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SUMMARY 
 

 

On the present work the quality of joint of dissimilar materials was inspected using 

ultrasonic waves. Various ultrasonic techniques and sample characteristics were analyzed to 

develop suitable configuration for the inspection of joint of dissimilar materials. Using CIVA 

software the sample was designed and virtual ultrasonic inspections performed using 

conventional, focused and phased array transducers with a frequency range from 3,5 MHz to 10 

MHz. Suitable type and frequencies of ultrasonic transducer as well as the side of the sample 

from which the inspection has to be performed are selected according to results of CIVA 

modelling. Using Omniscan measurement system and phased array transducers of 3,5 MHz and 

5 MHz the delaminations between dissimilar joints were found experimentally. The lengths of 

delaminations and their depths were measured and compared to theoretically calculated values. 

Using Tecscan measurement system and immersion transducers the location of defects was 

determined. The uncertainties of results of ultrasonic testing were estimated.  
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INTRODUCTION 

 

Ultrasonic non-destructive testing (NDT) is widely used for the inspection of different types 

of materials. Ultrasonic instruments and software allows quickly detect flaws; determine their 

types, geometry, dimensions and the danger which defects bring to the object [1].  

Adhesively bonded dissimilar materials have a great interest in various fields of industry as 

aerospace, shipbuilding, energetic, construction and other areas of manufacturing. Variety of 

adhesively bonded metal and composite materials is employed in aerospace for commercial and 

military aircrafts. In particular, bonded joints of metal and aramid, carbon and glass fibre 

reinforced plastics are used for aircraft wings, tail and other parts. The use of this kind of 

structures leads to a reduction of aircraft weight as well as to strength and rigidity increase 

[2], [3].  

In adhesively bonded materials different types of defects as large bubbles, voids and 

porosity can occur by a lack of adhesive or by the presence of foreign objects. The major 

problem is delaminations which are caused by poor joining. 

All new joints of dissimilar materials require suitable ultrasonic technique of the inspection 

which has to be developed. Different parameters and characteristics as object geometry, 

structure, dimension, thickness, material properties as well as possible types of defects affect on 

the choice of ultrasonic technique [4], [5]. Therefore, to select suitable ultrasonic technique all 

these characteristics and parameters have to be studied. 

The aim of this thesis is to evaluate the joint of dissimilar materials between steel and glass 

fibre reinforced plastic (GFRP) using ultrasonic non-destructive method. 

The subject of this study is investigation of quality of bonding layer of joints of dissimilar 

materials using ultrasound waves. The object of the study is the presence of delaminations in the 

sample.  

To achieve the objective of this investigation project the following tasks are going to be 

studied: 

 analysis of ultrasonic methods which are suitable for the examination of joints of 

dissimilar materials, as well as the choice of the appropriate method for a given sample; 

 computer modelling using CIVA software in order to investigate influence of various 

factors for non-destructive evaluation of dissimilar joints; 

 ultrasonic investigation of dissimilar material joints experimentally. 

For the validity of research done the calculations of uncertainty of the results will be 

performed.  
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1 ANALYSIS OF ULTRASONIC METHODS SUITABLE FOR THE INSPECTION OF 

JOINTS OF DISSIMILAR MATERIALS 

 

There are several main ultrasonic techniques of the object inspection in ultrasonic NDT. The 

choice of the method depends on geometry and dimension of the object under inspection, its 

structure, properties and surface condition as well as on the inspection conditions [5].  

Suitable ultrasonic technique has to be developed for the inspection of joint of steel and 

GFRP. So to achieve this goal main methods of ultrasonic inspection are analyzed in this part of 

thesis. 

 

1.1 Pulse Echo method 

 

Ultrasonic Pulse Echo method is a well-established technique which is widely used in non-

destructive testing. Ultrasonic transducer transmits repetitive acoustic pulses to the adhesively 

bonded joints of dissimilar materials. The acoustic pulses reflect from the bonding or various 

defects and the same transducer receives these signals (echoes). The propagation of acoustic 

waves in joint of steel and GFRP is shown in Fig.1.1. 

 

Fig.1.1. Pulse echo inspection of adhesive bonds of dissimilar materials [8] 

 

The direction of the reflected ultrasound signal depends on incidence angle of transducer as 

well as on the orientation of the reflecting defect or surfaces of the sample. Received ultrasound 

signals are monitored on display of measurement instrument. The amplitude of signal and time 

delay between initial pulse and received pulse are measured [1], [7]. 

Amplitude scans (A-scans) of the inspection of quality of adhesively bonded materials are 

shown in Fig.1.2. As a result a portion of energy will be reflected back to transducer and other 

portion will be transmitted in to the bonded layer and absorbed each time when ultrasound signal 

reaches the interface of the object. In the case of void presence all the energy of ultrasound will 

be reflected back to transducer. The attenuation of ultrasound signals reflected from the interface 
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of good bond will be higher than attenuation of signals reflected from the unbonded area. In 

addition to that for an unbonded layer the amplitude of each ultrasound reflection will be slightly 

bigger because there is no interface loss of energy [6]. 

 

Fig.1.2. A-scans of the inspection of quality of adhesively bonded materials [6] 

 

Advantages: pulse echo inspection can be performed with longitudinal, shear, surface or 

Lamb waves; straight beam or angle beam techniques can be used to detect defects of different 

orientation; type, location, size and orientation of defects can be determined from the data; 

separate transmitting and receiving transducers can be used. Disadvantages: defects can’t be 

detected in the region where time period equals to the wavelength of ultrasound (dead zone) [4], 

[7]-[9].  

 

1.2 Through–Transmission Technique 

 

The through-transmission technique is performed using separate transmitting and receiving 

probes on either side of the joint of dissimilar materials as it shown in Fig.1.3. The position of 

two transducers has to be exactly one in front another. Water or special gels can be used as a 

coupling media between transducers and the joint of dissimilar materials in ultrasonic non-

destructive techniques. The contact through-transmission technique is used in practice very rare 

because of the complexity to align probes one in front another and the requirement of access to 

the both sides of the object and good contact. Immersion through-transmission method has more 

popularity, transmitting and receiving probes are fixed and scanning the sample along a 

predetermined axis. For the defect detection the magnitude of transmitted signal is monitored on 

C-scan which produces two-dimensional image of defects in the sample. In the case of defect 

presence the amplitude of the received signal is lower than the amplitude of the signal received 

from the area without defect.  
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Through-transmission technique is widely used for the detection of discontinuities. The 

presence of defects can be determined by amplitude analysis of the received signals [4], [6]. 

 

Fig.1.3. Ultrasonic through-transmission technique [6] 

 

Advantages: detection of most common defects; there is no dead zone. Disadvantages: 

impossibility of defect depth detection; not suitable for specimens that can be investigated only 

from one side; difficult to position transducers exactly one in front another [4], [6], [10].  

 

1.4 Lamb wave testing 

 

Lamb waves are used for the high speed testing of a plate, wire, strip and other thin 

materials. Lamb waves propagate only in the plates with a thickness comparable to the 

wavelength. In this case the complex resonance phenomena occur in plate and leads to the 

formation of standing waves. Lamb waves or (plate waves) are complex elastic waves which are 

propagating in an elastic medium formed by the combination of standing and guided waves. 

Lamb waves consist of different modes moving at different speeds [11], [12]. Most common 

propagation modes are symmetrical and asymmetrical modes which are shown in Fig.1.4.  

 

Fig.1.5. Propagation modes of Lamb waves: a-propagation of Lamb waves in a plate of 

thickness d, b-symmetric mode, c-asymmetric mode [11] 
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In the case of propagation of symmetric mode the plate surface moves in opposite side, in 

the case of propagation of asymmetric mode the plate surface moves in one direction. The speed 

of Lamb wave propagation depends on the modes and the thickness of the plate [11]. 

The experimental set-up of Lamb wave testing of adhesively bonded joint is shown in 

Fig.1.5. 

 

Fig.1.5. Experimental set-up of Lamb wave testing of adhesively bonded joints [11] 

 

Two immersion transducers with 500 kHz central frequency one as transmitter and another 

as receiver in a pitch and catch configuration were used. Each transducer is connected to a 

rotation stage to control the inclination. For excitation of desirable mode the particular angle of 

transducer inclination was selected and fixed. Immersion method was performed to guarantee the 

same coupling between the transducers and the plate. The ultrasonic signal was transmitted to the 

plate and after propagation the ultrasound collected by the receiver. In the next steps the signal 

was amplified and filtered. In order to increase signal to noise ratio the signal was averaged by 

oscilloscope and transferred to a computer for processing and analyzing [11].  

Advantages: high-speed testing of thin materials, whose thickness is equal to a few 

wavelengths; can test material at various angels of incidence in the frequency range of 0,1 to 

15,0 MHz; propagation at long distances. Disadvantages: active driving mechanism requirement 

for wave propagation; complexity to interpret the resulting data [11], [12], [13].  

 

1.5 Resonance Technique 

 

Resonance technique is based on the changing of frequency of acoustic wave until the 

resonance condition is occurred. Resonance technique of the inspection of adhesively bonded 

materials is shown in Fig.1.6. As a result during the resonance standing waves were generated in 

the case of good bond and void between materials. The length of standing wave at resonance 

frequency is calculated according to the equation: 
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D

D
f

c
D  2 , (1.1) 

Where D  is the length of the standing wave in the joint area, D  is the thickness of the 

joint, c  is the velocity of sound waves in the adherends (the thin adhesive layer is neglected) and

Df  is the resonant frequency. 

In the case of presence of void the resonant frequency will change sharply comparing to 

resonant frequency of good bond due to change of thickness value [6], [14].  

 

Fig.1.6. Resonance Technique [6] 

 

Advantages: thickness measurements; defect detection in adhesive areas of the joints; low 

cost. Disadvantages: low frequency range of 20 Hz; difficult to detect small defects and 

geometric deviations because of little influence on resonant frequency; depends on object 

geometry and structure [6], [14].  

 

1.6 Acousto-Ultrasonic Technique 

 

The acousto-ultrasonic technique of non-destructive testing can be used to provide 

information about the presence of various defects in specimens and quality of adhesively bonded 

dissimilar materials by correlating characteristics of propagation of stress waves with the the 

strength of the joint [1].  

In this technique a broadband transducer is used as a transmitter of repetitive ultrasonic 

pulses into the sample. Another transducer is used as a receiver of stress waves occurred from 

the injected ultrasonic pulses. The receiver is placed on the same side of sample as a transmitter 

at a specific distance. The longitudinal waves are excited and transmitted perpendicular to the 

sample surface. The ultrasound waves will produce oblique reflections and shear waves in the 

material. The resulting stress waves get multiple reflections from the surfaces and interfaces of 

the sample and interact with different discontinuities. As a result structural performance and 

presence of various defects can be determined due analysis of stress waves which are affected by 
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properties of sample microstructure and morphology. In many cases the information of 

mechanical behaviour is possible to obtain from analysis of data of stress wave propagation 

[1], [7]. 

The experimental set-up of acousto-ultrasonic technique is shown in Fig.1.7. 

 

Fig.1.7. Experimental set-up of acousto-ultrasonic technique [1] 

 

Advantages: detection of large flaws, delaminations and material properties; one-side 

accessibility. Disadvantages: can’t be used to detect small, single flaws because of the lack of 

influence on mechanical properties; the wavelength is much longer than in other ultrasonic 

methods [1], [6], [15]. 

 

1.7 Selection of the most suitable ultrasonic method for the inspection of joints of dissimilar 

materials 

 

In the case of ultrasonic inspection of the joint of dissimilar materials, the choice of the 

method and suitable transducer depends on the: 

 properties of materials which have to be measured; 

 different materials thicknesses; 

 object geometry; 

 object sizes; 

 object structure; 

 temperature, accuracy requirements and other inspection conditions [5]. 

The object to be inspected has a simple planar geometry with a length and width of 300 mm, 

the thickness of the object is 10,42 mm. One layer is a stainless steel with a thickness of 6,3 mm, 

other layer is a GFRP with a thickness of 4,12 mm. In Table 1.1 the wavelengths of ultrasound 
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in metal and composite using frequency of 3,5 MHz, 5 MHz and 10 MHz are presented and 

calculated according to equation: 

f

c
 , (1.2) 

where  -wavelength, c -ultrasound velocity in dissimilar materials, f -frequency. 

Table 1.1. Parameters of wavelength in different materials 

Sample Frequency f, MHz 
Theoretical velocity 

c, m/s 
Wavelength,  , mm 

Steel 
3,5 

5 940 1,750 

GFRP 3 150 0,832 

Steel 
5 

5 940 1,225 

GFRP 3 150 0,583 

Steel 
10 

5 940 0,613 

GFRP 3 150 0,291 

 

Based on it the thickness of the object is enough large, what prevents the use of Lamb wave 

testing. The type of the material is very important factor because of different properties; in the 

case of composite material it absorbs ultrasound waves more quickly comparing to steel, that is 

why when performing investigation of defects between dissimilar materials from composite side 

it is better to use not very high frequencies of transducers to avoid the increase of attenuation. 

Composite has several sublayers arranged at different angles. Due to it waves scattering 

increases what leads to increased attenuation [5], [16], [17].  

Adhesively bonded joints are widely used in different industries and can have several types 

of defects. The most common defects in such type of joints are delaminations. The types of 

possible defects and their orientation and sizes which have to be inspected have to be taken into 

account. Ultrasonic inspection of delaminations of joint of steel and GFRP has to be performed. 

The construction and geometry of the object makes possible to inspect it from both sides as 

well as apply through transmission method. The disadvantage of this method is that it requires 

transmitting and receiving probes to be positioned on both sides of the joint and to be exactly 

aligned [4]. 

Based on the characteristics and conditions described, the pulse-echo method is more simple 

and effective in implementation using one transducer which is emitter and receiver. The 

frequency to be used for transducers is chosen according to the type of materials, their thickness; 

produced wavelength in materials which depends on ultrasonic velocity and frequency; as well 

as attenuation which leads to amplitude reducing of sound pressure due to friction losses in 

transmission materials. As a result ultrasonic transducers of 3,5-10 MHz are most suitable for the 

task.  
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2 DESCRIPTION AND CHARACTERISTICS OF THE OBJECT AND ULTRASONIC 

TRANSDUCERS 

 

The object under inspection is a joint of dissimilar materials which has delaminations 

between composite and metal layer. This kind of structure of the object is widely used in various 

industries. Therefore, the study of this topic is relevant. In this part of work the parameters and 

structure of the object is described as well as characteristics of transducers.  

 

2.1 Specimen parameters and its defects 

 

The specimen, that has to be investigated, is a joint between steel and GFRP. There are 3 

artificial delaminations in the joint of dissimilar materials. Geometry characteristics of the 

sample are shown in Table 2.1. 

Table 2.1. Geometry data of specimen 

Shape Content Length (a), mm Width (b), mm 

Thickness (c), 

mm 

Steel GFRP 

planar 

1st layer – glass fiber 

reinforced plastic, GFRP 300 300 
6,30 4,12 

2nd layer - steel Total: 10,42 

 

It should be noticed that the thickness of the composite is 4,12 mm (d) and it consists of 4 sub-

layers of glass fibre/epoxy resin. The thickness of each composite sub-layer is 1,03 mm. Hence the 

thickness of steel is 6,30 mm. The geometry parameters of the specimen are illustrated in Fig. 2.1. 

 
Fig.2.1.Geometry characteristics of the sample 

 

Acoustic properties of steel and GFRP are presented in Table 2.2. 

Table 2.2. Theoretical properties of dissimilar materials 

Material 
Theoretical velocity of 

longitudinal waves c, m/s 

Theoretical velocity of 

transverse waves c, m/s 

Acoustic impedance 

Z, MRayl 

Steel 5 940 3 251 45,4 

GFRP 3 150 1 727 6,04 

       
a 

       
       
b 

       
       d c 
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Acoustic impedances z of steel and GFRP are defined as a product of their densities p and 

acoustic velocity c. Acoustic impedance plays a significant role in determining the acoustic 

transmission and reflection at the boundary of two dissimilar materials having different acoustic 

impedances [18], [19]. 

 

2.2 Characteristics of conventional and phased array transducers 

 

The characteristics of conventional and linear phased array transducers which could be used 

for ultrasonic testing are shown in Table 2.3 and Table 2.4 respectively. 

Table 2.3. Characteristics of conventional transducers 

№ Transducer Type Pattern Shape 
Diameter, 

mm 
Focusing 

Radius, 

mm 

1 
5 MHz 

transducer 
Immersion 

Single 

element 
Circular 10 Flat - 

2 
10 MHz 

transducer 
Immersion 

Single 

element 
Circular 10 Flat - 

3 
10 MHz 

transducer 
Immersion 

Single 

element 
Circular 10 Spherical 24,5 

 

Table 2.4. Characteristics of phased array transducers 

Transducer 

3,5MHz transducer 

(3.5L64-64x7-NW1-

P-2.5-OM) 

5 MHz transducer 

(5L128-128x7-NW3-

P-2.5-OM) 

10 MHz transducer 

(10L128-64x7-I2-P-

2.5-HY) 

Pattern Linear phased array Linear phased array Linear phased array 

Incident dimension 

(Virtual aperture 

Av), elements 

64 128 64 

Orthogonal 

dimension (Passive 

aperture, W), mm 

7 7 7 

Number of 

elements (active 

aperture A) 

64 128 128 

Gap between 

elements (g), mm 
0,1 0,1 0,1 

Element width (e), 

mm 
0,9 0,9 0,4 

 

Phased array transducers can be employed in almost any cases where conventional 

transducers are used. The main benefits of phased arrays is steering of multiple elements, 

focusing, covering and electronically scanning large area of the sample what avoids mechanical 

scanning using conventional transducers [20]. Parameters of linear phased array transducer are 

shown in Fig.2.2. 
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Fig.2.2. Parameters of phased array transducer: A-active aperture; W-passive aperture; e-element 

width; g-space between elements; p-distance between centres of 2 elements [16] 

 

Characteristics of the Olympus wedges for 3,5 MHz and 5 MHz phased array transducers 

are given in Table 2.5. 

 

Table 2.5. Characteristics of the wedges 

Wedge 

Nominal 

Refracted Beam 

Angle (in Steel) 

Probe 

Orientation 

Wedge Dimensions, mm 

L W H 

SNW3-0L-IHC-C 0oLW Normal 130 32 20 

SNW1-0L-WP5 0oLW Normal 66 32 20 
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3 CIVA COMPUTER MODELING OF JOINT OF DISSIMILAR MATERIALS 

 

In order to find suitable configuration for the inspection of joint of dissimilar materials 

CIVA software was used. In this program ultrasonic field’s radiated by transducers can be 

visualized and investigated. The object which is under inspection and optimal transducers are 

designed. In addition CIVA can be used for optimizing strategies of the inspection, verifying its 

parameters, as well as helping in results analysis [21]. The joint of dissimilar materials was 

inspected from composite and metal side in order to define better side of the object for ultrasonic 

inspection of delaminations. Using the toolbox of the program, expected interaction of ultrasonic 

waves with delaminations in the sample was evaluated. 

In this thesis part ultrasonic fields of conventional transducers, focused and phased array 

transducers are studied. 

Properties of steel and GFRP are given in Table 3.1. 

 

Table 3.1. Material properties 

Material Density p, 
3. cmg  

Velocity of longitudinal 

waves c, m/s 

Velocity of transverse 

waves c, m/s 

Steel 7,8 5 900 3 230 

Glass fiber 1,67 3 150 1 727 

Epoxy 1,23 2 488 1 134 

 

The generalized Hooke’s law which is relating stresses to strain: 

𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗, 𝑖, 𝑗 = 1, … ,6 (3.1) 

Where 𝜎𝑖 are the stress components shown on a three-dimensional cube in x, y, and z 

coordinates in Fig.3.1 (a), 𝐶𝑖𝑗 is the stiffness matrix, and 𝜀𝑗 are the strain components. 

GFRP is a unidirectional transversely isotropic material or orthotropic material with one of 

its planes which is a plane of isotropy. At every point of this plane the mechanical properties are 

the same in all directions [22]. The 1-2 plane is the plane of isotropy, then 1 and 2 subscripts on 

the stiffness are interchangeable. The stress-strain relations have only five independent elasticity 

constants and illustrated in Fig.3.1 (b). 

 

Fig.3.1. Stress components (a) and stress-strain relations (b): 𝛾𝑖-shear strains, 𝜏𝑖-shear stresses 

a b 
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The matrix of composite material is illustrated in Fig.3.2 (a) and positioning of sub-layers of 

composite material is shown in Fig.3.2 (b). 

 

Fig.3.2. Anisotropic matrix of stiffness (a) and composite sub-layer’s algorithm (b) 

 

As it shown in Fig.3.2 (b) there are 4 sub-layers of composite material arranged at different 

angles. Flexural and torsional stiffness depends on order of placing sub-layers. The matrix 

properties determine the strength of the composition in shear, compression and resistance to 

fatigue failure [22], [23].  

 

3.1 Water path calculation of the transducers 

 

There are two zones in the field of ultrasonic transducer: 

 near field; 

 far field. 

Big fluctuations of sound pressure occur in near field, which limits the possibility of defect 

inspection and evaluation of their values. Therefore, defects must be located in far field. The 

length of the near field is calculated according to the equation: 

c

fDD
N

44

22




, (3.2) 

where D  is a diameter of transducer, f  is a frequency of transducer and c  is a velocity of 

ultrasound in the water [16].  

Assuming that the speed of sound in water is 1 500 m/s, the diameter of the transducer is 

10mm and the frequency 5 MHz, the length of the near field is 84 mm. In the case of 10 MHz 

transducer, the near field length is 167 mm. Transducers were modelled using CIVA software 

and the distributions of the amplitude along the transducer‘s axis of 5 and 10 MHz are shown in 

Fig.3.4 and in Fig.3.5 respectively.  

a b 
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Fig.3.4. The distribution of the amplitude along 5 MHz transducer‘s axis 

 

Fig.3.5. The distribution of the amplitude along 10 MHz transducer‘s axis 

 

Focused transducer concentrates energy of field in a narrow zone. The value of focused zone 

depends on the frequency of transducer. The maximum amplitude is in the focused zone [16]. 

The distribution of the amplitude along 10 MHz focused transducer and ultrasonic field in water 

is shown in Fig.3.6. The depth of focus is 49 mm.  

For better resolution zone of focus should be in a required area of the sample. Therefore the 

distance of location of focused transducer is calculated according to the equation:  

)/( watmat ccMPFWP  , (3.3) 

where WP  is a water path needed for the inspection of the sample, F  is a focal point, MP  

is material path, 
matc  is a velocity in material and 

watc  is a velocity in water [16]. As a result of 

calculation for sample inspection from composite side the distance between transducer and 

sample has to be 40,27 mm; in the case of inspection from metal side the distance equals to  

23,93 mm. 

Near field Far field 

 84 

Near field Far field 

 167 
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Fig.3.6. The distribution of the amplitude (a) and field (b) along focused transducer‘s axis 

 

3.2 Investigation of ultrasonic field of different transducers in CIVA software 

 

The objective of this part of thesis is to investigate ultrasonic fields in the sample using 

different transducers and compare their characteristics. The inspections were performed from 

composite and metal sides of the object.  

Position of 5 MHz, 10 MHz conventional and 10 MHz focused transducers and their 

computation zone are shown in Fig.3.7. The length between transducers and sample N is the 

length of near field and in the case of focused transducer is the water path. N for 5 MHz 

transducer is 84 mm, for 10 MHz is 167 mm. In the case of inspection from composite using 10 

MHz focused transducer the water path is 40,27 mm, in the case of inspection from metal side 

the water path is 23,93 mm according to equation (3.3). 

 

Fig.3.7. Positioning of conventional and focused transducers 
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The positioning of 3,5 MHz, 5 MHz and 10 MHz phased array transducers are shown in 

Fig.3.8. The inspection using 3,5 MHz and 5 MHz phased array transducers performed with 

contact method. The Olympus wedge was used for it. The inspection using 10 MHz phased array 

transducer performed with immersion method. The depth of water is 10 mm. Simple electronic 

scanning and single point focusing were used for the sample inspection with phased array 

transducers. Their active aperture is 128 and 64 elements but in scanning only 8 elements. 

Passive aperture of phased array transducers is 7 mm and the gap between elements is 0,1 mm. 

In case of 3,5 MHz and 5 MHz phased array transducers element width is 0,9 mm, and in the 

case of 10 MHz phased array transducer element width is 0,4 mm. 

 
Fig.3.8. Positioning of phased array transducers: a-3,5 MHz and 5 MHz, b-10 MHz 

 

3.2.1 Sample inspection from composite side 

 

First, ultrasonic inspections from composite side were performed. The ultrasonic fields of 

conventional and focused transducers calculated with 0,1 mm step. The distribution of the field 

in the sample is shown in Fig.3.9. 

 
Fig.3.9. Ultrasonic field in the sample: a-5 MHz conventional transducer; b-10 MHz 

conventional transducer; c-10 MHz focused transducer 
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Based on results of investigation of ultrasonic fields it can be seen that ultrasonic waves 

propagates in composite material but only a small part of energy is transmitted to the second 

media (steel).  

The inspections of the sample from composite side with phased array transducers performed 

as well. The ultrasonic fields of phased array transducers distributed in the sample are shown in 

Fig.3.10. 

 

Fig.3.10. Ultrasonic fields of phased array transducers distributed in the sample: a-3,5 MHz,     

b-5 MHz, c-10 MHz 

 

Based on results of the inspections from composite side, the ultrasonic waves almost don’t 

propagate in metal material as in the case of inspection with conventional transducers. It can be 

caused due to high attenuation of ultrasonic waves in composite material or great mismatch of 

acoustic impedances which affects on the percentage of energy that will be reflected at the 

boundary between 2 media. The reflection coefficients will be calculated to establish the true 

cause of such propagation of ultrasonic energy in composite and metal materials. 

 

3.2.2 Sample inspection from metal side 

 

Inspections of ultrasonic fields of the sample from metal side were performed. The 

ultrasonic field distribution in the sample of 5 MHz, 10 MHz and 10 MHz focused transducers 

are shown in Fig.3.11.  

Based on results of inspection from metal side with conventional and focused transducers it 

can be seen that ultrasonic waves propagates in steel and a significant part of energy is 

transmitted to the second media (GFRP).  
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Fig.3.11. Ultrasonic field in the sample: a-5 MHz conventional transducer; b-10 MHz 

conventional transducer; c-10 MHz focused transducer 

 

The inspections of the sample from metal side with phased array transducers were 

performed as well. The ultrasonic fields of phased array transducers distributed in the sample are 

shown in Fig.3.12. 

 

Fig.3.12. Ultrasonic fields of phased array transducers distributed in the sample: a-3,5 MHz,     

b-5 MHz, c-10 MHz 
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establish the true cause of such propagation of ultrasonic energy in composite and metal 

materials.  

 

3.3 Estimation of the reflection coefficients 

 

Acoustic impedances of materials describe what part of the ultrasonic waves will be 

reflected at the boundary between two media, and what part will be transmitted to the second 

media. Since the values of acoustic impedances of materials on both sides of the boundary are 

known (Table 2.2) the part of ultrasonic wave which is reflected is calculated according to 

equation [19]: 

2

12

12















zz

zz
R , (3.3) 

The reflection coefficient at the boundary between water and composite is 0,36. In other 

words 36 % of energy is reflected and the rest is transmitted to GFRP. The reflection coefficient 

at the boundary between water and steel is 0,86 or 86 % of energy is reflected. The reflection 

coefficient at the boundary between steel and GFRP is 0,58 or 58 % of energy is reflected.  

As a result in the case of inspection from composite side 36 % of energy is reflected from 

the boundary between water and GFRP what is more than 2 times lower comparing to inspection 

from metal side. That is why the reason of transmission of small part of ultrasound energy from 

composite to steel is in high attenuation of GFRP. 

 

3.4 Investigation of sample with defects in CIVA software 

 

Using the toolbox of defect interaction of the CIVA program, it is possible to evaluate the 

response of expected defects in the sample. Different ways of the defect inspection can be 

compared with regard to detection and sizing capability [21]. In this part of thesis the inspection 

of defects from both sides of the sample using conventional and phased array transducers were 

performed. Parameters of the defects are given in Table 3.2.  

Table 3.2. Parameters of the defects 

№ Geometry Length, mm Width, mm 

1 Rectangular 25 25 

2 Rectangular 15 15 

3 Rectangular 5 5 

 

The sample and position of delaminations is illustrated in Fig.3.13. One layer of the sample 

is GFRP and the other one is stainless steel. 



25 

 

 

Fig.3.13. Position of the delaminations: a-length, b-width, c-thickness 

 

The experimental set-up of the inspection with conventional transducers is shown in 

Fig.3.14.  

 

Fig.3.14. Experimental set-up of the inspection with 5 MHz, 10 MHz and 10 MHz focused 

transducers 

 

The length (L) of mechanical scanning with 5 MHz and 10 MHz transducers is 185 mm, the 

length of mechanical scanning with 10 MHz focused transducer is 190 mm. 

The experimental set-up of the inspection with phased array transducers are shown in 

Fig.3.15.  

 

Fig.3.15. Experimental set-up of the inspection with 3,5 MHz, 5 MHz and 10 MHz phased 

arrays 

 

The incident dimension of 3,5 MHz and 5 MHz phased array transducers is 128 mm and 

equals to the length (L) of electronic scanning. The incident dimension of 10 MHz phased array 

transducer is 64 mm and equals to the length (L) of electronic scanning. 
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3.4.1 Sample inspection from composite side 

 

First, sample of dissimilar material joints was inspected from composite side. The 

attenuation was taken into account. The B-scan of the inspection with 0,1 mm step of 5 MHz 

transducer is shown in Fig.3.16 (a). Amplitudes of signals which are reflected from the defect 

areas (black colour) and from the interface of the sample without defects (red colour) are 

compared. The A-scans of the sample and 1st delamination are shown in Fig.3.16 (b).  

 

Fig.3.16. B-scan (a) and A-scan (b) of the inspection of the sample with 5 MHz conventional 

transducer: reflection from the defects-black colour, reflection from the interface-red colour 

 

The B-scan of the inspection with a 0,1 mm step of 10 MHz transducer is shown in Fig.3.17 

(a). Amplitudes of signals which are reflected from the defect areas (black colour) and from the 

interface of the sample without defects (red color) are compared. The A-scans of the sample and 

1st delamination are shown in Fig.3.17 (b).  

 

Fig.3.17. B-scan (a) and A-scan (b) of the inspection of the sample with 10 MHz conventional 

transducer: reflection from the defects-black colour, reflection from the interface-red colour 

 
The B-scan of the inspection with a 0,1 mm step of 10 MHz focused transducer is shown in 

Fig.3.18 (a). Amplitudes of signals which are reflected from the defect areas (black colour) and 

from the interface of the sample without defects (red colour) are compared. The A-scans of the 

sample and 1st delamination are shown in Fig.3.18 (b).  
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Fig.3.18. B-scan (a) and A-scan (b) of the inspection of the sample with 10 MHz focused 

transducer: reflection from the defects-black colour, reflection from the interface-red colour 

 

The B-scans of the inspection from composite side with 1 element step of 3,5 MHz phased 

array transducer are shown in Fig.3.19 (a, b). Amplitudes of signals which are reflected from the 

defect areas (black colour) and from the interface of the sample without defects (red colour) are 

compared. The A-scan of the sample and the largest delamination are shown in Fig.3.19 (c).  

 
Fig.3.19. B-scans (a-1st and 2nd defects, b-2nd and 3rd defects) and A-scan (c) of the inspection 

from composite side with 3,5 MHz phased array transducer: black colour-reflection from the 

defect area, red colour-reflection from the interface 

 

The B-scans of the inspection from composite side with 1 element step of 5 MHz phased 

array transducer are shown in Fig.3.20 (a, b). Amplitudes of signals which are reflected from the 

defect areas (black colour) and from the interface of the sample without defects (red colour) are 

compared. The A-scan of the sample and 1st delamination are shown in Fig.3.20 (c). 
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Fig.3.20. B-scans (a-1st and 2nd defects, b-2nd and 3rd defects) and A-scan (c) of the inspection 

from composite side with 5 MHz phased array transducer: black colour-reflection from the 

defect area, red colour-reflection from the interface 

 

The B-scans of the inspection from composite side with 1 element step of 10 MHz phased 

array transducer are shown in Fig.3.21. Amplitudes of signals which are reflected from the 

defect areas (black colour) and from the interface of the sample without defects (red colour) are 

compared. The A-scan of the sample and 1st delamination are shown in Fig.3.22. 

 
Fig.3.21. B-scans of the inspection from composite side with 10 MHz phased array transducer 
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Fig.3.22. A-scan of the inspection from composite side with 10 MHz phased array transducer: 

black colour-reflection from the defect area, red colour-reflection from the interface. 

 

As a result of inspection from composite side using 10 MHz and 10 MHz focused 

transducers the signals reflected from 1st defect are 0,6 dB and 0,2 dB weaker than the reflection 

from the interface. Using 5 MHz conventional transducer the reflection from 1st defect is 0,2 dB 

stronger than the reflection from interface. In the case of 3,5 MHz, 5 MHz and 10 MHz phased 

array transducers the signals reflected from 1st defect are 0,2 dB, 0,5 dB and 1,7 dB weaker than 

the reflection from the interface. Due to small differences in amplitudes it could be difficult to 

locate the defects in experimental measurements [4].  

A-scan signals reflected from 1st defect of all transducers which were used for the 

inspection in modelling program CIVA are compared. A-scan comparison of 5 MHz, 10 MHz 

and 10 MHz focused transducers is shown in Fig.3.23. 

 

Fig.3.23. A-scan of signals comparison of 5 MHz, 10 MHz and 10 MHz focused transducers 

 

According to A-scan reflection of 5 MHz transducer is 19 dB stronger than reflection of 10 

MHz transducer. Reflection of 10 MHz transducer is 4 dB stronger than reflection of 10 MHz 

focused transducer. 

A-scan signals reflected from the largest defect of 3,5 MHz, 5 MHz and 10 MHz phased 

array transducers which were used for the inspection from composite side in modelling program 

CIVA are compared. A-scan comparison of transducers is shown in Fig.3.24. 
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Fig.3.24. A-scan signals comparison of 3,5 MHz, 5 MHz and 10 MHz phased array transducers 

 

In A-scans signal comparison it can be seen that 5 MHz and 3,5 MHz phased array 

transducers have strongest signal reflections. Reflection of 3,5 MHz phased array is 8,9 dB 

stronger than 5 MHz phased array reflection. Reflection of 5 MHz phased array is 32,5 dB 

stronger than reflection of 10 MHz phased array. The lowest amplitude of the signal reflection 

belongs to 10 MHz phased array transducer. 

 

3.4.2 Sample inspection from metal side 

 

The joint of GFRP and steel was inspected in CIVA software from metal side with 

conventional and phased array transducers.  

The B-scan of the inspection with a 0,1 mm step using 5 MHz transducer is shown in 

Fig.3.25.  

 
Fig.3.25. B-scan of the inspection of the sample with 5 MHz transducer 
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reflected from the defect areas (black colour) and from the interface of the sample without 

defects (red colour) are compared. The A-scans of the sample and 1st delamination are shown in 

Fig.3.26 (b). 

 
Fig.3.26. B-scan (a) and A-scan (b) of the inspection of the sample with 5 MHz conventional 

transducer: reflection from the defects-black colour, reflection from the interface-red colour 

 

The B-scan of the inspection with 0,1 mm step using 10 MHz transducer is shown without 

front reflection in Fig.3.27 (a). Amplitudes of signals which are reflected from the defect areas 

(black colour) and from the interface of the sample without defects (red colour) are compared. 

The A-scans of the sample and 1st delamination are shown in Fig.3.27 (b).  

 

Fig.3.27. B-scan (a) and A-scan (b) of the inspection with 10 MHz conventional transducer: 

reflection from the defects-black colour, reflection from the interface-red colour 

 

Fig.3.28. B-scan (a) and A-scan (b) of the inspection with 10 MHz focused transducer: reflection 

from the defects-black colour, reflection from the interface-red colour 
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The B-scan of the inspection with a 0,1 mm step using 10 MHz focused transducer is shown 

without front reflection in Fig.3.28 (a). Amplitudes of signals which are reflected from the defect 

areas (black colour) and from the interface of the sample without defects (red colour) are 

compared. The A-scans of the sample and 1st delamination are shown in Fig.3.28 (b).  

The B-scan of the inspection with a 1 element step using 3,5 MHz phased array transducer is 

shown without front reflection in Fig.3.29 (a). Amplitudes of signals which are reflected from 

the defect areas (black colour) and from the interface of the sample without defects (red colour) 

are compared. The A-scan of the sample and 1st delamination are shown in Fig.3.29 (b). 

 
Fig.3.29. B-scans (a-1st and 2nd defects, b-2nd and 3rd defects) and A-scan (c) of the inspection 

with 3,5 MHz phased array transducer: black colour-reflection from the defect area, red colour-

reflection from the interface 

 

The B-scans of the inspection from metal side with 1 element step using 5 MHz phased 

array transducer are shown without front reflection in Fig.3.30 (a). Amplitudes of signals which 

are reflected from the defect areas (black colour) and from the interface of the sample without 

defects (red colour) are compared. The A-scan of the sample and 1st delamination are shown in 

Fig.3.30 (b). 
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Fig.3.30. B-scans (a-1st and 2nd defects, b-2nd and 3rd defects) and A-scan (c) of the inspection 

with 5 MHz phased array transducer: black colour-reflection from the defect area, red colour-

reflection from the interface 

 

The B-scans of the inspection from metal side with 1 element step using 10 MHz phased 

array transducer are shown without front reflection in Fig.3.31. Amplitudes of signals which are 

reflected from the defect areas (black colour) and from the interface of the sample without 

defects (red colour) are compared. The A-scan of the sample and 1st delamination are shown in 

Fig.3.32. 

 
Fig.3.31. B-scans of the inspection from the metal side with 10 MHz phased array transducer  
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Fig.3.32. A-scan of the inspection from the metal side with 10 MHz phased array transducer: 

black colour-reflection from the defect area, red colour-reflection from the interface 

 

As a result of the inspection from metal side using 5 MHz, 10 MHz and 10 MHz focused 

transducers the signals reflected from 1st defect are 0,6 dB, 0,5 dB and 0,9 dB stronger than the 

reflection from the interface. In the case of 3,5 MHz, 5 MHz and 10 MHz phased array 

transducers the signals reflected from 1st defect are 1,1 dB, 0,6 dB and 0,2 dB stronger than the 

reflection from the interface. Due to small differences in amplitudes it could be difficult to locate 

the defects from metal side in experimental measurements as well [4].  

A-scan signals reflected from 1st defect of all transducers which were used for the 

inspection in modelling program CIVA are compared. A-scan comparison of 5 MHz, 10 MHz 

and 10 MHz focused transducers is shown in Fig.3.33. 

 

Fig.3.33. A-scan signals comparison of 5 MHz, 10 MHz and 10 MHz focused transducers 

 

According to A-scan, reflection of 5 MHz transducer is 13,9 dB stronger than reflection of 

10 MHz transducer. Reflection of 10 MHz transducer is 4,2 dB stronger than reflection from 10 

MHz focused transducer. 

A-scan signals reflected from the largest defect of 3,5 MHz, 5 MHz and 10 MHz phased 

array transducers which were used for the inspection from metal side in modeling program 

CIVA are compared. A-scan comparison of transducers is shown in Fig.3.34. 
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Fig.3.34. A-scan signals comparison of 3,5 MHz, 5 MHz and 10 MHz phased array transducers 

 

In A-scans signal comparison it can be seen that 5 MHz and 3,5 MHz phased array 

transducers have strongest signal reflections. Reflection of 3,5 MHz phased array is 6,8 dB 

stronger than 5 MHz phased array reflection. Reflection of 5 MHz phased array is 34,1 dB 

stronger than reflection of 10 MHz phased array. The lowest amplitude of the signal reflection 

belongs to 10 MHz phased array transducer.  

As a result the strongest reflections from the defect belong to 3,5 MHz and 5 MHz 

conventional and phased array transducers. Increasing frequency of transducer the attenuation of 

ultrasound increases as well. Due to it the reflection from the defect can be very low and it will 

be difficult to distinguish delaminations. 

 

3.5 CIVA investigation of the attenuation influence  

 

The comparison ∆ of the amplitudes of the signal reflected from the interface with and 

without applying attenuation in CIVA software was performed. A-scans of the comparison of 

attenuations in composite and metal using 5 MHz phased array transducer are shown in Fig.3.35. 

 

Fig.3.35. A-scans of the comparison of attenuations (black colour-reflection without attenuation, 

red colour-reflection with attenuation): a-inspection from composite side, b-inspection from 

metal side 

 

According to results of attenuation comparison the GFRP is almost 3 times more attenuating 

material than steel.  
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3.6 Conclusions 

 

According to results of calculation of reflection coefficients R, 86 % of ultrasound energy 

will be reflected from the boundary between water and steel, and 36 % from the boundary 

between water and GFRP. The other part of energy transmits to the second media. In spite of this 

the investigation of ultrasonic fields and attenuation influence shows that GFRP is almost 3 

times more attenuating material than steel. Therefore the ultrasonic inspection of dissimilar 

material joint is selected to be performed from metal side in experimental part. 

The defect inspections using conventional and phased array transducers show that the 

amplitude difference between reflection from the delaminations and reflection from the area of 

interface without delamination is very low (about 0,1-1,7dB). As a result it could be difficult to 

locate the defects experimentally [4]. 

According to amplitude comparisons of interface reflections of all used transducers, the 

strongest signal belongs to 3,5 MHz and 5 MHz conventional and phased array transducers. The 

weakest signal belongs to 10 MHz focused and phased array transducers. Increasing the 

frequency of transducer the attenuation value increases as well. As a result it will be more 

difficult to locate delaminations using high frequency transducer. 3,5 MHz and 5 MHz phased 

array transducers are more suitable for the ultrasonic inspection of joint of dissimilar materials 

and were selected to be used in experimental part [4], [16], [17]. 
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4 EXPERIMENTAL EVALUATIONS 

 

Commonly all kind of materials as metals, plastics, composites, fiberglass, ceramics and 

others can be measured ultrasonically [7]. In this work the joint of metal and glass fibre 

reinforced plastics is under inspection. The ultrasound technique and transducers which will be 

used are selected according to analysis and results of investigation obtained in previous part. In 

Table 4.1 acoustic properties of steel and GFRP are presented: 

Table 4.1. Theoretical velocities in different materials 

Material Theoretical velocity of 

longitudinal waves c, m/s 

Theoretical velocity of 

transverse waves c, m/s 

Acoustic impedance Z, 

MRayl 

Steel  5 940 3 251 45,4 

GFRP 3 150 1 727 6,04 

 

Dimension of the joint of GFRP and steel is 300*300*10,42 (mm). The thickness of GFRP 

layer is 4,12 mm and steel layer is 6,30 mm.  

 

4.1 Ultrasonic velocity measurement 

 

Different types of materials transmit ultrasound waves at different speeds. Generally 

ultrasound speed is faster in hard materials and slower in soft materials. The temperature 

influences on the speed and can change it significantly. In order the depth of the defects, 

ultrasound velocity in theinvestigated materials have to be known [24]. 

Firstly, the ultrasound velocity in metal is measured and calculated. Used equipment: 

 flaw detector Olympus Omniscan MX; 

 15 MHz normal incidence longitudinal wave transducer; 

 joint of dissimilar materials. 

Experimental set-up for measurement of velocity in metal with echo impulse mode is shown 

in Fig.4.1. 

 
Fig.4.1. Experimental set-up for measurement of velocity in steel [16] 

 

Seven independent measurements performed using 15 MHz transducer without delay line 

and reflected ultrasound signals from the bottom of metal material registered. Averaged time 
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interval of the reflected signals and the thickness H of the samples are presented in Table 4.2. 

The ultrasound velocities of longitudinal waves are calculated according to the equation: 

t

H
с




2
 (4.1) 

The time interval between two reflected signals from the bottom of the sample is calculated 

according to the equation: 

)( 12 ttt   (4.2) 

Where 
2t  is a time of second reflected signal and 

1t  is a time of first reflected signal [16]. 

A-scan of one time interval measurement of the reflected signals from the bottom of the 

sample is shown in Fig. 4.2. The initial starting point is at zero crossing.  

 
Fig.4.2. A-scan of the reflected signals from bottom of the steel 

 

Table 4.2. Parameters of measurements and calculations 

Sample Thickness H, mm 
Averaged time interval 

△t, us 

Calculated velocity c, 

m/s 

Steel 6,30 2,0571 6 125 

 

It should be noticed that velocity of propagation of ultrasonic waves in composite material 

(anisotropic elastic material) strongly depends on the angle between the ultrasonic beam and the 

axis of material symmetry [22].  

Equipment used for the measurement of ultrasonic velocity in GFRP: 

 ultrasonic measurement system Ultralab; 

 MatLab software; 

 immersion 5 MHz transducer; 

 joint of dissimilar materials. 

t, us 

A
, 

%
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Ultralab measurement system is connected for performing through-transmission method. 

The set-up of system is illustrated in Fig.4.3. 

 

Fig.4.3. The set-up of measurement system [16] 

 

The joint of dissimilar materials and 5 MHz immersion transducer are used for the 

inspection due to high attenuation in composite material. Through transmission technique is used 

for this task. The sample is immersed in water and installed on z not moving axis. Firstly, signal 

was recorded without the sample placed on the way of ultrasound wave propagation, then the 

sample was placed and signal recorded again. The inspection was performed in the area where 

steel layer is cut from the sample.  

The ultrasound velocity of longitudinal waves is calculated according to the equation: 

)(/ 21 ttсH

H
с

water

gfrp


 , (4.3) 

where H is a thickness of the material, waterс  is a velocity of ultrasound in water, 
1t  is a time 

of received signal transmitted through the water and 
2t  is a time of received signal transmitted 

through the water and sample [16]. The temperature of the water was 
021 C, therefore the value 

of ultrasound velocity in the water was taken from the table of Lawrence C. Lynnworth.  

A-scans of the reflected signals from the GFRP bottom are shown in Fig.4.4. The initial 

starting point is at zero cross. Time interval of the reflected signals and the thickness H of the 

samples are presented in Table 4.3. 

Table 4.3. Parameters of measurements and calculations 

Sample 
Thickness 

H, mm 

Time interval between two 

reflected signals △t, us 

Calculated 

velocity c, m/s 

Ultrasound velocity c 

in water at
021 C, m/s 

GFRP 4,12 (53,9-52,54)=1,36 2 914 1 485,372 
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As a result the ultrasound velocity in steel is about two times higher than in glass fibre 

reinforced plastic. GFRP is more attenuating material which requires high penetration 

transducers with transmitter/receivers optimized for operation at low frequencies [24]. 

 
Fig.4.4. A-scan of received signals transmitted through the water and GFRP 

 

4.2 Parameters and characteristics of the inspection of defects with phased array transducers 

 

There are 3 interfacial delaminations between the steel and the composite material. The 

delaminations were created by PE (polyethylene) tape then spreading a bit of oil over the top of 

the plate to prevent the epoxy from bonding.  

Used equipment for the inspection of joint of dissimilar material: 

 flaw detector Olympus Omniscan MX; 

 5 MHz linear phased array transducer (5L128-128x7-NW3-P-2.5-OM); 

 3,5 MHz linear phased array transducer (3.5L64-64x7-NW1-P-2.5-OM); 

 00 plastic wedges (SNW3-0L-IHC-C and SNW1-0L-WP5). 

The parameters of phased array transducers and wedges were entered in settings of the 

Omniscan measurement system as well as the parameters of scanning. Data of transducers and 

wedges are shown in Table 4.4 and Table 4.5 respectively.  

Table 4.4. Parameters of phased array transducers 

Transducer 

type 

Frequency f, 

MHz 

Number of 

elements 

Pitch, 

mm 

Active 

length, 

mm 

Active 

elevation, 

mm 

Transducer 

dimensions, 

mm 

L W H 

Linear 5 128 1 128 7 130 21 35 

Linear 3,5 64 1 64 7 66 19 25 
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Table 4.5. Characteristics of the wedges 

Wedge 
Nominal Refracted 

Beam Angle (in Steel) 

Probe 

Orientation 

Wedge Dimensions, mm 

L W H 

SNW3-0L-IHC-C 0oLW Normal 130 32 20 

SNW1-0L-WP5 0oLW Normal 66 32 20 

 

Characteristics of scanning with phased array transducers are presented in Table 4.6. 

Table 4.6. Parameters of scanning with linear phased array transducers 

Frequency f, 

MHz 

Transmission 

type 

Av-virtual 

aperture, 

elements 

Element 

step 

First 

element 

Last 

element 

Focus 

depth, 

mm 

5 Focusing 8 1 1 128 6,30 

3,5 Focusing 8 1 1 64 6,30 

 

The wavelengths of ultrasound signal in steel are calculated according to equation (4.4) and 

presented in Table 4.7. 

Table 4.7. Parameters of scanning with 5 MHz and 3,5 MHz linear phased array transducers 

Sample Wavelength  , mm Velocity c, m/s Frequency f, MHz 

Steel  1,225 6 125 5 

Steel 1,750 6 125 3,5 

 

f

с
  (4.4) 

Theoretical values of time of ultrasonic wave propagation in the joints of dissimilar 

materials are calculated according to the equation [24]: 

с

h
t

2
  (4.5) 

The structure of wave propagation in layers of the sample is shown in Fig.4.5. In Table 4.8 

values of propagation time are presented. 

 

 

 

 

 

Fig.4.5. Wave propagation in the sample 

 

Table 4.8. Theoretical values of time of ultrasonic wave propagation in the sample 

Sample 
Thickness h, mm Velocity c, m/s 

t1,us t2,us t3,us t4,us t5,us 
Steel GFRP Steel GFRP 

Steel  6,30 4,12 6 125 2 914 2,06 4,11 4,89 6,17 7,72 

 

t1 t2 t3 t4 t5 

GFRP 

Steel 
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4.3 Defect inspection of the joint of steel and GFRP with 5 MHz phased array transducer 

 

The Omniscan measurement system was used for the defect inspection and all parameters of 

transducer were entered. Electronic scanning with 1 element step was performed. Special gel was 

used as a coupling media. Experimental set-up of defect evaluation from metal side with echo 

impulse mode is shown in Fig.4.6. 

 

Fig.4.6. Experimental set-up of ultrasonic inspection from metal side [16] 

 

In Fig.4.7 the set-ups of defect inspection of sample with 5 MHz phased array transducer are 

shown. The signal was gained to 10 dB and the S-scans of delaminations are shown in Fig.4.8. 

 

Fig.4.7. Experimental set-ups of defect evaluation in joint of steel and GFRP: a-inspection of 1st 

and 2nd delaminations, b- inspection of 2nd and 1st delaminations 

 

 
Fig.4.8. S-scans of the inspection of delaminations in steel/GFRP sample with 5 MHz phased 

array transducer 
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According to S-scans it can be seen that reflection from the interface of the sample starts at 

time of 2,04 us what coincides with theoretical calculations and repeats in same time. The value 

is approximated because signal amplification affects the values of the obtained results on S-scan. 

The amplitude difference between reflections from the interface and reflections from 

delaminations can be distinguished due to colour scale. The areas of delaminations have higher 

amplitude comparing to areas without defects [24], [25].  

The signal was gained to 20 dB to see better amplitude contrast of interface and defects The 

S-scans of delaminations of steel to GFRP sample is shown in Fig.4.9. 

 
Fig.4.9. S-scan of the inspection of delaminations in steel/GFRP sample with 5MHz phased 

array transducer 

 

For the exact values of lengths of delaminations the inspection with scales of mm is 

performed. In Fig.4.10 the set-ups of defect inspection of the sample with 5 MHz phased array 

transducer are shown. 

 

Fig.4.10. Experimental set-ups of defect evaluation in joint of steel and GFRP: a-inspection of 

1st and 2nd delaminations, b- inspection of 2nd and 1st delaminations 

 

The signal was gained to 10 dB and the S-scans with a scale of mm are shown in Fig.4.11. 

Further, the signal was gained to 20 dB to see better amplitude contrast of interface and defects 

and S-scans of delaminations of joint of dissimilar materials are shown in Fig.4.12. 
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Fig.4.11. S-scan of the inspection of delaminations in steel/GFRP sample with 5 MHz phased 

array transducer 

 

 

Fig.4.12. S-scan of the inspection of delaminations in steel/GFRP sample with 5 MHz phased 

array transducer 

 

According to S-scans it can be seen that reflection from the interface of the sample is at the 

depth of 6,30 mm what coincides with theoretical calculations and repeats approximately in 

same value. The value is approximated because signal amplification affects the values of the 

obtained results on S-scan. The amplitude difference between reflections from the interface and 

reflections from delaminations can be distinguished due to colour scale. The areas of 

delaminations have higher amplitude comparing to areas without defects [24], [25]. 

As a result time of flight to each delamination of the object and back to transducer 
tofd
  was 

measured independently on A-scan with initial point at zero crossing seven times [16]. In 

addition seven measurements of length of each delamination were obtained as well. The mean 

value of these parameters of time of flight and lengths calculated and characterized as more 

accurate values. The mean value of time of flight to 1st delamination of the object and back to 

transducer 
tofd
  is 2,0286 us, to 2nd delamination is 2,0428 us and to 3rd delamination is 2,0429 

us. The average value of length of 1st delamination is 25,53 mm, of 2nd delamination is 15,22 

mm and of 3rd delamination is 19,59 mm. 
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The reason of small difference between amplitudes of signal reflection from delaminations 

and signal reflection from good area of interface is in nearly equal values of reflection 

coefficients. Therefore the signal had to be gained to find delaminations [19], [24]. 

 

4.4 Defect inspection of the joint of steel and GFRP with 3,5 MHz phased array transducer 

 

The Omniscan measurement system was used and all parameters of the transducer were 

entered. Electronic scanning with 1 element step was performed. Special gel was used as a 

coupling media. Experimental set-up of defect evaluation from metal side with echo impulse 

mode is shown in Fig.4.13. 

 

Fig.4.13. Set-up of ultrasonic inspection from metal side with 3,5 MHz transducer [16] 

 

In Fig.4.14 the set-ups of delamination inspection of the joint of steel and GFRP with 

3,5 MHz phased array transducer are shown. 

 

Fig.4.14. Experimental set-ups of defect evaluation in joint of steel and GFRP: a-inspection of 

1st delamination, b-inspection of 2nd delamination, c-inspection of 3rd delamination 

 

The signal was gained to 10 dB and the S-scans of delaminations of joint of steel and GFRP 

are shown in Fig.4.15. 

According to S-scans it can be seen that reflection from the interface of the sample starts at 

time of 2,29 us what coincides with theoretical calculations and repeats in same time. The value 

is approximated because signal amplification affects the values of the obtained results on S-scan. 

The amplitude difference between reflections from the interface and reflections from 

delaminations can be distinguished due to colour scale. The areas of delaminations have higher 

amplitude comparing to areas without defects [24], [25].  
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Fig.4.15. S-scan of the inspection of delaminations in steel/GFRP sample with 3,5 MHz phased 

array transducer 

 

The signal was gained to 20 dB to see better amplitude contrast of interface and defects The 

S-scans of delaminations of steel to GFRP sample is shown in Fig.4.16. 

 
Fig.4.16. S-scan of the inspection of delaminations in steel/GFRP sample with 3,5 MHz phased 

array transducer 

 

For the exact values of lengths of delaminations the inspection with scales of mm is 

performed. The signal was gained to 10 dB and the S-scans with a scale of mm are shown in 

Fig.4.17.  
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Fig.4.17. S-scan of the inspection of delaminations in steel/GFRP sample with 3,5 MHz phased 

array transducer 

 

Further, the signal was gained to 20 dB to see better amplitude contrast of interface and 

defects and S-scans of delaminations of joint of dissimilar materials are shown in Fig.4.18. 

 
Fig.4.18. S-scan of the inspection of delaminations in steel/GFRP sample with 3,5 MHz phased 

array transducer 
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According to S-scans it can be seen that reflection from the interface of the sample is at the 

depth of 6,28 mm what coincides with theoretical calculations and repeats approximately in 

same value. The value is approximated because signal amplification affects the values of the 

obtained results on S-scan. The amplitude difference between reflections from the interface and 

reflections from delaminations can be distinguished due to colour scale. The areas of 

delaminations have higher amplitude comparing to areas without defects. 

As a result time of flight to each delamination of the object and back to transducer tofd  was 

measured independently on A-scan with initial point at zero crossing seven times [16]. In 

addition seven measurements of length of each delamination were obtained as well. The mean 

value of these parameters of time of flight and lengths calculated and characterized as more 

accurate values. The mean value of time of flight to 1st delamination of the object and back to 

transducer tofd  is 2,0386 us, to 2nd delamination is 2,0414 us and to 3rd delamination is 2,0414 

us. The average value of length of 1st delamination is 25,62 mm, of 2nd delamination is 15,24 

mm and of 3rd delamination is 20,43 mm. 

The reason of small difference between amplitudes of signal reflection from delaminations 

and signal reflection from good area of interface is in nearly equal values of reflection 

coefficients. Therefore the signal had to be gained to find delaminations [19], [24]. 

 

4.5 Sample inspection using through-transmission method 

 

Through-transmission technique was performed to get a two dimensional presentation, in 

which position of all delaminations can be observed from the top view.  

For the implementation the trough transmission method 2 probes of 5 MHz conventional and 

10 MHz focused transducers were used. The transmitting and receiving probes were immersed in 

the water and aligned [4], [26]. Equipment used for the inspection: 

 ultrasonic measurement system Tecscan; 

 MatLab software; 

 immersion 5 MHz conventional and 10 MHz focused transmitting and receiving probes; 

 tank with water 

 joint of dissimilar materials. 

Tecscan measurement system is connected for performing through-transmission method. 

The whole area of sample was scanned in the axis y and axis z with the step of 0,5 mm. The set-

up of system is illustrated in Fig.4.19. 
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Fig.4.19. Experimental set-up of measurement system [16] 

 

The signal was gained to 57 dB. C-scan of the inspection with 5 MHz conventional probes is 

shown in Fig.4.20. 

 

Fig.4.20. C-scan of the sample inspection with 5 MHz conventional transducer 

 

According to C-scan of the through-transmission ultrasonic inspection, 3 delaminations are 

observed. The delaminations are placed in the middle of the sample along x axis and have 

rectangular and round shapes. There are also 2 defects on the edge of the sample which could 

appear because of mechanical impact when the parts of metal and composite were cut out. 

The B-scan of 3 delaminations along y axis is shown in Fig.4.21. According to B-scan along 

y axis the length of 1st defect is 27 mm, 2nd defect is 17 mm and 3rd defect is 18 mm. 
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Fig.4.21. B-scan of the sample inspection with 5MHz conventional transducer along y axis 

 

For the better resolution of delaminations only the delamination part of the sample was 

inspected. The signal was gained to 68dB. C-scan of the inspection with 10MHz focused probes 

is shown in Fig.4.22. 

 

Fig.4.22. C-scan of the sample inspection with 10 MHz focused transducer 

 

According to C-scan of the inspection, 3 delaminations are observed. First and the second 

delaminations have rectangular shape and the third one has round shape. Because of low 

amplitude difference between interface and defects it is difficult to distinguish them. The B-scan 

of 3 delaminations along y axis is shown in Fig.4.23.  
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Fig.4.23. B-scan of the sample inspection with 10 MHz focused transducer along y axis 

 

According to B-scan along y axis the length of 1st defect is 22 mm, 2nd defect is 16 mm and 

3rd defect is 18 mm. The lengths of delaminations are approximate because of the reasons of 

signal amplification and complexity to distinguish defects.  

 

4.6 Conclusions 

 

As a result pulse echo ultrasonic inspections with 3,5 MHz and 5 MHz phased array 

transducers as well as using through transmission technique were performed. The amplitude 

difference between reflection from the interface and reflection from delamination is very small. 

The reason is in nearly equal values of reflection coefficients of defected and good interface 

[19], [24]. Due to it the signal was amplified to locate delaminations. 

According to equation (4.5) the depths of defects were calculated. In the case of inspection 

using 5MHz phased array transducer the depth of 1st delamination is 6,21 mm, 2nd and 3rd 

delamination is 6,26 mm. The length of 1st delamination is 25,53 mm, 2nd – 15,22 mm, 3rd – 

19,59 mm. In the case of inspection using 3,5 MHz phased array transducer the depth of 1st 

delamination is 6,24 mm, 2nd and 3rd delamination is 6,25 mm. The length of 1st delamination 

is 25,62 mm, 2nd – 15,24 mm, 3rd – 20,43 mm. 

According to results of through-transmission ultrasonic inspection all delaminations are 

placed in the middle of the sample along x axis and have rectangular and round shapes. The 

approximate values of length of 1st delamination is 22 mm, 2nd – 16 mm, 3rd – 18 mm. 
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5 EVALUATION OF THE UNCERTAINTY OF THE MEASUREMENT RESULTS 

 

The information on the measurement uncertainties of all conditions and results of 

measurements in ultrasonic non-destructive testing are calculated. Error is a parameter associated 

with a measuring instruments and characterizing the deviation of measured value from its real 

value. Measurement uncertainty is a parameter associated with a result of measurements and 

characterizing the dispersion of the values that can be attributed to a measured quantity. 

There are two types of measurement uncertainties: 

 Type A or direct measurements. Standard uncertainties are estimated in the measurement 

process using statistical analysis of multiple measurements. 

 Type B or indirect measurements. Standard uncertainties are estimated using other 

educational sources as certificates, manuals, license, the results of previous measurements, 

technical documentation of the manufacturer, and others [27], [28]. 

 

5.1 Probability of detection curves computation in CIVA software 

 

Probability of detection (POD) of delaminations in the joint of dissimilar materials is 

evaluated in CIVA software using POD features. Basic steps of the POD simulation in CIVA 

software as following: 

 definition of characteristic parameter (flaw size); 

 definition of variable parameters in a specific range (uncertain parameters); 

 description of uncertainty distribution for variable parameters; 

 using Monte-Carlo method for parameters; 

 analysing resulting data and computing the POD [21]. 

As a characteristic value the length of delamination was selected. Position of phased array 

transducer on axis x, sound velocity in steel, frequency and focus depth of phased arrays are the 

sources of uncertainty (uncertain parameters).  

Definition of characteristic and uncertain parameters as well as description of uncertainty 

distribution for uncertain parameters is presented in Table 5.1. 

Four uncertain parameters affect on probability of detection of delamination length from 1 to 

26 mm. In the case of inspection with 3,5 MHz phased array transducer plot of POD curve is 

shown in Fig.5.1. The POD curve is computed with confidence level of 95 %. 

As a result in the case of inspection using 3,5 MHz phased array transducer POD of 

delamination length from 5 to 25 mm is in the range from 37-50 %. 
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Table 5.1. Sources of errors 

Description 
Parameter 

type 
Type 

Start value, 

mm 

Stop value, 

mm 
Step 

Delamination 

length, mm 

Characteristic 

value 
Linear 1 26 0,862 

 

Description 
Parameter 

type 

Distribution 

type 
Mean value Max value Min value 

Transducer 

position on axis x, 

mm 

Uncertain 

value 
Rectangular 110 113 107 

Ultrasound 

velocity, m/s 

Uncertain 

value 
Normal 5 900 6 200 5 800 

Focus depth, mm 
Uncertain 

value 
Normal 6,3 7,3 5,3 

Frequency, MHz 
Uncertain 

value 
Normal 1

f  
2

f  
1

f  
2

f  
1

f  
2

f  

3,5 5 3,87 5,33 3,13 4,67 

 

 
Fig.5.1. Plot of POD curve in the case of inspection with 3,5 MHz phased array 

 

In the case of inspection with 5 MHz phased array transducer plot of POD curve is shown in 

Fig.5.2. The POD curve is computed with confidence level of 95 %. 

 
Fig.5.2. Plot of POD curve in the case of inspection with 5 MHz phased array 
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As a result in the case of inspection using 5 MHz phased array transducer POD of 

delamination length from 5 to 25 mm is in the range from 39-46 %. 

 

5.2 Uncertainty evaluation of experimental ultrasonic testing 

 

The uncertainty measurement of ultrasonic inspection of dissimilar material joints shows the 

impossibility of knowing the exact value of particular characteristics. The uncertainty evaluation 

for characterization of delaminations was performed to characterise the measurement results as 

complete and correct. A number of errors can affect the measurements and final result of 

ultrasound inspection [27], [29], [30]. Ultrasound testing was performed in the laboratory and 

consists of Omniscan measurement system, phased array transducers and specimen under 

inspection. Ultrasound inspection uses the sound waves to identify delaminations in the joint of 

dissimilar materials.  

In Table 5.2 the sources of errors which influence on the identifying of delaminations depth 

and lengths are presented. 

Table 5.2. Sources of errors 

Depth of delaminations 
2

tofd

del

f
H

 
  

№ Sources of errors 
Uncertainty 

type 
Model 

1 Wavelength of ultrasound in steel B fcmet /  

2 Ultrasound velocity in steel 
met

c  B tofimetmet Hc /2  

3 Thickness of metal layer 
met

H  A 
Statistical analysis of multiple 

measurements 

 Resolution of calliper B Readings of instrument, 01,0r  

4 
Time of flight to interface of the 

object 
A 

Statistical analysis of multiple 

measurements 

 
Resolution of display of Omniscan 

measurement system 
B Readings of instrument, 01,0r  

5 Transducer frequency f  B Data from technical documentation 

6 
Time of flight to delamination of 

the object 
A 

Statistical analysis of multiple 

measurements 

 
Resolution of display of Omniscan 

measurement system 
B Readings of instrument, 01,0r  

Length of delaminations delL  

№ Sources of errors 
Uncertainty 

type 
Model 

1 Length of delamination from S-scan  A 
Statistical analysis of multiple 

measurements 

2 
Resolution of display of Omniscan 

measurement system 
B Readings of instrument, 01,0r  

3 Pitch of phased array  B Data from technical documentation 
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Error sources which affect depth and length uncertainty measurements are summarized. 

Errors are classified into two types: random and systematic. Random error in measurements is 

caused by random and unpredictable changes in experimental evaluations. Systematic error is a 

part of error of measurement result, which doesn’t change or changes naturally in repeated 

measurements of the same value. The reason is in instrument faulty, wrong use or its data 

processing system. The uncertainty of part of error sources is calculated according to data from 

technical documentation of instruments and its readings. Other part of sources is calculated 

according to statistical analysis of multiple measurements [27], [31]. 

For direct measurements the arithmetic mean x  of measured results is calculated according 

to equation:  





N

i

ix
N

x
1

1
, (5.1) 

where N is a number of measurements, ix  is measured value. 

Standard uncertainty )(xu  for direct measurement is calculated according to equation: 








N

i

i xx
NN

xu
1

2)(
)1(

1
)(  (5.2) 

Uncertainty of instrument resolution r  is calculated with rectangular distribution law 

according to equation: 

3

2/
)(

r
ru   (5.3) 

Combined uncertainty of direct measurements which is taken into account the resolution 

amendment is calculated according to equation: 

22 )()()( ruxuyu   (5.4) 

The thickness of metal layer metH  was measured several times with electronic calliper. In 

Table 5.3 the results of measurements and combined uncertainty are presented. 

Table 5.3. Uncertainty and measurement results 

№ 

Results of 

multiple 

measurements, 

mm 

Mean value 

metH , mm 

Standard 

uncertainty

)( metHu , mm 

Uncertainty of 

calliper 

resolution )(ru , 

mm 

Combined 

uncertainty 

)(yu , mm 

1 6,31 

6,30 0,0126 0,0029 0,0129 

2 6,37 

3 6,28 

4 6,27 

5 6,30 

6 6,30 

7 6,28 
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As a result seven independent measurements of metal height were obtained with electronic 

calliper. Resolution of calliper is affects combined uncertainty as well. Mean value of metal 

height and uncertainties were calculated according to equations (5.1-5.4). 

Time of flight to interface of the object and back to transducer tofi  was measured with 

Omniscan measurement system several times as well. In Table 5.4 the results of measurements 

and combined uncertainty are presented. 

Table 5.4. Uncertainty and measurement results 

№ 

Results of 

multiple 

measurements, us 

Mean value

itof
 , us 

Standard 

uncertainty

)( tofiu  , us 

Uncertainty of 

Omniscan display 

resolution )(ru , us 

Combined 

uncertainty 

)(yu , us 

1 2,06 

2,0571 0,0036  0,0029 0,0046 

2 2,06 

3 2,06 

4 2,04 

5 2,07 

6 2,05 

7 2,06 

 

Seven independent measurements of time of flight of ultrasound to interface and back to 

transducer were performed with Omniscan measurement system according to equation (4.2). On 

A-scan the initial starting point was taken at zero crossing. Resolution of Omniscan display 

affects combined uncertainty as well. Mean value of time of flight and uncertainties were 

calculated according to equations (5.1-5.4). 

In the case of inspection with 3,5 MHz phased array transducer, time of flight to 

delaminations of the object and back to transducer tofd  was measured with Omniscan 

measurement system several times as well. In Table 5.5 the results of measurements and 

combined uncertainty of all delaminations of the object are presented. 

Table 5.5. Uncertainty and measurement results in the case of inspection with 3,5 MHz 

phased array transducer 

№ 

Results of multiple 

measurements, us 
Standard 

uncertainty

)( tofdu  , us 

Uncertainty of 

Omniscan display 

resolution )(ru , us 

Combined uncertainty 

)(yu , us 1st 

defect 

2nd 

defect 

3rd 

defect 

1 2,05 2,03 2,04 

0,0056 0,0029 0,0063 

2 2,02 2,03 2,04 

3 2,04 2,05 2,04 

4 2,08 2,07 2,03 

5 2,05 2,03 2,04 

6 2,01 2,04 2,05 

7 2,03 2,04 2,05 

 
Mean value tofd , us   

2,0386 2,0414 2,0414 



57 

 

In the case of inspection with 5 MHz phased array transducer, time of flight to 

delaminations of the object and back to transducer tofd  was measured with Omniscan 

measurement system several times as well. In Table 5.6 the results of measurements and 

combined uncertainty of all delaminations of the object are presented. 

Table 5.6. Uncertainty and measurement results in the case of inspection with 5 MHz 

phased array transducer 

№ 

Results of multiple 

measurements, us 
Standard 

uncertainty

)( tofdu  , us 

Uncertainty of 

Omniscan display 

resolution )(ru , us 

Combined 

uncertainty )(yu , 

us 
1st 

defect 

2nd 

defect 

3rd 

defect 

1 2,04 2,04 2,04 

0,0060 0,0029 0,0067 

2 2,02 2,02 2,04 

3 2,05 2,05 2,05 

4 2,01 2,05 2,04 

5 2,05 2,04 2,04 

6 2,04 2,05 2,05 

7 2,04 2,05 2,04 

 
Mean value tofd , us   

2,0357 2,0428 2,0429 

 

Seven independent measurements of time of flight to 3 delaminations of the object were 

obtained with Omniscan measurement system according to equation (4.2). On A-scan the initial 

starting point was taken at zero crossing. Resolution of Omniscan display affects combined 

uncertainty as well. Mean value for each delamination of time of flight and uncertainties were 

calculated according to equations (5.1-5.4). 

If the range of values has equal probability, then the rectangular distribution law is used for 

the B type uncertainty estimation [27]. Standard uncertainty )(xu  is calculated according to 

equation: 

3
)(


xu , (5.5) 

where   is an error of value x. 

Influence coefficient of x  value )(xW  is calculated according to equation: 

x

f
xW




)( , (5.6) 

where f  is a function or model of uncertainty measurement. 

Combined uncertainty of B type measurements (indirect measurements) of x  values is 

calculated according to equation: 





n

i

ii xWxuyu
1

22 )()()(  (5.7) 
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In Table 5.7 the results of uncertainties of B type measurement of ultrasound velocity metc

are presented. 

Table 5.7. Measurement results of ultrasound velocity uncertainties 

Measurement 

model of metc  
Sources of errors 

Standard 

uncertainty 
)(xu  

Influence 

coefficient 
)(xW  

Combined 

uncertainty 

)(yu , mm/us 

tofimetmet Hc /2  
Thickness metH , mm 0,0129 0,9722 

0,0186 
Time of flight tofi , us 0,0046 2,9782 

 

Combined uncertainty of measurement model of metc  is calculated according B type 

procedure. Influence coefficients of error sources of metal thickness and time of flight to 

interface and back to transducer as well as combined uncertainty are calculated according to 

equations (5.6-5.7). Standard uncertainties of these values are calculated and taken from Table 

5.3 and Table 5.4.  

In Table 5.8 the results of uncertainties of B type measurement of wavelength  in steel are 

presented: 

Table 5.8. Measurement results of wavelength uncertainties 

Measureme

nt model of 

  

Sources of 

errors 

Error 

  

Standard 

uncertainty 
)(xu  

Influence 

coefficient )(xW  

Combined 

uncertainty 

)(yu , mm 

1
f  

2
f  

fcmet /  

Sound velocity 

in steel metc , 

mm/us 

- 0,0186 
1

f  
2

f  

0,0289 0,0487 

0,1919 0,2618 

Frequency 1f  

of 5.21MHz 
0,22 0,1270 0,2256 

Frequency 2f  

of 3.82MHz 
0,2 0,1154 0,4197 

 

Combined uncertainty of measurement model of   is calculated according B type 

procedure. Rectangular distribution 
3

1
 is selected for estimating standard uncertainty of 

frequencies, 21,51 f  MHz and 82,32 f  MHz. Values of frequency errors are taken from 

technical documentations of phased array transducers. Influence coefficients of error sources of 

sound velocity and frequencies as well as standard and combined uncertainties are calculated 

according to equations (5.5-5.7). Standard uncertainties of sound velocity in metal is calculated 

and taken from Table 5.7. Ultrasonic wavelength in metal of 3,82 MHz frequency is 1,6034 mm, 

5,21 MHz frequency is 1,1756 mm. 
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The expanded uncertainty of the model is calculated according to equation [27], [31]: 

)(exp yuku  , (5.8) 

where k  is expansion coefficient, )(yu is combined uncertainty of the model. 

Measurement model consists of several input variables and due to it the expansion 

coefficient k  is selected from the Student table according to confidence probability and effective 

number of degrees of freedom [27], [31]. The effective number of degrees of freedom 
eff

  is 

calculated according to equation: 







n

i
i

i

eff
yu

yu

1

4

4

)(

)(



 , 
(5.9) 

where i  is a degree of freedom. 

The degree of freedom for direct uncertainty measurements is calculated according to 

equation: 

1 Ni , (5.10) 

where N  is a number of measurements. 

The degree of freedom for B type (indirect) uncertainty measurements is calculated 

according to equation: 

2)1(2

1

i

i
R

 , (5.11) 

where iR  is reliability of the uncertainty, 1iR  at 100% reliability.  

In the case of inspection with 3,5 MHz phased array transducer the results of standard and 

expanded uncertainties of delamination depths are presented in Table5.9. 

Combined uncertainties of measurement model of delH  are calculated according B type 

procedure for each delamination of the object. Values of frequency errors are taken from 

technical documentations of phased array transducers. Influence coefficients of error sources of 

wavelength, frequency and time of flight to delamination and back to transducer as well as 

combined uncertainties are calculated according to equations (5.5-5.7). Expansion coefficient k  

is selected from Student table according to results of effective number of degrees of freedom eff  

and chosen probability of 95,45 % [27], [31]. As a result in the case of inspection with 3,5 MHz 

phased array transducer the expanded uncertainty expu  of 1st delamination depth is  

536,024,6  (mm), of 2nd delamination depth is 536,025,6  (mm), and of 3rd delamination 

depth is 536,025,6  (mm). 
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Table 5.9. Measurement results of delamination depths uncertainties 

Model 
2

tofd

del

f
H

 
  

Sources of errors 

Wavelength of 

ultrasound in steel  , 

mm 

Frequency f  of 

3,82MHz 

Time of flight to 

delamination and 

back to transducer 

tofd , us 1st 

defect 

2nd 

defect 

3rd 

defect 

1st 

defect 

2nd 

defect 

3rd 

defect 

Standard 

uncertainty )(xu  
0,0487 0,1154 0,0063 

Influence 

coefficient )(xW  
3,8746 3,9017 3,9019 1,6263 1,6377 1,6378 3,0625 

Combined 

uncertainty )(yu , 

mm 

0,2680 

Effective number of 

degrees of freedom 

eff
  

  

Probability p, % 95,45 

Expansion 

coefficient k  
2 

Expanded 

uncertainty expu , 

mm 

0,5360 

 

Uncertainty evaluation of delamination depths was obtained in GUM Workbench software 

used to analyze the uncertainty of measurements. Mathematical and statistical analyzes of 

measurements follows ISO Guide to the Expression of Uncertainty in Measurements and EA 

4/02 requirement document of the European Cooperation of Accreditation [29]. 

The data of measurement model of delamination depth was entered in the software and the 

results of standard uncertainties, combined uncertainties and influence coefficients coincide with 

results in Tables 5.3-5.9 calculated manually. In addition Monte Carlo simulation was performed 

in GUM Workbench software for 3 delaminations. In the case of inspection with 3,5 MHz 

phased array transducer the results of Monte Carlo simulation for delaminations depth are 

presented in Table 5.10. 

As a result interval of expanded uncertainty was calculated in GUM Workbench software 

and also simulated in the same software according to Monte Carlo method and the results 

obtained are slightly different. Plots of Monte Carlo simulation for all delamination depth are 

shown in Fig.5.3-5.5. 
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Table 5.10. Monte Carlo simulation results 

Delamination 

number 

Mean 

value, 

mm 

Standard 

uncertainty, 

mm 

Probability 

p, % 

Expanded uncertainty interval, mm 

Monte Carlo GUM Workbench 

1st 6,24 

0,27 95,45 +0,54, -0,52 +0,54, -0,54 2nd 6,25 

3rd 6,25 

 

 

Fig.5.3. Monte Carlo simulation plot for 1st delamination depth 

 

 

Fig.5.4. Monte Carlo simulation plot for 2nd delamination depth 

 

 

Fig.5.5. Monte Carlo simulation plot for 3rd delamination depth 

6.25 5.73 6.79 

-0.54 

+0.54 

+0.54 

-0.52 

6.25 5.73 6.79 

-0.54 

+0.54 

+0.54 

-0.52 

6.24 6.78 5.72 

-0.54 

+0.54 -0.52 
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In the case of inspection with 5 MHz phased array transducer the results of standard and 

expanded uncertainties of delamination depths are presented in Table5.11. 

Table 5.11. Measurement results of delamination depths uncertainties 

Model 
2

tofd

del

f
H

 
  

Sources of errors 

Wavelength of 

ultrasound in steel  , 

mm 

Frequency f  of 

5,21MHz 

Time of flight to 

delamination and 

back to transducer 

tofd , us 1st 

defect 

2nd 

defect 

3rd 

defect 

1st 

defect 

2nd 

defect 

3rd 

defect 

Standard uncertainty 
)(xu  

0,0289 0,1270 0,0067 

Influence coefficient 
)(xW  

5,2845 5,3215 5,3218 1,1924 1,2008 1,2008 3,0624 

Combined uncertainty 

)(yu , mm 
0,2170 

Effective number of 

degrees of freedom 

eff  
  

Probability p, % 95,45 

Expansion coefficient 

k  
2 

Expanded uncertainty 

expu , mm 
0,4340 

 

Combined uncertainties of measurement model of delH  are calculated according B type 

procedure for each delamination of the object. Values of frequency errors are taken from 

technical documentations of phased array transducers. Influence coefficients of error sources of 

wavelength, frequency and time of flight to delamination and back to transducer as well as 

combined uncertainties are calculated according to equations (5.5-5.7). Expansion coefficient k  

is selected from Student table according to results of effective number of degrees of freedom eff  

and chosen probability of 95,45 % [27], [31]. In the case of inspection with 5 MHz phased array 

transducer the expanded uncertainty expu  of 1st delamination depth is 434,023,6  (mm), of 2nd 

delamination depth is 434,025,6  (mm), and of 3rd delamination depth is 434,025,6  (mm). 

The data of measurement model of delamination depth was entered in GUM Workbench 

software and the results of standard uncertainties, combined uncertainties and influence 

coefficients coincide with results in Tables 5.3-5.8 and Table 5.13 calculated manually. In 

addition Monte Carlo simulation was performed in GUM Workbench software for 3 

delaminations. In the case of inspection with 5 MHz phased array transducer the results of Monte 

Carlo simulation for delaminations depth are presented in Table 5.12. 
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Table 5.12. Monte Carlo simulation results 

Delamination 

number 

Mean 

value, 

mm 

Standard 

uncertainty, 

mm 

Probability 

p, % 

Expanded uncertainty interval, mm 

Monte Carlo GUM Workbench 

1st 6,23 

0,22 95,45 +0,43, -0,42 +0,44, -0,44 2nd 6,25 

3rd 6,25 

 

As a result interval of expanded uncertainty was calculated in GUM Workbench software 

and also simulated in the same software according to Monte Carlo method and the results 

obtained are slightly different. Plots of Monte Carlo simulation for delaminations depth are 

shown in Fig.5.6 and Fig.5.7 respectively. 

 

 

Fig.5.6. Monte Carlo simulation plot for 1st delamination depth 

 

 

Fig.5.7. Monte Carlo simulation plot for 2nd and 3rd delaminations depth 

 

In the case of inspection with 3,5 MHz phased array transducer the lengths of delaminations 

L were measured several times from S-scan of Omniscan measurement system. In Table 5.13 

the results of measurements and combined uncertainty are presented: 

 

 

 6.68 5.83 

-0.42 

-0.44 +0.44 

+0.43 

6.25 

 
6.23 6.66 5.81 

-0.42 
-0.44 

+0.43 
+0.44 
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Table 5.13. Uncertainty and measurement results 

№ 

Results of multiple 

measurements, mm 
Standard 

uncertainty

)( delLu , mm 

Uncertainty of 

Omniscan display 

resolution )(ru , 

mm 

Combined 

uncertainty )(yu  1st 

defect 

2nd 

defect 

3rd 

defect 

1 25,86 15,18 20,59 

0,1078 0,0029 0,1078 

2 25,57 15,12 20,34 

3 25,35 15,28 20,01 

4 25,07 15,76 20,31 

5 25,82 15,03 20,24 

6 26,01 15,19 20,73 

7 25,63 15,09 20,81 

 
Mean value delL  

 
25,62 15,24 20,43 

 

Seven independent measurements of lengths of delaminations were obtained with Omniscan 

measurement system. Resolution of Omniscan display affects on combined uncertainty as well. 

Mean value of length for each delamination and uncertainties were calculated according to 

equations (5.1-5.4). 

In Table 5.14 the results of standard and expanded uncertainties of delamination lengths are 

presented. 

Table 5.14. Measurement results of delamination lengths uncertainties 

Model 
yLL deldel  , where y is amendment of pitch of 

transducers 

Sources of errors 
Length of delamination 

from S-scan delL  

Pitch of phased array p  

Error   0,01 

Standard uncertainty )(xu  0,1078 0,006 

Combined uncertainty )(yu  0,1080 

Number of degrees of freedom   6 

Probability p, % 95,45 

Expansion coefficient k  2,52 

Expanded uncertainty expu  0,2722 

 

Combined uncertainties of delamination lengths are calculated according A type procedure. 

Two amendments (display resolution and phased array pitch) were taken into account due to 

their affect on result [29], [30]. Standard uncertainty of phased arrays pitch was calculated 

according to equation (5.5). Combined uncertainties of delamination lengths and number of 

degrees of freedom for A type procedure were calculated according to equation (5.4) and 

equation (5.10) respectively. Confidence probability of 95,45 % was chosen and expansion 

coefficient k  was selected from Student table according to result of number of degrees of 

freedom. As a result the expanded uncertainty of 1st delamination length is 2722,062,25  (mm), 
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of 2nd delamination length is 2722,024,15  (mm), and of 3rd delamination length is 

2722,043,20   (mm). 

The data of measurement model of delamination length was entered in GUM Workbench 

software. Results of standard uncertainties are coincides with results in Tables 5.17 and Table 

5.18 calculated manually. The expanded uncertainty differs from the results calculated manually 

due to expansion coefficient 2k  and probability of 95 % selected in GUM Workbench 

software. In addition Monte Carlo simulation was performed in GUM Workbench software for 3 

delaminations. The results of Monte Carlo simulation for all delaminations length are presented 

in Table 5.15. 

As a result interval of expanded uncertainty was calculated in GUM Workbench software 

and also simulated in the same software according to Monte Carlo method. The results of Monte 

Carlo simulation coincides with results calculated manually.  

Table 5.15. Monte Carlo simulation results 

Delamination 

number 

Mean 

value, 

mm 

Standard 

uncertainty, 

mm 

Expanded uncertainty interval, mm 

Monte Carlo, 

probability 95,45 % 

GUM Workbench, 

probability 95% 

1st 25,62 

0,11 +0,27, -0,27 +0,22, -0,22 2nd 15,24 

3rd 20,43 

 

Plots of Monte Carlo simulation for delaminations length are shown in Fig.5.8-5.10. 

 

 

Fig.5.8. Monte Carlo simulation plot for 1st delamination length 

 

25.62  25.89 
 

25.35 

-0.27 +0.27 

-0.22 +0.22 
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Fig.5.9. Monte Carlo simulation plot for 2nd delamination length 

 

 

Fig.5.10. Monte Carlo simulation plot for 3rd delamination length 

 

In the case of inspection with 5 MHz phased array transducer the lengths of delaminations L 

were measured several times from S-scan of Omniscan measurement system. In Table 5.16 the 

results of measurements and combined uncertainty are presented: 

Table 5.16. Uncertainty and measurement results 

№ 

Results of multiple 

measurements, mm 
Standard uncertainty

)( delLu , mm 

Uncertainty 

of Omniscan 

display 

resolution 

)(ru , mm 

Combined uncertainty 

)(yu  1st 

defect 

2nd 

defect 

3rd 

defect 

1 25,51 15,14 19,06 

0,0860 0,0029 0,0860 

2 25,62 15,07 19,37 

3 25,37 15,16 20,06 

4 25,47 15,35 19,49 

5 25,58 15,51 20,07 

6 25,67 15,23 19,16 

7 25,49 15,11 19,93 

 
Mean value delL  

 
25,53 15,22 19,59 

 

 
20.43 

  
20.7 20.16 

-0.27 +0.27 

+0.22 -0.22 

   
15.24 14.97 15.51 

-0.27 +0.27 

+0.22 -0.22 
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Seven independent measurements of lengths of delaminations were obtained with Omniscan 

measurement system. Resolution of Omniscan display affects on combined uncertainty as well. 

Mean value of length for each delamination and uncertainties were calculated according to 

equations (5.1-5.4). 

In Table 5.17 the results of standard and expanded uncertainties of delamination lengths are 

presented. 

Table 5.17. Measurement results of delamination lengths uncertainties 

Model yLL deldel  , where y is amendment of pitch of transducers 

Sources of errors 
Length of delamination from S-scan 

delL  

Pitch of phased array 
p  

Error   0,01 

Standard uncertainty )(xu  0,0860 0,006 

Combined uncertainty )(yu  0,0862 

Number of degrees of 

freedom   
6 

Probability p, % 95,45 

Expansion coefficient k  2,52 

Expanded uncertainty expu  0,2172 

 

Combined uncertainties of delamination lengths are calculated according A type procedure. 

Two amendments (display resolution and phased array pitch) were taken into account due to 

their affect on result [29], [30]. Standard uncertainty of phased arrays pitch was calculated 

according to equation (5.5). Combined uncertainties of delamination lengths and number of 

degrees of freedom for A type procedure were calculated according to equation (5.4) and 

equation (5.10) respectively. Confidence probability of 95,45 % was chosen and expansion 

coefficient k  was selected from Student table according to result of number of degrees of 

freedom. As a result the expanded uncertainty of 1st delamination length is 2172,053,25  (mm), 

of 2nd delamination length is 2172,022,15  (mm), and of 3rd delamination length is 

2172,059,19  (mm). 

The data of measurement model of delamination length was entered in GUM Workbench 

software. Results of standard uncertainties are coincides with results in Tables 5.20 and Table 

5.21 calculated manually. The expanded uncertainty differs from the results calculated manually 

due to expansion coefficient 2k  and probability of 95 % selected in GUM Workbench 

software. In addition Monte Carlo simulation was performed in GUM Workbench software for 3 

delaminations. The results of Monte Carlo simulation for all delaminations length are presented 

in Table 5.18. 
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Table 5.18. Monte Carlo simulation results 

Delamination 

number 

Mean 

value, 

mm 

Standard 

uncertainty, 

mm 

Expanded uncertainty interval, mm 

Monte Carlo, 

probability 95,45 % 

GUM Workbench, 

probability 95 % 

1st 25,53 

0,09 +0,22, -0,22 +0,17, -0,17 2nd 15,22 

3rd 19,59 

 

As a result interval of expanded uncertainty was calculated in GUM Workbench software 

and also simulated in the same software according to Monte Carlo method. The results of Monte 

Carlo simulation coincides with results calculated manually. Plots of Monte Carlo simulation for 

delaminations length are shown in Fig.5.11-5.13. 

 

Fig.5.11. Monte Carlo simulation plot for 1st delamination length 

 

 

Fig.5.12. Monte Carlo simulation plot for 2nd delamination length 

 

  
15.00 15.44 

-0.22 +0.22 

+0.17 -0.17 

 
25.53 

+0.22 -0.22 

+0.17 -0.17 

 
25.31 25.75 
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Fig.5.13. Monte Carlo simulation plot for 3rd delamination length 

 

As a result the uncertainty of delamination depths as well as the uncertainty of delamination 

lengths for each delamination is calculated manually and using GUM Workbench software.  

  

 
19.59 

-0.22 +0.22 

19.81 19.37 

-0.17 +0.17 
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CONCLUSIONS 

 

In this thesis the joint of steel and GFRP was inspected using ultrasonic non-destructive 

testing. Pulse echo ultrasonic technique has been selected as the most suitable by analyzing 

different ultrasonic methods and characteristics of the sample [4].  

CIVA computer modelling of joint of steel and GFRP was performed using conventional 

and phased array transducers of different frequencies. Steel is almost 3 times less attenuating 

material than GFRP according to results of investigation of ultrasonic fields and influence of 

attenuation in dissimilar materials. Therefore the ultrasonic inspection from metal side has been 

performed. In addition to that increasing the frequency of transducer the attenuation value 

increases as well [16], [17]. As a result of this and taken into account sample thickness as well as 

ultrasonic wavelength 3,5 MHz and 5 MHz frequencies have been selected as the most suitable 

for the inspection of joint of dissimilar materials.  

According to the type and dimension of defects phased array transducers were used for the 

inspection due to their ability of steering of multiple elements, focusing and covering large area 

of the sample without mechanical scanning [16], [24].  

It was determined, that amplitude difference between reflection from the delaminations and 

reflection from the interface without defect is in the range of 0,1-1,7 dB what proves the 

complexity of defect location in experimental part [4]-[6].  

In experimental part the Omniscan measurement system and phased arrays were used for the 

inspection of the sample. As a result the delaminations were located and depths and lengths of 

delaminations have been measured. In addition to that the uncertainties of all measurements were 

evaluated.  

In the case of inspection with 3,5 MHz phased array transducer the depth of 1st 

delamination is 54,024,6  (mm), of 2nd is 54,025,6  (mm), and of 3rd is 54,025,6  (mm). 

The length of 1st delamination is 27,062,25  (mm), of 2nd is 27,024,15  (mm), and of 3rd is 

27,043,20  (mm). 

In the case of inspection with 5 MHz phased array transducer the depth of 1st delamination 

is 43,023,6  (mm), of 2nd delamination is 43,025,6  (mm), and of 3rd delamination is 

43,025,6  (mm). The length of 1st delamination is 22,053,25  (mm), of 2nd is 22,022,15 

(mm), and of 3rd is 22,059,19  (mm). 

 

 

 



71 

 

REFERENCES 

 

1. Ravi Prakash, “Non-Destructive Testing Techniques”. New Age Science Limited, UK., 

2009. – 140 p. 

2. C.C.H. Guyott, “The non-destructive testing of adhesively bonded structures”. 

Department of Mechanical Engineering, Imperial College of Science and Technology, London 

SW7, November 1986. – 222 p. 

3. Dr. L. John Hart-Smith, “Adhesively Bonded Joints in Aircraft Structures”. Handbook of 

Adhesion Technology, Springer Berlin Heidelberg, 2011, p. 1101-1147 

4. C.V. Subramanian, “Practical Ultrasonics”. Alpha Science International Ltd. Oxford, 

U.K., 2006. – 150 p. 

5. Ultrasonic Thickness Gaging. Olympus Corporation. [Viewed February 19, 2015]. - 

https://www.olympus-ims.com/ 

6. Samsir Tanary, “Characterization of adhesively bonded joints using Acousto-

ultrasonics”. Department of Mechanical Engineering, University of Ottawa, Canada, April 1990. 

– 216 p. 

7.  В.В. Клюев, Ф.Р. Соснин, А.В. Ковалев и др., “Неразрушающий контроль и 

диагностика”. 2-е изд., испр. и доп. – М.: Машиностроение, 2003. – 653 с. 

8. Ajay Kapadia, “Non Destructive testing of composite materials”. National Composites 

Network; TWI Ltd. Chang J, Zheng C, “The ultrasonic wave propagation in composite material 

and its characteristic evaluation”. Composite Structures; 75, No. 1-4, 2006. p. 451-456 

9. Michael Berke, “Nondestructive Material Testing with Ultrasonics”, p. 4-16. M. Berke, 

"Thickness measurement with ultrasonics" Krautkrämer Training System, Part 5 2nd edition, 

1992 

10. NDT course material, NDT Resource Center. [Viewed December 2, 2013]. - 

http://www.ndt-ed.org/ 

11. Claudia Farias, Eduardo Filho, Ygor Santos, Matheus Arauji, Igor Ribeiro, “Spectral 

Analysis of the propagation of Lamb Waves on Fiber-Metal Laminated Plates to detect and 

evaluate different defects”. 18th World Conference on Nondestructive Testing, 16-20 April 

2012, Durban, South Africa. p. 1-8 

12. Zhongqing Su, Lin Ye, Ye Lu, “Guided Lamb waves for identification of damage in 

composite structure: A review”. Journal of Sound and Vibration 295, Sydney, Australia, 2006. p. 

753-780 

https://www.olympus-ims.com/
http://www.ndt-ed.org/


72 

 

13. Seth S Kessler, S Mark Spearing and Constantinos Soutis, “Damage detection in 

composite materials using Lamb wave methods”. Institute of Physics Publishing, Smart Material 

and Stuctures, 5 April 2002. – 278 p. 

14. Ingolf Hertlin, Detlev Schultze, “Acoustic Resonance Testing: the upcoming volume-

oriented NDT method”. 111 Pan-American Comference for Nondestructive Testing, Rio de 

Janeiro, 2003. – 7 p. 

15. John H. Gieske and Mark A. Rumsey, “Nondestructive Evaluation (NDE) of 

Composite-to-Metal Bond Interface of a Wind Turbine Blade Using An Acousto-Ultrasonic 

Technique”. Sandia National Laboratories, Albequerque, New Mexico 87185, 1996. – 14p. 

16. E. Jasiūnienė, E. Žukauskas, V. Samaitis. Ultragarsinių matavimų laboratoriniai darbai. 

Mokomoji knyga. Kaunas: Technologija, 2013. – 91p. 

17. S.W. Rienstra, A. Hirschberg, “An Introduction to Acoustics”. Eindhoven University of 

Technology, 26 January 2015. – 296 p. 

18. Agilent Impedance Measurement Handbook, A guide to measurement technology and 

techniques, 4th Edition. Agilent Technologies Inc. 2009-2013 Published in USA, September 10, 

2013, 5950-3000. – 140 p. 

19. Acoustic Velocity, Impedance, Reflection, Transmission, Attenuation, and Acoustic 

Etalons. [Viewed November 8, 2014]. - http://www.iowadoppler.com/documents/acoustic-

experiments.pdf 

20. L. Satyanarayan, C. Sridhar, C.V. Krishnamurthy, Krishnan Balasubramaniam, 

“Simulation of ultrasonic phased array technique for imaging and sizing of defects using 

longitudinal waves”. International Journal of Pressure Vessels and Piping 84 (2007). p. 716–729 

21. CIVA 2015 User Manual (v11.1). CIVA EXTENDE, 2015. – 1144p. 

22. Robert M. Jones, “Mechanics of Composite Materials”. Second edition, Taylor & 

Francis Ltd. Virginia, USA, 1999. - 501 p. 

23. Кербер М.Л., Виноградов В.М., Головкин Г.С. и др., „Полимерные 

композиционные материалы: структура, свойства, технологий“: учеб. Пособие. – 3-е испр. 

изд. – СПб.: ЦОП „Профессия“, 2011. -560с., ил. 

24. Elena Jasiūnienė, “Ultragarsinė medžiagotyra”. Mokomoji knyga, Kauno Technologijos 

Universitetas, UAB Vitae Litera, January 2007. – 139 p. 

25. I. Rokhlin, Dale E.Chimenti, Peter B. Nagy, “Physical Ultrasonic of Composites”. 

Oxford University Press, USA; 1 edition, February 16, 2011. – 400 p. 

26. G. Wrobel, S. Pawlak, “A comparison study of the pulse-echo and through-transmission 

ultrasonics in glass/epoxy composites”. Journal of Achievements in Materials and Manufacturing 

Engineering, Volume 22, Issue 2, June 2007. – 4 p. 

http://www.iowadoppler.com/documents/acoustic-experiments.pdf
http://www.iowadoppler.com/documents/acoustic-experiments.pdf


73 

 

27. Keith Birch, “Estimating Uncertainties in Testing”, An Intermediate Guide to 

Estimating and Reporting Uncertainty of Measurements in Testing. British Measurement and 

Testing Association, Addison-Wesley Publishing Company, Inc, London, March 2003. – 44 p. 

28. Guidance Document for Estimation of Mesurement Uncertainty in Non-Destructive 

Testing. Accreditation Scheme for Laboratories, Guidance Notes NDT, Singapore, 4 February 

2001. – 11 p. 

29. Drd. Ing. Diana Mihaela Tesileanu, prof. univ. ing. Lidia Niculita, “The calculating 

procedure for measurement uncertainty using ultrasound testing”. The Romanian Review 

Precision Mechanics, Optics & Mechatronics, 2013, No. 44, Bucharest. – 5 p. 

30. Diana Mihaela Tesileanu, Lidia Niculita, “Experimntal analysis regarding the 

measurement uncertainty of welded joints with ultrasound testing”. The Romanian Review 

Precision Mechanics, Optics & Mechatronics, 2013, No. 44, Bucharest. – 9 p. 

31. А.И. Походун, “Экспериментальные методы исследований. Погрешности и 

неопределенности измерений”. Учебное пособие. СПб: СпбГУ ИТМОб 2006 – 112 с. 

  



74 

 

APPENDIX 

Appendix 1. Scientific article of 12th student’s conference E2TA on the topic of “Ultrasonic 

non-destructive evaluation of dissimilar material joints” 

 


