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Abstract—Objective: Recent advances in development of low-
cost single-channel electroencephalography (EEG) headbands
have opened new possibilities for applications in health monitor-
ing and brain-computer interface (BCI) systems. These recorded
EEG signals, however, are often contaminated by eye blink
artifacts that can yield the fallacious interpretation of the
brain activity. This paper proposes an efficient algorithm, VME-
DWT, to remove eye blinks in a short segment of the single
EEG channel. Method: The proposed algorithm: (a) locates eye
blink intervals using Variational Mode Extraction (VME) and
(b) filters only contaminated EEG interval using an automatic
Discrete Wavelet Transform (DWT) algorithm. The performance
of VME-DWT is compared with an automatic Variational Mode
Decomposition (AVMD) and a DWT-based algorithms, proposed
for suppressing eye blinks in a short segment of the single EEG
channel. Results: The VME-DWT detects and filters 95% of
the eye blinks from the contaminated EEG signals with SNR
ranging from -8 to +3 dB. The VME-DWT shows superiority to
the AVMD and DWT with the higher mean value of correlation
coefficient (0.92 vs. 0.83, 0.58) and lower mean value of RRMSE
(0.42 vs. 0.59, 0.87). Significance: The VME-DWT can be a
suitable algorithm for removal of eye blinks in low-cost single-
channel EEG systems as it is: (a) computationally-efficient,
the contaminated EEG signal is filtered in millisecond time
resolution, (b) automatic, no human intervention is required,
(c) low-invasive, EEG intervals without contamination remained
unaltered, and (d) low-complexity, without need to the artifact
reference.

Index Terms—EEG, denoising, eye blink, VME, DWT.

I. INTRODUCTION

THE advent of portable single-channel electroencephalog-
raphy (EEG) has been transforming health monitoring

and brain-computer interfacing (BCI), particularly for indoor
and non-clinical environments. Prefrontal single-channel EEG
systems can be more convenient for the long-term monitoring
[1], [2] and have been employed successfully in various
applications [3]–[8]. Unfortunately, EEG signals are highly
susceptible to artifacts incited by numerous sources, either

*Corresponding author’s email: mohammad.shahbakhti@ktu.edu
M. Shahbakhti, A. S. Rodrigues and V. Marozas are with the Biomedical

Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
M. Beiramvand is with the Department of Biomedical Engineering, Dezful

Branch, Islamic Azad University, Dezful, Iran
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non-physiological (e.g., power line interference and electrode
pop), or physiological (e.g., cardiac and muscular contractions)
[9], [10]. Among the latter are eye blink artifacts, which are
prominent in frontal channels [11] due to its amplitude and
frequency range. Eye blinks are involuntary and, thus, un-
avoidable in long-term monitoring [12]. One possible solution
is to record EEG with eyes-closed, however, such a strategy
can yield the undesirable alternation of EEG rhythms [13]
and evidently is not applicable in experiments with visual
stimulation. As with any artifact, the filtering of eye blinks
in EEG signals is crucial before further processing to avoid
an erroneous brain activity analysis [12]. While numerous
algorithms are available for multi-channel and offline eye blink
filtering [14]–[16], unsupervised low-complexity algorithms
capable of removing eye blinks in a short segment of a single-
channel EEG for real and semi-real time applications are still
lacking.

Subtraction, regression, and adaptive filters are amongst the
most straightforward strategy for eye blink removal in the
single EEG channel. However, such filters require the artifact
reference channel, thus increasing hardware complexity, which
is disadvantageous for low-cost EEG headbands. Additionally,
algorithms based on such filters presume that no bidirectional
contamination exists between the recorded artifact reference
and desired EEG, which is not always correct [11]. Wiener
filters could combat the need for an extra artifact reference
channel but with the drawback of requiring initial calibration
[17].

Signal decomposition algorithms such as wavelet [18]–[20],
Empirical Mode Decomposition (EMD) [21], and Variational
Mode Decomposition (VMD) [22] require neither the artifact
reference channel nor the initial calibration. Indeed, an auto-
matic algorithm based on VMD and linear regression (AVMD)
[23] was proposed for the removal of eye blinks in a short
segments of single-channel EEG, outperforming EMD, ensem-
ble EMD (EEMD), Independent Component Analysis (ICA),
and wavelet enhanced ICA algorithms. A common problem of
signal decomposition-based algorithms is the inability to limit
filtering to the actual artifactual eye blink interval, typically
200-400 ms long [9]. Instead, such algorithms filter the whole
segment of the contaminated EEG signal, e.g., 3s, which can
eliminate some of the non-artifactual components of EEG
signals. Thus, algorithms capable of restricting filtering to the
artifactual intervals without compromising the desired EEG
components are needed.
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Restricting filtering to the artifactual eye blink interval could
be accomplished using artifact detection strategies, such as am-
plitude thresholding, derivatives, or template matching. Ampli-
tude threshold-based algorithms show limitations when other
high amplitude artifacts appear [24]. Moreover, eye blinks
with an amplitude lower than the threshold cannot be detected
[25]. Derivative-based algorithms detect sudden changes by
presuming that a triangular-shape morphology represents an
eye blink event [26], which is a controversial presumption
[27]. Lastly, template matching algorithms employ a threshold
to assess the similarity between EEG segments and a provided
template. Thus, the success of template matching algorithms
depends on correctly defining both the template and threshold
value. The iterative template matching and suppression (ITMS)
algorithm [27] was proposed to detect and eliminate eye blinks
from a single-channel EEG with an automatic threshold and
template estimation. Despite the excellent performance, the
ITMS algorithm is only applicable for offline processing since
it requires a sufficient number of eye blink events for an
accurate filtering. In specific portable-EEG applications, real-
time removal of eye blinks is crucial, meaning that algorithms
must filter the artifactual intervals in short segments.

This paper presents an efficient algorithm, VME-DWT, for
the unsupervised detection and filtering of eye blinks in a
short segment (i.e., 3s) of a single-channel EEG without
the mentioned limitations. The artifactual eye blink intervals
are detected using Variational Mode Extraction (VME) [28],
followed by an automatic Discrete Wavelet Transform (DWT)
to filter the contaminated intervals. VME extracts an approx-
imation of the eye blink signal from the contaminated EEG,
facilitating the search for eye blink peak to form the artifactual
interval. DWT then only filters the selected interval, preserving
the non-artifactual intervals of EEG signals, without requiring
any prior calibration or artifact reference. The performance of
VME-DWT are investigated on both semi-simulated and real
contaminated EEG data and then compared to the AVMD [23]
and DWT [19] algorithms, which, as mentioned above, have
been developed for the eye blink filtering in a short segments
of the single-channel EEG.

II. MATERIALS AND METHODS

A. VME algorithm

VMD has been introduced as a tool to decompose a non-
stationary signal, x(n), into K number of modes, uk(n), called
band limited intrinsic mode functions (BLIMFs) subject to
x(n) =

∑K
k=1 uk(n) [29]. Each mode of VMD is centered

around a center frequency, ωk.
The objective of VMD is to extract all possible modes from

the input signal, that might yield unnecessary computational
burdens, and is not required in some application, e.g., artifact
detection. To this end, a simplified version of VMD, called
VME, has been introduced to extract a desired mode from
the input signal by having an approximate value of the center
frequency. The basis of VME is to decompose the input signal
x(n) into a desired mode, ud(n) with a pre-defined center
frequency, ωd and a residual signal xr(n) such as x(n) =
ud(n) + xr(n).

The desired mode is computed by its bandwidth mini-
mization around its center frequency. The VME models the
bandwidth of desired mode with the following steps:

1. For the given mode of interest ud(n), the analytic signal
is computed using Hilbert transform as [(δ(n) + j

nπ ) ∗ud(n)],
where δ(n) is the Dirac distribution and * denotes convolution.

2. The frequency of the analytical signal is shifted to the
center frequency by its multiplication to an exponential ωd
tuned as [(δ(n) + j

nπ ) ∗ ud(n)]e−jωdn.
3. The gradient of the second norm squared of the shifted

analytical signal is considered as the bandwidth.
In order to VME successfully extracts the desired mode

ud(n) with the center frequency of ωd, the following condi-
tions must be fulfilled:

1. The mode of interest ud(n) must be compacted around
ωd. As a result, the following bandwidth must be minimized:

J1 =

∥∥∥∥∂n[(δ(n) +
j

nπ
) ∗ ud(n)

]
e−jωdn

∥∥∥∥2
2

(1)

2. The spectral overlap of the residual signal xr(n) and the
desired mode ud(n) should be minimized to guarantee the
fully extracted mode. Therefore, a filter is required to properly
separate the component which lie in the frequency range of
the desired mode. To this aim, the following filter is used:

β(ω) =
1

α(ω − ωd)2
(2)

where α regulates the bandwidth of filter. According to equa-
tion (2), infinite sensitivity is achieved at ω=ωd. As a result,
minimization of the spectral overlapping of the xr(n) and
ud(n) can be solved by following penalty equation:

J2 = ‖β(n) ∗ xr(n)‖22 (3)

where β(n) is the impulse response of the filter.
The desired mode should be such that the original signal can

be reconstructed by the summation of residual signal and the
extracted desired mode. Hence, the problem of desired mode
extraction can be solved by the constrained minimization of
following criterion:

min
ud,ωd,xr

{αJ1 + J2}, s.t. : ud(n) + xr(n) = x(n) (4)

In order to render the unconstraintity of equation (4), a
quadratic penalty term and a Lagrange multiplier can be
applied as follows:

L(ud, ωd, xr, λ) := α

∥∥∥∥∂n[(δn +
j

nπ
) ∗ ud(n)

]
e−jωdn

∥∥∥∥2
2

+ ‖β(n) ∗ xr(n)‖22 + ‖x(n)− [ud(n) + xr(n)]‖22 +

〈λ(n), x(n)− [ud(n) + xr(n)]〉 (5)

where λ expresses the Lagrange multiplier. The saddle point of
equation (5), that corresponds to the solution of equation (4),
can be estimated by alternate direction method of multipliers
(ADMM). Taking into account the ADMM is an iterative algo-
rithm, Parseval’s equality and simplifying some mathematical
expressions, the desired mode ud(n), center frequency ωd and
Lagrange multiplier λ are updated at each iteration of m as
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follows:

Algorithm 1 VME algorithm, adapted from [28]
Input: Signal x(n), α, and ωd

Output: The desired mode ud(n)

Initialisation û1d(n), λ̂1, m← 0

Repeat m← m+ 1

1: Update ûd for ω > 0

ûm+1
d (ω)← x̂(ω)+α2(ω−ωmd )4ûmd (ω)+

λ̂(ω)
2

[1+α2(ω−ωmd )4][1+2α(ω−ωmd )2]

2: Update ωd

ωm+1
d ←

∑∞
0 ω|ûm+1

d (ω)|2∑∞
0 |û

m+1
d (ω)|2

3: Dual Ascent for all ω > 0

λ̂m+1(ω)← λ̂m(ω) + τ
[
x̂(ω)−

(
ûm+1
d (ω) + x̂r(ω)

)]
4: Until the convergence:
‖ûm+1

d −ûmd ‖22
‖ûmd ‖22

< ε

For more details, readers are encouraged to see [28].

B. The VME-DWT algorithm

The VME firstly extracts an approximation of the eye blink
signal to localize the highest eye blink peaks, and detects
the artifactual intervals containing eye blinks. Then identified
intervals are filtered using DWT, maximizing the preservation
of eye blink-free EEG. The block diagram of the proposed
algorithm is shown in Fig.11.

Noisy EEG, z(n)

VME

d

VME mode, m(n)Local maxima of m(n) 

Thresholding, ϴ  Intervals selection 

DWT-based denoising of 
intervals 

Fil tered EEG,   (n)

Fig. 1. The block diagram of the proposed algorithm.

1The MATLAB code is available on GitHub with repository name:
VMEDWT-Eyeblink-Elimination

1) Eye blink detection using VME: The VME algorithm
requires two parameters to be set: the compactness coefficient
α and the approximate value of center frequency ωd of the
desired mode. Although the authors in [28] recommend high α
values to ensure the detected center frequency is related to the
desired mode, smaller α values are better suited to extract all
eye blink-related components due to the eye blink frequency
range (0.5-7.5 Hz) and its spectral overlapping in EEG signals.
To find the best α fit, we initialize α at 7000, decreasing with
a 1000-step until 2000. The approximate center frequency is
selected based on the eye blink frequency to a value of 3 Hz.

After extracting the desired mode, m(n), the eye blinks
peaks are located by computing the local maxima of m(n)
that have values greater than the universal threshold [16], [20],
[30] expressed as follows:

θ =
median(|m(n)|)

0.6745

√
2logN (6)

where m(n) is the desired mode extracted by VME and N is
the signal length in samples. After localizing every eye blink’s
highest peak in m(n), they will be projected to contaminated
EEG to set intervals for the time-selective filtering of eye blink
components. Since the eye blink duration varies from 200 to
400 ms [9], [30]–[32], a 500 ms interval (125 ms pre- and
375 ms post the highest amplitude peak) is chosen to ensure
all eye blink components are included even if the algorithm
does not precisely localize the highest eye blink peak.

2) Double eye blink: In some cases, two eye blink events
might overlap. While the proposed algorithm can detect them,
the filtering is performed twice, increasing computational
complexity and yielding extra data loss. To overcome this
issue, a simple criterion that measures the distance between the
identified eye blink peaks is employed. If the distance between
two eye blink peaks is smaller than 500 ms, the artifactual
window is updated to 125 ms pre-first highest eye blink peak
and 375 ms post second highest eye blink peak (Fig. 2).

0 1.5 3
Time (s)

(a)

0 1.5 3
Time (s)

(b)

0 1.5 3
Time (s)

(c)

0 1.5 3
Time (s)

(d)

372 ms

Fig. 2. Examples of a contaminated EEG with a double eye blink (a),
extracted VME mode with detected eye blink peaks (b), formed the artifactual
window on VME mode (c), and EEG with projected the artifactual interval
(d).

3) Eye blink filtering using DWT: DWT decomposes an
input signal x(n) into low and high frequency components
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known as approximation a(n) and detail components d(n),
respectively. The original input signal can be reconstructed
entirely by x(n) =

∑L
l=1 dl(n) + aL(n), where L is the

number of decomposition level.
DWT requires two parameters to be set: the mother wavelet

and the decomposition level. Analogously to previous studies
[33], [34], db4 is selected as the mother wavelet as its
morphology resembles that of eye blinks. The selection of
decomposition level is a more painstaking task as EEG signals
from different databases might require distinctive number of
decomposition levels for denoising [20], [34]–[36]. The most
straightforward strategy is to employ full tree decomposition,
however, such a strategy may increase unnecessary compu-
tational requirements. To this end, we use a skewness-based
strategy to control and find the best decomposition level. Since
the eye blink amplitude is significantly higher than the EEG
signal, its emergence can lead to an asymmetric distribution of
the EEG signal [10], [21], [37]. Thus, large absolute skewness
values in DWT components can indicate eye blink existence
(Fig. 3). Compared to EEG signal, eye blink is a low-frequency
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Fig. 3. Examples of eye blink-free (a) and contaminated (b) EEG signals
with the corresponding distributions. S indicates the skewness value.

phenomenon. Thus, its components are expected to emerge
in the approximations a(n) of the decomposed signal. The
absolute difference of skewness values at two consecutive
approximation components is, therefore, used as the decisive
factor whether to terminate or continue the decomposition
process:

δ =
∣∣|Sj | − |Sj−1|∣∣ (7)

where S is the skewness and j is the level of decomposition.
If δ > T , it can be assumed that DWT has reached the
blink components. The threshold value, T is tuned based on
the lowest error between the eye blink-free and filtered EEG
signals.

The main steps of proposed VME-DWT are summarized in
Algorithm 2.

C. Data

Semi-simulated and real eye blink-contaminated EEG sig-
nals have been used to develop and test the algorithm.

1) Semi-simulated data: To generate semi-simulated data,
synthetic eye blink signals have been produced by repeating

Algorithm 2 VME-DWT for eye blink removal
Input: Noisy EEG z(n), α, ωd, Fs, T
Output: Filtered EEG x̂(n)

Initialisation θ, δ ← 0, j ← 2
{Detect Artifactual Interval}

1: m(n)←VME(z(n), α, ωd)
2: θ ← see equation (6)
3: for i = 2 to 3 ∗ Fs− 1 do
4: if m(i) > m(i−1) && m(i) > m(i+1) && m(i) > θ

then
5: onset← i− 0.125× Fs
6: offset← i+ 0.375× Fs
7: z1(n)←z(onset:offset)
8: end if
9: end for
{Filter Artifactual Interval}

10: while true do
11: aj−1(n)←DWT(z1(n), j − 1)
12: aj(n)←DWT(z1(n), j)
13: Sj−1 ←skewness(aj−1(n))
14: Sj ←skewness(aj(n))
15: δ ←

∣∣|Sj | − |Sj−1|∣∣
16: if δ > T then
17: Remove aj(n)
18: x̂(n) ← Reconstruct filtered EEG by summation of

d1(n), .., dj(n)
19: break
20: else
21: j ←j + 1
22: end if
23: end while
24: return x̂(n)

an eye blink template from [27] with different amplitudes at
random time intervals. The generated eye blinks have been
added to 1368 three-second long artifact-free EEG segments
collected from [38]. The EEG signals were recorded according
to the International System 10-20 with a sampling frequency
of 200 Hz. EEG data were carefully captured to minimize
the appearance of the external and physiological artifacts. A
random noise is also added to our semi-simulated data to
resemble real world EEG data better:

z(n) = x(n) + r(n) + v(n) (8)

where z(n) is the noisy EEG, x(n) is the artifact-free EEG,
r(n) is the eye blink artifact and v(n) is the noise that might
emerge in EEG signals from other sources such as environment
or muscle contractions. Accordingly, we generated contami-
nated EEG signals with different Signal-to-Noise Ratio (SNR)
values.

2) Real data: The performance of all algorithms is tested
on real data comprised of 3000 three-second long EEG seg-
ments from frontal channels, drawn from four BCI public
databases [39]–[42]. Table I displays the information about
each database.
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TABLE I
BRIEF DESCRIPTION OF THE EMPLOYED DATABASES FOR REAL EEG DATA

ANALYSIS

Database [39] [40] [41] [42]

Sampling rate (Hz) 512 200 256 250
Electrode montage 10-10 10-20 10-10 10-20

No. of used subjects 4 6 7 15
No. used signals 444 1036 724 796

The motivation behind using different databases is to inves-
tigate the adaptiveness of the proposed algorithm’s parame-
ters for EEG signals recorded in different conditions. These
databases were purposely selected due to their realistic signal
acquisition conditions as no artifact control or rejection was
employed during recording. For more details about the data,
see [39]–[42].

D. Algorithm under comparison

To compare the performance and computational complexity
of the proposed algorithm, AVMD and DWT algorithms,
proposed for eye blink filtering in a short segment of single-
channel EEG, is used.

1) AVMD: The key steps of AVMD is to (i) decompose
the contaminated EEG signal into 12 modes by VMD, (ii)
find the artifactual modes based on amplitude and frequency
thresholds, (iii) employ the summation of the artifactual modes
as the input of linear regression to estimate the eye blink in
the contaminated EEG signals, and (iv) subtract the estimated
eye blink from the contaminated EEG signal. The required
parameters of AVMD have been set as described in [23].

2) DWT: The basis of DWT denoising algorithm is to (i)
decompose the input signal into l levels of coefficients using
a basis function, (ii) set the coefficients of each level with a
higher value than the threshold to zero, and (iii) reconstruct
the denoised signal with inverse DWT. In [19], four basis
functions, haar, coif3, sym3, and bior4.4 with universal
and statistical thresholding have been investigated. According
to the authors, bior4.4 basis function with the statistical
thresholding can be the optimal choice for eye blink removal.

E. Evaluation criteria

1) Eye blink detection: To assess the accuracy of eye blink
detection, true positive rate (TPR) and false positive rate per
interval (FPR) are computed as follows:

TPR =
TP

TP + FN
(9)

FPR =
FP

FP + TN
(10)

where TP (true positive), FN (false negative) and FP (false
positive) stand for the correct, missed and false number of
detected eye blinks, respectively. It should be noted that TN
(true negative) concept does not exists in the continuous signal,
therefore, FPR is assessed over the time intervals [27].

2) Filtering performance: The filtering performance of
the VME-DWT and AVMD algorithms is evaluated in both
time and frequency domains. Regarding the time domain, the
correlation coefficient (CC) and relative root mean square
error (RRMSE) are computed between the eye blink-free and
filtered EEG signals. The CC is expressed as

CC =
cov
(
x(n), x̂(n)

)
σx(n)σx̂(n)

(11)

where cov and σ are the covariance and standard deviation,
x(n) and x̂(n) are the eye blink-free and filtered EEG signals,
respectively. The CC investigates the degree of linear depen-
dence between two signals and varies from -1 to 1, where CC
values closer to 1 indicates better quality of the filtering.

The RRMSE measures the amplitude distortion of the
filtered EEG signals as follows:

RRMSE =
RMS

(
x(n)− x̂(n)

)
RMS

(
x(n)

) (12)

Lower RRMSE values indicate better filtering quality.
The difference of power spectral density (PSD) between the

corresponding EEG bands (as described in [10]) of filtered and
eye blink-free signals are used to evaluate the preservation of
the frequency components, and it is computed as follows [23]:

∆PSDb = PSDeye blink-free EEG
b − PSDfiltered EEG

b (13)

where b indicates the band of EEG. Lower values of ∆PSD
indicate better quality for preservation of the frequency com-
ponent.

F. Optimization of VME-DWT parameters

The optimization of the proposed algorithm’s required
parameters is conducted using 456 segments of the semi-
simulated data. The α value, which plays the most important
role for eye blink detection, is adjusted based on the highest
mean of TPR and the lowest mean of FPR in the contaminated
EEG signals with different SNR values. Fig. 4 confirms that
the optimum α value is 3000.

As for T , which controls the DWT decomposition level, it
is tuned based on the highest and lowest mean of CC and
RRMSE, respectively, between the filtered and eye blink-free
EEG signals. T values ranging from 0.05 to 0.25 with a step
of 0.05 are employed. Fig. 5 shows that the optimum T value
is 0.1.

Note that these 456 signals were only used for the opti-
mization of VME-DWT algorithm and are not included for
the performance evaluation. The rest of semi-simulated data
and four real EEG databases are filtered with α = 3000 and
T = 0.1 values to investigate their adaptivness for different
EEG databases.

III. RESULTS

A. Filtering results for semi-simulated data

Table II discloses TPR and FPR values for eye blink
detection in 912 three-second long segments of contaminated
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Fig. 4. Examples of contaminated EEG signals with different SNRs (a), the
corresponding desired mode extracted by VME (b), the true positive rate (c),
and false positive rate per interval (d).
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Fig. 5. The mean±SD of CC (a) and RRMSE (b) between the eye blink-free
and filtered EEG signals.

EEG signals with SNR ranging from -8 to +3 dB. The VME-
DWT detected, on average, more than 95% of the eye blinks
with an α value of 3000 for all SNRs.

TABLE II
PERCENTAGE OF TPR AND FPR OF VME-DWT FOR EYE BLINK

DETECTION

SNR(dB) TPR(%) FPR

SNR≥ 0 99.54 0.0004
-6<SNR<0 96.45 0.0032

SNR≤ −6 91.34 0.0136

Mean±SD 95.77±4.14 0.0057±0.007

Fig. 6 shows examples of the contaminated and their
corresponding eye blink-free and filtered EEG signals with
different SNRs. In terms of the visual inspection, the VME-
DWT eliminated eye blinks components better than the AVMD
and DWT.

The boxplots of the CC and RRMSE values between the
eye blink-free and filtered EEG signals are shown in Fig. 7.
Compared to the AVMD and DWT, the VME-DWT displays
lower mean value of RRMSE (0.42 vs. 0.59, 0.87) and higher
CC mean value (0.92 vs. 0.83, 0.58), indicating that the
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Fig. 6. Examples of contaminated (a), eye blink-free (b) and filtered EEG
signals by the VME-DWT (c), and AVMD (d) algorithms.

proposed VME-DWT can better preserve the original eye
blink-free EEG signals.
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Fig. 7. Boxplots of CC (a) and RRMSE (b) between the eye blink-free and
filtered EEG signals for all algorithms. µ and σ stand for mean and standard
deviation.

To assess the reliability of both algorithms at different SNR
values, the CC and RRMSE as a function of SNR values are
shown in Fig. 8. As it is observable, the proposed VME-
DWT is more robust for different SNR values compared to
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the AVMD and DWT2.
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Fig. 8. The CC (a) and RRMSE (b) measures as a function of SNR for
the filtered EEG signals by the proposed VME-DWT, AVMD and DWT
algorithms.

Fig. 9 illustrates two examples of the PSDs between the
eye blink-free and filtered EEG signals by all algorithms.
The spectral analysis suggests that the proposed VME-DWT
retains low-frequency components, thus better preserving the
natural frequency spectrum of the artifact-fee EEG signals.
Indeed, VME-DWT outperforms AVMD and DWT by better
preserving delta, theta, alpha, and gamma bands, as disclosed
in Table III. However, all algorithms show undesirably high
∆PSD values for the beta band.
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Fig. 9. Two examples of the spectral analysis between the eye blink-free and
corresponding filtered EEG signals.

TABLE III
∆PSD (MEAN±SD) FOR EEG BANDS AFTER FILTERING

EEG bands VME-DWT AVMD DWT

Gamma 1.90±1.01 2.01±1.08 3.23±1.59
Beta 6.02±2.73 5.39±2.61 7.10±1.41

Alpha 1.39±0.81 2.30±1.60 2.94±1.72
Theta 3.98±1.71 5.19±2.78 7.39±2.61
Delta 4.58±1.93 8.53±3.73 10.48±3.53

B. Filtering results for real data

Table IV displays the TRP(%) and FPR for eye blink
detection in all four real EEG databases. As it is shown, the
proposed algorithm could detect majority of the eye blink
artifacts in EEG signals captured with distinctive recording
conditions. It should be noted that due to unavailability of
the artifact-free EEG, the computation of TPR and FPR for
different SNRs is not possible.

TABLE IV
PERCENTAGE OF TPR AND FPR OF VME-DWT FOR EYE BLINK

DETECTION IN FOUR REAL EEG DATABASES

Database [39] [40] [41] [42]

TPR(%) 95.24 94.12 93.32 98.52
FPR 0.0042 0.0071 0.0098 0.0083

Fig. 10 depicts examples of real contaminated EEG signals
from all four databases with their corresponding filtered EEG
signals. As it can be observed, the proposed algorithm can
significantly better filter the intervals with eye blink artifacts.
Because the real artifact-free EEG signals are unknown, the
temporal criteria were only computed between the eye blink-
free intervals of real and filtered EEG signals [17]. Table
V suggests superiority of the VME-DWT to the AVMD and
DWT for the preservation of non-artifactual intervals.

C. Computational complexity

Besides the performance, computational complexity of the
denoising algorithms is another important factor that should be
considered for real or semi-real time procedures. Taking into
account that recursive Fast Fourier Transform (FFT), required
to compute each mode in VMD, and the linear regression con-
tribution to eliminate eye blinks, the computational complexity
of AVMD is, therefore, equivalent to K O(MN logN ) +
O(N 2 +N 3) where K,M, and N are the number of modes,
iterations, and samples, respectively. On the other hand, the
proposed algorithm extracts only one mode for eye blink
detection and uses DWT for the eye blink filtering, hence,
its computational complexity is expressed as O(MN logN )
+ O(N ), where the first term is for the VME algorithm and
the second term is for DWT3. While the required CPU time

2Non-integer SNR values have been rounded
3It should be noted that the required computations for the initialization of

center frequencies in VMD has been omitted
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Fig. 10. Columns with examples of real contaminated EEG signal from [39] (a), [40] (b), [41] (c), [42] (d), and below the corresponding filtered EEG signals.

TABLE V
CC AND RRMSE COMPARISON (MEAN±SD) BETWEEN THE EYE BLINK-FREE INTERVALS OF CONTAMINATED AND FILTERED EEG SIGNALS FOR REAL DATA

Database VME-DWT AVMD DWT
CC RRMSE CC RRMSE CC RRMSE

[39] 0.94±0.03 0.16±0.04 0.89±0.08 0.18±0.10 0.68±0.11 0.84±0.18
[40] 0.97±0.02 0.14±0.02 0.93±0.04 0.21±0.12 0.73±0.03 0.96±0.03
[41] 0.93±0.04 0.15±0.05 0.88±0.07 0.19±0.06 0.64±0.14 0.76±0.23
[42] 0.98±0.01 0.09±0.04 0.84±0.06 0.19±0.09 0.62±0.14 0.94±0.34

for the proposed algorithm is significantly shorter than the
AVMD, DWT algorithm is advantageous over the proposed
algorithm in this manner4 (Table VI).

TABLE VI
THE COMPUTATIONAL TIME IN SECONDS (MEAN±SD) FOR REAL EEG

DATA

Database VME-DWT AVMD DWT

[39] 0.081±0.01 20.1±0.23 0.013±0.002
[40] 0.060±0.02 4.38±1.65 0.014±0.003
[41] 0.071±0.02 4.76±0.29 0.013±0.001
[42] 0.056±0.01 4.32±0.08 0.010±0.001

4A computer with 3.2 GHz core i7 CPU and 8 GB memory has been used
to run the algorithms in MATALB 2020a environment

IV. DISCUSSION

This research proposed and evaluated the performance of the
VME-DWT algorithm for the eye blink suppression in EEG
signals. The obtained results suggest that the proposed VME-
DWT: (a) can adequately detect and eliminate eye blinks in a
short interval of single EEG channel; (b) is automatic as no
human involvement is required; (c) is less invasive compared
to other decomposition algorithms such as ICA, EMD, and
VMD since only contaminated intervals are filtered and non-
artifactual intervals remained unaltered; (d) is cost-effective
as a short CPU time is required for the execution; and (e)
is needless to the artifact reference and initial calibration.
The proposed VME-DWT also tackles the limitations of the
classical artifact detection strategies such as the amplitude
thresholding and template matching as it is robust to the other
high amplitude artifacts and does not require any predefined
template.
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While the performance of VME is not highly sensitive the
value of the center frequency [28], regulation of the compact-
ness coefficient, α, plays the key role for the accurate detection
of eye blinks in EEG signals. Albeit higher value of α can
guarantee extraction of the narrow-banded mode, in this ap-
plication, however, smaller α values should be employed as the
frequency range of eye blink violates the VME presumption by
overlapping in the delta, theta and alpha bands of EEG signals
[33]. This is also the plausible explanation that the extracted
desired mode by VME should not be directly subtracted from
the contaminated EEG signals as it would either remove some
low frequency components of non-artifactual EEG or preserve
some high frequency components of eye blinks. Thus, the
extracted mode is used for more precise localization of the
artifactual eye blink intervals. Our results suggest that α=3000
is the optimal value for reliable eye blink detection with the
highest TPR and lowest FPR (Fig. 4 (c), (d)).

The optimal DWT decomposition level for the eye blink
filtering is achieved by a skewness-based strategy between
two approximation components. Such a strategy automatically
terminates the decomposition procedure, evades unnecessary
decomposition, and accelerates the filtering procedure. Fur-
thermore, skewness-based strategy, unlike other wavelet-based
methods [20], [34], avoids full tree decomposition of DWT or
manual selection of the decomposition level. The interchange-
ability and effectiveness of the proposed strategy have been
proven by employing contaminated EEG signals with different
recording conditions.

The performance and execution time is compared to AVMD
and DWT algorithms, proposed for the eye blink elimina-
tion in short intervals of a single EEG channel. In 912
semi-simulated EEG signals contaminated by eye blinks, the
VME-DWT outperformed the AVMD and DWT, showing: (i)
higher mean of CC values, suggesting enhanced EEG compo-
nent’s preservation, and (ii) lower mean of RRMSE values,
showing higher filtering robustness. The denoising criteria
in the frequency domain also indicate superior VME-DWT
performance, especially for the preservation of low-frequency
components in filtered EEG signals. In addition, VME-DWT
is more robust than the AVMD and DWT in contaminated
EEG signals with low SNR values. As for real data, while
the proposed VME-DWT showed a satisfactory performance,
the AVMD and DWT algorithm failed to attenuate the eye
blinks adequately (Fig. 10). Plausible explanations for such
results are twofold. Firstly, the real EEG signals used in this
research could require adjustment of the parameters set for
the AVMD and DWT algorithms. However, having to adjust
parameters for every new database would defeat the purpose
of automatization, which is, evidently, unfavorable for the
real-time EEG applications. Secondly, it is plausible that the
number of extracted modes or levels is insufficient, leading to
the artifact markers failing to detect all eye blinks. Another
advantage of the VME-DTW algorithm is its significant short
required CPU time, which makes it eligible for online and
semi-real time applications.

While the proposed algorithm has satisfactory performance,
its limitations and potential solutions should be considered.
Firstly, the presence of other low-frequency artifacts such as

electrode drift may hinder the accurate eye blink detection by
the VME. Thus, a high-pass filter with a cut-off frequency of
0.5 Hz should be used before running the proposed algorithm.
Secondly, the proposed algorithm only detects and eliminates
artifacts associated with blinks, but no other artifacts such as
eye saccades and muscle contractions. Nevertheless, it can
be employed in conjunction with other filtering algorithms.
Thirdly, this study presumes that contaminated EEG signals
have only positive eye blink peaks. In bipolar EEG recordings
(e.g., FT10-T8 channel), negative eye blinks might appear, and
the proposed algorithm cannot detect them, unlike the AVMD
and DWT. One potential solution could be to use the local
minima of the extracted mode with the negative value of the
threshold θ. Fourthly, while θ showed adequate performance
for detection of the highest eye blink peak from VME mode,
other strategies such as algebraic approach [18] or statistical
threshold [19] may also improve the detection performance.
Fifthly, the proposed strategy for the double eye blink event
has been developed experimentally and may require further
investigation for more accurate performance. Nevertheless,
these suggestions to mitigate the mentioned problems are just
hypothesis and require further investigation.

V. CONCLUSIONS

This paper demonstrated that VME-DWT is an efficient
automatic algorithm for eye blink detection and filtering in
a short segment of a single EEG channel, quantified its effec-
tiveness and adaptiveness using semi-simulated and real world
EEG data with different recording conditions, and provided
insights into optimum selection of VME-DWT’s parameters.
According to our experimental results, the α and T values
of 3000 and 0.1 can be generally used for different EEG
databases. The most prominent advantage of the proposed
VME-DWT algorithm is its capability to filter eye blinks
in contaminated EEG signals with low SNR values, without
requiring the initial calibration nor artifact reference. Besides
the efficient performance, its required CPU time makes it a
suitable algorithm for eye blink removal in BCI and clinical
applications.
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