Title Multifunctional derivatives of pyrimidine-5-carbonitrile and differently substituted carbazoles for doping-free sky-blue OLEDs and luminescent sensors of oxygen /
Authors Tsiko, Uliana ; Bezvikonnyi, Oleksandr ; Sych, Galyna ; Keruckiene, Rasa ; Volyniuk, Dmytro ; Simokaitiene, Jurate ; Danyliv, Iryna ; Danyliv, Yan ; Bucinskas, Audrius ; Tan, Xiaofeng ; Grazulevicius, Jouzas Vidas
DOI 10.1016/j.jare.2021.01.014
Full Text Download
Is Part of Journal of advanced research.. Amsterdam : Elsevier. 2021, vol. 33, p. 41-51.. ISSN 2090-1232. eISSN 2090-1224
Keywords [eng] aggregation-induced emission enhancement ; carbazole, thermally activated delayed fluorescence ; optical sensor ; organic light-emitting diode ; pyrimidine-5-carbonitrile
Abstract [eng] Introduction: Evolution of organic light-emitting diodes (OLEDs) reached the point, which allows to obtain maximum internal quantum efficiency of 100% partly using heavy-metal-free emitters exhibiting thermally activated delayed fluorescence (TADF). Such emitters are also predictively perfect candidates for new generation of optical sensors since triplet harvesting can be sensitive to different analytes (at least to oxygen). Although many organic TADF emitters have been reported so far as OLED emitters, the investigation of materials suitable for both OLEDs and optical sensors remains extremely rare. Objectives: Aiming to achieve high photoluminescence quantum yields in solid-state and triplet harvesting abilities of organic semiconductors with efficient bipolar charge transport required for application in both blue OLEDs and optical sensors, symmetrical donor–acceptor-donor organic emitters containing pyrimidine-5-carbonitrile electron-withdrawing scaffold and carbazole, tert-butylcarbazole and methoxy carbazole donor moieties were designed, synthesized and investigated as the main objectives of this study. Methods: New compounds were tested by many experimental methods including optical and photoelectron spectroscopy, time of flight technique, electrochemistry and thermal analyses. Results: Demonstrating advantages of the molecular design, the synthesized emitters exhibited sky-blue efficient TADF with reverse intersystem crossing rates exceeding 106 s−1, aggregation-induced emission enhancement with photoluminescence quantum yields in solid state exceeding 50%, hole and electron transporting properties with charge mobilities exceeding 10-4 cm2/V·s, glass-forming properties with glass transition temperatures reaching 177 °C. Sky-blue OLEDs with non-doped light-emitting layers of the synthesized emitter showed maximum external efficiency of 12.8% while the doped device with the same emitter exhibited maximum external efficiency of 14%. The synthesized emitters were also used as oxygen probes for optical sensors with oxygen sensitivity estimated by the Stern-Volmer constant of 3.24·10-5 ppm−1. Conclusion: The developed bipolar TADF emitters with pyrimidine-5-carbonitrile and carbazole moieties showed effective applicability in both blue OLEDs and optical sensors.
Published Amsterdam : Elsevier
Type Journal article
Language English
Publication date 2021
CC license CC license description