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Abstract: An interpolation scheme on an equispaced grid based on the concept of the minimal order of the
linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes
corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest
mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation
technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected
signals.
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1 Introduction

It is well known that the n-point polynomial interpolants in equally spaced points to a function f on [-1, 1] do not
necessarily converge as n ! 1, even if f is analytic. Instead one may see wild oscillations near the endpoints,
an effect known as the Runge phenomenon [9]. Moreover, the interpolation process becomes exponentially ill-
conditioned, as shown first by Turetskii [13] and later independently by Schonhage [11]. This ill-conditioning means
that even if the interpolants converge in theory, they will diverge in floating point arithmetic, at least for values of x
near the endpoints, because of exponential amplification of rounding errors.

On the other hand, the polynomial interpolation in Chebyshev points is numerically stable since the associated
Lebesgue constants are of size O .log .n// [3]. Is is shown in [4] that the Chebyshev interpolant can be evaluated
in floating point arithmetic by Salzer’s barycentric formula [10]. Moreover, Chebyshev interpolants are used
in the Chebfun software where polynomials in degrees of tens of thousands are routinely used for practical
computations [7, 12].

The main objective of this paper is to propose an extended Prony-type algebraic interpolation scheme on an
equispaced grid. Our goal is to develop a strategy for finding a nearest algebraic interpolant to an analytic function.
It will be demonstrated that an approach based on the nearest algebraic interpolant does not suppress the Runge
phenomenon, but interpolation errors produced by this method are much lower if compared to the classic schemes
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on equispaced grids. Moreover, the proposed algebraic interpolation method can be effectively exploited for analytic
interpolation of noisy and/or defected signals.

This paper is organized as follows. Linear recurring functions and linear recurring sequences are discussed
in Section 2; computational examples of linear recurring sequences versus Prony decomposition are shown in
Section 3; Extended Prony’s functions and their properties are given in Section 4; algorithm of the extended Prony-
type interpolation is presented in Section 5; the interpolation of the real time series is investigated in Section 6;
concluding remarks are given in Section 7.

2 Preliminaries

The definition of the linear recurring function, the linear recurring sequence and their properties will be presented in
this section.

2.1 A short overview of the Prony method

Fourier expansions

F .x/ D

C1X
nD�1

cn exp
�
i
2�n

T
x

�
are successfully exploited for the approximation of a function f .x/ in a variety of theoretical and practical
applications. And even though higher terms of the Fourier series are usually infinitesimal, that may cause substantial
complications. In contrast, Prony’s method computes an approximation to function f .x/ by using only a finite
number of damped complex exponentials [14]:

F � .x/ D

mX
nD1

cn exp .�nx/

where m 2 N and cn; �n 2 C. Prony-type methods are successfully exploited for effective and accurate
approximation of different functions and signals [15–18] (though the determination of m remains problematic in
general).

As mentioned previously, the main objective of this paper is to use the extended Prony-type scheme to interpolate
a function on an equispaced grid. The extended Prony scheme comprises complex exponentials and polynomials
[1, 2, 6]:

G .x/ D

mX
nD1

Qn .x/ exp .�nx/

where m 2 N; �n 2 C and Qn .x/ are polynomials in x with complex coefficients and non-negative integer powers
of x.

2.2 The minimal order of linear recurring sequence

Let us consider a sequence:
p0; p1; p2; ::: WD .pj I j 2 Z0/

where elements pj can be real or complex numbers. Then, a sequence of Hankel matrices reads:

Hn WD .piCj�2/1�i;j�n D

26664
p0 p1 ::: pn�1

p1 p2 ::: pn

:::

pn�1 pn ::: p2n�2

37775 I n D 1; 2; ::: :
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The Hankel transform (the sequence of determinants of Hankel matrices) .dnIn 2 N/ reads:

dn WD detHn:

Definition 2.1. The minimal order of the recurring sequence .pj I j 2 Z0/ is m 2 Z0; m < C1

rank.pj I j 2 Z0/ D m

if the sequence of determinants of Hankel matrices has the following structure:

.d1; d2; :::; dm; 0; 0; :::/ (1)

where dm ¤ 0 and dmC1 D dmC2 D ::: D 0 [19, 20].

Example 2.2. Let pj WD j 2; j 2 Z0. Then, rank.j 2I j 2 Z0/ D 3 because the sequence of determinants of
Hankel matrices reads .0;�1;�8; 0; 0; : : :/.

Definition 2.3. Let rank
�
pj I j 2 Z0

�
D m. Then the characteristic polynomial for the sequence .pj I j 2 Z0/ is

defined as [19, 20]:

Odm WD det OHm WD

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌
p0 p1 ::: pm

p1 p2 ::: pmC1

::: ::: ::: :::

pm�1 pm ::: p2m�1

1 � ::: �m

ˇ̌̌̌
ˇ̌̌̌
ˇ̌̌ D 0: (2)

The expansion of the determinant in (2) yields an m-th order algebraic equation for the determination of roots of the
characteristic polynomial:

Am�
m
C Am�1�

m�1
C :::C A1�C A0 D 0I (3)

where Am ¤ 0 because dm ¤ 0.

Theorem 2.4. Let the minimal order of the sequence
�
pj I j 2 Z0

�
be m and the multiplicity indexes of roots

�1; �2; :::; �l of the characteristic polynomial (3) are m1; m2; :::; ml accordingly;
Pl
rD1mr D m. Then the

following equality holds true [19, 20]:

pj D

lX
rD1

mr�1X
kD0

�rk

 
j

k

!
�j�kr I (4)

where �rk ; �r 2 C; �rmr�1 ¤ 0 [5].

Note that �rk

 
j

k

!
�
j�k
r D 0 if

 
j

k

!
D 0 what is true when 0 � j < k. Moreover, 00 D 1; 01 D 02 D ::: D 0.

The opposite statement holds also. If (4) holds true, then

rank.pj I j 2 Z0/ D m1 Cm2 C :::Cml :

Rigorous proof of this theorem is given in [5].

Definition 2.5. A sequence .pj I j 2 Z0/ is a linear recurring sequence (LRS) if elements of that sequence can be
expressed in the form of (4).

Corollary 2.6. (4) can be rewritten in the following form:

lX
rD1

mr�1X
kD0

�rk

 
j

k

!
�j�kr D

lX
rD1

 
mr�1X
kD0

O�rkj
k

!
�jr I (5)

where �1; �2; :::; �l ¤ 0 and �rmr�1 ¤ 0.
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For example, P2
kD0 �rk

 
j

k

!
�
j�k
r D �r0

 
j

0

!
�
j
r C �r1

 
j

1

!
�
j�1
r C �r2

 
j

2

!
�
j�2
r

D �r0�
j
r C

�r1
�r
j�
j
r C

�
�r2

2�2r
j 2 � �r2

2�2r
j
�
�
j
r D

�P2
kD0 O�rkj

k
�
�
j
r

where O�r0 D �r0; O�r1 D �r1
�r
�
�r2

2�2r
; O�r2 D �r2

2�2r
.

Thus, the sequence qj D
Pl
rD1

�Pmr�1

kD0
O�rk � j

k
�
�
j
r ; j D 0; 1; 2; : : : is an LRS and its minimal order of

LRS is equal to rank.qj I j 2 Z0/ D m1 Cm2 C :::Cml because O�rmr�1 D �rmr�1 ¤ 0.

Remark 2.7. (4) simplifies if all roots of the characteristic polynomial are distinct:

pj D

mX
rD1

�r�
j
r :

Note that coefficients �rk (or just �r ) are determined in order to fit the initial conditions of the recurrence (roots
�1; �2; :::; �l are defined by (2)):

lX
rD1

mr�1X
kD0

 
j

k

!
�j�kr �rk D pj I j D 0; 1; :::; m � 1: (6)

This system of linear equations has a unique solution [5].

Remark 2.8. Let rank.pj I j 2 Z0/ D m and the first 2m elements of that series are known. Then it is possible to
use (3), (6) and (4) to calculate all elements of that sequence.

Corollary 2.9. Let the sequence .pj I j 2 Z0/ be an LRS and its minimal order be equal to m. Then the following
linear recurrence relation holds true [5]:

B0pj C B1pjC1 C :::C Bm�1pjCm�1 D pjCmI j D 0; 1; ::: (7)

where constants B0; B1; :::; Bm�1 2 C exist and do not depend on j .

Example 2.10. Let pj WD j 2, j 2 Z0. Then, B0 D 1; B1 D �3, and B2 D 3 because

j 2 � 3 .j C 1/2 C 3 .j C 2/2 D .j C 3/2 :

On the other hand (according to (2)), the characteristic polynomial

�8�3 C 24�2 � 24�C 8 D �8 .� � 1/3 D 0

yields one root �1 D 1; its multiplicity index is m1 D 3. Therefore, according to (4),

pj D

2X
kD0

�1k

 
j

k

!
1j�k D �10

 
j

0

!
C �11

 
j

1

!
C �12

 
j

2

!
:

Coefficients �10; �11; �12 are determined in order to fit the recurrence: �10 D 0I�11 D 1I�12 D 2. Thus, finally,

pj D j C 2 �
j.j � 1/

2
D j 2 for j � 2 .p0 D 0Ip1 D 1/:

Remark 2.11. The determination of the minimal order of sequence fpj g by using Definition 2.1 has a cost of

mX
jD1

O.j 3/ D O.m4/

flops. Construction of characteristic polynomial (3) needs O.m4/ flops and O.m2/ flops are required to find the
roots of this polynomial. System of linear equations (6) can be solved by using the Gaussian elimination method, the
process has a cost of 2m3=3 flops [22, 23].
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3 LRS versus Prony decomposition - two computational examples

Let us consider a sequence pj ; j D 0; :::; N where Qs; N 2 N, 3 � Qs � N , Qs is an upper bound of the number
of exponentials and the bounds �0;1 are positive. An LRS of a given sequence could be found using the Prony
interpolation method [21]. The main steps of this algorithm read:

1. Determine the smallest singular value of the rectangular Hankel matrix (H WD .poCg/
N�Qs;Qs
oD1;gD0

and use
singular value decomposition to find the related right singular vector u D .ul /QslD0.

2. Compute all zeros of polynomial
PQs
lD0 ulz

l and determine all zeros Qzt , t D 1; :::; QM for which jj Qzt j � 1j � �1.
Note that Qs � QM .

3. For Q!t WD Qzt= j Qzt j .t D 1; :::; QM/ compute Qct 2 C .t D 1; :::; QM/ as least squares solution of the
overdetermined linear Vandermonde-type system:

QMX
tD1

Qct Q!
j
t D pj ; j D 0; :::; N:

4. Delete all the Q!l .l 2 1; :::; QM/ with j Qcl j � �0 and denote the remaining entries by Q!t .t D 1; :::;M/ with
M � QM .

5. Repeat step 3 and compute Qct 2 C; .t D 1; :::;M/ as least squares solution of the overdetermined linear
Vandermonde-type system

MX
tD1

Qct Q!
j
t D pj ; j D 0; :::; N

in accordance to the new set Q!t ; t D 1; :::;M again.

Note that if Qzt are multiple zeros of order nk then coefficients Qct;r 2 C .t D 1; :::; OM; r D 0; :::; nk/ are obtained
as least squares solution of the overdetermined linear Vandermonde-type system:

OMX
tD1

 
nkX
rD0

Qct;rj
r

!
Q!
j
t D pj ; j D 0; :::; N;

OM � Qs:

Example 3.1. Let us consider a sequence pj WD j; j D 0; :::; N �1,N D 21. Let us find a LRS of a given sequence
using two alternative methods: a) the concept of the minimal order of LRS; b) the Prony interpolation method [21].

a) The minimal order of LRS of a given sequence is 2 because the sequence of determinants of Hankel matrices reads
.0;�1; 0; 0; :::/. Then the characteristic polynomial reads:ˇ̌̌̌

ˇ̌̌ 0 1 2

1 2 3

1 � �2

ˇ̌̌̌
ˇ̌̌ D ��2 C 2� � 1 D 0:

The roots are: �1; �2 D 1. Now, the linear algebraic system of equations (6) yields:266666664

1 0

1 1

1 2

1 3

::: :::

1 20

377777775
"
�10

�11

#
D

266666664

0

1

2

3

:::

20

377777775 :

Thus �10 D 0I �11 D 1.
Then the LRS of the given sequence reads:

Op
.H/

j
D �10

 
j

0

!
�
j

1
C �11

 
j

1

!
�
j

1
D

 
j

1

!
1
j

1
D j; j D 0; :::; 20:
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b) Let Qs D ŒN=2 � 1� D 9, �0 D 10�4, �1 D 10�4. According to the Prony interpolation algorithm [21] the
rectangular Hankel matrix reads:

H WD .poCg/
N�Qs;Qs
oD1;gD0

D

2666664
0 1 2 3 ::: 9

1 2 3 4 ::: 10

3 4 5 6 ::: 11

::: ::: ::: ::: ::: :::

11 12 13 14 ::: 20

3777775 :
Now, the sequence of the singular values of the Hankel matrix reads: .119:67; 9:94; 0; 0; 0; 0; 0; 0; 0; 0/. It can be
noted that the smallest singular value is a tenth value. The related singular vector is given by u D .ul /

9
lD0

D

.�0:2179 � 0:2889 0:4505 0:6683 � 0:3815 � 0:0538 � 0:1445 � 0:1360 � 0:0629 0:1667/.
Now the polynomial

P9
lD0 ulz

l can be constructed, it has two zeros Qz1 D Qz2 D 1 satifying the property
jj Qzt j � 1j � �1; t D 1; :::; Qs. Note that in this case Qz1;2 are multiple zeros of order 2. Thus the overdetermined linear
Vandermonde-type system

PQs
tD1

�P2
rD0 Qct;rj

r
�
Q!
j
t D pj ; j D 0; :::; N � 1 yields:266666664

1 0 0 1 0 0

1 1 1 1 1 1

1 2 4 1 2 4

1 3 9 1 3 9

::: ::: ::: ::: ::: :::

1 20 400 1 20 400

377777775

266666664

Qc10

Qc11

Qc12

Qc20

Qc21

Qc22

377777775 D
266666664

0

1

2

3

:::

20

377777775 :

Thus Qc11 D Qc21 D 0:5; Qc10 D Qc12 D Qc20 D Qc22 D 0. Then the LRS of the given sequence reads:

Op
.P/

j
D 0:5j C 0:5j D j; j D 0; :::; 20:

Definition 3.2. An extended Prony’s function (EPF) f .x/ is expressible in the following form:

f .x/ D

nX
rD0

Qr .x/ exp .�rx/ I (8)

where Qr .x/ D
Pmr�1
krD0

arkrx
kr ; mr � 1; arkr 2 C; ar;.mr�1/ ¤ 0; r D 0; 1; : : : ; n and x; f .x/ 2 R: It is

important to note that n is finite in (8).

Example 3.3. Let us consider a function Qpj D j; j D 0; 1; 2; :::; 10; 11Ce; 12; 13; :::; N�1, N D 101, e D �0:1.
Let us find a EPF of a given function using methods: a) the extended Prony-type interpolation method; b) the Prony
interpolation method [21].

a) Let the minimal order of the EPF be 14. Then the characteristic polynomial is defined by ��14C2�13��12 D 0;
the roots of this polynomial are �1 D �2 D ::: D �12 D 0, �13 D �14 D 1. Now, the linear algebraic system of
equations (6) yields: 26666666666664

1 0 0 0 ::: 0 1 0

0 1 0 0 ::: 0 1 1

0 0 1 0 ::: 0 1 2

0 0 0 1 ::: 0 1 3

0 0 0 0 ::: 0 1 4

::: ::: ::: ::: ::: ::: ::: :::

0 0 0 0 ::: 0 1 99

0 0 0 0 ::: 0 1 100

37777777777775

266666666664

�10

�11

�12

:::

�111

�20

�21

377777777775
D

26666666666664

0

1

2

3

4

:::

99

100

37777777777775
:

Thus �111 D �0:1; �21 D 1.
Then the EPF of the given sequence reads:

OP
.H/

j
D �111

 
j

11

!
�
j�11

1
C �21

 
j

1

!
�
j

2
D j � 0:1

 
j

11

!
0j�11; j D 0; :::; 100:
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b) Let Qs D ŒN=2 � 1� D 49, �0 D 10�4, �1 D 10�4. The sequence of the singular values of the Hankel
matrix reads: .264:7; ; 196:8; 0:1; :::; 5 � 10�17/. The related right singular vector by singular value decomposition
is u D .ul /

49
lD0
D .0 0 0 0 0 0 0 0 0 0 0 0 0:0410 � 0:0999 � 0:1842 0:1331 0:1033 � 0:0098 �

0:0350 � 0:2179 0:2590 0:1325 0:2229 -0.3711 � 0:0094 � 0:1837 0:0509 0:2805 � 0:3368 � 0:1034 �
0:2375 0:3521 0:2704 �0:0646 0:1245 0:0051 �0:1061 0:0637 0:0680 0:0237 0:0828 0:0404 �0:0392 �

0:1158 0:0486 � 0:1109 � 0:13080:1170 � 0:0564 � 0:0070/. Thus characteristic polynomial
P49
lD0 ulz

l has
two multiple zeros (with property jj Qzt j � 1j � �1): Qz1 D Qz2 D 1; Then the constructed overdetermined linear
Vandermonde-type system yields: Qc11 D Qc21 D 0:5; Qc10 D Qc20 D �0:0026; Qc12 D Qc22 D 0 and the EPF of the
given sequence reads:

OP
.P/

j
D �0:0026C 0:5j � 0:0026 � 0:5j D j � 0:0052; j D 0; :::; N � 1:

Now let us consider functions Npj D j; j D 0; 1; 2; :::; 10; 11C e; 12; 13; :::; N � 1, N D 101 where e 2 Œ�0:1I 0:1�.
Let us find a EPF of the each given function using the extended Prony-type and Prony interpolation methods.
Differences between the computed EPF functions are shown in Figure 1. The thick solid line in Figure 1 stands
for e D 0; OP .P/

j
and OP .H/

j
coincide for all j then. But even a slight perturbation e results into computational

errors in OP .P/
j

. Moreover, these errors are not concentrated only around the 12-th element of the sequence - they
are distributed throughout the whole domain (Figure 1). LRS theory (especially when the roots of the characteristic
polynomial are multiple) enables the formal manipulation with such algebraic expressions as 00 – which becomes a
very important issue in practical problems of interpolation.

Fig. 1. The difference between OP .P/
j
� OP

.H/

j
at different values of the perturbation parameter e. The thick solid line stands for e D 0.

4 Extended Prony’s functions and their properties

Theorem 4.1. Let f .x/ be an EPF. Then the sequence

yj WD f .x0 C jh/I j 2 0; 1; 2; : : : I (9)

is a LRS (x0; h 2 R are fixed parameters).

Proof. Let the function y D f .x/ be an EPF. Then, the following equalities hold for all x0; h 2 R:

yj WD f .x0 C jh/ D

lX
rD1

 
mr�1X
kD0

ark.x0 C jh/
k exp .�r .x0 C jh//

!
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D

lX
rD1

 
mr�1X
kD0

brk � j
k

!
.exp .�rh//j ; (10)

where coefficients brk can be expressed in terms of coefficients ar0; ar1; :::; armr�1. It can be noted that the index k,
parameters x0 and h do not depend on j. The introduction of the symbol

�r D exp .�rh/ (11)

reduces (10) into the LRS:

yj D

lX
rD1

 
mr�1X
kD0

brk � j
k

!
�jr I j D 0; 1; 2; : : : : (12)

Theorem 4.2. Let .yj I j 2 Z0/ be an LRS. Then the following inequalities hold true:

0 � rank.yj I j 2 Z0/ � m1 Cm2 C :::Cmr : (13)

Proof. (5) can be used to express terms in (12) (coefficients brk ¤ 0). Combining like terms (some roots �r may
coincide) yields the estimate in (13).

Example 4.3. Let f .x/ D cos x D 1
2
.exp .ix/C exp .�ix//; x 2 Œ0I 30��. Let us compute the minimal order of

LRS when h1 D �
2

; h2 D 2�; h3 D � .
y1;k D f .x0 C kh1/ D .1; 0;�1; 0; 1; 0;�1; 0; 1; :::/;
y2;k D f .x0 C kh2/ D .1; 1; 1; 1; 1; :::/ when x0 D 0.
But y3;k D f .x0 C kh3/ D .0; 0; 0; 0; 0; :::/ when x0 D �

2
.

It is clear that rank.y1;k/ D 2; rank.y2;k/ D 1; rank.y3;k/ D 0. It can be seen that the minimal order of LRS
depends on the step size h and x0. Also, it can be observed that all three sequences comprise exact values of the
function f .x/.

Definition 4.4. Let f .x/ be a EPF. Then, the minimal order of f .x/ is denoted as rank.f .x// and is defined as
follows:

rank.f .x// WD max
x0;h

rank.f .x0 C kh/ I k 2 Z0/I

where x0; h 2 R; h > 0.

Example 4.5. rank.cos x/ D 2:

Definition 4.6. A sequence f .x0 C khI k 2 Z0/ is a representative sequence if the following equality holds true
for fixed x0 and h:

rank.f .x// D rank.f .x0 C khI k 2 Z0//:

Theorem 4.7. Let .yj I j 2 Z0/ be a representative LRS. Then, indexes �1; �2; :::; �l read:

�r D
1

h
.ln j�r j C i.arg �r C 2�kr // I kr D 0;˙1;˙2; :::I r D 1; l: (14)

Proof. (11) and the definition of the complex logarithm yield:

�rh WD Ln�r D ln j�r j C i.arg �r C 2�kr /I kr D 0;˙1;˙2; :::I r D 1; l:

It is important to select such coefficients kr that different �r would correspond to different �r for all r. That ensures
the equality of the EPF.

Example 4.8. Let pj WD 1
2
.ij C .�i/j / D cos �j

2
: We will find real EPF y D f .x/; xIf .x/ 2 R satisfying the

constrains f
�
�j
2

�
D pj ; j D 0; 1; 2; ::: (x0 D 0 and h D �

2
). It can be noted that rank.pj I j 2 Z0/ D 2: Let us

assume that this sequence is a representative LRS. This assumption yields the requirement that rankf .x/ D 2. Then,
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�1 D i and �2 D �i . Moreover, �
2
�1 D Lni D i

�
�
2
C 2�k

�
; �1 D i .1C 4k/. Analogously, �2 D i .�1C 4l/.

It can be noted that �1 ¤ �2; k; l D 0;˙1;˙2; :::. Then, the algebraic interpolant reads:
y D f .xI k; l/ D 1

2
.exp .i .1C 4k/ x/C exp .i .�1C 4l/ x//; k; l D 0;˙1;˙2; :::. It can be noted that

rankf .xI k; l/ D 2; f
�
�j
2
I k; l

�
D cos �j

2
. But f .x; k; l/ will be a EPF only when l D �k D n. Therefore,

f .xIn;�n/ D 1
2
.exp .i .1C 4n/ x/C exp .�i .�1C 4n/ x// D cos ..4nC 1/ x/;

n D 0; 1; 2; :::. The graphs of f .x; n;�n/ at n D 0; 1 are shown in Figure 2.

Fig. 2. Graphs of f .x; n;�n/ at n D 0 (the solid line) and n D 1 (the dashed line); circles denote nodes of the equispaced grid.

It can be noted that the selection of the parameter h may be a non-trivial task in the general case. Therefore, it is
important to define the concept of the sufficiently small step h.

Definition 4.9. The step h is sufficiently small if there exist such h0 > 0 that the following relationship holds true
for all 0 < h < h0:

�r D
1

h
.ln j�r j C i arg �r / I (15)

where 0 � jarg �r j < � and r D 1; l .

Lemma 4.10. If f .x/ is EPF defined by (8) then such h0 > 0 exists that (15) holds true.

Proof. (14) yields: arh D jln �r j; brh D arg �r C 2�kr .h/ where �r D ar C ibr and 0 < jbr j < C1; a 2 R.
Thus, brh D arg �r while 0 < jbr j h < � . Therefore, kr .h/ D 0 and 0 < h < �

jbr j
.

The selection of h0 WD min
r

�
jbr j

finalizes the proof.

It can be noted that h0 would be unbounded if max
r
br D 0.

Lemma 4.11. Let (15) holds true for h0 > 0. Then

kr D
1

2�h0
.h arg �r .h0/ � h0 arg �r .h// I r D 1; l:

Proof. Let
�r WD �r .h/ D exp ..ar C ibr /h/ ; (16)

i.e. �r WD �r .h/ is a function of h; 0 < h < C1. Then,

brh D arg �r .h/C 2�kr .h/: (17)

It follows from the definition of h0 that
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br D
arg�r .h0/
h0

or brh D arg �r .h0/ � hh0 . Then, (17) yields

h

h0
� arg �r .h0/ D arg �r .h0/C 2�kr .h/:

Lemma 4.12. The following equality holds for all 0 < h < C1:

h jln �r .h0/j D h0 ln j�r .h/j :

Proof. (16) yields ar D lnj�r .h/j
h

. Thus, ar D lnj�r .h0/j
h0

.

Example 4.13. It can be noted that the step h0 D � is a sufficiently small step for f .x/ D cos x. Then parameters
k and l must be set to 0.

5 The extended Prony-type interpolation method

Let us assume that a function f .x/ is not necessarily EPF. Then the reconstruction of the closest EPF to the function
f .x/ in the interval a � x � b would be an important practical problem which is discussed in details in this section.

First of all the step h of the regular grid in the interval ŒaI b� should be selected. The selection of the step h is
directly related to the order of the EPF F .x/ which will be used to mimic the original function f .x/. Let the order
of F .x/ is m (we wish to mimic f .x/ using an EPF with the order equal to m). Then, the step h reads:

h D
a � b

2m � 1
:

Now, the function f .x/ can be sampled at nodes of the grid:

p0 D f .a/ Ip1 D f .aC h/ Ip2 D f .aC 2h/ I : : : Ip2m�1 D f .b/ :

We have assumed that the minimal order of the EPF F .x/ is m. Therefore, according to (1) the following equality
holds true:

dmC1 D det

26664
p0 p1 � � � pm�1 pm

p1 p2 � � � pm pmC1

� � � � � � � � � � � � � � �

pm pmC1 � � � p2m�1 F .b C h/

37775 D 0: (18)

Note that it is easy to determine F .b C h/ from (18) [8]. But we will not use F .b C h/ (nor f .b C h/) in further
computations.

Now, the characteristic polynomial (2) takes the form:

det

2666664
f .a/ f .aC h/ � � � f .aCmh/

f .aC h/ f .aC 2h/ � � � f .aC .mC 1/ h/

� � � � � � � � � � � �

f .aC .m � 1/ h/ f .aCmh/ � � � f .b/

1 � � � � �m

3777775 D 0: (19)

Let us assume that all roots �1; �2; : : : ; �m are different. Then, (14) can be used to compute indexes �r ; r D
1; 2; : : : ; m. Now, a linear system of equations is constructed using (9); its solution produces coefficients �r ; r D
1; 2; : : : ; m. Finally, the mimicking EPF in the interval a � x � b reads:

F .x/ D

mX
rD1

�r exp .�rx/ :

If some roots of (19) are multiple, the algorithm of computations is similar, though the expression of the mimicking
algebraic interpolant becomes more complex (4).
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Example 5.1. Algebraic interpolation of an EPF.
Let us consider the following EPF:

fa.x/ D 0:3x
2 sin.2:14x/e�0:13x C cos.0:18x/e�0:31x :

We will construct the algebraic interpolation of this function in the interval 0 � x � 10. Let us assume that the
order of LRS of values of fa .x/ is m (rank

�
pj I j 2 Z0

�
D m); the linear recurrent function is denoted as Fm .x/.

Then, h D 10
2m�1

and:
pj D fa .jh/ I j D 0; 1; : : : ; .2m � 1/ :

We perform a number of computational experiments for different values of m; m D 1; 2; : : : ; 35. The algorithm of
algebraic interpolation produces 35 different linear recurrent functions Fm .x/ and 35 values of RMSE (root mean

square errors) of the interpolation defined as
q
1
10

R 10
0
.fa .x/ � Fm .x//

2 dx. The variation of RMSE from m is
illustrated in Figure 3.

Fig. 3. RMSE errors of the algebraic interpolation at different m; the circle denotes the best m (RMSE = 0 at m = 8).

It is clear that RMSE = 0 when m D 8 because the order of fa .x/ is equal to 8. We will illustrate the algorithm
of algebraic interpolation for m D 8 in details. The step h is equal to 2

3
, then the characteristic polynomial has

eight roots: �1;2;3 D 0:1317 C 0:9075i ; �4;5;6 D 0:1317 � 0:9075i ; �7;8 D 0:8074 � 0:0974i . Values of �r ;
r D 1; 8 (computed using (14) at kr D 0; r D 1; 8) read: ��

1
D �1;2;3 D �0:0867 C 1:4267i ; ��2 D �4;5;6 D

�0:0867 � 1:4267i ; ��
3;4
D �7;8 D �0:2067� 0:1200i .

Now, (4) yields the equality:

.�1 C �2j C �3j
2/ej�

�
1 C .�4 C �5j C �6j

2/ej�
�
2 C �7e

j��3 C �8e
j��4 D f .jh/; j D 0; 7:

Solutions of the linear algebraic system of equation now reads: �1;2;4;5 D 0; �3;6 D �0:0667i ; �7;8 D 1
2

.
Finally, the expression of F8 .x/ reads:

F8.x/ D

�
3

2

�2
.�0:0667i/x2e

3
2 .�0:0867C1:4267i/x C

�
3

2

�2
.0:0667i/x2e

3
2 .�0:0867�1:4267i/x

C
1

2
e
3
2 .�0:2067C0:12i/x C

1

2
e
3
2 .�0:2067�0:12i/x

D �0:15ix2e�0:13x.e2:14ix � e�2:14ix/C
1

2
e�0:31x.e0:18ix C e�0:18ix/

D �0:15ix2e�0:13x.cos.2:14x/C i sin.2:14x/ � cos.�2:14x/ � i sin.�2:14x//

C
1

2
e�0:31x.cos.0:18x/C i sin.0:18x/C cos.�0:18x/C i sin.�0:18x//

D 0:3x2 sin.2:14x/e�0:13x C cos.0:18x/e�0:31x :

The algebraic interpolant is illustrated in Figure 4.
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Fig. 4. Algebraic interpolant of fa .x/ on interval Œ0; 10� (the interpolant coincides with the function; circles denote nodes of the
equispaced grid).

6 Algebraic interpolation of the real time series

The ability of algebraic interpolation on a regular grid (for the nearest algebraic interpolant) suggests interesting
possibilities for application of this approximation scheme for the real time series. We use a time series of
monthly PMI Composite Index. A PMI reading above 50 percent indicates that the manufacturing economy is
generally expanding and below 50 percent that it is generally declining. The unfiltered PMI data Sk in interval
k D 1; 2; : : : ; 788 is shown in Figure 5.

Fig. 5. PMI Composite Index data (the solid line) and an algebraic interpolant (the dotted line) of the experimental data at m = 56.
Circles denote nodes of the equispaced grid; the zoomed part of the algebraic interpolant is illustrated in part (b).
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We will use the algebraic interpolation scheme in equally spaced grid on interval [1; 788]. First, we preselect the
order of the EPF which will be used to mimic the experimental data. For the order of the EPF equal to m, the step
h D 787

2m�1
and pn D Sj ; j D 1C nh; n D 0; 1; : : : ; 2m � 1.

We again perform a number of computational experiments for different values of m; m D 1; 2; : : : ; 90. The
algorithm of algebraic interpolation produces 90 different EPF Fm .x/. RMSE of algebraic interpolation is now
computed as the square root of the sum of squared differences between values of the given data and the values of the
EPF Fm .x/ at all sampling points in the interval [1; 788]. Computational experiments show that the best result (the
minimal RMSE = 3.17) is achieved at m D 56 (Figure 6). The graph of F56 .x/ is shown in Figure 5.

Fig. 6. RMSE errors of the algebraic interpolation at different m; the circle denotes the best m (RMSE = 3.17 at m = 56)

As noted previously, the extended Prony-type interpolation scheme outperforms the Lagrange polynomial on
equispaced grinds. The Lagrangian interpolant is illustrated in Figure 7 (the nodes are the same as in Figure 5).
Runge’s effect prevents Lagrange interpolation to be a reasonable approximation (the maximum absolute value of
the Lagrange interpolant in Figure 7 is equal to 3:1634 � 1032), yet the proposed extended Prony-type interpolation
does not have that problem.

Fig. 7. PMI Composite Index data (the solid line) and the Lagrangian interpolant (the dotted line). Circles denote nodes of the
equispaced grid.
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As mentioned in the Introduction, the polynomial interpolation in Chebyshev points is numerically stable even
for high polynomial degrees. However, real-world time series are usually recorded using a constant sampling rate.
Thus, it would be complicated to find values of this time series at Chebyshev points without transforming the
scale (Chebyshev interpolation is straightforward for continuous functions of course). F56.x/ in Figure 5 is a good
example of such alternative interpolation.

7 Concluding remarks

An algebraic interpolation scheme on an equispaced grid is presented in this paper. It is demonstrated that the
proposed scheme can be used for the identification of the nearest algebraic interpolant for a given function. This
computational effect can be explained by the fact that though all nodes are located inside the bounded interval, the
interpolant is reconstructed in the global domain. Such interpolation scheme can be extended to the extrapolation
scheme what can be successfully exploited in time series prediction applications [8]. On the other hand, this
advantageous feature can be successfully exploited for the analytic approximation of noisy and/or defected real-
world signals.

Numerical experiments have shown that optimal interpolants produced by the proposed algebraic technique
based on the order of LRS outperform classical Lagrange polynomial interpolants on equispaced grids. This effect
can be explained by the fact that the functional base used to construct algebraic interpolants is wider compared
to polynomial interpolants. Really, (8) would represent a polynomial interpolant if all indexes �r I r D 0; 1; : : : ; n
would be equal to zero.

The main drawback of the proposed interpolation scheme is that rather complex computations are required as
the number of nodes becomes large. In the first place this is associated with the necessity to find all roots of the
characteristic Hankel equation. Thus, the proposed scheme of interpolation looses its aptitude when the number
of nodes becomes higher than one hundred. Nevertheless, the scheme preserves interesting potential of practical
applications at lower number of nodes. The explicit error bound of the interpolation and the possibility of using
adaptive grids remains a definite objective of future research.

Finally, it can be noted that the proposed scheme can be considered as an effective numerical tool for the
identification of nearest algebraic "skeleton" functions and extends the applicability of classical interpolation
schemes to real-world data contaminated with the inevitable noise.

Acknowledgement: Financial support from the Lithuanian Science Council under project No. MIP-100/2012 is
acknowledged.
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