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Abstract: Infrared thermography has been proven to be an effective non-invasive method in diabetic 
foot ulcer prevention, yet current image processing algorithms are inaccurate and impractical for 
clinical work. The aim of this study was to investigate the accuracy of our automated algorithm for 
feet outline detection and localization of potential inflammation regions in thermal images. Optical 
and thermal images were captured by a Flir OnePro camera connected with an Apple iPad Air tab-
let. Both thermal and optical images were merged into an edge image and used for the estimation 
of foot template transformations during the localization process. According to the feet template 
transformations, temperature maps were calculated and compared with each other to detect a set of 
regions exceeding the defined temperature threshold. Finally, a set of potential inflammation re-
gions were filtered according to the blobs features to obtain the final list of inflammation regions. In 
this study, 168 thermal images were analyzed. The developed algorithm yielded 95.83% accuracy 
for foot outline detection and 94.28% accuracy for detection of the inflammation regions. The pre-
sented automated algorithm with enhanced detection accuracy can be used for developing a mobile 
thermal imaging system. Further studies with patients who have diabetes and are at risk of foot 
ulceration are needed to test the significance of our developed algorithm. 

Keywords: infrared thermography; image processing; deformable templates; asymmetric analysis; 
automated foot detection; foot ulcer 
 

1. Introduction 
Diabetes mellitus is one of the most prevalent chronic diseases. While diabetes itself 

is like the tip of an iceberg, diabetes-related complications, especially diabetic foot ulcers 
(DFUs), are the biggest concern. The DFUs are difficult to diagnose early and even more 
challenging to treat. Delayed diagnosis increases the need for surgical interventions and 
the risk of amputations [1]. Thus, a new diagnostic tool for early diagnosis of DFUs is 
fundamental to reduce adverse outcomes and economic cost [2,3]. 

Since Armstrong and colleagues determined that temperature changes in the foot can 
be an early indication of a DFU [4], researchers have been searching for a convenient and 
accurate way to identify these changes. It was discovered that temperatures of corre-
sponding areas between feet do not usually differ by more than 1°C, and a temperature 
difference of more than 2.2°C is considered abnormal [4,5]. More importantly, the in-
creased temperature may be presented even a week before a DFU appears [6], and fre-
quent temperature assessment and treatment for these patients can prevent diabetic foot 
complications [7,8]. 

Infrared thermography (IRT) is a non-invasive and non-contact method for screening 
of human skin temperature that allows spatial temperature distributions to be visualized 
based on the emitted heat (thermal radiation). While previous research focused on early 
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diagnosis and screening purposes, recent data shows that IRT could also be useful in fol-
low-up as it can predict the healing status of the DFU [2]. Even more, according to J. 
Cwajda-Białasik et al., a prolonged temperature increase of at least 1.11°C at the wound 
site, could indicate the existence of infections [9]. These findings suggest that the applica-
tion of IRT could be expanded from screening to follow-up of patients with current ulcers 
and even suspected early infections. 

IRT has been successfully used in many other medical fields. An extensive literature 
review, published by Lahiri, et al. covers other possible medical applications of IRT, in-
cluding diagnosis of breast cancer and peripheral vascular disorders, detecting problems 
related to gynecology, kidney transplantation, dermatology, heart, neonatal physiology, 
fever screening and brain imaging [10]. A more recent review by John et al. covers IRT 
application of IRT in plastic surgery [11]. A new ongoing study of a systematic literature 
review and meta-analysis of IRT use for musculoskeletal injuries diagnosis is essential as 
current diagnosis techniques are often associated with radiation exposure [12]. 

Despite rising research interest, efforts and progress to use IRT for diabetic foot 
disease [13], a user-friendly device for DFU monitoring is yet to be established. The 
absence of an automated algorithm that is accurate and can effectively analyze thermal 
images of diabetic foot is one of the reasons. Recently proposed image processing 
algorithms have significant limitations in the segmentation of the feet from the 
background or being semi-automated [14]. In order to solve the segmentation problem, in 
several studies, some type of cloth or plastic panels were used to cover the background 
around feet to reduce the influence of thermal radiation from other objects around [15,16]. 
In some studies, an even more complicated thermally insulated boxes were designed for 
this purpose [6,17]. A novel concept of reconstructed 3D models of the diabetic foot and 
thermal images was introduced by Van Doremalen et al. [18]. However, such a system is 
quite complicated and not portable. In addition, Van Doremalen et al. represented the 
results of 32 participants with peripheral neuropathy and showed reliable validity of 
mobile phone or tablet-based thermal camera to be applied for assessment of the diabetic 
foot. Also, it requires segmentation of foot contour in the thermal images [15]. Manual 
segmentation of foot contours was also widely used in other studies [19,20]. 

The objective of our study was to develop a real-time screening technology that is 
able to analyze foot images and detect signs of inflammation that might be indicative of a 
DFU onset. In this article, we demonstrate how our automated algorithm with enhanced 
detection accuracy detects the outline of the feet from the background noise during 
processing optical images and localizes the inflammation regions after processing thermal 
images of both feet. This technology could be used for an AI-based (tele) medicine system 
and serve as a self-monitoring tool. 

2. Materials and Methods 
2.1. Study Design 

With this experiment, we wanted to verify our algorithm’s accuracy to detect feet 
outline and localize the potential inflammation regions. Two data sets of images with and 
without phantom feet were used for this purpose, named accordingly: Phantom Feet and 
No Feet (Figure 1). 
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Figure 1. Sample images (optical images are above the thermal images): (a) Phantom Feet; (b) No 
Feet. 

Silicone phantom feet were used to produce similar-looking images with ideally 
shaped feet and an irregular feet position inside the frame. Simulated inflammation zones 
were created manually by heating up randomly selected regions of the phantom soles 
with a heated metal spoon, in a way that is similar to previous research [21]. The edges of 
the soles were not heated in order not to compromise the automatic detection of the feet 
outline. Several images from the simulated inflammation regions are shown in Figure 2. 

 

Figure 2. Images from Phantom Feet data set: (a) without inflammation (no regions of thermal 
difference between the left and right foot); (b) inflammation in toes’ area of left foot; (c) and (d) 
multiple inflammation regions. 



Electronics 2021, 10, 571 4 of 14 
 

 

The surrounding items such as walls, furniture, electrical equipment, heating de-
vices, and human body parts (excluding feet) were captured in images used in No Feet 
data set to replicate accidentally captured images. Such images were necessary to test the 
functionality of algorithm’s automatic function to exclusively detect the feet outline. All 
photos in Phantom Feet dataset had an uneven background without thermal artifacts. The 
experimental set-up is shown schematically in Figure 3. 

 

Figure 3. The experimental set-up. 

2.2. Image Acquisition 
The experiment took place in a controlled environment with a mean temperature of 

22 ± 0.5 °C and relative humidity of 45 ± 5%. It was ensured that no direct lighting was 
pointing towards the lens of the camera. 

Thermal and color optical images were captured by a Flir OnePro camera (FLIR Sys-
tems, Wilsonville, OR, USA) connected with an Apple iPad Air tablet (Apple, Cupertino, 
CA, USA). Images were taken by holding the tablet with the Flir OnePro camera (number 
of pixels for thermal image 160 × 120 and optical 1440 × 1080) in hands from a distance of 
0.3 ± 0.05 m. Focus and exposure were estimated automatically by the embedded logic of 
the thermal imaging camera. The resolution of the temperature sensing was 0.1°C. 

Silicone phantom feet were heated in a special low-temperature oven to reach the 
natural feet temperature of +29°C. This temperature was concluded from our early exper-
iments and supported by other trials [22]. A digital temperature controlled thermostat 
connected to the oven heating control system was used to ensure the accuracy of the phan-
tom’s temperature without deviations above ±0.1°C. Both the thermal and visual images 
were stored in the tablet's memory in a binary format. The thermogram was acquired in a 
raw format and stored as a 2D matrix consisting of 16 bit values per pixel. The visual 
image was acquired in an RGB format and stored as a 2D matrix of 24 bit values per pixel.  

2.3. Study Methods 
We started testing our algorithm from the detection of the feet outline in optical im-

ages. First of all, the estimation of Dense Edge Points (DEP) was added to the baseline 
algorithm, which was performed by doubling the key points of foot outline to increase the 
foot shape recognition. Then, Extended Foot Shape (EFS) was performed by using stand-
ard foot outlines to improve the quality of detection of the base foot location. Therefore, 
three algorithms, namely: (1) baseline algorithm; (2) baseline algorithm with DEP; and (3) 
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baseline algorithm with DEP and EFS, were tested during the experiment. Later, we tested 
the ability of our algorithm to detect and evaluate the potential inflammation regions in 
thermal images. This work was performed with the Phantom Feet data set using pictures 
with and without simulated potential inflammation regions. 

2.4. Overview of the Proposed Methodology 
The proposed methodology for the analysis of thermal and optical images in order 

to perform an automatic detection of potential inflammation regions is presented in the 
block diagram in Figure 4 and schematically in Figure 5. The inspected foot is marked as 
(1), while the contralateral foot is marked as (2). After fine-tuning the inspected foot tem-
plate, the inspected foot with a fitted template is created (3). The same procedure of fine-
tuning of the foot template is performed on a contralateral foot, so the contralateral foot 
with a fitted template is created (4). The initial template with a grid (6) is applied for both 
the inspected and the contralateral feet. As a result, the inspected foot template with a grid 
(7) and the contralateral foot template with a grid (8) are obtained. Then, the temperature 
maps for both feet are estimated according to the appropriate set of points-of-interest. 
Temperature maps of the inspected and contralateral feet are shown in (9) and (10), re-
spectively. The estimation of the temperature disparity map is performed by subtracting 
the temperature values in the reference foot temperature map from the appropriate tem-
perature values in the inspected foot temperature map, creating the temperature differ-
ence map (11). The temperature difference map (11) shows the temperature differences 
between the inspected and the contralateral feet. The threshold for these temperature dif-
ferences could be set for different values. If the temperature differences surpass the med-
ically-based threshold value, this temperature asymmetry indicates a possible inflamma-
tion region. 

 

Figure 4. The block diagram of algorithm. 
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Figure 5. Automatic detection of potential inflammation regions: (1) inspected foot; (2) contrala-
teral foot; (3) inspected foot with fitted template; (4) contralateral foot with fitted template; (5) in-
flammation region; (6) base foot template with initial grid; (7, 8) inspected and contralateral feet 
templates with adjusted grids; (9, 10) inspected and contralateral feet temperature maps; (11) tem-
perature difference map. 

2.5. Image Processing 
Our image processing algorithm consists of several steps described in the following 

subsections. Special software for optical and thermal image processing was designed to 
be used with a tablet or a smartphone. The entire application was implemented in Java 
programming language while the image processing algorithm was completed in C++ pro-
gramming language. 

2.5.1. Estimation of Displacement in the Thermal and the Optical Images 
Thermal image 𝐼  and optical image 𝐼  were captured simultaneously. Both cam-

eras, thermal and optical, are placed on the board as close to each other as the device 
design allows; nevertheless, the remaining difference produces a notable displacement in 
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both images caused by an offset of camera focus centers. Therefore, the optical image was 
shifted according to the thermal image’s position to align the outlines of the feet in both 
images. For this purpose, edge images 𝐸  and 𝐸  were estimated for 𝐼  and 𝐼  respec-
tively. Sobel operator [23] was used for edges’ estimation. Thus, the pixels in edge images 
represent a magnitude of the edge slope in range 0–255. The higher value corresponds to 
the steeper slope. The edge detecting functions are defined as: 

The edge detecting functions are defined as: 

IEx ∗
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where ∗ denotes the 2-dimensional image convolution. 
Optimal offset was achieved by solving the optimization problem with Descent Gra-

dient method [24]. Zero-normalized cross-correlation (ZNCC) [25] was used as a cost 
function: 
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where 𝑛 is the number of pixels in images 𝐸  and 𝐸 , 𝜇  and 𝜇  are the mean values, 
and σ  and σ  are the variations of the covering part of images 𝐸  and 𝐸  respec-
tively. 

Finally, edge images 𝐸  and 𝐸  were combined into the one edge image 𝐸. The 
point values in this image were estimated as this: 

( ) ( ) ( )( )yxEyxEyxE OT ,,,max, =  (5) 

2.5.2. Localization of Inspected Foot Template 
Foot outline was localized by applying the appropriate transformation to the base 

foot template 𝑇 . The base foot template represents a polyline composed of finite number 
of points 𝑇 (𝑖) = 𝑥 , 𝑦 . It was obtained by averaging manually marked foot outlines in 
sample images. Foot template localization to the foot outline was performed by estimating 
rigid transformation 𝑅  capable to transform the base foot template 𝑇  to the inspected 
foot template 𝑇  which best fits the foot outline in the edge image 𝐸. Rigid transformation 
parameters (scale, rotation, translation, and mirror) were estimated by solving the opti-
mization problem descent gradient method. Foot template compliancy was estimated as 
a line correspondence to the foot edge represented in image. Rigid transformation 𝑅  ob-
tained during this step was defined as 4 × 4 transformation matrix. 

2.5.3. Fine-tuning of Inspected Foot Template 
The inspected foot template 𝑇  obtained during the localization, corresponds to the 

foot outline inaccurately, because the rigid transformation is unable to fit the base foot 
template to a specific foot outline. In order to achieve pixel-wise accuracy, the connection 
points of the inspected foot template were additionally matched with the edges of the foot 
outline in edge image 𝐸 during the fine-tuning process. Pixel-wise shifting of foot tem-
plate connection points was performed by shifting them across the bisectors. Working in 
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narrow bounds (usually 5–10 pixels), allowed us to adjust the foot template flexibly, while 
remaining shape distorted within tolerance. We used a simple maximum value function 
for accurate foot outline edge detection. This method is presented in Figure 6. 

 

Figure 6. Localization of inspected foot template: (1) base foot template; (2) foot outline; (3) foot 
template transformed with rigid transformation; (4) accurate foot template transformed with non-
rigid transformation. 

The transformation capable of transforming the foot template connection points co-
ordinated to the fine-tuned positions may be represented as a matrix of the Thin Plate 
Spline transformation coefficients. Coefficients are estimated by relating the base foot tem-
plate points and the inspected foot template points according to the following equation:  

( ) ( ) ( )( )
=

−+++=
n
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where 𝑈 is defined as 𝑈(𝑟) = 𝑟 𝑙𝑜𝑔 (𝑟)  and |𝑇 (𝑖) − (𝑥, 𝑦)| is the distance between the 
control point 𝑇 (𝑖) and modified point (𝑥, 𝑦). Unknowns 𝑎 , 𝑎 , 𝑎  and 𝜔  forms the 
coefficients vector (w | 𝑎   𝑎   𝑎 ) . Coefficients vector is estimated according to the equa-
tion: 

( ) vLw 1
321| −=Taaa  (7) 

where values vector v and computation matrix 𝐿 are defined as follows: 

[ ]00021 n
T vvv =v  (8) 
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This equation may be solved by finding the inverse 𝐿 . Two separate equations 
were used for 𝑥 and 𝑦 coordinates estimation for inspected foot template 𝑇 . Thus, two 
coefficients vectors (w | 𝑎   𝑎   𝑎 )   and (w | 𝑎   𝑎   𝑎 )  are used to represent the non-
rigid transformation 𝑅 . Detailed fine-tuning process of a foot template and estimation 
of optimal points is demonstrated in Figures 6 and 7.  

 

Figure 7. Fine-tuning of inspected foot template: (1) foot outline; (2) foot template transformed 
with rigid transformation; (3) foot template transformed with non-rigid transformation; (4) bisec-
tion lines; (5) optimal foot template point. 

2.5.4. Localization and Fine-tuning of Contralateral Foot Template 
Localization and fine-tuning of the contralateral foot template 𝑇  was performed in 

the same manner as the tuning of the inspected foot template 𝑇 . The only difference is 
that the initial template for contralateral foot 𝑇  was obtained by applying a vertical re-
flection transformation (negating 𝑥 axis) to the points of base foot template 𝑇 : 
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where 𝑇 (𝑖)represents the base template point in homogeneous coordinates as 
 𝑇 (𝑖) = (𝑥   𝑦   1) , and reflection transformation 𝑅  is defined as: 
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2.5.5. Estimation of Sets of Points-of-Interest 
Fine-tuning of both the inspected foot template 𝑇  and the contralateral foot tem-

plate 𝑇  to the appropriate feet outlines in thermal and optical images, allowed to esti-
mate sets of points-of-interest. The base set of points-of-interest 𝑃  was represented as a 
grid of points over the base foot template 𝑇 . Modified positions of points-of-interest were 
estimated by applying the rigid transformation 𝑅 , followed by a non-rigid transfor-
mation 𝑅  in succession to the base set of points-of-interest 𝑃 . Those two sets of points-
of-interest 𝑃  and 𝑃  were obtained for both inspected and contralateral feet by applying 
corresponding transformations:  

( ) ( )( )( )jiPRRjiP B
R
I

N
II ,, =′  (14) 

( ) ( )( )( )jiPRRjiP B
R
C

N
CC ,, =′  (15) 

Points inside of the inspected foot shape matched the paired points inside of the con-
tralateral foot shape. This method ensures that even different shaped and sized feet can 
be evaluated by comparing temperature values in paired points of both feet templates. 

2.5.6. Estimation of Temperature Maps 
According to the values indicated by the sets of points-of-interest 𝑃  and 𝑃 , tem-

perature maps 𝑀  and 𝑀  were estimated for both the inspected and contralateral feet 
respectively. Each value of temperature maps 𝑀(𝑖, 𝑗) was estimated by generalizing tem-
perature values situated near by the position of point–of-interest 𝑃 ,  in the thermal image 𝐼  of the appropriate foot. We used the weighted mean method for temperature values 
estimation: 
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𝑄 ,  represents the set of points in thermal image 𝐼  laying inside the foot template 𝑇  
and closer to 𝑃 ,  than to the any other point from the set of points–of-interest 𝑃 : 

( ) ( ){ }, ,: , ,
i jp i jQ F q dist q p dist q p P ′= ∩ < ∈

 (17) 

where 𝑑𝑖𝑠𝑡(𝑞, 𝑝) defines the Euclidian distance between the points 𝑞 and 𝑝. 𝐹 defines 
the set of points inside the foot outline defined by template 𝑇 . 

Assessment of temperature disparity map 𝐷 was done by subtracting the tempera-
ture values of the temperature map of contralateral foot 𝑀  from the appropriate tem-
perature values of inspected foot 𝑀 . Subtraction of temperature values was done one by 
one in a two-dimensional array: 

( ) ( ) ( )jiMjiMjiD CI ,,, −=  (18) 

2.5.7. Composition of a Set of Inflammation 
The composition of set of inflammation 𝑊 was performed by analyzing the temper-

ature disparity map D to find the local areas containing temperature disparity values 
higher than the medically based threshold. Potential inflammation regions 𝜔 consist of 
the nearby points of temperature disparity map exceeding the medically-based threshold. 
Those binary images 𝐵 were obtained by setting their points as: 
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where 𝑡 is a medically approved threshold. We used t = 2.2°C in all our experiments. 
Thus, the binary image 𝐵 was obtained by containing 1 at points exceeding threshold and 
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0 elsewhere. Two-pass connected components labeling [26] was used to collect inflamma-
tion regions into the list of blobs 𝐻 while analyzing the binary image 𝐵. A descriptive 
feature vector was created for each candidate inflammation region ℎ, that consisted of 
generalized values of points interposition and temperatures or a combination of both. 

2.5.8. Analysis of Inflammation Regions 
Analysis of inflammation regions was performed by examining the feature vectors. 

During this process, non-confident inflammation regions were rejected in order to clear 
the list against accidentally marked non-inflammable regions (e.g., the area deemed too 
small, or having considerably small temperature excess, etc.). We used the Support Vector 
Machine (SVM) classifier [27] to perform this task. The positive sign of the disparity value 
was used for attribution of a particular foot possessing the inflammation region. 

The final list of inflammation 𝐻  contains the potential pathologies. An empty list 
indicates no inflammation was found and no action is needed, while the non-empty list 
indicates that the algorithm has found an inflammation region and suggests consulting 
with a healthcare specialist. 

3. Results 
The algorithm analyzed 168 thermal images in total: 70 in Phantom Feet and 98 in No 

Feet data sets. The results are demonstrated in Tables 1 and 2. Modifications of a baseline 
algorithm improved the true-positive results by 22.86% and achieved 95.83% accuracy 
with 92.86% sensitivity and 98% specificity in detection of the feet outlines. During the 
phantom investigation, the inflammation localization algorithm achieved 94.28% accu-
racy, 90.00% sensitivity, and 100.00% specificity.  

Table 1. Baseline algorithm with DEP and EFS experiment results for feet outline detection. 

Dataset Number of images Detected Ratio 

Phantom Feet 
Baseline algorithm  70 49 70.00% 
Baseline algorithm + DEP  70 63 90.00% 
Baseline algorithm + DEP + EFS 70 65 92.86% 
No Feet 
Baseline algorithm  98 2 2.04% 
Baseline algorithm + DEP  98 2 2.04% 
Baseline algorithm + DEP + EFS 98 2 2.04% 

Table 2. Testing of inflammation detection algorithm with phantoms 

Dataset Number of images Detected Ratio 

Phantom with simulated regions of in-
flammation  

40 36 90.00% 

Phantom without simulated regions of 
inflammation  

30 0 100% 

4. Discussion 
The principal task for our developed automated algorithm was to determine foot 

outlines precisely, as this directly affects the accuracy of the final results. We found that 
blurred foot contour segments in one image can be compensated from another image 
(thermal or optical); therefore, merging the edges of both thermal and optical images en-
abled a better detection of the foot outline. Our results showed that background artifacts 
were the main reason for poor detection of the outline of the feet in the baseline algorithm. 
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DEP and EFS modifications improved the baseline algorithm and achieved a notable 
95.83% accuracy and 92.86% sensitivity. False-positive cases were mainly caused by the 
relatively hot objects in the background in No feet data set. The detection of possible in-
flammation zones achieved 94.28% accuracy and 90.00% sensitivity. Several reasons im-
paired the possible inflammation zone detection. The main reason for false-negative re-
sults was an uneven temperature over the soles of the feet, i.e. the feet were not symmet-
rical across the temperature map. Furthermore, false-negative results were related to the 
marginal temperature differences value, i.e. the temperature difference did not exceed the 
threshold value across the inflammation area. There were several limitations to this study. 
First of all, we used phantom feet instead of actual patients with diabetes because of the 
coronavirus SARS-Cov-2 (disease COVID-19) outbreak worldwide and in our country. 
However, we believe that the phantom feet image data is sufficient enough for the feet 
outline detection purposes, which was the main object in this study. Secondly, phantom 
feet are ideally shaped, and that may lead to better outline detection results. Certainly, 
future studies with people who have diabetes are needed to verify our results.  

For possible inflammation zone detection, we used an asymmetric temperature anal-
ysis when the plantar temperature is compared between both feet. If the same inflamma-
tions exist in both feet, or if partial or entire foot amputation was performed, this method 
is unable to determine the possible inflammation areas over the soles of the foot.  

5. Conclusions 
The automated algorithm with an enhanced detection accuracy that is able to analyze 

the optical and thermal images of the foot and to detect feet outline from the background 
noise and localize inflammation regions was developed. Merging the edges of both ther-
mal and optical images into an edge image and using it to estimate the foot template trans-
formations during the localization process, instead of the widely used segmentation pro-
cess by other algorithms developers, allowed us to achieve pixel-wise accuracy. Different 
from other publications, our algorithm is entirely automated and does not require the in-
terference of an operator. Another superiority of our algorithm is that it is reliably suitable 
to perceive the shape of the foot instead of distinguishing the foot area from the back-
ground area. 

We are currently testing our automated algorithm with healthy volunteers to validate 
these results. We are also preparing a study with patients with diabetes, and planning to 
verify other possible applications of our proposed method. This includes following up on 
the patients with current ulcers in order to evaluate of the healing process and suspected 
infections. 

We believe that our algorithm could be used for the development of a new screening 
tool to enable patients to perform monitoring of the feet from the comfort of their home. 
Furthermore, such a device could be used in clinics to assist the physicians with decision 
support. The proposed portable screening system will be implemented using a specialized 
mobile application where the optical and thermal images will be acquired, processed, and 
analyzed for detection of signs of inflammation over the soles of the feet.  

6. Patents 
A patent application for the described system, method, and apparatus for tempera-

ture asymmetry measurement of body parts was filed with the International Bureau of the 
World Intellectual Property Organization (RO/IB) on 6 March 2020 with international ap-
plication number: PCT/IB2020/051950.  
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