėjo 1,09 karto.

Įtempimų intensyvumo priklausomybė nuo siūlės aukščio h pavaizduota 76 pav. Didinant vidutinį siūlės aukštį h nuo 1,92 mm iki 3,84 mm didžiausios σ_i vertės pagrindinėje ir siūlės metalų medžiagose padidėjo 1,12 karto.

76 pav. Įtempimų intensyvumo σ_i 1-1 pjūvyje priklausomybė vidutinio siūlės aukščio h: a – išilgai viso pjūvio; b – pagrindinio metalo ir siūlės kontakto plokštumos zonoje

77 pav. Įtempimų intensyvumo σ_i 1-1 pjūvyje priklausomybė nuo išorinio modelio spindulio r

Įtempimų intensyvumo priklausomybė nuo vamzdžio išorinio spindulio r pavaizduota 77 pav. Kai išorinis modelio spindulys r didėja nuo 30,15 mm iki 57,15 mm didžiausios σ_i vertės didėja: siūlės metale 1,79 karto, pagrindiniame metale 1,81 karto.

7.2. Įtempimų intensyvumo pasiskirstymas pjūvyje, einančiame per vamzdžio sienelę ties siūlės viduriu

Kaip įtempimų intensyvumo σ_i pasiskirstymas išilgai 2-2 pjūvio (einančiame per vamzdžio sienelę ties siūlės viduriu, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 78 pav. Didinant siūlės kampą α nuo 0° iki 45° įtempimų σ_i didžiosios reikšmės išliko tokios pat.

78 pav. Įtempimų intensyvumo σ_i 2-2 pjūvyje priklausomybė nuo siūlės kampo α

79 pav. Įtempimų intensyvumo σ_i 2-2 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

Kaip įtempimų intensyvumas išilgai 2-2 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 79 pav. Gauta, kad σ_i padidinus mechaninį nevienalytiškumą γ nuo 0,5 iki 3 didžiausios σ_i vertės siūlės metale sumažėjo 3,45 karto.

Kaip įtempimų intensyvumas σ_i išilgai 2-2 pjūvio priklauso nuo vidutinio siūlės aukščio h pateikta 80 pav. Gauta, kad σ_i padidinus vidutinį siūlės aukštį h nuo 0,6 s iki 1,2 s didžiausios σ_i vertės siūlės metale padidėjo 1,13 karto.

Įtempimų intensyvumo σ_i kitimas 2-2 pjūvyje, keičiant išorinį vamzdžio spindulį r pavaizduotas 81 pav. Kai r padindėjo nuo 30,15 mm iki 57,15 mm didžiausios σ_i vertės padidėjo 1,77 karto.

81 pav. Įtempimų intensyvumo σ_i 2-2 pjūvyje priklausomybė nuo išorinio modelio spindulio r

7.3. Įtempimų intensyvumo pasiskirstymas išilgai kontakto plokštumos siūlės medžiagoje

Kaip įtempimų intensyvumo σ_i kitimas išilgai 3-3 pjūvio (siūlės medžiagoje einančiame per kontakto plokštumą, žr. 4 pav.) priklauso nuo siūlės kampo α pateikta 82 pav. Gauta, kad σ_i vertės išilgai 3-3 pjūvio mažai priklauso nuo α : kampą α didinant nuo 0° iki 45° didžiausios σ_i vertės ties kontakto plokštuma padidėjo 1,03 karto.

82 pav. Įtempimų intensyvum
o σ_i 3-3 pjūvyje priklausomybė nuo siūlės kamp
o α

Kaip įtempimų intensyvumas išilgai 3-3 pjūvio priklauso nuo mechaninio nevienalytiškumo γ pateikta 83 pav. Mechaninį nevienalytiškumą γ padidinus nuo 0,5 iki 3 didžiausios σ_i vertės siūlės metale kontakto plokštumoje sumažėjo 3,54 karto.

83 pav. Įtempimų intensyvumo σ_i 3-3 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

82 pav. Įtempimų intensyvumo σ_i 3-3 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h

Kaip įtempimų intensyvumas σ_i išilgai 3-3 pjūvio priklauso nuo vidutinio siūlės aukščio h pateikta 82 pav. Padidinus vidutinį siūlės aukštį h nuo 0,6 s iki 1,2 s didžiausios σ_i vertės siūlės metale kontakto plokštumoje padidėjo 1,14 karto.

83 pav. Įtempimų intensyvumo σ_i 3-3 pjūvyje priklausomybė išorinio vamzdžio spindulio r

Įtempimų intensyvumo priklausomybė nuo vamzdžio išorinio spindulio r pateikta 83 pav. Gauta, kad 3-3 pjūvyje, kai išorinis vamzdžio spindulys r didėja nuo 30,15 mm iki 57,15 mm didžiausios σ_i vertės siūlės metale kontakto plokštumoje didėja 1,78 karto.

7.4. Įtempimų intensyvumo pasiskirstymas išilgai kontakto plokštumos pagrindinėje medžiagoje

Kaip įtempimų intensyvumas σ_i 4-4 pjūvyje (išilgai kontakto plokštumos pagrindinėje medžiagoje) priklauso nuo siūlės kampo α pavaizduota 84 pav. Padidinus siūlės kampą nuo 0° iki 45° didžiosios σ_i vertės padidėjo 1,02 karto.

Įtempimų intensyvumo σ_i 4-4 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ pateikta 85 pav. Gauti rezultatai parodo, kad mechaninį nevienalytiškumą didinant nuo 0,5 iki 3 didžiosios σ_i vertės didėja 3,58 karto.

85 pav. Įtempimų intensyvumo σ_i 4-4 pjūvyje priklausomybė nuo mechaninio nevienalytiškumo γ

86 pav. Įtempimų intensyvumo σ_i 4-4 pjūvyje priklausomybė nuo vidutinio siūlės aukščio h

Kaip įtempimų intensyvumas σ_i išilgai 4-4 pjūvio priklauso nuo vidutinio siūlės aukščio *h* pavaizduota 86 pav. Gauti rezultatai parodo, kad padidinus vidutinį siūlės aukštį *h* nuo 0,6 *s* iki 1,2 *s* didžiosios σ_i vertės pagrindiniame metale kontakto plokštumoje padidėjo 1,13 karto.

Kaip įtempimų intensyvumas σ_i 4-4 pjūvyje priklauso keičiantis išoriniam bandomo modelio spinduliui *r* pavaizduoti 87 pav. Gauta, kad *r* padindėjus nuo 30,15 mm iki 57,15 mm didžiausios σ_i vertės padidėjo 1,8 karto.

87 pav. Įtempimų intensyvumo σ_i 4-4 pjūvyje priklausomybė nuo išorinio vamzdžio spindulio r

Suvirintojo sujungimo labiausiai apkrautos, t. y. pavojingos, zonos yra ten kur įtempimų intensyvumo vertės buvo didžiausios. Pagrindiniame metale pavojinga zona yra ties vidiniu vamzdžio spinduliu kontakto plokštumoje (4-4 pjūvyje). Siūlės metale pavojinga zona yra ties vidiniu vamzdžio spinduliu kontakto plokštumoje (3-3 pjūvyje). Iš visų, darbe naudotų parametrų verčių, pavojingiausias derinys buvo kai $\alpha = 45^{\circ}$, $\gamma = 2$ (siūlės medžiaga yra mažiau standi, lyginant su pagrindine suvirintojo sujungimo medžiaga) ir h = 1,2 s: šiuo atveju santykinis įtempimų intensyvumas pagrindiniame metale yra $\frac{\sigma_i}{p} = 20,7$, o siūlės medžiagoje – $\frac{\sigma_i}{p} = 11$.

7.5. Išvados

- 1. Nustatyta kad įtempimų intensyvumas daugiausiai priklauso nuo mechaninio nevienalytiškumo γ : padidinus γ nuo 0,5 iki 3 didžiausios σ_i vertės pagrindiniame metale kontakto plokštumoje padidėjo 3,58 karto.
- 2. Gavus įtempimų intensyvumo rezultatus nustatyta, kad didžiausios σ_i reikšmės susiformuoja ties vidiniu tiriamo modelio spinduliu išilgai z ašies ir mažėja išilgai bandomo modelio sienelės atžvilgiu.
- Tiek pagrindinėje tiek siūlės medžiagose pavojinga zona yra kontakto plokštumoje ties vidiniu vamzdžio spinduliu.

IŠVADOS

1. Tiek pagrindinėje tiek siūlės medžiagose pavojinga zona yra kontakto plokštumoje ties vidiniu vamzdžio spinduliu.

2. Žiediniai įtempimai nuo darbe tiriamų parametrų priklauso: kai didėja siūlės kampas α pagrindiniame ir siūlės metaluose pavojingose zonose reikšmės didėja, didinant mechaninį nevienalytiškumą γ pagrindinio metalo pavojingoje zonoje reikšmes didėja tuo tarpu siūlės metale pavojingoje zonoje mažėja. Didėjant siūlės aukščiui *h* ir išoriniam vamzdžio spinduliui *r* reikšmės pagrindinio ir siūlės metalų pavojingose zonose didėja.

3. Didinant siūlės kampą α , mechaninį nevienalytiškumą γ , siūlės vidutinį aukštį h ir išorinį vamzdžio spindulį r ašiniai įtempimai sumažėjo pagrindinio ir siūlės metalų pavojingose zonose. 4. Radialiniai įtempimai nuo darbe tiriamų parametrų priklauso : didinant siūlės kampą α pagrindinio metalo pavojingoje zonoje reikšmės didėjo, o siūlės metalo pavojingoje zonoje reikšmės mažėjo. Didinant mechaninį nevienalytiškumą γ radialiniai įtempimai pavojingoje pagrindinio metalo zonoje išliko tokie patys, o siūlės metalo pavojingoje zonoje padidėjo. Didinant išorinį vamzdžio spindulį r radialiniai įtempimai išliko tokie patys pagrindinio ir siūlės metalo pavojingoje zonoje.

5. Tangentiniai įtempimai nuo darbe tiriamų parametrų priklauso : didinat siūlės kapą α pagrindinio metalo pavojingoje zonoje reikšmės išlieka tokios pat, siūlės metalo pagrindinėje zonoje reikšmės didėja. Didinant mechaninį nevienalytiškumą γ pagrindinio metalo pavojingoje zonoje tangentiniai įtempimai sumažėjo, o siūlės metalo pavojingoje zonoje padidėjo. Didinant vidutinį siūlės aukštį h ir išorinį vamzdžio spindulį r tangentiniai įtempimai siūlės ir pagrindinio metalų pavojingose zonose nepakito.

6. Įtempimų intensyvumas nuo darbe tiriamų parametrų priklauso: didinant siūlės kampą α pagrindiniame ir siūlės metaluose pavojinguose zonose įtempimų vertės didėja, didinant mechaninį nevienalytiškumą γ pagrindinio metalo pavojingoje zonoje reikšmes didėja tuo tarpu siūlės metale pavojingoje zonoje mažėja. Didėjant siūlės aukščiui *h* ir išoriniam vamzdžio spinduliui *r* įtempimų intensyvumo reikšmės pagrindinio ir siūlės metalų pavojingose zonose didėja.

7. Didžiausią įtaką suvirinto vamzdžio, kai siūlė yra V formos ir veikia vidinis slėgis, įtempimų būvio komponentėms turėjo sujungimo mechaninis nevienalytiškumas *γ*.

LITERATŪRA

- Rudolph J., Weiß E. Concept-conforming modelling and analysis of welded pressure vessel components in the context of structural, notch stress and local strain approaches to design against fatigue. – Weinheim, Germany: WILEY-VCH Verlag GmbH. Chemie Ingenieur Technik, 2002, Nr.1-2(74), p. 33-40
- Kaminskas V., Bražėnas A. Stresses and strains determination of welded piplines with the mild interlayes at plane stress state under elastic-plastic loading // Mechanika Nr. 3(53). – Kaunas: Technologija, 2005, p. 5-12.
- Vaičiulis D. Determination of stress strain state in two-layer pipe subjected to hydrostatic pressure at plane strain condition under elastic loading. Proceedings of the 8th international conference ITELMS'2013. – Kaunas: Technologija, 2013, p. 262-267.
- Jaškūnas Ž. Įtempimų deformacijų būvio priklausomybė nuo santykinio siūlės aukščio suvirintame vamzdyje su išilgine minkšta siūle. Jaunųjų mokslininkų ir studentų konferencijos "Technologijos mokslai šiandien ir rytoj 2007" pranešimų medžiaga. Kaunas: Technologija, 2007, p. 30-34.
- 5. Vaičiulis D. Tempiamų (gniuždomų) mechaniškai nevienalyčių žiedinio skerspjūvio suvirintų sujungimų stiprumas ir mažaciklis nuovargis. Daktaro disertacijos santrauka. Kaunas: 2001.
- Vaičiulis D., Bražėnas A. Peculiarities calculation by FEM of mechanically heterogeneous butt welded joints subjected to tension (compression) // Mechanika 2003 2(40). –Kaunas: Technologija, 2003, p. 12-16. ISSN 1392–1207.