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Santrauka

Pagrindinė magistrinio darbo užduotis buvo įsisavinti Veilio algebrų savybes ir išsiaiškinti, ar jas

galima pritaikyti kriptografiniam Shpilrain-Ushakov rakto apsikeitimo protokolui. Vėliau darbo

užduotis buvo praplėsta į bandymą išsiaiškinti ir pritaikyti ir kitokias, lėtai augančias algebras.

Pagrindinis nagrinėtas objektas magistriniame darbe buvo laisvoji asociatyvi algebra, ir jos

dvipusiai idealai, generuojami baigtinės aibės generatorių. Tokias algebrasmes pavadinome baigti-

nai pateiktomis algebromis.

Kiekvienai iš nagrinėtų algebrų, pasinaudodamiGröbnerio bazių teorija, suradome kanonines

formas. Šios reikalingos skaičiuojant laisvosios algebros elemento reikšmę moduliu idealui.

Žinodami kanoninių formų išraiškas, taip pat radome ir algebrų augimo greitį. Radome,

kad vienų nagrinėtų algebrų greitis yra tiesinis, o Veilio algebrų (Apibrėžimas 4.5) - kvadratinis.

Naudodami formalią terminologiją, pirmąsias algebras vadinome algebromis su Gelfando-Kirilovo

dimensija vienas, o antrąsias - su algebromis su Gelfando-Kirilovo dimensija du.

Vėliau literatūroje radome teoremą, teigiančią, jog Gelfando-Kirilovo dimensija gali būti

nulis, vienas, du, arba bet koks realus skaičius, didesnis už du.

Algebros, kurių Gelfando-Kirilovo dimensija yra nulis turi baigtinį elementų skaičių. Tačiau

mus domina begalinių algebrų taikymai. Komutatyvių algebrų Gelfando-Kirilovo dimensija yra

vienas. Tačiau mes norime nagrinėti nekomutatyvių begalinių algebrų taikymus, tad šių algebrų

nenagrinėjame. Algebros, kurių Gelfando-Kirilovo dimensija daugiau nei du - augančios greičiau

nei kvadratiškai, todėl šiose algebrose mažiau praktiška atlikti skaičiavimus, tad šių algebrų taip

pat nenagrinėjame. Todėl liko dviejų tipų augimo algebros, t.y. nekomutatyvios algebros, kurių

Gelfando-Kirilovo dimensija yra vienas, bei algebros, kurių Gelfando-Kirilovo dimensija yra du.

Šias algebras nagrinėjome su tikslu taikyti nekomutatyvioje kriptografijoje.

Įrodėme svarbią tokio tipo algebroms savybę, teigiančią, jog, turint baigtinai pateiktą alge-

brą A virš teigiamos charakteristikos lauko k, komutatyvus žiedas k[x] yra algebros elemento x

centralizatoriaus poaibis. Be to, ši savybė galioja, ir kai komutatyvus žiedas skaičiuojamas virš

algebros centro.



Centralizatoriaus savybę panaudojome apibendrindami Shpilrain-Ushakov rakto apsikeitimo

protokolą lėtai augančioms algebroms. Deja, pastebėjome, kad protokolą apibendrindami tokiu

būdu dalinai prarandame centralizatoriaus paslėptumą, kadangi dalį centralizatoriaus šiose alge-

brose yra lengviau apskaičiuoti, nei kasų grupėse, kurių taikymu buvo paremtas originalus Shpilrain-

Ushakov rakto apsikeitimo protokolas.

Galiausiai, pateikėme protokolo realizacijos pavyzdžių ir pabandėme paaiškinti, kokie turėtų

būti saugumo parametrai ir kokios problemos kiltų bandant pilnai realizuoti mūsų pasiūlytą pro-

tokolą. Be to, pateikėme keletą pasiūlymų apibendrinimams. Šioje vietoje nesustojome, ir su darbo

vadovu toliau ieškosime šių algebrų inovatyvių pritaikymų kituose raktų apsikeitimo protokoluose.



1 Overview

In this thesis we will be considering the free associative algebras k⟨X⟩, where X is an alfabet,

usually consisting of two elements, i.e. X = {x, y} . It forms a non-commutative polynomial ring

under the usual addition and multiplication operations, and a vector space under the usual addition

and multiplication by a scalar operations, and therefore, it forms an algebra.

In particular, we will consider infinite algebras (algebras with infinite number of elements)

with relations, i.e. we’ll choose an ideal I for the algebra k⟨X⟩, and then consider the quotient

algebra k⟨X⟩/I .

To understand these better and work with them, we need a way to write a result of a multi-

plication of two elements of an algebra in a unique way, i.e. we need a normal form. If we have a

normal form, then we can give an answer to a question whether two elements of a free associative

algebra are the same modulo the ideal.

Additionally, we need to know the growth of the algebra, so that we know how many mono-

mials can we have in the normal form of a product of two elements from the free associative algebra.

This, for some special forms of the ideal, can be achieved by using the non-commutative Gröbner

basis [9]. We will develop this theory in subsection 4.2.

Calculating Gröbner basis for arbitrary ideals is not an easy task and often the Gröbner basis

itself is not finite, so we will need to make use of the tools of computational algebra systems. These

we will develop in section 8.

Having found a finite Gröbner basis of an ideal of a free associative algebra, we will be able

to find a normal form for an arbitrary element of the algebra, as well as the growth rate of the

algebra. This then can be used in various calculations that we’ll consider.

We will consider Shpilrain-Ushakov’s key exchange protocol [4] and adapt it to the new

algebras that we have mastered. We will consider algebras of different growth rates, but we will

rule out the commutative case and the free associative algebra case immediately as they fail to

satisfy the security or efficiency conditions of the proposed key exchange protocol. Most of our

interest will be on the Weyl algebras and what will be called an ”almost commutative case”, i.e.

algebras of linear growth.

The growth of algebras we will be considering will be either linear or quadratic. In the former

case, when the order is 4n or 6n, and n2 in the latter case. Because the growth of these algebras is

small, we will be able to compute the products of two elements efficiently.

From the theory Gelfand-Kirillov dimension we will learn that we can’t get a much better

8



result, since, for example, growth rate log(n) would mean that such an algebra would actually

contain finite number of elements. Matrix representations can be found for such algebras [2]. We

could make use of matrix theory based attacks can be implemented in the cryptographic protocols

based on these algebras.

Finally, we will give some suggestions for the generalizations of the protocol we were con-

sidering and what else could be done in this field.

9



2 Objectives

The work on the master thesis started with the initial goal of understanding the structure of theWeyl

algebras and finding an implementation of them in Shpilrain-Ushakov’s key exchange protocol.

Other objectives and ideas were developed while solving this task, and we summarize the main

objectives in the following list.

• Understand the structure of theWeyl algebras and find an implementation of them in Shpilrain-

Ushakov’s key exchange protocol;

• Make use of computer algebra systems for implementations of finitely presented algebras;

• Understand the structure of slowly growing algebras;

• Generalize the implementation of the key exchange protocol to other algebras of slow growth.

10



3 Mathematical preliminaries

In this section we present the mathematical preliminaries and the background material for the main

observations, which will come in the following sections.

3.1 Notation conventions and basic definitions

X - alphabet with letters x1, . . . , xn, . . .. If there’s only two letters in the alphabet, we usually

denote them by x1 = x and x2 = y.

X∗ - the set of words (monomials) w = xi1xi2 . . . xik , where xi1 , . . . xik ∈ X , k ≥ 0, ω = 1 - the

empty word, and deg(w) = k - the degree of a word.

k[X] - the commutative polynomial ring with variables from alphabet X over field k.

k⟨X⟩ the non-commutative polynomial ring with variables from X over field k.

(F ) - ideal generated by the set of polynomials F over a given polynomial ring.

LM(f) - the leading monomial of a polynomial f ∈ k⟨X⟩ without the coefficient.

LT (f) - the leading term of a polynomial f ∈ k⟨X⟩, i.e. the leading monomial with the coefficient.

char(k) - the characteristic of the field k.

Zp - field of characteristic p, consisting of congruent classes of integers modulo p, i.e. Zp =

{0, 1, . . . , p− 1}.

For any two elements x, y ∈ A, where A is any algebra, a Lie bracket is defined as

[x, y] := xy − yx (3.1)

The center of an algebra A is the set Z(A), defined as

Z(A) := {v ∈ A | [w, v] = 0 ∀ w ∈ A} (3.2)

The centralizer of an element v ∈ A is the set C(v), defined as

C(v) := {w ∈ A | [w, v] = 0} (3.3)

We will sometimes use a different notation Cv(A) to mean the centralizer of v in the algebra A.

We assume the reader to be familiar with most notions from courses in linear and abstract

algebra. Therefore the notions of vector space, group, ring, algebra, field, ideal should be well

11



understood. Introduction to these topics can be found in [7].

Notation of a non-commutative polynomial ring might be unfamiliar, so we expand on that.

Let X be an alphabet of noncommuting indeterminates over a field k. Then we can form a

noncommutative polynomial ring, also called a ”free k-ring”, generated by X , and denoted by

R = k⟨X⟩

The elements of this ring are polynomials inX with coefficients from k. R becomes a free algebra

if it has a structure of a vector space over k as well.

Example 3.1. LetX = {x, y}, k = Z, then k⟨x, y⟩ is a free algebra over k with the multiplication

on the monomials xi
1y

j
1 . . . x

i
ny

j
n and xl1yk1 . . . xlmykm defined as a concatenation, i.e.

(
xi1yj1 . . . xinyjn

)
·
(
xl1yk1 . . . xlmykm

)
= xi1yj1 . . . xinyjnxl1yk1 . . . xlmykm .

Now, let

w = 3x+ 4y + 5xyxy, v = 2x− 3y + 6xyx

be two polynomials in x, y with coefficients from Z.

Then we can easily multiply w and v:

w · v = (3x+ 4y + 5xyxy) · (2x− 3y + 6xyx)

= 6x2 − 9xy + 18x2yx+ 8yx− 12y2 + 24yxyx+ 10xyxyx− 15xyxy2 + 30xyxyxyx

In what follows, we will be interested in algebras as quotients of the form k⟨X⟩/I , where

I = (F ) - finitely generated ideal of k⟨X⟩, F - set of polynomials in k⟨X⟩, generating I .

This leads us to the definition of the finitely presented algebras.

3.2 Finitely presented algebras

Definition 3.2. Let k be a field, X - alfabet, k⟨X⟩ - corresponding free algebra. Then if A =

k⟨X⟩/(F )with a finite number of polynomials in F , thenA is called a finitely presented algebra.

A simplest example might be the one of the commutative ring, when the only relation is

xy = yx:

Example 3.3. Let X = {x, y}, F = {xy − yx}. Then k⟨x, y⟩/(xy − yx) = k[x, y].

12



Example 3.4. A special class of algebras,

An = k⟨x, y⟩/(x2, xyx, . . . , xynx)

an example of Golod-Shafarevich algebras [8], are finitely presented, but if we consider algebra

A = lim
n→∞

An = k⟨x, y⟩/(x2, xyx, . . . , xynx, . . .)

called the limit algebra of An, we see that it is not finitely presented.

Sometimes we will use another notation for the finitely presented algebras, writing in a way

comparable to the generators-relations notation used to write a presentation of a group:

A = k⟨ x, y | f1 = 0, f2 = 0, . . . , fn = 0 ⟩

In general, it might not be an easy task in finitely presented algebras to find out if two elements of

the free algebra are equal modulo the ideal. It turns out that this question can be answered using

the theory of non-commutative Gröbner basis, which we will consider in a later section.

If we have an alphabet X = {x, y} of two non-commuting indeterminates, then two mono-

mials xy and yx are different. But at first we don’t know whether xy > yx. It is then important to

be able to say which monomial is ”bigger”, i.e. we have to choose an ordering.

3.3 Monomial ordering

There can be many orderings. Here we will restrict ourselves to introducing one of them, called

”deglex”.

We impose a total order (antisymmetric, transitive and total binary relation) on alphabetX =

{x1, x2, . . .} by setting xi ≺ xj if and only if i < j.

Definition 3.5. The total order on X can be extended to a total order on X∗, called the deglex

(degree lexicographical) order in such a way: If u,w ∈ X∗ then u ≺ w if and only if either:

(i) deg(u) < deg(w), or

(ii) deg(u) = deg(w) where u = vxiu
′ and w = vxjw

′ for some v, u′, w′ ∈ X∗ and xi, xj ∈ X

with xi < xj .

13



When applying (ii) we first find the common left subword v of the highest degree, and then compare

the next two letters xi and xj using the total order on X .

Example 3.6. Let X = {x, y} with x ≺ y. We list the words in X∗ of degree ≤ 3, sorted in

deglex:

1 ≺ x ≺ y ≺ xy2 ≺ xy ≺ yx ≺ y2 ≺ x3 ≺ x2y ≺ xyx ≺ xy2 ≺ yx2 ≺ yxy ≺ y2x ≺ y3.

We can further extend the ordering to the free associative algebra k⟨X⟩. Firstly we say

that LT (f) ≺ LT (g) if either LM(g) ≺ LM(f) or lc(f) < lc(g), where lc means the leading

coefficient in front of leading monomial.

Example 3.7. Consider Z7⟨x, y⟩, x ≺ y, and f = 3xy, g = 2xy.

Then LM(f) = xy, LM(g) = xy, and lc(f) = 3 > 2 = lc(g), hence LT (g) ≺ LT (f).

Then we consider what happens if the leading coefficients are the same as well, by following

this rule:

If f , g ∈ k⟨X⟩, then f ≺ g if LT (f) ≺ LT (g) or, if LT (f) = LT (g), then consider

recursively whether LT (f − LT (f)) ≺ LT (g − LT (g)).

Example 3.8. Consider k⟨x, y⟩, x ≺ y, and f = x+ y + xy2, g = xy2 + y3.

Then LT (f) = xy2, LT (g) = y3, and xy2 ≺ y3, hence f ≺ g.

Example 3.9. Consider k⟨x, y⟩, x ≺ y, and f = 2y + xy2 + y3, g = 2xy2 + y3.

Then LT (f) = y3, LT (g) = y3, and LT (f) = LT (g), but LT (2y+2xy2) = xy2 ≺ 2xy2 =

LT (2xy2), hence f ≺ g.

14



4 Properties of finitely presented algebras

In some specific cases for finitely presented groups or algebras, it is known how to compute canon-

ical forms for words, as well as centers and centralizers. We give a brief description of these.

4.1 Canonical form

Definition 4.1. Let’s consider an arbitrary element f of a free algebra (group), F - set of relations.

If we can find a way how to write this element modulo the relations F , which would give an unique

presentation for each element of the quotient algebra (group), we call it the canonical form of an

element f .

Note that there might be many different canonical forms, each giving the required result.

Here we give some examples of canonical forms and other properties of specific groups and

algebras.

4.1.1 Braid groups

Example 4.2. Consider for n ≥ 2, the braid group Bn, defined by the Artin presentation by gen-

erators and relations:

⟨
σ1, . . . , σn−1

∣∣∣∣∣∣ σiσj = σjσi for |i− j|≥ 2

σiσi+1σi = σi+1σiσi+1 for |i− j|= 1

⟩
. (4.4)

An important example of a positive braid (braid which has only generators in positive degrees) is

the fundamental braid ∆n ∈ Bn:

∆n = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · ·σ1 (4.5)

Then we have a theorem (Theorem 1.2 in [23]), which gives a unique presentation for an arbitrary

braid word:

Theorem 4.3. For every braid w ∈ Bn, there is a unique presentation given by:

w = ∆r
nP1P2 · · ·Pk (4.6)

where r ∈ Z is maximal, Pi are permutation braids, Pk ̸= ε and P1P2 · · ·Pk is a left-weighted

decomposition.

This presentation is called Garside normal form. The complexity of transforming any word

15



w ∈ Bn into a canonical form is O(|w|2n log n), where |w| is the length of a word in w ∈ Bn [23].

Example 4.4. For a positive integer n, consider a monoid M = ⟨a1, . . . , an⟩, defined by relations

ajaiak = ajakai = akajai, i ≤ j

and called the Chinese monoid of rank n. Then every element of M has a unique presentation of

the form x = b1b2 . . . bn, where all elements bi, i = 1, n can be written in terms of the generators

aj , j = 1, n.

b1 = ak111 , b2 = (a2a1)
k21ak222 . . . bn = (ana1)

kn1(ana2)
kn2 . . . (anan−1)

kn(n−1)aknn
n

4.1.2 Weyl algebra

Definition 4.5. If R = k⟨x, y⟩, and F = {yx − xy − 1}, then the finitely presented algebra

A1(k) = R/(F ) is called the first Weyl algebra over k.

Theorem 4.6. We have that the first Weyl algebra A1(k) satisfies these properties [24]:

1. [y, xn] = nxn−1, n = 1, 2, . . . ;

2. [yn, x] = nyn−1, n = 1, 2, . . . ;

3. Z(A1(k)) = k[xp, yp], i.e. the center of the algebra is a free k-ring, generated by xp, yp;

4. Canonical form of an element of an algebra A1(k) is

W =
∞∑

i,j=0

aijx
iyj, aij ∈ k; (4.7)

Having a canonical form, we have an unique presentation for an element of an algebra, and

we can calculate efficiently. For example, it’s not too difficult to check ifW = 2xy7 + x2 is in the

centralizer of x:

Example 4.7. Consider a = x, W = 2xy7 + x2, k = Z7 = {0, 1, . . . , 6}. Then

[a,W ] = [x, 2xy7 + x2] = [x, 2xy7] + [x, x2] = x2xy7 − 2xy7x = 2x[x, y7] = −2x · 7y6 = 0,

thereforeW ∈ Cx.

4.1.3 Other finitely presented algebras

Example 4.8. Example of an algebra with monomial relationsA2 = k⟨x, y⟩/(y2, xyx, yxy) [11]:
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We can write an arbitrary element w of the k-algebra A2, as an infinite sum

w =
∞∑
i=0

(
ai1x

i + ai2x
iy + ai3yx

i+1 + ai4yx
i+2y

)
(4.8)

with a finite number of non-zero coefficients. Here aij ∈ k are the coefficients from the base field

k. We call this form a canonical form of an element. Any other element of an algebra which is not

of this form can be rewritten in such a form using the relations of the algebra.

Indeed, x2y2 + yxyx+ yx2y → x2 · 0 + 0 · 0 + yx2y = 0, since y2 → 0, yx → 0, xy → 0.

So element x2y2 + yxyx+ yx2y can be rewritten in a canonical form as yx2y.

However, we haven’t explained in this example how we actually came up with the normal

form that we presented. In this particular example it was enough to find it by consideringmonomials

xx, xy, yx, yy and the reduction that we have to do using the relations. However, if we had some

more complicated relations than just monomial relations, as we’ll see in 4.2, we need to do some

additional work before finding the canonical form.

4.2 Gröbner basis

It is of interest to us because of multiple of reasons. One of them is that it helps to find a canonical

form of an element for a finitely presented algebra. It is also applied in quite a few cryptographic

protocols [20]. Finally, it is even used to study the growth of algebra. However, this subject is very

wide nowadays and beyond the scope of this thesis, even in the commutative case, so we try here

to give a brief exposition by considering an example, and relate the reader to literature for more

details, for example book by Graaf [9], or [17].

We are interested to see how fast a specific algebra grows, because we’ll need it in compu-

tational applications later on. The slower the growth of algebra, the better in terms of speed, but

there is a trade-of between how many useful properties of faster growing algebras can we retain.

Given a finitely presented algebra, if a Gröbner basis exists, then we have a canonical form,

growth, and eventually an application in cryptography.

Definition 4.9. Consider G to be a set of generators for the ideal I in the free associative algebra

k⟨X⟩. Then G is a Gröbner basis for I if for every nonzero element f ∈ I there is a generator

g ∈ G such that LM(g) is a subword of LM(f).

Having a set of generators satisfying this property is useful because, according to Theorem

5.3 in [17], there is an algorithm, by which we can compute the unique normal form of f ∈ k⟨X⟩
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modulo I , NFI(f).

Furthermore, making use of what is called aDiamond lemma, it can be shown how to compute

actual Gröbner basis G for the ideal I (Theorem 6.5 in [17]).

In the next example we will explain what the main steps in calculating the Gröbner basis for

a specific ideal are.

Example 4.10. We will be considering the algebra

A2 = k⟨x, y⟩/(y2, x2y + xyx+ yx2) (4.9)

Let I = (y2, x2y + xyx + yx2) be the ideal in k⟨x, y⟩. We will find it’s Gröbner basis for deglex

ordering y ≺ x.

Firstly, we will find the possible overlaps of the leading terms of the generators. The leading

terms are y2, x2y, and there are two overlaps, i.e. y3 = y2 · y = y · y2 and x2y2 = x2y · y = x2 · y2.

More generally, in this example we have I = (g1, g2), and u1LT (g1) = u1vu2 = LT (g1)u2,

where u1 = u2 = y, and w1LT (g1) = w1ww2 = LT (g2)w2 with w1 = x2, w2 = y.

Then we calculate the so-called S-polynomials:

u1g1 − g1u2 = y · y2 − y2 · y = 0

and
w1g1 − g2w2 = x2y2 − (x2y + xyx+ yx2)y

= −xyxy − yx2y

→ −xyxy + y(xyx+ yx2)
= −xyxy + yxyx
→ −xyxy + yxyx
→ xyxy − yxyx

The new polynomial has leading term xyxy, which creates three new pairs: xyxy2 = xyxy · y =

xyx · y2, x2yxy = x ·xyxy = x2y ·xy, xyxyxy = xyxy ·xy = xy ·xyxy. Then the S-polynomials

are:

xyxy(y2)− (xyxy − yxyx)y = yxyxy → y2xyx → 0,

(x2y + xyx+ yx2)xy − x(xyxy − yxyx)

= xyx2y + yx3y + xyxyx

→ −xyxyx− yx2yx− yxyx2 + yxyx2

→ −yxyx2 + yxyx2

= 0

18



and
xy(xyxy − yxyx)− (xyxy − yxyx)xy

= yxyx2y
→ −yxyxyx
→ 0

Therefore, all the new S-polynomials have been reduced to zero, and the Gröbner basis for the ideal

I is

G = {y2, x2y + xyx+ yx2, xyxy − yxyx}

Furthermore, when we have calculated the Gröbner basis, we can attempt to describe the normal

words, i.e. how would a normal form of an element f ∈ k⟨X⟩ modulo I would look like.

In general, a monomial might begin with one of the combinations xx, xy, yx, yy.

The last one, yy = y2, clearly can not occur in the normal word, since y2 is a leading mono-

mial of on of the generators in G.

First one, xx can not be followed by y (since we have a leading monomial x2y), therefore it

has to be followed by x, which then has to be followed by another x, giving a normal monomial

xn of length n.

Second one, xy, has to be followed by x, then x again, since xyxy is not allowed, and it has

to be followed by x again since x2y is not allowed, giving xyxn−2 of length n.

For yx, we have yxn−1 and yxyxn−3.

Therefore, the normal form for f ∈ k⟨X⟩/I can be written as

f =
∞∑
i=0

ai1x
i + ai2xyx

i + ai3yx
i + ai4yxyx

i

However, we are not always lucky to get a finite Gröbner basis. The next example is of an

ideal in k⟨x, y⟩ which does not have a finite Gröner basis.

Example 4.11. Consider algebra

A = k⟨x, y⟩/(xyx, yxy, x2y + yx2)

with deglex ordering y ≺ x.

The leading monomials are clearly xyx, yxy and x2y.

We first find that the only two overlaps giving a non-zero S-polynomials are xyx · xy =

19



xyx2y = xy · x2y and x2y · x = x2yx = x · xyx. It gives us the non-zero S-polynomials

xy(x2y + yx2)− xyx2y = xy2x2

and

x2yx− (x2y + yx2)x → yx3

These polynomials gives us another overlap xy2 · x2y, producing a non-zero S-polynomial,

xy2(x2y + yx2)− xy2x2y = xy3x2

Then, by induction, we can find S-polynomials xynx2, n ≥ 2. In this case, the Gröbner basis for

the ideal I is

G = {xyx, yxy, x2y + yx2, yx3, xy2x2, . . . , xynx2, . . .}

4.3 Growth of algebras

When we multiply two elements of an algebra, we are interested in how big the number of mono-

mials in the normal form of the resulting element is.

Example 4.12. If we consider k[x, y], then, taking (x+ y) to various degrees, we have

(x+ y)2 = x2 + xy + yx+ y2 = x2 + 2xy + y2

(x+ y)3 = x3 + 3x2y + 3xy2 + y3

And continuing this, we see that the growth of this commutative algebra in two variables is linear,

n+ 1.

Example 4.13. It turns out that free associative algebra in two variables k⟨x, y⟩ is of quadratic

growth, since, for example

(x+ y)2 = x2 + xy + yx+ y2

and the number of monomials grows as n2.

4.4 Gelfand-Kirillov’s dimension

We can’t just take random elements of an algebra and look at their powers in general case. There

is a nice too, called the Gelfand-Kirillov’s dimension, which can be used to understand the growth
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of an algebra [22].

Given a field k and a finitely generated k-algebra A, Gelfand-Kirillov (GK) dimension of

A is defined to be

GK dim(A) := lim
n→∞

log(dimV n)

log n
(4.10)

where V , a finite-dimensional subspace of A, generates k-algebra A.

It turns out, that the only possible numbers for Gelfand-Kirillov dimension are 0, 1, 2, or

any real number greater than two [22]. Algebras with dimension 0 are finite dimensional algebras.

Algebra of dimension 2 is, for example, the first Weyl algebra.

Finitely generated algebras of Gelfand-Kirillov dimension one satisfy a polynomial idenity

[10], and are called polynomial identity algebras (PI-algebras). There’s a book written on this topic

[21].

Furthermore, it is known that if k is algebraically closed field andA is an integral domain (no

zero divisors), thenA is in fact commutative [26]. Therefore, in order to consider non-commutative

algebras, we’ll have to allow for zero divisors to exist. This motivates the introduction of monomial

relations that the use for the algebras we are considering.

Example 4.14. Here we will consider the algebraA2 (Example 4.8) in two indeterminates x and y,

and three relations, y2 = xyx = yxy = 0 over a field k. Clearly, this algebra is non-commutative,

since

[x, y] = xy − yx ̸= 0 (4.11)

Also, from the three relations of the algebra it follows that y, xy and yx are zero divisors.

Furthermore, we can easily find a growth function for this algebra. Consider a subspace

V = k + kx+ ky (4.12)

Then A =
∪∞

n=0 V
n, where V 0 = k.

When n ≥ 3, there are 4n− 3 monomials that appear in V n, in particular

1, y, xy, . . . , xn−1y, yx, . . . ,

yxn−1, yx2y, . . . , yxn−2y
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Therefore, dimV n = 4n− 3, and

GK dim(A) = lim
n→∞

log(4n− 3)

log n
= 1 (4.13)

Example 4.15. Algebra A3 = k⟨ x, y | y2, x2y + xyx + yx2⟩ (from Example 4.10) is of slow

growth.

This algebra was already considered when giving an example of the Gröbner basis. Take

V3 = k + kx+ ky, then the only monomials in V n
3 are clearly

1, x, . . . , xn, y, . . . , yxn−1, xy, . . . , xyxn−2, yxy, . . . , yxyxn−3

therefore, dimV n
3 = 4n− 2. Then

GK dimA3 = lim
n→∞

log(4n− 2)

log n
= lim

n→∞

4n

4n− 2
= 1

Example 4.16. In addition, we have found the following algebras to be of slow growth:

A4 = k⟨ x, y | y2 = xyxy = yxyx = x2yx2 = xyx2 = 0 ⟩ (4.14)

A5 = k⟨ x, y | y3 = xyx = y2xy = yxy = yxy2 = y2x = 0 ⟩ (4.15)

A6 = k⟨ x, y | yxy = xyx = y2x = xy2 = 0 ⟩ (4.16)

These algebras have have monomial ideals, hence calculation of the Gröbner basis for them

does not introduce any new relations. Therefore it is easy to find the generating monomials in the

case of each of these algebras.

Consider the algebra A4 and it’s subspace V4 = k + kx + ky. The only monomials which

appear when we calculate V n
4 , when n ≥ 5, are

1, x, . . . , xn, y, xy, . . . , xn−1y, yx, . . . , yxn−1, yxy, . . . , yxn−2y, x2yx,

. . . , xn−2yx, yx2yx, . . . , yxn−3yx,

therefore, dimV n
4 = 6n− 9. Then

GK dimA4 = lim
n→∞

log(6n− 9)

log n
= lim

n→∞

6n

6n− 9
= 1
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Consider the algebra A5 and it’s subspace V5 = k+kx+ky. Only monomials in V n
5 , when n ≥ 4,

are

1, x, . . . , xn, y, xy, . . . , xn−1y, yx, . . . , yxn−1, yx2y, . . . , yxn−2y, yx2y2, . . . , yxi−3y2

therefore, dimV n
5 = 5n− 7. Then

GK dimA5 = lim
n→∞

log(5n− 7)

log n
= lim

n→∞

5n

5n− 7
= 1

Consider the algebra A6 and it’s subspace V6 = k + kx+ ky. The only monomials, that appear in

V n
3 , when n ≥ 4, are

1, x, . . . , xn, y, . . . , yn, xy, . . . , xn−1y, yx, . . . , yxn−1, yx2y, . . . , yxn−2y

therefore, dimV n
6 = 5n− 4. Then

GK dimA6 = lim
n→∞

log(5n− 4)

log n
= lim

n→∞

5n

5n− 4
= 1

Hence, algebras A4, A5, A6 are indeed of the slow growth.

4.5 Center

In this section we present as well a few important properties of the center and the centralizer in

specific finitely presented algebras.

Theorem 4.17. The center of algebra A2 = k⟨x, y⟩/(y2, xyx, yxy), i.e. the elements that com-

mute with all elements of an algebra, is

Z(A2) = {b0 +
∞∑
i=1

biyx
i+1y| bi ∈ k} (4.17)

Proof. Consider how the center acts on an arbitrary element of w ∈ A2. First, we note that w can

be written as

w =
∞∑
i=0

(
ai1x

i + ai2x
iy + ai3yx

i+1 + ai4yx
i+2y

)
(4.18)

and all the monomials of w commute with yxi+2y when i ̸= 0:

[
xi, yxi+2y

]
= xiyxi+2y − yxi+2yxi = 0
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because we have a relation xyx = 0.

[
xiy, yxi+2y

]
= xiy2xi+2y − yxi+2yxiy = 0

because y2 = 0 and xyx = 0

[
yxi+1, yxi+2y

]
= yxi+1yxi+2y − yxi+2yxi+1 = 0

because xyx = 0.

Then, calculating the commutator, we have[
w, b0 +

∞∑
i=1

biyx
i+1y

]
= [w, b0] +

[
w,

∞∑
i=1

biyx
i+1y

]
=

= 0 + w

∞∑
i=1

biyx
i+1y − (

∞∑
i=1

biyx
i+1y)w = 0

Therefore, we have a subset relation to one direction:

{b0 +
∞∑
i=1

biyx
i+1y | bi ∈ k} ⊆ Z(A2) (4.19)

Conversly, consider what elements commute with the generators x and y. From

[w, x] = 0 (4.20)

we have that

ai2(x
iyx− xi+1y) = 0

from which it follows that ai2 = 0 and

ai3yx
i+2 = 0

from which it follows that ai3 = 0 for all i.

From

[w, y] = 0 (4.21)

we have that

ai1(yx
iy) = 0
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from which it follows that ai1 = 0, i ̸= 0.

But since Z(A2) must commute with all elements, it has to commute both with x and y.

Therefore we must have each ai1, ai2, ai3 except possibly a01 be zero. Hence

Z(A2) ⊆ {b0 +
∞∑
i=1

biyx
i+1y| bi ∈ k} (4.22)

and therefore

Z(A2) = {b0 +
∞∑
i=1

biyx
i+1y| bi ∈ k} (4.23)

We could perform similar calculation to find the center for the other finitely presented al-

gebras. We already presented the center of the first Weyl algebra in the section about canonical

forms.

In general, it might not be easy to find normal forms. We might firstly want to have a normal

form for an element and then we would have to check if any of the monomials commutes with all

other monomials. If one of them does then the center will be bigger than the field k.

4.6 Centralizer

In order to apply the algebra of Gelfand-Kirillov one or two (in case of Weyl algebra) to Shpilrain-

Ushakov protocol, we need to find a subalgebra which would commute with a particular element

v ∈ A. For this we prove a simple property:

Theorem 4.18. For A - a finitely presented algebra over field k, with v ∈ A, we have

k [v] ⊆ C(v)

Proof.

[v, k [v]] = v
∞∑
k=0

akv
k −

∞∑
k=0

akv
kv =

=
∞∑
k=0

akv
k+1 −

∞∑
k=0

akv
k+1 = 0,

therefore, k [v] ⊆ C(v).
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The same property holds even if we change the field k with the center of an algebra Z(A).

Therefore, in the cases where we know what the center of an algebra is, we can calculate much

bigger parts of centralizer, if not all of it. (At the point of writing this we are not aware of result

with inequality to the other direction for the centralizer).

Here we give an example for a particular algebra, depicting a calculation with a part of it’s

centralizer.

Example 4.19. Let k = Z7, and X = x2y + xy. Then W = 2 +X + 2X2 ∈ CX . Indeed,

[W,X] = [2 +X + 2X2, x2y + xy]

= [2 + (x2y + xy) + 2(x2y + xy)(x2y + xy), x2y + xy]
= 0

Therefore, we have found a nice way how to calculate the centralizer in the finitely presented

algebras. Since those algebras are of slow growth additionaly, taking X to various powers does

not introduce too many monomials, therefore we can try to apply this in a cryptographic protocol.
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5 Cryptographic preliminaries

In this thesis we are considering one of the tools from cryptography, the key exchange problem.

This problem deals with ways of how to exchange keys or information between two parties so that

no one else can obtain a copy of it.

Alice and Bob will be the main participants in the exchange, with the ultimate goal for both

Alice and Bob to share the same common secret key, so that no-one else would know it.

The secret private key can then used in transmitting messages between the two parties in the

public/private key cipher algorithms, where the encryption key is public, and the decryption key is

the one that only Alice and Bob knows.

While searching for efficient and secure cryptographic protocols, a few authors came up with

key establishment protocols based on hard problems from combinatorial theory, such as conjugacy

search problem [12], subgroup membership search problem [14], homomorphism search problem

[13] or decomposition search problem [15].

5.1 Computational problems

The main computational problem considered in this thesis is the decomposition problem:

Definition 5.1. Decomposition problem: given two elements ω, ω1 of the platform group G, and

two subgroups A,B ⊆ G, find elements a ∈ A and b ∈ B such that ω1 = aωb.

In 2005, Shpilrain and Ushakov continued the research in decomposition problem by pub-

lishing a paper presenting a key establishement protocol based on the non-commutative groups

[4].

They suggested improvements on the straightforward arrangement of a key establishement

protocol, which assumes that ab = ba for all a ∈ A, b ∈ B [15]. Firstly, they suggested choosing

subgroupsA andB as subgroups of a centralizers of a certain element a1, b2 ∈ G, i.e. A ⊆ CG(a1),

B ⊆ CG(b2).

Having privately chosen a1, Alice publishes A, and similarly, having privately chosen b2,

Bob publishes B. Alice then chooses an element a2 ∈ B and sends w1 = a1wa2 to Bob, and Bob

chooses b1 ∈ A and sends w2 = b1wb2 to Alice.

Then, while observing this exchange, the adversary must find a1, a2 such that w1 = a1wa2,

where a2 ∈ A, but does not explicitly know what set to choose a1 from. Therefore, the adversary

would have to calculate something like centralizer CG(B), since then a1 ∈ CG(B), usually a hard
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problem.

5.2 Shpilrain-Ushakov’s Key Exchange Protocol

Here we present a formal description of Shpilrain-Ushakov’s key exchange protocol. Firstly, Alice

and Bob agree on a public elements w ∈ G.

1. Alice picks an element a1 ∈ G, which is of length l, and chooses a subgroup of CG(a1), then

publishing it’s generators A = {α1, . . . , αk}.

2. Bob picks an element b2 ∈ G, which is of length l, and chooses a subgroup CG(b2), then

publishing its generators B = {β1, . . . , βm}.

3. Alice picks a random a2 from span(β1, . . . , βm), and sends the normal formPA = N(a1wa2)

to Bob.

4. Bob picks a random b1 from span(α1, . . . , αk) and sends normal form PB = N(b1wb2) to

Alice.

5. Alice calculatesKA = a1PBa2

6. Bob calculatesKB = b1PAb2

Since a1b1 = b1a1 and a2b2 = b2a2, we have the secret shared keyK = KA = KB.

For their original protocol, Shpilrain-Ushakov suggested using braid group Bn as a platform

group, with n = 64 and l = 1024, and using an algorithm to calculate centralizers from the article

[16].

Then it is stated that the platform group should satisfy 6 properties in order for the protocol

to be efficient and secure:

1. G has to be a non-commutative group, having exponential growth, i.e. the number of ele-

ments of length n in G has to be exponential in n,

2. Calculation of the normal forms for elements of G should be efficient,

3. Should be computationally easy to multiply and invert on normal forms,

4. Should be computationally easy to generate pairs a, {a1, . . . , ak}, s.t. aai = aia for all

i = 1 . . . k
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5. It should not be easy to compute

C(g1, . . . gn) = C(g1) ∩ . . . ∩ C(gk) (5.24)

6. Even if K = C(g1, . . . , gn) has been found, should be difficult to find x ∈ K, y ∈ K1 such

that xwy = w′, where K1 is a subgroup fixed by a generating set.

There has been a lot of interest in this protocol, and very recently a linear decomposition

attack was proposed for such a protocol with a group as a platform in [25]. This shows that there is

still research being done for this protocol and it is not yet known what is the best platform, therefore

with our ideas we are trying to understand better this prospective field.
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6 Application to Key exchange protocol

6.1 New ideas

So far, we havemainly considered the algebrasA1 (Definition 4.5),A2 (Example 4.8),A3 (Example

4.10), and A4, A5, A6 (Example 4.16).

Since in each of these algebras we have a canonical form of an element, and since we have

proved a centralizer property, we are ready in this section to make a generalization of the Shpilrain-

Ushakov’s key exchange protocol to these finitely presented algebras. We will use these algebras

as platform algebras for Shpilrain-Ushakov’s protocol.

In analogy with Shpilrain-Ushakov’s suggestion, we would chooseC = k[a1] ⊆ Ca1(A) and

D = k[b2] ⊆ Cb2(A). Alice will choose an element a1 from the algebra A, and choose an element

v ∈ k[a1] ⊆ Ca1(A) to send to Bob. Bob would choose an element out of k[v]. This can of course

be generalized by choosing to send more generators from the centralizer, or using the center of the

algebra instead of the field k to choose the constants.

Outline

Choose random u ∈ A.

1. Alice chooses a1 ∈ A (private), and sends random v ∈ k [a1] to Bob;

2. Bob chooses b2 ∈ A (private), and sends random w ∈ k [b2] to Alice;

3. Alice chooses a2 ∈ k [w], Bob chooses b1 ∈ k [v];

4. Alce sends a1ua2 to Bob;

5. Bob sends b1ub2 to Alice;

6. Alice computesKA = a1b1ub2a2

7. Bob computes KB = b1a1ua2b2

Notice that Alice and Bob chooses their first elements a1, b2 at random (preferably not too

large, there’s a trade-off between efficiency-security here). But the second elements, a2, b1 are

chosen so that a2 commutes with b2 and a1 commutes with b1, since b1 ∈ C(a1) and a2 ∈ C(b2).

Finally,

KA = a1b1ub2a2 = b1a1ua2b2 = KB (6.25)
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and we conclude that Alice and Bob has a shared private key.

We start of by considering the first Weyl algebra, of which the properties we developed in

the previous section.

Example 6.1. Consider A1 = k⟨x, y⟩/(yx− xy − 1) with char(k) = 3:

Choose a random u = y+ 2x2 + 2 ∈ A1

1. Alice chooses a private a1 = (2x+ 2) y+x2+x ∈ A, and sends a random v = 2+2a1+a21 =

(x2 + 2x+ 1) y2 + (x3 + 2x2 + 2) y+ x4 + 2x3 + x2 + 2x+ 1 ∈ k[a1] to Bob;

2. Bob chooses a private b2 = 2y + 2x + 2 ∈ A, and sends a random w = 2 + 2b2 + b22 =

y2 + 2xy+ x2 + 2 ∈ k[b2] to Alice;

3. Alice chooses a2 = 1 + w + w2 = y4 + xy3 + x3y+ x4 ∈ k[w];

4. Bob chooses b1 = v + 2v2 = (2x4 + 2x3 + 2x+ 2) y4 + (x5 + x4 + x3 + x2 + x+ 1) y3 +

(x2 + 2x+ 1) y2+(x7 + x6 + x4 + 2x3 + 2x2 + 2) y+2x8+2x7+2x6+2x5+x3+x2+2x ∈

k[v];

5. Alice sends

a1ua2 = (2x+2) y6 +
(
x3 + x2 + x+1

)
y5 +

(
x3 +1

)
y4 +

(
2x5 + x4 + x3 +2x+1

)
y3

+
(
x6 + x5 + x4 + x3

)
y2 +

(
x6 + x3

)
y+ 2x8 + 2x7 + 2x6 + 2x4 + x3

to Bob;

6. Bob sends

b1ub2 =
(
x4+x3+x+1

)
y6+

(
2x6+2x5+x3+2x2+2

)
y5+

(
x6+2x5+2x3+x2+x

)
y4

+
(
x8 + x7 + 2x6 + x5 + x3

)
y3 +

(
x9 + x8 + 2x6 + 2x3 + x2 + 1

)
y2

+
(
2x9+x8+2x5+x4+2x3+x2+2

)
y+2x11+x10+2x8+x7+x6+x5+2x+1

to Alice;

7. Alice calculates
KA = a1b1ub2a2

=
(
2x5 + x4 + 2x3 + 2x2 + x+ 2

)
y11 +

(
x7 + 2x6 + x5 + x4 + 2x3 + x2

)
y10

+
(
2x6+2x5+x4+x3+2x2+x+2

)
y9+

(
x9+x8+2x6+2x5+x4+2x3+2x2+2

)
y8

+
(
x9+2x8+x7+x6+x4+x+2

)
y7+

(
x11+2x9+x8+2x7+x5+2x4+2x2+2x

)
y6

+
(
x11 + 2x10 + x9 + x8 + 2x7 + 2x4 + x2 + x+ 2

)
y5

+
(
2x13 + x12 + 2x11 + 2x10 + x9 + 2x8 + 2x7 + 2x4 + x3 + 2x2 + x

)
y4

+
(
x12 + x11 + 2x10 + 2x9 + 2x7 + x5 + 2x4 + x+ 2

)
y3

+
(
2x15 + 2x14 + x12 + x11 + 2x10 + x8 + 2x7 + x6 + x5 + x4 + 2x3

)
y2

+
(
2x15 + x14 + 2x13 + 2x12 + x10 + x7 + 2x6 + 2x5 + x4

)
y

+ 2x17 + x15 + 2x14 + x13 + x11 + x10 + 2x9 + 2x8 + x4 + 2x3
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8. Bob calculates

KB = b1a1ua2b2
=

(
2x5 + x4 + 2x3 + 2x2 + x+ 2

)
y11 +

(
x7 + 2x6 + x5 + x4 + 2x3 + x2

)
y10

+
(
2x6+2x5+x4+x3+2x2+x+2

)
y9+

(
x9+x8+2x6+2x5+x4+2x3+2x2+2

)
y8

+
(
x9+2x8+x7+x6+x4+x+2

)
y7+

(
x11+2x9+x8+2x7+x5+2x4+2x2+2x

)
y6

+
(
x11 + 2x10 + x9 + x8 + 2x7 + 2x4 + x2 + x+ 2

)
y5

+
(
2x13 + x12 + 2x11 + 2x10 + x9 + 2x8 + 2x7 + 2x4 + x3 + 2x2 + x

)
y4

+
(
x12 + x11 + 2x10 + 2x9 + 2x7 + x5 + 2x4 + x+ 2

)
y3

+
(
2x15 + 2x14 + x12 + x11 + 2x10 + x8 + 2x7 + x6 + x5 + x4 + 2x3

)
y2

+
(
2x15 + x14 + 2x13 + 2x12 + x10 + x7 + 2x6 + 2x5 + x4

)
y

+ 2x17 + x15 + 2x14 + x13 + x11 + x10 + 2x9 + 2x8 + x4 + 2x3 ;

We see that the keys match, i.e. KA = KB

Example 6.2. For the other algebra A2, we will consider a simple example of this protocol with a

small characteristic char(k) = 3.

Choose u = 2x2 + xy. Then:

1. Alice chooses a1 = x2y+x2 ∈ A (private), and sends random v = x4y+x4+2x2y+2x2+2 ∈

k [a1] to Bob;

2. Bob chooses b2 = yx2y + x2y + 2x ∈ A (private), and sends random w = x3y + yx2y +

x2y + 2x2 + 2x+ 1 ∈ k [b2] to Alice;

3. Alice chooses a2 = x5y + 2x4y + 2x4 + 2yx2y + x3 + 2x2y + x+ 2 ∈ k [w], Bob chooses

b1 = 2x8y + 2x8 + 2x6y + 2x6 + x4y + x4 + x2y + x2 ∈ k [v];

4. Alce sends a1ua2 = 2x9y + x8y + x8 + 2x7 + x6y + 2x5 + x4 + 2x3y to Bob;

5. Bob sends b1ub2 = x12y + 2x11 + x10y + 2x9 + 2x8y + x7 + 2x6y + x5 to Alice;

6. Alice computes KA = a1b1ub2a2 = 22x18y + x17y + x17 + 2x16y + 2x16 + 2x15y + x15 +

x14 + x11y + x10y + 2x10 + 2x9y + 2x9 + x8y + x8 + 2x7

7. Bob computes KB = b1a1ua2b2 = 22x18y + x17y + x17 + 2x16y + 2x16 + 2x15y + x15 +

x14 + x11y + x10y + 2x10 + 2x9y + 2x9 + x8y + x8 + 2x7

Since KA = KB, the shared key was calculated succesfuly.
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6.2 Practical considerations

We are working with infinite algebras and taking elements to quite high degrees in these algebras.

There is always a possibility of making the calculations very inefficient if we allow Alice and Bob

to choose very big elements of an algebra in the beginning. This signals that it will be very difficult

to make the protocol both practical and secure. It is also an exotic new direction of research where

a lot of more research has to be done to develop an efficient and implementable protocol. Therefore

we don’t claim the implementation to be provably secure, rather we want to familiarise ourselves

and other readers with the possible security parameters, security concerns, attacks, and continue

research in this field.

We will consider here the algebra A6 = k⟨x, y⟩/(y2, xyx, yxy) from one of the previous

examples, with the canonical form

w =
∞∑
i=0

(
ai1x

i + ai2x
iy + ai3yx

i+1 + ai4yx
i+2y

)
We try to fix a small prime p, for example p = 97. Then we take the coefficients from the

finite field, i.e.

aik ∈ Zp = {0, 1, . . . , p− 1}

Then we fix n = 5, and consider the set of all truncated sums of a canonical form of an element of

A,

Wn =

{
n−1∑
i=0

(
ai1x

i + ai2x
iy + ai3yx

i+1 + ai4yx
i+2y

)
| aik ∈ Zp

}
(6.26)

The size of Wn depends on the prime p and the truncation parameter n. It is a simple calculation

to find this number. We find |W |= p4n.

Therefore, there are p4n elements in our keyspace, from which we choose the public element

u, and Alice chooses the element a1, while Bob chooses the element b2.

For practical considerations, we would like |W | to be at least 2128. With the parameters we

already have chosen, p = 97, n = 5, this requirement is satisfied. In this case, the length of original

words will have at most 20 monomials.

Next is the choice of public elements v and w. Here actually in our protocol we much sim-

plified the Shpilrain-Ushakov’s protocol in order to be able to explain by simple examples what is

happening in the each step of calculation. We improve on our first protocol by choosing v1, . . . , vl

andw1, . . . , wm. If we know the center of an algebra, we can increase the key-space for these public
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elements.

In this step it is not initially necessary to have 2128 elements in the key-space, as we actually

need. The security concern is how easy is to solve v = α0 + α1a1 + . . . + αna
n
1 for a1, when

α0, . . . , αn are unknown aswell. The attempts to solve these kind of nonlinear multivariate equa-

tions are beyond the scope of this thesis and are left for the future considerations. We could assume

n = 4 for efficient calculations for now.

Next step is to choose an a2 from span(w1, . . . , wm). It should be enough to take m = 20,

or less, if we considered the span over center, rathen than the field.

Then in the final steps we can not make any more parameter choices.

Finally, we present one of the modified protocol’s outline for the algebra A2:

Outline

Choose random u ∈ Wn, a set of truncated elements of algebra over the field Z97, with n = 4.

1. Alice chooses a1 ∈ Wn (private), and sends random elements v1, . . . , v20 ∈ k [a1] to Bob;

2. Bob chooses b2 ∈ Wn (private), and sends random elements w1, . . . , w20 ∈ k [b2] to Alice;

3. Alice chooses a2 ∈ span(w1, . . . , w20), Bob chooses b1 ∈ span(v1, . . . , v20);

4. Alce sends a1ua2 to Bob;

5. Bob sends b1ub2 to Alice;

6. Alice computesKA = a1b1ub2a2

7. Bob computes KB = b1a1ua2b2

6.3 Shpilrain-Ushakov assumptions

1. The group (in this case algebra) is of exponential growth in terms of length f elements of

length n in A, and depends on the characteristic of the field k.

2. Calculating normal forms is efficient thanks to the Gröbner basis method which helped to

find normal forms;

3. It’s easy to multiply as we have only linear (linearly growing algebras) or quadratic (Weyl

algebra) growth;
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4. Easy to generate pairs a, {a1, . . . , ak} with aai = aia as we can use the centralizer property;

5. We can find parts of the centralizer, but the set itself is infinite;

6. The last property, solving the decomposition problem, should be analized further, but we

chose the parameters in such a way that there wouldn’t be a possibility of the exaustion of

the key space.

6.4 Direct attack

We could attempt a direct attack of the protocol by attacking the decomposition problem, i.e. find-

ing such a1 and a2, such that w1 = a1wa2, where a1 and a2 are chosen according to Shpilrain-

Ushakov’s theme. Since we also have w2 = b1wb2, we also know that a1 and b1, so as a2 and b2

are from the same centralizers.

6.5 Decomposition problem

We at least know that we should choose key-space big enough for a2 and b1 so that brute-force was

not possible by writing down the equations.

6.6 Other security concerns

The algebra of that we are considering is infinite dimensional, therefore it is not possible to create

a faithful representation into finite dimensional matrices over the base field k, unless we consider

representations into matrices over a polynomial ring. Then a matrix representation attack of this

protocol would involve system of nonlinear equations - therefore a similar attack to the possible

attack in the calculation of the public elements v and w that we identified.

It is of further interest to find out what are the drawbacks of this protocol against other attacks

when we’re applying these algebras. On our side is that there is a lot of slowly growing algebras.

The downside is that there still might be a lot of things that can go wrong. For example we didn’t

take into the account what happens because of the nilpotency of some elements in the algebras of

linear growth.
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7 Generalizations

In this section we informally present the possible generalizations of the protocol and what other

directions we have been trying or will try to take.

One interesesting idea to choose is to hide the characteristic of the field, or use a different

characteristic when we are calculating the initial elements a1 and b2. This can be done since we

have a big pool space for these first elements, and choosing a characteristic from a certain range

would make it more difficult for the adversary to break the protocol. The downside of this is that

we will have intentionally to choose larger key space initially, to satisfy the lowest possible value

of p, the characteristic of the field. But since the number of elements is p4n, we have quite a lot of

freedom in this.

Since we have an algebra in this case, we could consider additions and multiplications for

particular monomials and also take into account the nilpotent elements to make more efficient

calculations.

It would also be interesting if we managed to find a different method for calculating the

elements of the centralizer than the one presented here.

Another generalization would be to consider modules instead of algebras, or even consider

categorical generalization as in [27].

It is left to the future considerations of this project to find the best algebra for implementations

of a succesfull protocol.

Finally, we would also like to attempt applying these kind of finitely presented algebras we

were considering here, in different key exchange protocols.
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8 Computational algebra packages

In this work we have used three computational algebra packages to work with finitely presented

algebras: Sage, Magma and GAP.

8.1 Sage

We included a package ”ore_algebra” in the standart distribution of SAGE to work with the Weyl

algebras [18]. Then it is easy to define the first Weyl algebra over a field of positive characteristic

p, Zp.

# Field

ZP.<x> = GF(p)[]

# Weyl algebra

A.<Dx> = OreAlgebra(ZP)

Having defined the algebra, we can perform various calculations in the terminal of sage. We

only have to note that we have defined y:=Dx.

Then we can use SAGE to do all the calculations in the example 6.1.

# A and B agree on a random element A_1(k)

w = 2*x^2+Dx+2

# A chooses private element of A_1(k)

A1 = x^2+2*x*Dx+x+2*Dx

# A chooses an element which belongs to a centralizer of A1

CA1 = 2+2*A1+A1^2

# B chooses private element of A_1(k)

B2 = Dx+2*x+Dx+2

# B chooses an element which belongs to a centralizer of B2

BA1 = 2+2*B2+B2^2
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# A chooses an element commuting with BA1

A2 = 1+BA1+BA1^2

# B chooses an element commuting with CA1

B1 = CA1+2*CA1^2

# Calculate public element PA, PB

PA = A1*w*A2

PB = B1*w*B2

# Private keys, KA should equal KB

KA = A1*PB*A2

KB = B1*PA*B2

Moreover, we can choose a random element of a desired length in the Weyl algebra in order

to generalise the example we calculated to a more general case.

# define a random element from the first Weyl Algebra

# m - order of x, y

def weyl_element():

D = 0

for i in range(m):

for j in range(m):

D = D + GF(p).random_element()*x^(i)*Dx^(j)

return D

8.2 Magma

We used Magma online calculator [19] to perform calculations on more general finitely presented

algebras.

There is a nice way in Magma how to define a finitely presented algebra:

k := GF(3);

A<x,y> := FPAlgebra<k, x, y | y^2, x*y*x*y, y*x*y*x, x^2*y*x^2 ,x*y*x^2>;
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Then we can calculate an example of how the key exchange protocol works in the algebra

A = k⟨x, y⟩/(y2, xyxy, yxyx, x2yx2, xyx2)

// choose a random element of an algebra A

u:=2*x^2+x*y+y^4;

u;

//Alice choose a1

a1:=x^2+x^2*y+y*2;

//Bob choose b2

b2:=2*x+2*x^2*y+y;

// Alice, element from a1 centralizer

v:= 2+2*a1+a1^2+a1^3;

// Bob, element from b2 centralizer

w:=1+b2+2*b2^2;

// Alice, element from w centralizer

a2:=2+w+2*w^2;

// Bob, element from v centralizer

b1:=1+2*v^2;

// Pa

a1*u*a2;

// Pb

b1*u*b2;

// Shared key

Ka:=b1*a1*u*a2*b2;

Kb:=a1*b1*u*b2*a2;

8.3 GAP

Even though Magma is very convenient computer algebra system to use for calculations with

finitely presented algebras, it’s online calculator has limitations of how big the calculations you

can make compared to the full version of Magma. The full version of GAP, on the other hand, is

freely available.

It is somehow trickier how to define a finitely presented algebra in GAP. Rather, we can do
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so for ideals over free associative algebra that have a finite Gröbner basis. To this goal we are using

”GBNP” package.

The definition of a free associative algebra over field F is not too complicated:

F:= GF(17);;

A:= FreeAssociativeAlgebraWithOne(F,"a","b");

g:= GeneratorsOfAlgebraWithOne(A);

Thenwe can define a set of generators for the ideal and transform it to a different presentation.

KI_GP := [g[1]^2-g[1]*g[2]];

KI:=GP2NP(KI_GP);;

Finally, there is a function SGröbner, which allows us to calculate the Gröbner basis of the

ideal.

GB := SGrobner([KI]);

Then, if the Gröbner basis is finite, we can calculate a normal form for an element f ∈ k⟨X⟩,

for example f = x2y2 ∈ k⟨x, y⟩, when I = (x2 − xy):

f:= [ [[2,2]],[1]];;

p:=StrongNormalFormNP(f,GB);

If there is doubt whether the Gröbner basis is finite, it is possible to calculate the truncated

Gröbner basis as well, assigning weights to the generators and then producing the Gröbner basis

up to a sum weight n:

G := SGrobnerTrunc(KI,n,weights);;
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9 Conclusions

In this thesis, we studied the properties of various finitely presented algebras and proved a few of

their properties related to the growth and centralizer.

We generalized the Shpilrain-Ushakov’s protocol to the setting where we can use slowly

growing finitely presented algebras as a platform.

We explained what properties do the finitely presented algebras have to satisfy if we want to

use them as a platform for the protocol.

Wemade computer realizations for specific finitely presented algebras in three different com-

puter algebra systems.

It remains to be seen how secure the protocol is against various innovative attacks and what

is the trade-off between the slowness of growth in the algebra and the security parameters.
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