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Abstract: Calcium titanate-CaTiO3 (perovskite) has been used in various industrial applications due
to its dopant/doping mechanisms. Manipulation of defective grain boundaries in the structure of
perovskite is essential to maximize mechanical properties and stability; therefore, the structure of
perovskite has attracted attention, because without fully understanding the perovskite structure and
diffracted planes, dopant/doping mechanisms cannot be understood. In this study, the areas and
locations of atoms and diffracted planes were designed and investigated. In this research, the relation-
ship between Young’s modulus and planar density of unit cell, super cells (2 × 2 × 2) and symmetry
cells of nano CaTiO3 is investigated. Elastic constant, elastic compliance and Young’s modulus
value were recorded with the ultrasonic pulse-echo technique. The results were C11 = 330.89 GPa,
C12 = 93.03 GPa, C44 = 94.91 GPa and E = 153.87 GPa respectively. Young’s modulus values of CaTiO3

extracted by planar density were calculated 162.62 GPa, 151.71 GPa and 152.21 GPa for unit cell, super
cells (2× 2× 2) and symmetry cells, respectively. Young’s modulus value extracted by planar density
of symmetry cells was in good agreement with Young’s modulus value measured via ultrasonic
pulse-echo.

Keywords: nano-perovskite (CaTiO3); X-ray diffraction; Young’s modulus; ultrasonic-pulse echo;
planar density

1. Introduction

Perovskites have a general formula of ABO3. In these structures, the A site cation is a
typical lanthanide, alkaline or alkaline-earth metal with 12-fold oxygen coordination, and
the B-site is any one of a variety of transition metal cations [1]. Calcium titanate (CaTiO3)
was established in 1839 by a Russian mineralogist Perovski, and materials with the same
type of CaTiO3 were introduced as the perovskite structure. CaTiO3 has ionic bonds, as well
as the ionic radii of Ca2+, O2− and Ti4+ are 1 Å, 1.40 Å and 0.6 Å, respectively [2]. In recent
years, researchers have focused on developing perovskites and their mechanical properties
in order to obtain a high yield. Furthermore, CaTiO3 is a well-known component in fer-
roelectric perovskite category, which has been considerably utilized as a dopant/doping
in electronic materials due to its dielectric manner and flexibility in structural transforma-
tions [3,4]. The modulus of elasticity (E) or Young’s modulus is defined as the proportion
of the stress to the strain, created by the stress on the body when the body is in the elastic
region [5]. The elastic constants are specified from the lattice crystal deformation against
force. These elastic moduli are: Young’s modulus, shear modulus and volumetric modulus.
These modules are registered via inherent elastic properties of materials and their resistance
to deformation due to loading. Elastic behavior of materials is described by models such
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as Cauchy elastic, hypo-elastic and hyper-elastic. A hyper-elastic is a constitutive model
for ideally elastic material that responds against stress gain from a strain energy density
function, while for hypo-elastic material, their governing equation is independent of finite
strain quantity except in the linearized state [6]. The elastic properties are intimately con-
nected to the crystal structure, the intrinsic character of bonding between the atoms and
the anisotropic nature of materials [7,8]; therefore, elastic constants can be derived from
crystal lattice calculations [9]. There are several studies on the relationship between elastic
constants and planes/directions in a lattice structure, for example, in [10–12]. One of the
most accurate methods to measure the elastic stiffness constants and Young’s modulus
is to determine the velocity of long-wavelength acoustic waves through the ultrasonic
pulse-echo technique [13]. In a crystal structure, points, directions and planes are described
with an indexing scheme, and planar density is obtained as the number of atoms per unit
area, which are centered on a specific crystallographic plane with a defined index [14]. Since
the discovery of X-rays at the end of the 19th century, this method has been often used for
material characterization [15]. It is used to identify the atomic-scale structure of different
materials in a variety of states [16]. X-ray diffraction is the only method that provides
the specification of both the mechanical and microstructural character of each diffracted
plane. These planes are used as a strain to quantify Young’s modulus in one or more
planes/directions of the diffraction vector [17]. In forming, designing and manufacturing
equipment industries, the use of non-destructive, accurate and convenient methods to
determine the mechanical properties of materials is particularly important. Mechanical
tests, such as tensile, strike and collision tests, are destructive. Ultrasonic methods are very
time-consuming and require operator expertise in this area, and theoretical methods require
time-consuming density functional theory (DFT) calculation and may need verification
with experimental tests. Our proposed method only needs the XRD analysis, which is a
routine test and calculation of planar density; therefore, it can be very significant in terms
of industrial application. In this study, the effects of cell size on the accuracy of Young’s
modulus calculation were considered. Locations of atoms and diffracted planes of unit cell,
super cells (2 × 2 × 2) and symmetry cells of CaTiO3 are designed and investigated. The
super cell is a cell that describes the same crystal but has a larger volume than a unit cell. By
extension of a unit cell proportional to the lattice vectors, the super cells are generated. In
super cells (2 × 2 × 2), the extension is twice of unit cell length in each direction; likewise,
for super cells (8 × 8 × 8), the extension is 8 times. The result extracted by symmetry cells
was in good agreement with results recorded via ultrasonic technique. Therefore, this new
approach of exploration of reliable Young’s modulus quantity based on XRD is proposed
for either single crystal or polycrystalline of CaTiO3.

2. Experimental
2.1. Materials

In this study, for synthesis CaTiO3, titanium (IV) butoxide, calcium chloride dehydrate,
sodium hydroxide and ethanol reagents were purchased from Sigma Aldrich (Taufkirchen,
Germany) and deionized water as the solvent for dispersions was prepared.

2.2. Instrumentation

In this research, a Bruker D8 Advance X-ray diffractometer (Kaunas, Lithuania) with
CuKα radiation was used. The powder X-ray diffraction was taken at 40 kV and 40 mA, and
it was registered at a scanning rate of 2.5 degrees/minute and a step size of 0.02 degrees.
The XRD peaks were interpreted by High Score X’Pert software (4.9.0) analysis to get the
output ASC type files. The pulse-echo technique was applied for the determination of
sound velocity for both transverse and longitudinal ultrasonic signals. For ultrasonic mea-
surement, the model of pulser receiver and oscilloscope were Panametrics Co. (waltham,
MA, USA) and Iwatsu (Tokyo, Japan) (100 MHz), respectively. For powder pressing, the
model of mechanical machines was CD04-Z and CIP (CP 360). Additionally, the specific
surface area of the sample was investigated by desorption isotherms of nitrogen (N2) gas
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via using a Brunauer-Emmett-Teller (BET) apparatus Gemini V analyzer, micrometrics
GmbH (Tehran, Iran). Moreover, transmission electron microscopy (TEM) CM 10-Philips
(Tehran, Iran) with acceleration voltage from 50 to 80 KV was utilized.

2.3. Methods
2.3.1. Synthesis of Nano-Powder CaTiO3

Calcium titanate (CaTiO3) was synthesized by solvothermal method. A simple pro-
cedure, namely the solvothermal method, was performed for the synthesis of CaTiO3
(Figure S1). In the first step, (1) calcium chloride dehydrate was stirred with ethanol and
deionized water. (2) Titanium (IV) butoxide and ethanol were added to the system drop
by drop, under stirring for around 10 min (750 rpm). The molar ratio of ingredients was
achieved to calcium chloride dehydrate = 1, ethanol = 5, Titanium (IV) butoxide = 1 and
deionized water = 100 respectively. (3) To create pH = 14, sodium hydroxide solution was
utilized. (4) The produced solution was placed into the autoclave and the temperature was
~250 ◦C for 5 h. (5) Afterward, the product was under the drying conditions involved at
110 ◦C and 0.76 bar, respectively. (6) After a day, the mixture was washed, (7) filtered and
dried (110 ◦C for 4 h), respectively. This method was used in previous studies [18,19].

2.3.2. X-ray Diffraction of CaTiO3 and Planar Density Calculations

Combining X-ray diffraction of crystalline CaTiO3 and calculation of planar density
values of each diffracted plane was performed. In our study, the atomic density of each
plane was considered as the planar density, which was determined as the area of atoms
with the center positioned at the plane divided by the total area of the plane, and it is a
determinant factor for mechanical properties of each plane. Planar density is a unitless
parameter, and its value is less than 1 in each cell. Furthermore, the values of planar density
are related to the positions and situations of atoms in the planes. For determination of
atomic area, the Crystal Maker, Version 10.2.2 software was performed. First of all, the
three-dimensional (3D) geometry of crystal structures was designed, and then, from the
intersection area of each diffracted plane with atoms located at the plane, the atomic area
was calculated. When an atom with diameter D was involved completely, the atomic area

will be A = π
(

D
2

)2
; otherwise, it will be a percentage of this amount.

2.3.3. Ultrasonic Pulse-Echo Technique of CaTiO3

An ultrasonic wave is a type of elastic wave spread in the medium with high frequency
to obtain the Young’s modulus value of samples. Mastering the ultrasonic parameters can
be used to acquire more accurate values of mechanical properties [20]. Recently, different
studies on mechanical properties have been done by ultrasonic techniques. Basically, the
crossing of longitudinal and transverse waves in nano- or microstructures is performed at
different velocities. Each returned velocity is considered as the represented properties.

For ultrasonic measurements based on the Christoffel procedure, the first cubic speci-
men of CaTiO3 was prepared by cold isostatic press. The schematics of ultrasonic measure-
ment are depicted in Figure 1a. The main part of the ultrasonic system is the pulser-receiver,
which creates an electric pulse and stimulates the probe. Furthermore, the produced pulses
enter the specimen, and after a sweep, they can be received via a probe. In this measure-
ment, some drops of water were utilized to prevent the depreciation of waves in the air,
and the effect of hand pressure on the probe was decreased [21].
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Figure 1. Schematic of (a) ultrasonic pulse instrument and (b) a sketch of prepared CaTiO3 sample. 

At any position in the sample, a local coordinate is adjusted, such as X1, the radial 
coordinate; X2, the circumferential coordinate; and X3, the axial coordinate. Vi/j denotes the 
velocity of an ultrasound wave propagating in the Xi direction with particle displacements 
in the Xj direction. Vi/j with the same i and j is longitudinal, and with i ≠ j is related to the 
transverse waves. For the measurement of quasi-longitudinal or quasi-transverse velocity 
(Vij/ij), the specimen should be cut (bezel) on the edges of the surfaces perpendicular to the 
X directions. A sketch of the sample is represented in Figure 1b. 

3. Results 
3.1. X-ray Diffraction of CaTiO3 and Planar Density Calculations 

The XRD pattern of CaTiO₃ is presented in Figure 2. The characteristic peaks of 
CaTiO₃ correspond to the report in Ref [22]. The crystal structure of CaTiO₃ is cubic, the 
atomic positions of Ti are at (000), Ca at ( , , ) and O at ( , 0,0), (0, , 0), (0,0, ). According 
to X-ray powder diffraction results, the lattice parameter is 3.79 ± 0.02 Å, which is in good 
corresponds with the amount recorded in the Ref [23]. In addition, crystallographic pa-
rameters (Table S1) of CaTiO₃ and analyzed data by X’Pert [24] nasiri are recorded as the 
cell volume = 54.44 0.01 Å3 and crystal density = 4.14 ± 0.01 g/cm3, and the space group is 
Pm-3m. In addition, the crystal size of CaTiO3 was calculated by the Monshi–Scherrer 
equation (Figure S2) [25] and BET analysis. The crystal size values were registered at 
~59.10 and 63.02 nm, respectively. The Monshi–Scherrer method is described in Section 2 
of the supporting information. Furthermore, a TEM image of CaTiO₃ is shown in Figure 
S3. According to the images shown in Figure S3, the size of CaTiO₃ particles basically 
corresponds to the crystallite size, and it is clear that particles of powder have nanoscale 
and size can be reported almost ±50 nm. 

 
Figure 2. X-ray diffraction of CaTiO₃ (powder sample). 

Figure 1. Schematic of (a) ultrasonic pulse instrument and (b) a sketch of prepared CaTiO3 sample.

At any position in the sample, a local coordinate is adjusted, such as X1, the radial
coordinate; X2, the circumferential coordinate; and X3, the axial coordinate. Vi/j denotes the
velocity of an ultrasound wave propagating in the Xi direction with particle displacements
in the Xj direction. Vi/j with the same i and j is longitudinal, and with i 6= j is related to the
transverse waves. For the measurement of quasi-longitudinal or quasi-transverse velocity
(Vij/ij), the specimen should be cut (bezel) on the edges of the surfaces perpendicular to the
X directions. A sketch of the sample is represented in Figure 1b.

3. Results
3.1. X-ray Diffraction of CaTiO3 and Planar Density Calculations

The XRD pattern of CaTiO3 is presented in Figure 2. The characteristic peaks of CaTiO3
correspond to the report in Ref [22]. The crystal structure of CaTiO3 is cubic, the atomic
positions of Ti are at (000), Ca at ( 1

2 , 1
2 , 1

2 ) and O at ( 1
2 , 0, 0), (0, 1

2 , 0), (0, 0, 1
2 ). According

to X-ray powder diffraction results, the lattice parameter is 3.79 ± 0.02 Å, which is in
good corresponds with the amount recorded in the Ref [23]. In addition, crystallographic
parameters (Table S1) of CaTiO3 and analyzed data by X’Pert [24] nasiri are recorded as the
cell volume = 54.44 ± 0.01 Å3 and crystal density = 4.14 ± 0.01 g/cm3, and the space group
is Pm-3m. In addition, the crystal size of CaTiO3 was calculated by the Monshi–Scherrer
equation (Figure S2) [25] and BET analysis. The crystal size values were registered at
~59.10 and 63.02 nm, respectively. The Monshi–Scherrer method is described in Section 2
of the supporting information. Furthermore, a TEM image of CaTiO3 is shown in Figure
S3. According to the images shown in Figure S3, the size of CaTiO3 particles basically
corresponds to the crystallite size, and it is clear that particles of powder have nanoscale
and size can be reported almost ±50 nm.
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For the evaluation of cells as the results, the comprehensive calculations of the planar
density of diffracted planes in the unit cell, super cells (2× 2× 2) and super cells (8 × 8 × 8)
of CaTiO3 lattice are presented in Figures S4–S6 respectively. In addition, the locations of
atoms, geometry of planes and calculations of planar density of (211) super cell (4 × 4 × 4),
(211) super cell (8 × 8 × 8), (221) super cell (4 × 4 × 4), (221) super cell (8 × 8 × 8), (311)
super cell (3 × 3 × 3), (311) super cell (4 × 4 × 4), (311) super cell (8 × 8 × 8), (222)
super cell (3 × 3 × 3) and (222) super cell (8 × 8 × 8) are depicted briefly in Figures 3–6
respectively. Furthermore, the completed calculations with their figures are shown in
Figures S7–S10.
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3.2. Investigation of Results Obtained from Ultrasonic Pulse-Echo Technique of CaTiO3

Taking into account the Christoffel equation, the connection between ultrasonic phase
velocity and the stiffness matrix is given as follows:(

Cijklljll−ρV2δik)αk = 0

where V is the ultrasonic phase velocity, Cijkl is the general stiffness matrix, ρ is the material
density, l is the orientation of propagation, αk is the polarization direction and δik is
the Kronecker delta (note that i, j, k, I = 1 to 3). For the extraction and calculation of
elastic constants from ultrasonic measurements based on the Christoffel equation, with the
propagation in X1, X2 and X3 directions, all of the diagonal elements of the stiffness matrix
are obtained. For the determination of whole constants, we cut the specimen on the edges
of the surfaces perpendicular to principal directions (bezel) and the velocity was measured
from the propagation of ultrasound wave normal to these planes.

Based on Equations (1)–(5) [26,27] and the measured velocity according to the Table 1,
stiffness constants values were obtained. C11 is in the agreement with longitudinal dis-
tortion and longitudinal compression/tension, so C11 can be described as the hardness.
Moreover, the transverse distortion is connected to the C12, and C12 is obtained from the
transverse expansion correlated to the Poisson’s ratio. C44 is based on the shear modulus,
as well as C44 is in the settlement with C11 and C12 [26].

C11 = ρV2
1
1

(1)

C22 = ρV2
2
2

(2)

C66 = ρV2
1
2
= ρV2

2
1

(3)

C12 =

√
(C11 + C66 − 2ρV2

12
12
)(C22 + C66 − 2ρV2

12
12
) − C66 (4)

C44 = ρV2
2
3
= ρV2

3
2

(5)

Table 1. The values of longitudinal and transverse velocity of the sample.

Longitudinal Velocity
(m/s)

Transverse Velocity
(m/s)

Quasi Longitudinal or Quasi Transverse
(m/s)

V1/1 = 9261.85 V2/3 = 4960.5 V12/12 = 4976.63
V2/2 = 8013.51 V1/2 = 4283.65

After substitution and calculation, C11, C12 and C44 were registered at 330.89, 93.03
and 94.91 GPa respectively. These values of CaTiO3 were in good agreement with the
values submitted in the [28–30]. Moreover, with the ultrasonic technique, longitudinal and
transverse waves can be utilized for determining Young’s modulus quantity [31,32]. The
longitudinal and transverse waves of CaTiO3 sample are shown in Figure 7. In this method,
by measuring the waves velocity and density of specimen, the determination of Young’s
modulus quantity was carried out (Equation (6)).

E =
4ρ
(

L
ts

)2(
3t2

s − 4t2
l
)

t2
s − t2

l
(6)

where, ts and tl are differences between two echo in longitudinal and transverse waves, re-
spectively [33,34]. According to the results shown in Figure 7, ts and tl values are calculated
as 5.75 and 3.01 µs, respectively. In addition, the density of the specimen is recorded as
3857.30 Kg

m3 , and the length of the specimen after powder pressing reached 11.21 mm. After
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calculation, Young’s modulus value of CaTiO3 was 153.87 GPa. This value corresponds
with the value reported by Ramajo et al. [35].
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Figure 7. Recorded signals extracted via (a) longitudinal waves and (b) transverse waves of CaTiO3

specimen.

3.3. Calculations: Relationship between Elastic Stiffness-Compliance Constants, Young’s Modulus
and Planar Density Extracted through the Unit Cell, Super Cells (2 × 2 × 2) and Symmetry Cells
of CaTiO3 Lattice

Three elastic constants of CaTiO3 were calculated via the ultrasonic technique. For
the cubic CaTiO3 system, the relationship between stiffness (Cij) and compliance constant
(Sij) are provided in Equations (7)–(9) [27,36]. The values resulted via Equations (7)–(9) are
0.0034, −0.0007 and 0.0105 GPa for S11, S12 and S44, respectively. Furthermore, Young’s
modulus of each diffracted plane of CaTiO3 can be written as Equation (10) [37].

S11 =
C11 + C12

(C11 −C12)(C11 + 2C12)
(7)

S12 =
−C12

(C11 −C12)(C11 + 2C12)
(8)

S44 =
1

C44
(9)

1
Ehkl

= S11− 2
[
(S11 − S12)−

1
2

S44

]h2k2 + k2l2 + l2h2(
h2 + k2 + l2

)
 (10)

The planar density and Young’s modulus values related to the each diffracted plane
of the unit, super (2 × 2 × 2), symmetry and super (8 × 8 × 8) cells of CaTiO3 lattice are
tabulated in Table 2.

Table 2. Planar density and Young’s modulus values of the unit cell, super cells (2 × 2 × 2) and symmetry cells of CaTiO3.

Index Planar Density
of Unit Cell

Planar Density
of Super Cell (2 × 2 × 2)

Planar Density
of Symmetry Cells

Planar Density
of Super Cell (8 × 8 × 8)

Young’s Modulus
(GPa)

(100) 0.93 0.93 0.93 in (2 × 2 × 2) 0.93 290.059
(110) 0.51 0.51 0.51 in (2 × 2 × 2) 0.51 221.652
(111) 0.04 0.04 0.04 in (2 × 2 × 2) 0.04 179.354
(200) 0.64 0.64 0.64 in (2 × 2 × 2) 0.64 290.059
(210) 0.41 0.41 0.41 in (2 × 2 × 2) 0.41 194.176
(211) 0.16 0.25 0.25 in (2 × 2 × 2) 0.25 150.612
(220) 0.6 0.6 0.6 in (2 × 2 × 2) 0.6 129.810
(221) 0.46 0.29 0.31 in (4 × 4 × 4) 0.31 109.622
(310) 0.24 0.24 0.23 in (4 × 4 × 4) 0.23 186.471
(311) 0.04 0.03 0.02 in (3 × 3 × 3) 0.02 140.386
(222) 0.99 0.88 0.88 in (3 × 3 × 3) 0.88 83.615
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4. Discussion

According to Table 2 and Figures 3–6, the expanded cells have an optimum matrix,
and in this case, achieving the optimum matrix is introduced as the symmetry cells. An
optimum matrix is the minimum extension for a specific plane of the unit cell to a super cell
from which the density plane of that plane does not change. For example, symmetry cell
(optimum matrix) of (311) plane is (3× 3× 3), which means that after extending to a greater
matrix such as (4 × 4 × 4) or (8 × 8 × 8), planar density values will be similar (Figure 5a–c).
Real planar density values of each plane are obtained from the symmetry cell, because
once the symmetry of each plane is reached, with the extension of that plane to infinity
(real plane), the planar density does not change. In addition, to recognize the symmetry
cell, knowing some parameters such as crystal lattice, locations of atoms in the planes and
index of planes is essential. Therefore, to determine Young’s modulus values based on the
planar density of CaTiO3, the symmetry cells should be found. It is very interesting that
symmetrical or real values are related to the super cells of the (8 × 8 × 8) matrix, because in
matrix (8 × 8 × 8), lattice correspondence in all directions is available; therefore, real planar
density values should be calculated for the super cell of (8 × 8 × 8) matrix. To confirm this,
calculations of real planar density and geometry of atoms and planes of (211), (221), (311)
and (222) in super cells (8 × 8 × 8) are presented in Figures 3b, 4b, 5c and 6b, respectively.
It is clear that finding the exact situation of planes and geometries is sophisticated, but with
when they are known, the results obtained from Young’s modulus values will have fewer
errors. The basic supposition is that when the planar density is raised, the motion of atoms
with the mechanism of dislocation movement needs high forces. Dislocations are regions
in the lattice where an additional plane of atoms have been included abstracted from an
ideal crystal (without imperfections). Dislocations are caused by losing acoustic energy,
and this matter will affect the values of wavelength and time of ultrasonic waves [38].

The force (W), which is needed for the movement of atoms in each plane, is obtained
from Equation (11) [39].

W =
E

2(1 + ν)
b2l (11)

In Equation (11), E is Young’s modulus, b is Burgers vector, l is dislocation length
and ν is Poisson’s ratio. The higher value of force is in accordance with the modulus of
elasticity (Young’s modulus), which would be higher.

To compare Young’s modulus values of CaTiO3 in a unit cell, super cells (2 × 2 × 2)
and symmetry cells, the fitting of Young’s modulus values extracted by each diffracted
plane versus planar density values is presented in Figure 8. According to the results (shown
in the Figure 8) and the straight fitting line, Young’s modulus values of unit cell, super cells
(2 × 2 × 2) and symmetry cells were calculated as 162.62 ± 0.4 GPa, 151.71 ± 0.4 GPa and
152.21± 0.4 GPa, respectively. As expected, the Young’s modulus value of symmetry cells of
CaTiO3 (152.21 ± 0.4 GPa) is in good agreement with experimental Young’s modulus value
extracted via ultrasonic-echo technique (153.87 ± 0.2 GPa). Moreover, Young’s modulus
value of unit cell (162.62 ± 0.4 GPa) has a greater difference with experimental Young’s
modulus value, and as a result, the unit cell of CaTiO3 cannot be represented as whole
cells. This is because in a unit cell of CaTiO3, crystalline defects are not considered and is
especially controlling of deformation, and displacement of atoms in the planes is related to
the dislocation networks [40]. Further, a unit cell of CaTiO3 is not involved in imperfections
(such as dislocations, Frenkel defect and Schottky defect) with respect to the super cell [41];
therefore, the slope line value of the unit cell is reported (37.23) to be less than the slope
line value of super cells (2 × 2 × 2) (63.67) and symmetry cells (62.41). Consequently, the
effect of imperfections in expanded cells (super cells) is very impressive, so the unit cell
of CaTiO3 is considered as the ideal lattice, while symmetry cells such as (8 × 8 × 8) of
CaTiO3 are real lattices [42]; this is consistent with the experimental Young’s modulus. It is
clear that each imperfection will be caused by a decreasing Young’s modulus [43], and in
Figure 8, this matter is confirmed when the Young’s modulus value (intercept) in the unit
cell of CaTiO3 is higher than in super cells (2 × 2 × 2) and symmetry cells. Apparently, a



Materials 2021, 14, 1258 13 of 15

unit cell of CaTiO3 is represented by the volume of a real crystal, so the unit cell is useful to
acquire theoretical density. Nevertheless, calculations of planar density based on the unit
cell were obtained, but with errors.
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5. Conclusions

1. CaTiO3 as a category of perovskite is successfully synthesized via solvothermal
method.

2. Crystal size values of CaTiO3 are calculated as ~59.10 and 63.02 through the Monshi-
Scherrer method and BET analysis, and the crystal size values were confirmed by
TEM image.

3. Planar density is responsible for modulus of elasticity of that plane; therefore, for the
first time, comprehensive calculations of geometry, location and planar density values
of CaTiO3 were shown.

4. Elastic stiffness constants and Young’s modulus values of CaTiO3 were obtained by ultrasonic-
echo method (C11 = 330.89, C12 = 93.03, C44 = 94.91 GPa and E = 153.87± 0.2 GPa).

5. Young’s modulus values of CaTiO3 extracted by planar density and least square
method were calculated as 162.62 ± 0.4, 151.71 ± 0.4 and 152.21 ± 0.4 GPa for unit
cell, super cells (2 × 2 × 2) and symmetry cells, respectively.

6. The Young’s modulus value of CaTiO3 reported by symmetry cells is in good agreement
with Young’s modulus value reported by ultrasonic-echo technique and the literatre.

7. A unit cell of CaTiO3 is not representative of the distribution of atoms on the planes;
therefore, to obtain the real value of planar density and find the symmetry of distribu-
tion of atoms on the planes, expanded cells and utilizing symmetry cells are suggested.

8. Obtaining the planar density values based on unit cell or each super cells except for
(8 × 8 × 8) is an estimation.

9. The real value of Young’s modulus of CaTiO3 should be extracted by symmetry cells
or super cells (8 × 8 × 8).

10. The value of Young’s modulus of CaTiO3 extracted with this method can be applied
for industrial applications.
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Supplementary Materials: The following are available online at https://www.mdpi.com/1996-1
944/14/5/1258/s1, Figure S1: Synthesis route of CaTiO3, Table S1: Crystallographic parameters
of each individual XRD pattern related to the CaTiO3, Figure S2: Linear plot of modified Scherrer
equation related to the CaTiO3, Figure S3: TEM image of CaTiO3 powder, Figure S4: Geometry
of planes and calculations of planar density of (a) (100), (b) (110), (c) (111), (d) (200), (e) (210), (f)
(211), (g) (220), (h) (221), (i) (310), (j) (311) and (k) (222) related to the unit cell of CaTiO3, Figure S5:
Geometry of planes and calculations of planar density of (a) (100), (b) (110), (c) (111), (d) (200), (e)
(210), (f) (211), (g) (220), (h) (221), (i) (310), (j) (311) and (k) (222) related to the super cells (2 × 2 × 2)
of CaTiO3, Figure S6: Geometry of planes and calculations of planar density of (a) (100), (b) (110), (c)
(111), (d) (200), (e) (210), (f) (220), (g) (310) (4 × 4 × 4) and (h) (310) (8 × 8 × 8) related to the super
cells (8 × 8 × 8) of CaTiO3, Figure S7: Geometry of planes and calculations of planar density of (a)
(211) super cell (4 × 4 × 4) and (b) (211) super cell (8 × 8 × 8), Figure S8: Geometry of planes and
calculations of planar density of (a) (221) super cell (4 × 4 × 4) and (b) (221) super cell (8 × 8 × 8),
Figure S9: Geometry of planes and calculations of planar density of (a) (311) super cell (3 × 3 × 3),
(b) (311) super cell (4 × 4 × 4) and (c) (311) super cell (8 × 8 × 8), Figure S10: Geometry of planes
and calculations of planar density of (a) (222) super cell (3 × 3 × 3), (b) (222) super cell (8 × 8 × 8).
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