
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

1Abstract—The article presents Enterprise Model (EM)
generation process from SysML models of four types (Use
Case, Activity, Block Definition and Requirements) as well as
Knowledge Based MDA (Model-Driven Architecture) tool’s
prototype which is implementing the defined algorithms.
Defined SysML models parsing algorithms use the recursive
data processing approach due to complex UML models
structure. The algorithms description is presented as Activity
diagrams and explained in tables, where are depicted basics
steps and actors as well as the output results. Knowledge Based
MDA tool’s prototype currently is capable of processing Use
Case and Activity models. Proposed prototype is implemented
using three layers (GUI, Logic and Data) architecture. The
detailed architecture is presented and described in this article
using class diagrams. The prototype is implemented using .Net
framework and C# programming language.

Index Terms—UML, SysML, MDA, enterprise model,
knowledge based IS engineering.

I. INTRODUCTION

The UML (Unified Modelling Language) is a modelling
language that first appeared in 1997. UML has become one
of the most widely used modelling languages in industry.
The usage of UML varies through application domain: from
embedded systems to information system. Users of business
field also use UML for modelling their business domains as
well as processes. The current version of UML is UML 2.5
(beta), released in October 2012 [1].

The role of UML in software development has become
more significant since the appearance of model-driven
architecture (MDA), which has set the UML in the central
place of software development. Despite the advanced usage
of UML in a wholesome model-driven software
development (such as MDA) many software development
projects actually use UML in various approaches. Still,
UML as a modelling language is mostly used in the context
of conventional model-driven development, where models
are used by programmers as the basis for implementation.
This stage is mostly manual and based on empirics. Besides,
the style and strictness of using the UML in modelling also
diverge. This difference depends on many factors such as
analysts' or designers’ experience, time constraints and user
requirements.

Manuscript received May 8, 2014; accepted October 5, 2015.

SysML is based on UML and involves modelling blocks
instead of modelling classes, accordingly providing a
vocabulary that is more suitable for Systems Engineering.
SysML reuses a subset of UML and defines its own
extensions. Therefore, SysML includes nine diagrams
instead of the thirteen UML diagrams. Both SysML and
UML languages are based on the same Meta Meta-Model,
(OMG Meta Object Facility (MOF)) [2]. SysML is
considered both a subset and an extension of UML 2.0. As a
subset, UML diagrams considered too specific for software
(Objects and Deployment diagrams) or redundant
(Communication and Time Diagrams) were not included in
SysML. Some diagrams are derived from UML without
significant changes (Sequence, State-Machine, Use Case,
and Package Diagrams), some are derived with changes
(Activity, Block Definition, Internal Block Diagrams) and
there are two specific diagrams (Requirements and
Parametric Diagrams). SysML is compatible with UML,
which can facilitate the integration of the disciplines of
Software and System Engineering [3].

Enterprise meta–model is formally defined enterprise
model structure, which consists of a formalized enterprise
model in line with the general principles of control theory.
Enterprise model is the main source of the necessary
knowledge of the particular problem domain for IS
engineering and IS re–engineering processes [4]–[6].

SysML and UML modeling languages are used in the
Knowledge Based MDA IS development method [4].
Knowledge Based MDA (KB-MDA) is the Information
Systems (IS) development method that combines the best
practice of Knowledge Based IS engineering as well as the
main principles of MDA based IS development processes.
The main steps of KB-MDA method are as follows:

1. To acquire problem domain knowledge to Computation
Independent Model (CIM) using SysML models;
2. To transform knowledge from CIM [7], [8], [5] to
Enterprise Model (EM). In particular case CIM consist of
SysML models. Transformation process includes SysML
models data consistency validation procedure;
3. To validate EM against Enterprise Meta-Model
(EMM);
4. To transform knowledge from EM to Platform
Independent Model (PIM);
5. To generate Platform Specific Model (PSM) from PIM;

SysML and UML Models Usage in Knowledge
Based MDA Process

Audrius Lopata1, Martas Ambraziunas1, IlonaVeitaite1, Saulius Masteika1, Rimantas Butleris2

1Kaunas Faculty of Humanities, Vilnius University,
Muitines St. 8, LT-44280 Kaunas, Lithuania

2Centre of Information Systems Design Technologies, Faculty of Informatics,
Kaunas University of Technology,

rimantas.butleris@ktu.lt

http://dx.doi.org/10.5755/j01.eee.21.2.5629

50



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

6. To generate programming code from PSM.
KB-MDA method specifies and ensures two types of

knowledge transformation directions: from CIM to EM and
from EM to PIM. This is the main difference from standard
MDA approach that uses direct [9]–[11] transformation
from CIM to PIM. The knowledge acquired using SysML
models (Use Case, Activity, Block Definition,
Requirements) is transformed to Enterprise Model (EM) in
order to validate those according to Enterprise Meta-Model
(EMM) rules. The second procedure is performed in order to
validate knowledge that is necessary for generation of IS
design stage UML models. Basically EM participates as a
hidden layer responsible for enterprise knowledge validation
against formal criteria specified in EMM. According to the
ideal scenario, system’s analyst will use SysML and UML
models, because these modelling languages (especially
UML) are “de facto” standards of IS development. The
additional validation of MDA based IS development process
becomes real challenge when there is growing market of
mobile applications that should be created for multiple
platforms, but provide almost identical functionality.
Basically, the MDA approach is very well suited for this
purpose [12].

In this article SysML models transformation to Enterprise
model algorithms are provided as well as architecture of
Knowledge Based MDA tool’s prototype that implements
part of described transformations.

II. ENTERPRISE MODEL GENERATION USING SYSML
MODELS ALGORITHM

SysML models usually have a complex hierarchical
structure. In order to parse these models, recursive data
acquisition method should be used. The main idea is to
select a particular model element, to create EM
representation of it, then perform analysis, in case this
element has child elements (related elements) and iterate
through child list (create child objects in parental element).

Each child element should be treated as parent element as
well. This process should be repeated while there will not be
any unprocessed elements left. This approach is used by
KB-MDA based information system for parsing SysML
models (Use Case model, Block definition model, Activity
model, Requirements model) and generating UML models
(Class, Sequence, Package) from EM. SysML models are
parsed in a strictly defined order [6]. The first step is parsing
of the Use Case model is. This model is used to specify high
level functional requirements and activities that internal
structure is specified using Activity models. These two
models specify dynamic knowledge structure of a particular
problem domain. The third step is parsing of Block
Definition model that specifies static problem domain
knowledge. The final step is parsing of Requirements model
(it specifies non-functional requirements that are associated
with EM elements that were created using three previous
models). UML models generation doesn’t have such a strict
order. These models can be generated by demand of the
developer or system architect. Detailed SysML models
parsing algorithms are described in the chapters bellow.

III. ENTERPRISE MODEL GENERATION FROM USE CASE
MODEL

Use Case models are used to capture and represent
system’s behavioral information and basic scenarios. The
main elements of this model are as follows: Actor, Use
Case, Package, Include and Extension Relationships. These
elements are used as basic entities in order to complete EM
objects. The main idea of this process is to iterate through
all Actors in Use Case model and using their data to create
particular EM objects. Each Actor is related to one or more
Use Cases and Use Cases can be related by Include or
Extend relationships types. These relationships represent
Business Rules or generalization relationships. Parsing
algorithm of Use Case model is presented in Fig. 1 and the
results are described in Table I.

Fig. 1. The main steps of EM objects generation from SysML Use Case model.

51



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

Input (objects from Use Case model) and Output (objects
created to Enterprise model) elements are presented in the
table below.

TABLE I. UML USE CASE MODEL ELEMENTS.
Use Case

model
object

EM
object Mappings description

Actor Actor

Actor is an entity that defines problem
domain “executors”. The Use Case models

allow creating initial EM Actors that
contain only basic information (e.g. name).

Use Case Function,
Process

Use Case is the UCM’s entity that contains
dynamic problem domain information

(Activities). Depending on particular Use
Case type, it can be converted to Function

or Process in EM. More detailed
information about problem domain

Activities are acquired using Activity
model.

Include
relationship

Business
Rule

Include relationship defines Business Rule
that specifies what predecessors are needed

for particular Use Case to be performed.

Extension
relationship

Extension relationship specifies Business
Rules that can extend particular Use Case.
This object (relationship) can be compared

to generalization relationship in Class
model.

Package Package

Package is general grouping element
through various UML diagrams. In Use

Case model it is used to group Actors and
Use Cases, depending on functional areas.

Parsing of Use Case model is the first step in EM
generation process. After this step is completed initial EM
objects are created. These objects are empty templates at the
moment. Additional data will be acquired parsing other
SysML models (Activity, Block Definition, Requirements).
The next EM generation step is Activity model parsing. This
model provides information about Flow dynamics as well as
basic information about problem domain elements.

IV. ENTERPRISE MODEL GENERATION FROM ACTIVITY
MODEL

Activity model is used to capture system’s behaviour
knowledge and define interactions among system’s objects
(including rules that define these interactions). Activity
model is heavily related to Use Case model and represents
(in most cases) the same knowledge but in a more detailed
manner. The main elements of Activity model are as
follows: Swimlane, Action, Decision Point and Merge Point,
Object Flow and Control Flow. Each Swimlane represents
particular EM Actor. Activity model’s Actions can represent
EM Processes or Functions. System analyst must decide
which object (Process or Function) should be created for
particular Action. Control Flows define the sequence in
which Actions are performed. Any input or output Object
Flows are represented as Informational or Material Flows in
EM. EM Business Rules are created based on the conditions
stored in Decision and Merge Points. Activity model parsing
algorithm is presented in Fig. 2 and described in the Table
II.

In the Table II a detailed description of Input (objects
from Activity model) and Output (objects created/updated to
Enterprise model) elements is presented.

As it can be seen from Fig. 2 the process is iterative and is
performed while there aren’t any processed Swimlane or

related elements to EM left. Parsing of Activity model is the
second step of EM generation process. After this step is
performed EM objects are updated by additional information
as well as new objects are created (such as Event). The next
EM generation step is parsing of Block Definition model.

Fig. 2. The main steps of EM objects generation from SysML Activity
model.

TABLE II. UML ACTIVITY MODEL ELEMENTS.
Activity
model
object

EM object Mappings description

Swimlane Actor

Swimlane represents Actor object in
EM. Each Swimlane is used to define
new Actor in EM. Swimlane contains
Actions that represent various Actor’s

activities and data objects. Data objects
are shared among Swimlanes.

Action

Function,
Process,

Informational
Activity,

Event

Action represents Function, Process or
Information Activity objects in EM.

Action can have incoming or leaving
data objects. Event Action is a special

type of Action. It defines trigger, which
is performed by external system or

environment.

Control
flow

Control Flow defines the sequence in
which Actions are performed.

Object
flow

Material Flow,
Informational

Flow

Object Flow defines Object Flows
among actions and Swimlanes. Each

Action can receive object, perform some
changes with it (or create new object)

and pass it to the next Action.

Decision/
Merge
point

Business rule
Decision/Merge point defines Business

Rules. Using these points Actions
routing data will be handled.

52



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

This model provides information about static system’s
elements.

V. ENTERPRISE MODEL GENERATION FROM BLOCK
DEFINITION MODEL

Block Definition model is used to capture system’s static
information including structure and hierarchy. This model is
processed after Use Case and Activity models have been
processed. The main purpose of Block Definition model is
to provide attributes for EM objects. The main elements of
Block Definition model are as follows: Block, Actor,
Operation, Operation Parameter, Constraint and Property.
Block Definition model parsing algorithm is presented in the
Fig. 3 and the results are described in the Table III.

Fig. 3. The main steps of EM objects generation from SysML Block
Definition model.

In the table below a detailed description of Input (objects
from Block Definition model) and Output (objects
created/updated to Enterprise model) elements is presented.

TABLE III. UML BLOCK DEFINITION MODEL ELEMENTS.
Block

Definition
model
object

EM object Mapping description

Block Actor

Block represents Actor entity in EM.
This element contains information

about a particular element of a
system. Block can have a hierarchical
structure and it represents attributes

or generalization relationship as well.

Operation Function,
Process

Operations are routines that specify
behavior of the represented Function
or Process in EM. Systems analyst

must decide if the selected Operation
represents Function or Process.

Block
Definition

model
object

EM object Mapping description

Operation
Parameter

Material Flow,
Informational

Flow

Operation Parameters are input or
output objects that are used by

internal activity.

Property Attribute

Property is a Block element that
specifies static Block information.
Property has name and value (or

reference to object type). It is
mapped to Attribute object in EM.

Constraint Business Rule
Constraints define Block restrictions

and are represented in EM as
Business Rules.

Block Definition model parsing is an iterative process. It
is repeated while all Blocks and Blocks’ elements are
processed. Parsing of Block Definition model is the third
step in EM generation process. After this step is performed
EM objects are completed with static problem domain
knowledge. The last EM generation step is the parsing of
Requirements model. This model provides knowledge about
non-functional system requirements.

VI. ENTERPRISE MODEL GENERATION FROM
REQUIREMENTS MODEL

Requirements model provides knowledge about system’s
non-functional requirements. The main purpose of this
model is to assign requirement to EM objects (Actors,
Functions, and Processes). The main elements of
Requirements model are: Requirement and Attribute.
Requirements model parsing algorithm is presented in the
Fig. 4 and the results are described in the Table IV.

Fig. 4. The main steps of EM objects generation from SysML
Requirements model.

In the table below a detailed description of Input (objects
from Requirements model) and Output (objects
created/updated to Enterprise model) elements is presented.

TABLE IV. SYSML REQUIREMENTS MODEL OBJECTS.
Requirements
model object EM object Transition description

Requirement Business rule

Requirement is an object that
provides information about

system’s non-functional
requirements. This object is

mapped to Business Rule in EM.

53



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

Requirements
model object EM object Transition description

Business Rules define performance
requirements to Processes and

Functions.

Attribute Attribute

Attribute is an object that is used to
store static information about the
requirement. Attribute has name

and value.

Requirements model parsing is an iterative process. It is
repeated while all Requirements are processed. Parsing of
Requirements model is the last step in EM generation
process. After this step is performed EM objects are linked
with non-functional system requirements.

VII. PROTOTYPE

Described UML models parsing algorithms are partly
implemented in Knowledge Based MDA tool’s prototype.
The main goal of such tool is to be integrated into particular
modelling tool as plug-in [13] and provide Knowledge
Based MDA functionality. The prototype is capable of
parsing and processing common to UML and SysML Use
Case and Activity diagrams. These diagrams should be
created using particular CASE modelling tool [14] and
transformed to in XMI [15] format. Architecture of this
prototype is presented in the chapters below. The
architecture of KB-MDA tool consists of ten separate
modules connected by dependencies. All modules are
assigned to one of the three categories: UI Layer, Logic
Layer, and Data Layer (Fig. 5).

Fig. 5. Knowledge-Based MDA tool prototype’s architecture.

There can be used different approaches of creating MDA
based tools [16]. The architecture is created in such way that
most elements can be reused as separate libraries. Short
description of modules functionalities are provided below
and a full description is provided in the next chapters.
UI Layer:
 GUI module contains user interface elements such as
forms and dialogs. This module handles the interaction
with user and user’s data input/output.
 Unit Testing module contains unit testing classes and it
is used for automated testing of application Logic
elements and Entities.
Logic Layer:
 ModelParsers module contains objects for UML
models parsing from XMI format and creating
UMLModelsEntities in prototype.
 ModelValidator module is responsible for various UML
models validations (e.g. consistency).
 ModelMapper module contains objects that are used for
UMLModelEntities transformation to enterprise model

(EM) Entities.
 Database Manager module handles
EnterpriseModelEntities transformation to
DatabaseEntities and saving/loading to enterprise model
database.
Data Layer:
 UML Model Entities are created by parsing XMI file.
These entities are used for model validation as well as
data input for EM Entities generation.
 EM Entities are used for EM analysis and validation.
These are the building blocks of EM.
 Database Entities contains entities used by ORM for
DB related actions.
 Constants module contains static information for the
application such as Constants, Enums, Messages, etc.

A. GUI and Unit Testing
GUI module is responsible for handling system's

interaction with user. User interface is organized using
dialogs. All dialogs can be divided into two main categories:
input dialogs and output dialogs. The list of currently
existing dialogs is presented below:
 MainForm. This form is applications starting point.
Using provided Menu user navigates from this form to
other dialogs.
 ParseUMLModelsDialog. Dialog used for selecting
selection CASE tool XMI file and parsing it. This form
contains statusBar that shows model parsing progress.
 ValidateModelDialog. Using this dialog user selects
models for validation. Currently there is implemented
models consistency validation. In consistency validation
user selects Main/Mirror models pair and prototype is
checking relationships among models elements.
 LoadModelsDialog. Dialog shows UML Models that
are parsed from XMI file. Models are presented in
ordered list.
 ViewModelElementsDialog. Dialog shows all single
UML model Elements. Model elements are showed in
ordered list providing element name and type
information.
 ViewValidationResultsDialog. Dialog is used for
showing validation results. Dialog represents information
about elements from Main model and the existing/missing
elements from Mirror model.
 MapModelDialog. Map dialog represents mapping
information i.e. how UML model elements are converted
to EM elements.
UnitTesting module contains classes and routines that are

used for testing purposes only. The unit testing is used to
automate testing procedures and test application
functionalities such as model parsing, validation, and
mapping, entities saving and loading to DB. The main
purpose of unit testing is to maintain application consistency
and integrity during development.

B. Parser
This module contains objects and routines used for XMI

file parsing. Each UML model type (Use Case, Activity, and
Class) should have its own parser. All parsers implement
IParser interface and are created using Factory Design
Pattern. Parser Factory is used to return particular Parser

54



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

depending on model type. Each Parser can have various
methods for parsing different models as models internal
structure is different. The parsers are using
Response/Request data input output patterns. Each parser
responses should contain not only information about parsed
UML model’s objects but as well status about parsing
process and error messages if some exceptions were
encountered. Module elements are presented in Fig. 6 and
the results are described in Table V.

Fig. 6. ModelParsers module internal elements.

TABLE V. MODEL PARSERS MODULE INTERNAL ELEMENTS.
Object Description

IParserResponse Interface for parser responses (Status and Error
message properties).

IParserRequest Interface for parser responses (File name
property).

IParser Interface for parsers. Provides basic method for
parsing.

ParserResponse Class used to return parsing result data.
ParserRequest Class used to provide parsing input data to parser.

ParserFactory Class used to create particular parser depending
parser type.

ActivityModelPars
er

Class that contains methods used for Activity
model parsing.

UseCaseModelPar
ser

Class that contains methods used for UseCase
model parsing.

ProjectParser Class that contains methods used for parsing all
models contained in XMI file.

ProjectParser is used to parse whole XMI file. All newly
introduced parsers should implement IParser interface and
to be included into ParserFactory and ProjectParser
routines.

C. Validator
This module contains objects and routines used for UML

models validation. Currently in prototype is implemented
model consistency validation for Use Case and Activity
models. Consistency validation as input uses two models
Main model and Mirror model. Main model is model from

which all elements must be in Mirror model. For example,
consistency validation checks if elements from one model
e.g. (Use Case Actor) are represented in other model (e.g.
Activity Swimline). Model consistency validation can be
used to resolve for syntactic (e.g. misspelled element name)
or semantics (missing element) error. There can be various
Module elements are presented in Fig. 7 and the results are
described in Table VI.

Fig. 7. ModelValidator module internal elements.

TABLE VI. MODEL VALIDATOR MODULE INTERNAL ELEMENTS.
Object Description

IValidator Interface for Validators
(ValidatorType property).

UseCaseAndActivityValidator

Class that contains methods used
for Validating UseCase and

Activity models pair. Derived
from validator class.

ConsistencyValidationRequest Class used to provide validation
input data to consistency validator

ConsistencyValidationResponse Class used to return consistency
validation results.

ConsistencyValidationItem
Class that contains validation

result for single Main and Mirror
objects

All newly introduced validators should implement
IValidator interface and to be included into ValidatorFactory
routines.

D. Mapper
This module provides UML models conversion to EM

functionalities. Model Mapper takes as input
UMLModelObjectInfo entities and creates EnterpriseModel
ObjectInfo entities. A set of predefined and user selected
options can be used for conversion. Model Mapper is
created as static class as its functions are not model specific.
Model Mapper has information about all
UMLModelObjectInfo objects and
EnterpriseModelObjectInfo objects and matches these
objects using defined parameters. Module elements are
presented in Fig. 8 and the results are described in
Table VII.

TABLE VII. MODEL MAPPER MODULE INTERNAL ELEMENTS.
Object Description

Mapper

Class that provides object mapping functionality.
UMLModel entities are converted to Enterprise
model entities using predefined and customer

specified options.

55



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

Object Description

IMapperResponse Interface for Mapper responses (Status and Error
message properties).

IMapperRequest Interface for Mapper requests.

MapperRequest Class used to provide mapping input data to
Mapper.

SingleObjectMap
perResponse

Class used to return mapping result data for single
object.

MapperResponse Class used to return mapping result data.
SingleObjectMap

perRequest
Class used to provide mapping input data to

Mapper. Used for mapping single object.

Fig. 8. ModelMapper module internal elements.

E. Database Manager

Fig. 9. DatabaseManager module internal elements.

DatabaseManager module provides database interaction
functionalities. Each EM entity has its own data manager
(e.g. ActorManager, FunctionManager etc.). Parts of the
routines are common like save and load object by id, but
most of them are dependent on object type.
CommonManager is used for actions that are common for
all objects or as helper for custom actions. Module elements
are presented in Fig. 9 and the results are described in
Table VIII.

TABLE VIII. DATABASEMANAGER MODULE INTERNAL
ELEMENTS.

Object Description
ActorManager Class that contains Actor related DB

functions and procedures. Provides data
loading, saving, filtering, updating interface

to DB.

FunctionManager

ProcessManager

CommonManager
Class that contains common or specific

Database related functionalities. Basically is
used as helper object.

F. UML Model Entities, EM Entities, Database Entities
and Constants

Fig. 10. Internal elements for UMLModelEntities, EMEntities,
DatabaseEntities modules.

In this chapter modules that contain data layer objects are
described. UMLModelEntities module contains objects that
are used for storing and manipulating UML model data. In
fact, all parsed data are stored in these entities. Basically, the
names of these entities are the same as UML model element
type e.g. UMLUseCase, UMLActor, UMLAction etc.
UMLModelObjectInfo is the base class from which all other
classes are derived. This class contains basic UML model
object’s information such as Id, Name, UMLObjectType and
source.

EnterpriseModelEntities module contains entities that are

56



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 21, NO. 2, 2015

created from UMLModelEntities after mapping process was
performed. These entities have specific EM information that
was appended during mapping process. Using EM Entities
Enterprise Model validation and various analyses can be
performed. There is one base element
EnterpriseModelObjectInfo from which all other elements
are derived. This element contains basic enterprise model
element’s information such as Name, Type and Source.

DatabaseEntities contains objects that are created by
ORM Mapper (in particular case .Net Entity Framework).
Each Database table has its own representing object. These
objects provide functionality to manipulate database data in
application. DatabaseManager classes have routines to
query database tables, save, update or delete records as well
as perform other actions. Module elements are presented in
Fig. 10 and the results are described in Table IX.

TABLE IX. UML MODEL ENTITIES, EM ENTITIES, DATABASE
ENTITIES INTERNAL ELEMENTS.

Object Description

EnterpriseModelObjectInfo
Base class for all Enterprise Model
objects. This class contains Object

name, type and Source information.

EnterpriseModelSourceInfo
Class used to contain object origin

information such as XMI file name,
UML model name etc.

EnterpriseModelFunction,
EnterpriseModelActor,
EnterpriseModelFlow,

EnterpriseModelProcess,
EnterpriseModelMaterialFlow,

EnterpriseModelInformationalFlo
w

Class that derives from
EnterpriseModelObjectInfo class.

Contains specific Function
information.

IObjectInfo Interface that contains Id and Name
properties.

UMLModelObjectInfo
Base class for all UML model objects.

This class implements IObjectInfo
interface.

UMLModelInfo
Class that contains UML model

information such as Model type, Model
object list as well as model source.

UMLModelSourceInfo

Class that contains model source
information such as File name, Model

name, parser type and model object
type.

UMLUseCase, UMlActor,
UMLAction, UMLSwimline,
UMLAssociation, UMLNote

Class that is derived from
UMLModelObjectInfo class. Contains

specific Note information.

Actor, Function, Process,
FunctionProcess, ActorFunction,

ActorProcess

Auto generated classes by ORM
mapper. Used as Database record

representation in application. These
classes have all database fields

including key fields and foreign key
fields.

The described entities provide architecture backbone for
prototype to be able to read Use Case and Activity models
information from XMI file, validate these models, map to
enterprise model elements as well as perform Database
related actions.

Constants module is created as main source of static
information (such as model types definitions, object types
definitions, messages, error codes etc.). Data are saved as
Constant or Enum variables. In most cases this module is
reused by Logic Layer’s objects.

VIII. CONCLUSIONS

In the first chapters of article the detailed SysML models
(Use Case, Block Definition, Activity, Requirements)

parsing algorithms that are necessary for KB-MDA IS
engineering method are presented. These algorithms use
recursive data acquisition method. The defined solution
ensures data consistency among particular Use Case,
Activity, Block Definition, Requirements models thus
providing more accurate user requirements specification
process.

The next chapters deals with implementation of these
algorithms by The KB-MDA tool’s prototype. The
prototype described in the article is capable of parsing,
validating, mapping Use Case and Activity models to
Enterprise model. The future works are: to include more
UML models (e.g. Class) to this process and to define more
validation options as well as introduce advanced enterprise
model analysis features.

REFERENCES

[1] OMG UML, Unified Modeling Language version 2.5. Unified
Modeling, 2012. [Online]. Available: http://www.omg.org/spec/UML/
2.5/Beta1

[2] OMG MOF, Meta-Object Facility, 2013. [Online]. Available:
http://www.omg.org/spec/MOF

[3] M. S. Soares, J. Vrancken, “Model-driven user requirements
specification using SysML”, Journal of Software, vol. 3, no. 6,
pp. 57–68, 2008. [Online]. Available: http://dx.doi.org/10.4304/
jsw.3.6.57-68

[4] A. Lopata, M. Ambraziunas, S. Gudas, R. Butleris, “The main
principles of knowledge-based information systems engineering”,
Elektronika ir elektrotechnika, vol. 11, pp. 99–102, 2012.

[5] A. Morkevicius, S. Gudas, “Enterprise knowledge based software
requirements elicitation”, Information Technology and Control,
vol. 40, no. 3, pp. 181–190, 2011. [Online]. Available:
http://dx.doi.org/10.5755/j01.itc.40.3.626

[6] A. Lopata, M. Ambraziunas, S. Gudas, “Knowledge based MDA
requirements specification and validation technique”,
Transformations in Business & Economics, vol. 11, no. 1(25),
pp. 248–261, 2012.

[7] M. Kirikova, A. Finke, J. Grundspenki, “What is CIM: an information
system perspective”, Advances in Databases and Information
Systems, vol. 5968, pp. 169–176, 2010. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-12082-4_22

[8] A. Fouad, K. Phalp, J. M. Kanyaru, S. Jeary, “Embedding
requirements within Model-Driven Architecture”, Software Quality
Journal, vol. 19, no. 2, pp. 411–430, 2011. [Online]. Available:
http://dx.doi.org/10.1007/s11219-010-9122-7

[9] A. Rodriguez, E. Fernandez-Medina, M. Piattini, “CIM to PIM
Transformation: A Reality”, Research and Practical Issues of
Enterprise Information Systems II IFIP International Federation for
Information Processing, vol. 255, pp. 1239–1249, 2008. [Online].
Available: http://dx.doi.org/10.1007/978-0-387-76312-5_50

[10] M. Kardos, M. Drozdova, “Analytical method of CIM to PIM
transformation in Model Driven Architecture (MDA)”, Journal of
Information and Organizational Sciences, vol. 34, pp. 89–99, 2010.

[11] Wei Zhang, Hong Mei, Haiyan Zhao, Jie Yang, “Transformation from
CIM to PIM: A feature-oriented component-based approach”, Model
Driven Engineering Languages and Systems – Series: Lecture Notes
in Computer Science, vol. 3713, pp. 248–263, 2005.

[12] J. Dunkel, R. Bruns, “Model-Driven architecture for mobile
applications”, in Proc. 10th Inter-national Conf. Business Information
Systems (BIS), vol. 4439, pp. 464–477, 2007. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-72035-5_36

[13] R. Vitiutinas, D. Silingas, L. Telksnys, “Model-driven plug-in
development for UML based modelling systems”, Information
Technology and Control, vol. 40, no. 3, pp. 191–201, 2011. [Online].
Available: http://dx.doi.org/10.5755/j01.itc.40.3.627

[14] No Magic, Inc., Unified Modeling Language (UML), BPMN, SysML,
UPDM, SOA, Business Process Modeling Tools. 2013. [Online].
Available: http://www.nomagic.com

[15] OMG XMI MOF 2 XMI Mapping, 2013. [Online]. Available:
http://www.omg.org/spec/XMI

[16] T. Ndie, C. Tangha, F. Ekwoge, “MDA (Model-Driven Architecture)
as a software industrialization pattern: an approach for a pragmatic
software factories”, Journal of Software Engineering and
Applications, vol. 3, no. 6, pp. 561–571, 2010. [Online]. Available:
http://dx.doi.org/10.4236/jsea.2010.36065

57




