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GLOSSARY 

Agent – a program, which is used for client services, i.e. provides a secure way to 
encrypt and decrypt data.  

Algebraic cryptanalysis – methods of cryptanalysis, which are aimed at gathering 
information about user‘s private key from his public key by analyzing algebraic 
equations used to mathematically link both keys.  

Asymmetric encryption protocol – an algorithm, which is used to encrypt plaintext 
and decrypt ciphertext by using a pair of mathematically linked keys. 

Conjugation equation – matrix equation X–1AX = B, where matrices A and B are 
given. 

Commutation equation – matrix equation AX = XB, where matrices A and B are 
given.   

CSP – conjugation search problem. 

Cryptographic primitive – key exchange, encryption or e-signature protocol. 

DLA – discrete logarithm attack. 

DLP – discrete logarithm problem. 

ECC – elliptic curve cypher. 

Ideal of semigroup – a subgroup, which is closed under multiplication, for all 
elements of initial semigroup.  

Lookup table – a table which contains all possible values of an algebraic operation. 

Matrix power = power matrix. 

MP exponent – the value of MPF. 

MPAC – matrix power asymmetric cypher. 

MPF – matrix power function. 

MQ problem – the problem of solving a system of multivariate quadratic 
equations. 

MMQ problem – the problem of solving a matrix equation XAY = B, where 
matrices A and B are known and matrices X and Y are unknown. 



 
 

NP-complete problem – a problem is in NP class and every other problem in this 
class can be reduced to this problem in polynomial time.  

NP class – a set of decisional problems, which can be verified in polynomial time.  

Number ring – a ring that has integers as elements. 

One-way function – a function, that can be computed in polynomial time, but is 
hard to invert, i.e. it is impossible to find an argument of the function in polynomial 
time if the value is known.  

Platform ring – a ring of square matrices which contains possible values of 
platform matrix Q and MP exponent E.  

Polynomial time – the dependence of computational time on system parameters is 
polynomial. 

Power ring – a ring of square matrices, which contains arguments of MPF, i.e. 
matrices X and Y. 

Power matrix – an argument of MPF (matrix X or Y).  

RSA – asymmetric encryption protocol, named after its creators (Rivest, Shamir, 
Adleman). 

Symmetric encryption protocol – an algorithm which is used to encrypt plaintext 
and decrypt ciphertext by using the same secret key.  

STR – key exchange protocol, named after its creators (Sakalauskas, Tvarijonas, 
Raulynaitis). 

Statistical cryptanalysis – methods of cryptanalysis, which are aimed at predicting 
the value of the function using analysis of one-way function based pseudorandom 
number generator.  

 

  



 
 

NOTATIONS 

⊕ – XOR operation (bitwise sum modulo 2). 

|A| – the order of set A. 

XQ – matrix Q is powered by matrix power X from the left. 

QY – matrix Q is powered by matrix power Y from the right. 

(n) – Euler’s totient function of n. 

λ(n) – Carmichael function of n. 

gcd(a, b) – gratest common divider of a and b.  

Id(S) – an ideal of a semigroup S. 

L – security level. 

m – the order of square matrices.  

n – defines the size of multiplicative group Zn
* or semigroup Zn

#. 

p – a prime number which defines a multiplicative semigroup.  

r – defines the size of a number ring. 

Zn – a finite ring that has integers from 0 to n – 1 as elements. Addition and 
multiplication in this ring are performed modulo n.  

Zn
* – a multiplicative group that contains integers from 0 to n – 1 which are 

relatively prime with n. 

Zn
# - a multiplicative semigroup which is a union of Zn

* and Id(Zn).  
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1. INTRODUCTION 

Our everyday life cannot be imagined without information technology. Electronic 
mail, social networks, e-banking, e-voting – these are only a small part of services 
offered to an average user.  Often users send out secret information using the Internet. 
This process needs to be safe, since public knowledge of some secret information 
could be hazardous not only to user himself, but also to his friend, or sometimes even 
the government. It is clear that depending on a user and on the importance of 
information the security of the cipher can differ. It may only be a matter of using a 
password to protect information against kids, but protecting secret information against 
government spies is much more complicated. The latter case is the focus of 
cryptography. Cryptographic security includes such aspects as confidentiality, 
authenticity, integrity of information, user identification [1]. Such cryptographic 
primitives as key exchange protocols, data encryption protocols, digital signatures are 
created for these purposes. 

Cryptography also drew much attention during the World War II, when many attempts 
to break the world famous Enigma cipher were made. This problem was first solved 
by Alan Turing, who is now considered to be one of the founders of modern 
cryptography. The Enigma machine is an example of a symmetric cipher, i.e. this 
machine used the same key for encrypting and decrypting a secret message. For this 
reason the symmetric encryption protocols can be called as “cryptographic safes”, i.e. 
anyone who possesses a key can put something in a safe and take something out of the 
safe. However, if Bob wants to send a message to Carol, he has to agree on a common 
key with her, which means that Bob now has to store two keys: common key with 
Alice and common key with Carol. This is an obvious drawback of the symmetric 
encryption. Note also, that both parties must agree on a common key using secret 
channels, since otherwise this key would also be available to other users [2].  

These problems can be solved using another branch of cryptography – asymmetric 
encryption, which embraced in 1976. This type of protocols uses two kinds of keys: a 
secret key and a public key. The secret key is known only to the owner of the key and 
the public key is mathematically linked to the secret key and is known to any user. 
One of the main requirements for the public key is that this key should not give away 
any information about a secret key. Since in this case different keys are used for 
encryption and decryption, the asymmetric encryption protocols can be called as 
“cryptographic mailbox”, i.e. anyone can put something in Alice’s mailbox, but only 
Alice can take something out of it as she is the owner of her secret key. Also since 
messages are encrypted using public key asymmetric encryption is often called public 
key encryption. Usually the same asymmetric encryption system is used by many 
users. These systems allow user to possess only one pair of keys. In this case each 
public key can be stored in a public database. In this case Alice does not take any part 
in the protocol until she gets a ciphertext from Bob [2]. 
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In this work we present a new asymmetric cryptography protocol, which is used 
for secret data encryption. The suggested protocol uses non-commutative algebraic 
structures, which aggravates the usage of known cryptographic attacks against our 
protocol. 

The four main requirements for our protocol are the correctness of our cipher, the 
security of the user’s public key and the obtained ciphertext and the effective 
implementation in embedded systems. Based on these requirements in this work we 
present an original asymmetric encryption protocol. The security of the presented 
protocol is based on a hard problem, defined in a semigroup of matrices.  

Aim and objectives of the research 

The aim of this work is to present a new original asymmetric encryption protocol, 
which security is based on inverting a matrix power function which is postulated a 
one-way function.  

We have the following objectives to achieve our aim: 

1. Investigate the algebraic and the statistical properties of the suggested one-
way function. 

2. Using postulated one-way functions present an asymmetric encryption 
protocol. 

3. Present the investigation methods for our protocol. Evaluate the resistance of 
our protocol to statistical and algebraic cryptanalysis. 

4. Determine the main security parameters of our protocol and their safe values.  
5. Evaluate the time consumption of our protocol by comparing it to other 

commonly used protocols.  

Research methods 

Methods of algebra, number, probability and complexity theories were used 
solving the problems of dissertation. Correctness, security and implementation 
effectiveness of our protocol were investigated using analytical methods and by 
experiment using software tools created to implement the suggested protocol. 

Scientific novelty of the work 

1. In this work we present an original asymmetric encryption protocol based on 
a new one-way function. The suggested function has never before been used 
for asymmetric encryption. The function is defined in non-commutative 
algebraic structures. Hence the suggested protocol is one of the non-
commutative cryptography class protocols. The protocols of this class are 
somewhat new and are considered perspective, since they are based on hard 
non-commutative cryptography problems. The cryptanalysis of these 
problems is not developed enough to solve them in a reasonable time.  
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2. The selected algebraic structures allow us to validate the security of our 
protocol from the statistical analysis point of view.  

3. User’s secret and public keys are mathematically linked using the one-way 
function defined in multiplicative semigroup of matrices. The security of the 
public key is based on solving a new hard problem defined in a finite 
multiplicative semigroup of matrices. The complexity of this problem is 
similar to solving a multivariate quadratic system of equations in a finite ring. 
However, since in our case the equations are non-linear and involve 
powering to unknown powers, we can assume, that solving of these equations 
is more complicated than in case of multivariate quadratic system of 
equations. 

4. The proposed protocol can be implemented in embedded systems more 
effectively than other commonly used asymmetric encryption protocols, since 
it does not require using processors for operations with large numbers and 
uses lookup tables to perform algebraic operations. 

Dissertation statements presented for defense 

1. An original asymmetric encryption protocol is presented. The security of the 
protocol is based on non-commutative cryptography.  

2. Up to now no effective methods of cryptographic analysis for discrediting 
our protocol are known. 

3. The proposed protocol can be effectively implemented in embedded systems.  

Approbation of the research results 

Four papers on the topic of dissertation have been published. Two of these 
publications have an „ISI Web of Science” cite index. Two papers are published in 
conference proceedings. The dissertation topic was presented at Lithuanian 
Mathematical Society 53rd conference in Klaipeda (Lithuania) two international 
conferences: BulCrypt 2012 in Sofia (Bulgaria) and Electronics 2013 in Palanga 
(Lithuania). Equation Section (Next)Equation Section (Next) 

2. MATRIX POWER FUNCTION 

2.1. The matrix power function definition 

Let us denote a ring of square m m×  matrices by MA. The elements of these 
matrices are selected from a set A, which forms an associative ring under addition and 
multiplication. Matrix addition and multiplication in this ring are defined in a standard 
way. In this section we are going to define a matrix operation, which we call the 
matrix power function (MPF). This operation formally extends the powering operation 
to non-commutative semigroup of matrices. 

MPF uses one parameter – matrix Q, and one or two arguments – matrices X and 
Y, depending on a type of MPF (one-sided or two-sided). In general case we can select 
the elements of matrix Q from any commuting multiplicative semigroup S. The 
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elements of matrices X and Y must, however, be selected from a number ring R. We 
will denote the semigroup of square matrices of order m defined over the semigroup S 
by MS and call it the platform semigroup. We also denote the ring of square matrices 
of order m defined over a number ring R by MR and call it the power ring. The result 
of MPF is in the platform semigroup [3].  

We start by defining one-sided MPFs. Let Q and Y be two square matrices of order 
m. Let matrix Q = {qij} powered by matrix Y = {yij} from the right be matrix C = {cij}, 
i.e. 

 .C Q
Y

=   (2.1) 

where the elements of C are computed by the formula [3], [4]: 

 
1

.

m

k

y
kj

c qij ik
=

=∏   (2.2) 

We call matrix Q in (2.1) a platform matrix, matrix Y – a power matrix and matrix 
C – the right matrix power (MP) exponent.  

In a similar way by powering matrix Q from the left by matrix X = {xij} we obtain 

matrix D = {dij}, i.e. 

 ,

X
D Q=   (2.3) 

where the elements of left MP exponent D are computed by the formula [3], [4]: 

 
1

m

k

x
ikd qij kj

=

=∏   (2.4) 

Furthermore, we can use the combination of both functions to define a two- sided 
MPF by powering matrix Q from the left and right by matrices X and Y, respectively.  
Denoting the result matrix by E = {eij} we have the following MPF definition 

 .

X Y
E Q=   (2.5) 

The elements of two-sided MP exponent (or MP exponent for short) E are 
computed by the formula: 
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1 1

m m

k l

x y
ik lj

e
ij kl

q
= =

=∏∏   (2.6) 

In this work we will often reference to expression (2.5) not only as a notation of 
the MPF, but also as MPF equation. The problem of solving this equation can be 
formulated in a following way:  

MPF problem. Find matrices X and Y, which satisfy (2.5), if matrices Q and E are 
given. 

We can see from the definition of MPF, that the elements of matrices X and Y are 
the powers of elements of matrix Q. This is the reason for selecting the elements of 
matrices X and Y from a number ring. For example, if S = Zn

*, then we can choose R = 
Zλ(n), where λ(n) is the Carmichael function of n [5]. 

Let us now present two lemmas which indicate the important properties of MPF 
for cryptographic protocols construction. The proofs of these properties can be found 
in [6]. 

Lemma 2.1.  If R is a commuting numerical semiring and S is a commuting 
semigroup, then MPF defined by (2.5) is the action of MR × MR in MS satisfying the 
following associative law 

 ( ) ( )
X

X X
Q Q Q

Y
Y Y

= =   (2.7) 

Lemma 2.2.  If R is a commuting numerical semiring and S is a commuting 
semigroup, then MPF defined by (4) is the action of MR × MR in MS satisfying the 
following identity 

 ( ) ( ( ))X Y XUU V
Q Q

VY
=   (2.8) 

Despite the fact that it is not yet been proven if MPF problem is NP-complete K. 
Luksys pointed out the following advantages of MPF [6]:  

1. MPF is resistant to brute force attack. This result can also be achieved using 
small numbers as elements of the platform matrix if the order of matrices is 
increased. 

2. The value of MPF can be calculated quickly, since addition and 
multiplication are performed with small numbers. The size of numbers we 
use is at most 8 bits.  
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3. Since small numbers are used, we can form lookup tables to perform addition 
and multiplication operations.  

4. Each element eij of matrix E depends on all elements qij of matrix Q. This 
property is very important for cryptographic purposes.  

However MPF alone cannot be used to construct asymmetric criptographic 
protocols. For this reason we define extra conjugation constrains. We use these 
constrains to get important identities, which we will use to construct a protocol.  

Before constructing any protocol, based on some function we first have to make 
sure, that the used function can be considered a one-way function. For this purpose we 
consider the statistical properties of MPF. We rely on the results presented in [7] and 
[8].  

 

2.2. Statistical properties of MPF 

The statistical vulnerability of MPF will be caused by non-uniform distribution of 
different elements of MP exponent matrix E. Since in this work we consider finite 
algebraic structures, we say that a random variable ξ has a uniform distribution in a 
finite set A if: 

1
( )

A
prob aξ = =    (2.9) 

for all a ∊ A. 

The uniform distribution has an important property: uniformly distributed random 
variable has maximum entropy1 out of all other dicrete random variables. Large 
entropy is important in cryptography since in this case an adversary cannot give a 
priority to any possible choice.  

Let us assume that the elements xij and yij of power matrices X and Y have a 
uniform distribution. To prevent statistical attacks we have to select the elements qij of 
matrix Q in such a way that the elements of matrix E would be distributed uniformly. 
Since according to Cauchy theorem the maximal order of the group Zn

* λ(n) divides 
the order of this group |Zn

*|, elements of order λ(n) form a certain cyclic subgroup(s) 
of Zn

*. We know from a previuos subsection, that in this case the power ring is Zr, 
where r = λ(n). Let us choose a composite number n of the form n = pq, where p and q 
are prime numbers in such a way, that Zn

* would have at least two cyclic subgroups 

                                                           
1
 Entropy – a characteristic of a random variable, which quantitatively decribes its 

randomness. Large value of entropy indicates, that it is hard to predict the value of the random 

variable. 
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.1
C
r

 and 
.2

C
r

. According to Lagrange theorem the maximal possible order of the 

element of Zn
* i.e. the value of Carmichael function is less than or equal to ( ) / 2nφ , 

where (n) is the Euler totient function. Hence the necessary condition for Zn
*

 to have 
a cyclic subgroup C

r

 of maximal order is 

 ( ) 2 ( ).n nφ λ=   (2.10) 

Assume that primes are p and q are chosen and two cyclic subgroups 
.1

C
r

 and 

.2
C
r

 of maximal order r exist in Zn
*. Let 

.1 .2
C C
r r

∗ be a free product of subgroups 

.1
C
r

 and 
.2

C
r

 defined by the set 

 { |·
.1 .2 1 2 1 .1 2 .2

},C C C Cc c cc
r

,c
r r r

∗ = = ∈ ∈   (2.11)  

where · is a multiplication operation in Zn
*.  

We will use the following known propositions below:  

Proposition 2.3. 
.1 .2

C C
r r

∗  is a group if and only if 
.1

C
r

 and 
.2

C
r

 are abelian 

groups [1].  

We see that it is the case in our construction. 

Proposition 2.4. If G1 and G2 are two subgroups of some finite group G, then free 
product 

1 2
G G∗ consists of exactly |G1| |G2| / |G1 ∩ G2| different elements [1].  

Let 
.1 .2

C C
r r

I   be some subgroup. Since λ(n) is an even number, the maximal 

possible order of this subgroup is λ(n) / 2. Referencing the proposition above the 
following lemma can be formulated.  

Lemma 2.5. If |
.1 .2

C C
r r

I | = λ(n) / 2 then 
.1 .2

C C
r r

∗  = Zn
*.  

Proof. Under the conditions defined above we have the following identity  

2
( )

( )
( )

.1 .2 .1 .2 .1 .2 ( ) /
/ 2

2
C C C C C C n n

r r r r r r

n

n

λ
λ φ

λ
∗ = = = =I  

Hence groups Cr.1 ∗ Cr.2 and Zn
*

 has exactly (n) different elements. Since 
.1

C
r

, 

.2
C

r
and 

.1 .2
C C

r r
∗  are subgroups of Zn

*, this ends the proof of lemma. ■ 
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Let us find the generators of each of cyclic subgroups 
.1

C
r

 and 
.2

C
r

 and denote sets 

of these elements by Γ1 ir Γ2 respectively. The following propositions hold: 

Proposition 2.6. For any generator γ in Γ1 (Γ2) and x ∈ Zr chosen at random, the 
element γx have the same distribution in 

.1
C
r

 (
.2

C
r

) as x in Zr [9]. 

Proposition 2.7. Let z0 ∈ Zn
* be an arbitrary element. Choosing at random an 

element z1 ∈ Zn
* and setting z = z0 · z1 gives the same distribution for z as choosing a 

random element z [9]. 

Proposition 2.8. If γ1 and γ2 are in Γ and if x, y ∈ Zr are chosen uniformly at 

random, then the element z being computed by the expression 
1 2

yx
z γ γ=  is uniformly 

distributed in Zn
*. 

Proof. Let us divide the group Zn
* in the following sets: 

.1 .2
C C

r r
I , 

.1 .2
\C C

r r
, 

.2 .1
\C C

r r
and Zn

*\ ( ).1 .2
C C

r r
I . It can be easily shown, that each of the sets has exactly 

λ(n) / 2 elements. Consider these equally probable options: 

• If γ1 and γ2 are in
.1 .2

C C
r r

I  respectively, then the element z has a uniform 

distribution in the set
.1 .2

C C
r r

I . 

• If γ1 and γ2 are in \
.1 .2

C C
r r

 and \
.2 .1

C C
r r

 respectively, then the element 

z has a uniform distribution in the set Zn
*\

.1 .2
C C
r r

I . 

• If γ1 and γ2 are in \
.1 .2

C C
r r

 and 
.1 .2

C C
r r

I  respectively, then the element 

z has a uniform distribution in the set \
.1 .2

C C
r r

. 

• If γ1 and γ2 are in 
.1 .2

C C
r r

I  and \
.2 .1

C C
r r

 respectively, then the element 

z has a uniform distribution in the set \
.2 .1

C C
r r

. 

Since element z has a uniform distribution in each of the sets of Zn
*it also has a 

uniform distribution in a whole group. ■ 

Let us denote Γ = Γ1 ∪ Γ2 and formulate the following corollary: 

Corollary 2.9. If |
.1 .2

C C
r r

I | = λ(n) / 2, if all elements of the platform matrix Q 

entries qij ∊ Γ and if elements of matrices X, Y in Zr are chosen uniformly at random, 
then the distribution of elements of MP exponent matrix E are uniformly distributed in 
Zn

*. 
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Let us denote the set of solutions of MPF equation (2.5) by Pow(Q, E) = {(X, Y): 
XQY = E}. According to corollary 2.9 the elements of this set have a uniform 
distribution. 

In the previuos subsection we mentioned, that to construct cryptographic protocols 
based on MPF we have to add extra conjugation constrains. These constrains are 
defined as follows [9]: 

 
1

1

AX C

Y Y

X

B D

−

=

−

=

 , (2.12) 

where matrices A, B, C, D are known and chosen from the power ring MR, where R = 
Zr. To break MPF with conjugation constrains an adversary has to find matrices X and 
Y, satisfying the following system of equations 

 1

1

X Y
Q E

X AX C

Y BY D

⎧ =
⎪
⎪ − =⎨
⎪ − =⎪
⎩

 , (2.13) 

where other matrices are known [9]. 

We have already shown that solutions of the first equation of system (2.13) are 
distributed uniformly. Now we will consider the distribution of solutions of the 
conjugation equations. We consider an equation  

 1
X AX C
−

=   (2.14) 

We consider this equation in a ring Zr. However it was proven in [9], that if we 
choose r = 2s, where s is a prime number, we can consider equation (2.14) in two 
fields Z2 and Zs. Our choice for parameter r is based on a fact, that the value of 
Carmichael function is an even number. By choosing a prime s we minimize the 
number of possible values of orders of elements of the group Zn

*, which we use to 
define a platform semigroup and maximize the number of generators of its cyclic 
subgroups. 

Let us consider equation (2.14) in a field Zs. Let us assume that matrices A and C 
are similar to a Jordan matrix J, i.e. these matrices can be expressed in a canonical 
Jordan form 
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1

1

A K JK

C L JL

−

=

−

=

 , (2.15) 

where K and L are the eigenvector matrices of  A and C respectively and 

 

1 0 ... 0 0

0 1 ... 0 0

0 0 ... 0 0

... ... ... ... ... ...

0 0 0 ... 1

0 0 0 ... 0

J

µ

µ

µ

µ

µ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

,  (2.16) 

where μ is an eigenvalue of both matrices.  

It was shown in [9], that there are exactly sm different matrices commuting with J. 
We denote the set of these matrices by Com(J) and the number of these matrices by 
|Com(J)|. Note that not all matrices of Com(J) have their inverses since zero value 
cannot be chosen for diagonal elements. If we omit zero diagonal elements, we get 
exactly s(m – 1)(s – 1) invertible matrices commuting with J. We denote the set of these 
matrices by Com*(J). 

Since we obtain all solutions of (2.14) by calculating 

 1
X K XL=

−
%   (2.17) 

where matrix X% ∊ Com
*(J), the following proposition holds: 

Proposition 2.7. Let A and C be a square matrix of order m defined over a field Zs. 
If these matrices are similar to Jordan matrix (2.16), then the conjugation equation 
(2.14) has exactly s(m – 1)(s – 1) solutions. 

Using this proposition we can evaluate the number of solutions of the conjugation 
equation (2.14), defined in a ring Zr.  

Corollary 2.8. If A2 = A mod 2 and As = A mod s are similar to Jordan matrix 
(2.16) in fields Z2 and Zs respectively, then conjugation equation (2.14) has exactly r(m 
– 1)(s – 1) solutions. Hence |Com*(J)|  = r(m – 1)(s – 1). We shall denote the set of these 
solutions by Conj(A, C).  

It was proven in [10] that any matrix commuting with Jordan matrix (2.16) can be 
expressed as a polynomial of J. The degree of polynomial is equal to (m – 1), since 
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there are m linearly independent matrices commuting with J. The proof of the uniform 
distribution of elements of sets Conj(A, C) and Conj(B, D) relies on this fact [9].  

It is clear, that set of solutions of system (2.13) is an intersection of two sets 
Pow(Q, E) and Conj(A, C) ×  Conj(B, D), i.e. 

 ( ) ( ) ( )( ), , , , , , , ( , )Sol Pow Conj ConjQ E A B C D Q E A C B D= ×I   (2.18) 

Since both these sets contain uniformly distributed elements, the set of solutions of 
system (2.13) also contains uniformly distributed elements. Hence we have proven the 
following proposition [9]: 

Proposition 2.9. If a base matrix Q is defined over the platform group Zn
* 

implying power matrices X and Y to be defined over a power ring Z2s and if the entries 
of power matrices are chosen at random with uniform distribution, then MPF equation 
(2.5) with constraints (2.15), defined over a power ring, yields the matrix E which 
entries are also uniformly distributed. 

Using this proposition we can make a conjecture that MPF can be used to create a 
pseudorandom number generator and according to proposition 6.2.2 in [7] consider 
MPF with conjugation constrains to be a one-way function. Hence this function can be 
used for cryptographic protocols. Equation Section (Next) 

3. MATRIX POWER ASYMMETRIC CIPHER 

The first version of asymmetric encryption protocol, based on MPF, was suggested 
in autumn 2011 and published in July 2012. We call the result the matrix power 
asymmetric cipher (MPAC). The proposed protocol was studied and it was found, that 
MPAC is vulnerable to a certain algebraic attack. For these reasons the protocol was 
improved. The results of our research are presented in this section.  

3.1. The first version of MPAC protocol 

The protocol uses two public parameters: matrix Q selected in the platform 
semigroup MS and matrix Z selected in the power ring MR. Alice has her private key – 
a pair of matrices {X, U} = PrKA,, where X is a randomly selected non-singular matrix 
and matrix U is a polynomial of Z i.e. U = PA(Z). Alice uses her private key to decrypt 
Bob’s message. Her public key is PuKA = {XZX–1 = A, XQU = E}. Bob sends a message 
M to Alice by performing the following actions [4]: 

1. Bob randomly chooses a secret non-singular matrix Y in the power ring MR. 
2. Bob uses Alice’s public key as follows: 

a) He selects a random secret polynomial PV( ) and computes a secret 
matrix V = PB(Z). Then he takes matrix A and computes PB(A) = 
XVX–1; 



19 
 

b) He raises matrix XQU to the obtained power matrix PB(A)  on the left 
and obtains XVQU; 

c) He raises the result matrix to the power matrix Y on the right and 
obtains XVQUY = K.  

The obtained matrix K is used as a key to encrypt the message M and 
compute the ciphertext C. 

3. Bob computes the ciphertext C = K ⊕ M, where ⊕ is a bitwise sum modulo 
2 of the entries of matrices K and M.  

4. Bob computes matrices Y–1ZY and VQY. We call a pair of these matrices an 
decryptor and denote it by ε i.e. ε = {Y–1ZY = B, VQY = F}.  

5. He sends the dectyptor ε to Alice together with C. 

To decrypt Bob’s message Alice does the following: 

1. Using matrix B Alice computes PA(B) = Y–1UY, since U = PA(Z). 
2. Alice raises matrix F to the power PA(B) on the right and then raises the 

result matrix to the power of X on the left and obtains matrix K = XVQUY, 
which is the encryption key. 

3. Alice can now decrypt the ciphertext C by using the encryption key K and 
relation M = K ⊕ C. 

The main advantage of our protocol comparing it to other protocols based on 
conjugation search problem (CSP) is the fact, that only matrices U and V commute. 
This fact, however, is not essential, i.e. these matrices do not have to commute to 
complete the protocol successfully. We will demonstrate this later. Note also that 
since matrix U is calculated using a polynomial PA(Z) only coefficients of this 
polynomial have to be stored. This shortens private key length. 

It is also important to point out, that the security of our protocol is not based on the 
classical discrete logarithm problem (DLP), since we do not use large numbers. For 
this reason we consider DLP to be solvable in reasonable time and will not use cyclic 
(semi)groups to define the multiplicative platform semigroup.  

Looking at Alice’s public key we can see, that the adversary has to solve the CSP 
in order to find a part of her private key – the matrix X. The theoretical algorithms for 
solving this problem in matrix rings are known [10]. However in our case as opposed 
to Ko-Lee protocol [11] the CSP cannot be replaced with decomposition problem [12] 
since matrix Q is powered by matrix X in (2.5). 

Another important fact from cryptographic point of view is that the true value of 
matrix X cannot be replaced by some other matrix X% , satisfying (2.14) since in step 3 
of our protocol Alice’s raises the matrix VQUY to power matrix X from the left. Using 
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some other matrix X% does not guarantee that XV XV=

% , which means that an adversary 
cannot decrypt the ciphertext C. 

The proposed protocol has some similarities to Anshel-Anshel-Goldfeld protocol 
[13]. Note that since a part of Alice’s private key – the matrix U is calculated using a 
polynomial PA(Z), we can interpret the set of polynomials as Alice’s public subset. 
Anoteher similarity is the fact that in is not enough for adversary to know the value of 
U, since Alice calculates the value of PA(B) in step 1 of decryption. Hence without the 
coefficients of PA( ) adversary still cannot decrypt the ciphertext C.  

3.2. Discrete logarithm attack 

Note that to break MPAC an adversary has to solve a system of power equations. 
Since we do not know any algorithms to solve such systems, an adversary has to 
consider options to replace this problem with another equivalent easier problem, for 
which theoretical algorithms are known. In this section we will present such an attack, 
which we call the discrete logarithm attack (DLA).  

Assume, that matrix Q is defined over some cyclic group G i.e. S = G. Let the 
generator of G be given (we denote it by g).  We define a discrete logarithm with the 
base of g of matrix Q, which we denote by ldg Q, as follows [14]: 

 ld {ld }Q q
g g ij

= .  (3.1) 

A discrete logarithm function (3.1) can be applied to (2.5) to obtain: 

 ld ld ldQ Q
g

Y
Y C

g g
⎛ ⎞= ⋅ =⎜ ⎟
⎝ ⎠

.  (3.2) 

If the inverse matrix (ldg Q)–1 exists, then, by multiplying both sides of (3.2) by it 
we get: 

 ld ld

1

Y Q C
g g

⎛ ⎞
−

= ⋅⎜ ⎟
⎝ ⎠

.  (3.3) 

In the same way we can apply the discrete logarithm function to MPF (2.5) to get 

 ( )ld ld ld
X
Q X Q Y XTY E

g g g
Y ⎛ ⎞= ⋅ ⋅ = =⎜ ⎟

⎝ ⎠
,  (3.4) 

where T = ldg Q.  
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We can see from (3.4) that by using the discrete logarithm function (3.1) we were 
able to transform the initial system of power equation to multivariate quadratic (MQ) 
system of equations. Since we can clearly see similarities between both problems, we 
can evaluate the security of MPAC by considering the security requirements of the 
MQ system of equations. Hence we can formulate the following problem [14]: 

Matrix multivariate quadratic equations (MMQ) problem: Find matrices X and 
Y, satisfying (3.4), if matrices T ir ldg E are given. 

An adversary can break the proposed protocol if he is able to solve either MPF 
problem or an equivalent MMQ problem. Due to similarities of these problems we can 
see, that the complexity of both problems is similar. Since MMQ problem is similar to 
an NP-complete problem, we think that both problems (MPF and MMQ) are hard to 
solve. However we think, that if the described transformation is not possible, the 
initial system of power equations is harder to solve. It has been shown in [14], that this 
transformation is possible in the following cases: 

• A cyclic (semi)group is used to define the multiplicative platform semigroup. 
• In case of non-cyclic group more than one conjugation constrain has to be 

used.  

For these reasons we constructed the following semigroup in [14]: 

 ( )#
Z Z Z
n n nq

Id=

*
U   (3.5) 

In expression (3.5) Idq(Zn) = {j = i · q; i = 1, …, p – 1} is an ideal of semigroup Zn. 
Furthermore, we used two non-commuting matrices Z1 and Z2 to define two 
conjugation constrains: 

 

1

2

1 1

2

1

XZ X A

XZ X A
−

=

=

−

  (3.6) 

In this case matrix U is formed using some function fU(Z1, Z2). The transformation 
of MPF problem to MMQ problem is then impossible if none of the matrices 1

Z
Q , 

2
Z
Q , 1

Z
Q ir 2

Z
Q can be logarithmized. This condition can be ensured if exactly one 

element of the platform matrix Q is selected from the set of the generators of Idq(Zn) 
and all other elements are selected from the set of generators of Zn

*. 

We see that to avoid the DLA we have to use multiple conjugation constrains. 
Furthermore, the choice of platform semigroup is important as well. In the next 
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subsection we are going to define a new semigroup more suitable for our purposes and 
suggest a modified version of our protocol. 

3.3. The improved version of MPAC protocol 

Consider group Zn
*. The maximal order of elements of this group is λ(n) which is 

obviously a composite number. It is also clear that the maximum entropy of each term 

ij
q
α  can be achieved if and only if qij is a generator in Zn

*. This is also true for some 

cyclic group G. However, our suggestion of using the generators of G as elements of 
the base matrix Q is not only based on the maximal entropy of terms, but also on the 
statistical security of MPF, which we discussed in subsection 2.2.  

Let the parameter n of ring Zn
* be a composite integer and let λ(n) be of the form 

λ(n) = pq where p is prime and gcd(p, q) = 1. According to the Sylow theorem the the 
Sylow subgroup of the prime order p exists in Zn

* [15]. We denote this subgroup as 
Γp,n. Since, according to the Lagrange theorem, the order of the element γ ∊ Γp,n has to 
divide p, the only orders possible in group Γp are 1 and p. Hence every non-identity 
element γ is the generator of Γp. We can use this group to ensure the maximum 
entropy of the entries of the result matrix E. However, it was shown in [14] that using 
a cyclic group as the platform makes MPF vulnerable to the DLA. Hence we have to 
construct a structure similar to Zn

#. 

Let j be an idempotent of ring Zn. Since the order of the element is a multiplicative 
function, we can multiply each element of group Γp,n by j to obtain a new cyclic group 
Jp,n = j Γp,n. The identity of this group is j and we assume, that the order of every non-
identity element is p. We construct a semigroup Γp,n

# as a union of Γp,n and Jp,n i.e. 

 #
J

p,n p,n p,n
= UΓ Γ   (3.7) 

We use this semigroup to avoid direct application of a discrete logarithm function 
to MPF, since Jp,n is the ideal of Γp,n

#. Note that no additional constraints for 
parameter n and the entries of Q are needed as compared to Zn

#. 

The main advantage of Γp,n
# is the prime order of non-idempotent elements. Since 

the order of Γp,n
# determines the modulo of the power ring MR, we obtain a power ring 

defined over the field R = Zp. Hence, the conjugation constrains (3.6) are defined over 
a field Zp. 

The modified version of MPAC protocol uses three public parameters: matrix Q 
selected over Γp,n

# and two non-commuting matrices Z1 and Z2 selected over field Zp. 
Matrix Q is chosen to be resistant to the discrete logarithm attack as described above. 
Alice has her private key – a pair of matrices {X, U} = PrKA, where X is a randomly 
selected non-singular matrix and U = fU(Z1, Z2). Alice uses her private key to decrypt 
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Bob’s message. Her public key is a triplet of matrices, i.e. PuKA = {A1, A2, E}, where 
A1, A2 are defined by (3.6) and E is defined by (2.5). Bob sends a message M to Alice 
by performing the following actions: 

1. Bob randomly chooses a secret non-singular matrix Y over field Zp. 
2. He selects a random secret function fV( ) and computes a secret matrix V = 

fV(Z1, Z2). Then he takes matrices A1, A2 and computes fV(A1, A2) = XVX–1; 
3. He raises matrix XQU to the obtained power matrix XVX–1 on the left and 

obtains XVQU; 
4. He raises the result matrix to the power of matrix Y on the right and obtains 

XVQUY = K. Matrix K is used as a key to encrypt message M and compute 
ciphertext C; 

5. Bob computes ciphertext C = K ⊕ M;  
6. Bob computes matrices B1 = Y

–1Z1Y, B2 =
 Y–1Z2Y and F =  VQY which we 

denote by ε i.e. ε = {B1, B2
, VQY}. 

7. He sends the dectyptor ε to Alice together with C. 

To decrypt Bob’s message Alice does the following: 

1. Using matrices B1, B2 Alice computes  fU(B1, B2) = Y–1UY, since U = fU(Z1, 
Z2). 

2. Alice raises matrix VQY to the power of Y–1UY on the right and then raises the 
result matrix to the power of X on the left and hence obtains matrix XVQUY 
which is the encryption key K. 

3. Alice can now decrypt ciphertext C by using encryption key K and relation M 

= K ⊕ C. 

The security of MPAC protocol relies on the MPF and the following two 
principles: 

1. By a certain definition of matrix Q the transmitted data, i.e. public keys of 
both parties, cannot be used for discrete logarithm application to reduce MPF 
equation to the MMQ problem in order to facilitate the cryptanalysis of the 
proposed protocol.  

2. Using a specially defined matrix U = f (Z1, Z2) the DLA fails as is shown in 
[13]. The same is true for matrix V. Equation Section (Next) 

4. SECURITY PARAMETERS AND IMPLEMENTATION OF MPAC 
PROTOCOL  

4.1. Security parameters and their secure values 

It may seem from subsection 3.1 that the main parameters of MPAC are the 
integer n, which defines the non-cyclic multiplicative group Zn

*, and the order of 
square matrices m. However since we are seeking to minimize the order of the 
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multiplicative group and maximize the order of its generators we suggest to select a 
value of n of the form n = 3p, where p = 2s + 1 is a prime number, such that s is also 
prime [14], [16]. In this case λ(n) = p – 1, and hence the power ring is defined over a 
number ring Zr, where r = 2s. We can see that parameter p is more important than the 
parameter n. Hence the main parameters of MPAC are p and m. 

Another important parameter of any protocol is the security level L. However the 
choice of the value of this parameter is based on such factors as hardware options, the 
importance and the  relevance of the data etc. One of the main factors for the choice of 
L is amount of mathematical operations performed when the protocol is attacked. 
Since DLA only facilitates cryptanalysis of MPAC, the main attack against our 
protocol is brute force. Based on this fact we interpret the security level L as the 
number of elements of the set of polynomials of degree (m – 1) defined over a ring Zr. 

Consider Alice’s private key PrKA = {X, U}. Matrix X can be chosen freely and the 
only restriction for this matrix is the existence of its inverse. Matrix U commutes with 
publically known matrix Z and is calculated using a polynomial of this matrix. Hence 
to determine the safe values of the main parameters for a fixed value of security level 
we are relying on the following facts [16]: 

• The number of matrices commuting with a public matrix Z, defined over a 
power ring, should be at least 2L. Every commuting matrix should be 
obtained using polynomials of matrix Z. 

• The number of matrices conjugating with a public matrix A, defined over a 
power ring should be at least 2L. 

If these requirements are satisfied, total scan of matrices X and U is infeasible. 
Note that to our knowledge there are no significantly faster algorithms for solving 
MPF problem (2.5) of MMQ problem (2.5) than total scan. Based on these two 
presented facts and our previous research we obtained a following result for parameter 
m [15]:  

 
( ) ( ) ( )

( )

1 ln 2 ln 1 ln 3

ln 1

L p p
m

p

⎡ ⎤+ + − − −
≥ ⎢ ⎥

−⎢ ⎥⎢ ⎥
  (4.1) 

Since introduced protocol has two main security parameters, which have to satisfy 
the inequality (4.1), one of them must be chosen for other reasons. Therefore we 
advice that parameter p must be chosen taking the compromise between the available 
memory and required computation time. 

To compare the efficiency of our algorithm with other known algorithms we 
introduce a term of computational cost defined by the number of elementary 
operations executed in the custom microprocessor. Since our algorithm uses less 
elementary operations in the case of p = 47 as compared to the case of p = 11, we 
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compare its computation cost to a classical El-Gamal-2048 bits asymmetric encryption 
scheme [17] and elliptic curve ECC-521 asymmetric encryption scheme [18] on 32 bit 
microprocessor. 

The objective results of obtained comparison are presented in Table 4.1 [16]. 

Table 4.1 Comparison of computational costs of asymmetric encryption schemes 

Algorithm Computational cost (elem. op.) 

El-Gamal-2048 23.5 × 106 

ECC-521 6.9 × 106 

Our algorithm, p = 11 8.0 × 105 

Our algorithm, p = 47 1.04 × 105 

The explanation of the obtained results can be based on the fact that the realization 
of both El-Gamal-2048 and ECC-521 relies on the usage of arithmetic operations with 
large integers. Despite the fact that integers in ECC-521 are 4 times shorter than in El-
Gamal-2048, the cost of each operation of ECC-521 is longer since these operations 
themselves are more complicated.  

4.2. Implementation of MPAC protocol 

We are planning to implement our protocol in an international project “Internet of 
Things”. This project focuses on the study of physical devices called IoT things. Since 
IoT is a complex network which uses various communication protocols, the main 
objectives of the project are the following: 

• The study of communication protocols and adaptation of these protocols to 
smart environments; 

• Creation and study of the methods for cryptanalysis of cryptographic security 
of these protocols; 

• Contracting and studying the prototypes for the integration of smart 
environment things stack.  

To implement our protocol we created software tools to simulate a server agent, 
who generates public data for MPAC protocol, and two client agents, which 
communicate with each other using the improved version of MPAC protocol. We used 
the semigroup Zn

# to define a platform semigroup. 

Using the created software we tested our protocol on a computer with the 
following system properties:  
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• Processor: Intel Core 2 Duo T6400 2.00 GHz; 
• Memory (RAM): 4.00 GB; 
• 32-bit Windows operating system. 

In this subsection we will present the results of the elapsed time tests, i.e. we 
monitored the time it takes to perform public data generation, key generation, 
encryption of the plaintext and decryption of the ciphertext.  We performed these tests 
for different values of p and L. We considered two values of the security level: L = 80 
and L = 112. The latter value was considered based on NIST standards [19], where it 
was noted that all security systems should use 112 bit security level. The plaintext we 
used is a 42 bit file ExampleB.txt which contains a message „The quick brown fox 
jumps over a lazy dog“. Since the estimated time t is a random variable, we rely on the 
law of large numbers to minimize the randomness of t, i.e. we calculate an estimator  

 
1

1
ˆ

i

N

iN
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=

= ∑   (4.2) 

which loses its randomness in N tends to infinity [20]. We have chosen N = 20, i.e. we 
run each step of our protocol 20 times. The results of this test are displayed below (we 
measured the elapsed time in microseconds): 

Table 4.2 The elapsed time (ms) analysis of MPAC for security level L = 80. 

p n m 
Public 

data 

Key 

generation 

Encryption Decryption 

K XOR ε K XOR 

7 21 32 
21,489 211,869 290,110 0,002 16,948 159,042 0,002 

11 33 25 
93,570 81,353 122,597 0,002 9,355 76,936 0,003 

23 69 19 
49,994 31,340 52,238 0,003 5,312 28,292 0,003 

47 141 15 
105,069 14,045 22,458 0,003 2,781 12,536 0,003 

59 177 14 
182,839 9,442 18,295 0,003 2,526 9,554 0,003 

83 249 13 
304,661 8,448 14,916 0,003 2,121 7,797 0,003 
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Table 4.3 The elapsed time (ms) analysis of MPAC for security level L = 112. 

p n m 
Public 

data 

Key 

generation 

Encryption Decryption 

K XOR ε K XOR 

7 21 44 
221,691 525,810 964,289 0,002 44,686 493,475 0,002 

11 33 35 
116,578 227,305 385,037 0,002 22,351 208,643 0,002 

23 69 26 
76,774 89,695 129,817 0,002 9,834 87,158 0,003 

47 141 21 
148,640 42,005 76,946 0,003 7,370 42,510 0,003 

59 177 20 
172,314 39,762 57,037 0,003 5,360 35,881 0,003 

83 249 18 
303,137 23,154 47,922 0,003 5,505 24,398 0,003 

We can see from the tables that public data generation can be time consuming 
regardless of the value of parameter p. This comes from the fact, that for large values 
of p the generation of lookup tables is long. This process can take more than 99% of 
total time. Long generation of public data for small values of p comes from the facts, 
that it is harder to generate nonsingular matrices and longer calculation of 
polynomials. We can see from the obtained results, that larger values of the parameter 
p are superior to smaller ones. 

We compared our protocol to RSA asymmetric encryption protocol [21]. The 
elapsed times for each step of the RSA protocol were obtained using the internet 
software [22]. We studied RSA protocol with widely used 1024 and 2048 bit keys and 
with 3072 and 4096 bit keys. In each case the maximum length text was used. Each 
step was run 20 times. The results are displayed below: 

Table 4.4 The elapsed time (ms) analysis of RSA. 

Step RSA-1024 RSA-2048 RSA-3072 RSA-4096 

Key generation 465,250 3615,750 25506,600 54424,550 

Encryption 2,550 4,950 8,800 10,400 

Decryption 18,600 103,650 316,350 497,350 
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Since MPAC performance is the fastest if p = 83, to compare two asymmetric 
ciphers we have to select a value of matrix order m to encrypt a comparable message. 
For this reason we have selected the following values of m: 

• For RSA-1024 we selected m = 12. Key size – 1152 bits. 
• For RSA-2048 – m = 16. Key size – 2048 bits. 
• For RSA-3072 – m = 20. Key size – 3200 bits. 
• For RSA-4096 – m = 23. Key size – 4232 bits.   

Using the selected values of m we encrypt the same message as using RSA 
protocol corresponding to the value of m. The obtained results are displayed below: 

Table 4.5 The dependence of the elapsed time (ms) of MPAC protocol on the 
matrix order m. 

Step 
MPAC, 

m = 12 

MPAC, 

m = 16 

MPAC, 

m = 20 

MPAC, 

m = 23 

Key 

generation 

8,634 18,663 34,438 52,392 

Encryption 
12,911 35,597 77,614 114,814 

Decryption 
5,885 15,832 38,401 64,206 

We can see from the obtained results, that MPAC encryption is slower, but the 
decryption is much faster than in case of RSA. The reason for this is the calculation of 
the decryptor in encryption step. In decryption step only the decryption key has to be 
calculated. Comparison of the total time to encrypt and decrypt the message is 
presented in figure 4.1. We can see from the presented chart, that the total time of 
encryption and decryption is smaller in case of MPAC. This difference is more 
significant for larger keys.  
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Fig. 4.1. The comparison of total time to encrypt and decrypt a message  

To determine the best values of parameter p we consider the resistance of MPAC 
protocol to DLA. Using experiments we were able to find, that MP exponent matrix E 
is resistant to DLA if either matrix X or matrix U has zero elements. More precisely, if 
we denote a place of the element of an ideal by (

0
i , 

0
j ), where 

0
i , 

0
j  are row and 

column indexes respectively, then matrix E is resistant to DLA if at least one of the 
elements of an 

0
i -th column of matrix X or an 

0
j -th row of matrix U is equal to zero. 

It is clear, that the resistance of matrix E depends on the parameter of the number ring 
r and the order of matrix m. Calculating the probability of an opposite event we obtain 
a following formula to evaluate the probability of the resistance of matrix E to DLA: 
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( 1
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r

r
prob r m

⎛ − ⎞
= − ⎜ ⎟

⎝ ⎠
  (4.3) 

Since the parameter of a number ring r = p – 1 and the matrix order m depends on 
p and L, we present the dependence of the defined probability on these parameters. 
We measure the probability in percents. 
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Fig. 4.2. The dependence of the probability of the resistance of matrix E to DLA 
on p and L 

We can see that for small values of parameter p matrix E is almost always resistant 
to DLA, since in this case matrices are large and the number ring is small. Hence from 
this point of view small values of parameter p are superior to the larger ones. 

We can see from the results of this subsection that for small values of parameter p 
encryption and decryption steps take longer running time, but the public matrix E is 
more resistant to DLA. For larger values of p encryption and decryption steps take less 
running time, but server actions require longer running time. Also the memory 
requirements for smaller values of p are lower.  

5. CONCLUSIONS 

1. Algebraic properties of MPF were investigated and a new algebraic platform 
structure based on Sylow theorem was suggested. It was proven that MPF 
with conjugation constrains is secure from the statistical cryptanalysis point 
of view.  

2. While analyzing MPF with conjugation constrains based on the suggested 
algebraic structure we found, that the cryptographic security of this function 
relies on complexity of the system of power equations, which is similar to 
MQ system of equations. Since it is proven that the latter problem is NP-
complete, we make a conjecture, that systems of power equations, used in our 
work, satisfy the cryptographic complexity requirements and MPF is resistant 
to algebraic attacks.  
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3. We constructed an original asymmetric encryption protocol using MPF with 
conjugation constrains. The security of this protocol relies on the complexity 
of MPF problem.  Based on the results of our research we make a conclusion, 
that the suggested protocol is resistant to statistical and algebraic attacks. 

4. While analyzing the resistance of our protocol to algebraic attacks we 
suggested using the discrete logarithm function in matrix semigroup. Using 
this function we presented an attack on the first version of MPAC, which 
facilitates the analysis of the MPF problem by reducing it to MMQ problem. 
We made improvements of our protocol to avoid the usage of discrete 
logarithm function for cryptanalysis.  

5. Using experiments we found, that MP exponent matrix E is resistant to DLA 
if either matrix X or matrix U has zero elements. We evaluated the 
probability to resist DLA attack using this property.  

6. The main security parameters of MPAC protocol are p, m and L. Parameter p 
defines the order of multiplicative semigroup, m defines the order of square 
matrices and L is the security level. The dependence of m on other main 
security parameters has been determined. This parameter is directly 
proportional to the security level and inversely proportional to parameter p. 

7. Since the main attack against MPAC is the total scan of power matrices, we 
suggested interpreting the security level L as the order of the set of 
polynomials of (m – 1) degree defined over Zr. 

8. We compared the implementation of our protocol on 32-bit microprocessor 
to the implementation of El-Gamal-2048 and ECC-521 on the same platform 
from the elementary operations point of view. The computational cost of the 
first version of MPAC are in average 235 times less than in case of El-
Gamal-2048 protocol and 69 times less than in case of ECC-521 protocol. 

9. The performed experimental study of MPAC protocol shows that the total 
time to encrypt and decrypt a message is less than in case of RSA. This 
difference is more significant for longer keys. This fact allows us to flexibly 
adapt the encryption key length and the amount of encrypted information to 
user’s needs. 
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REZIUMĖ 

Šiame darbe pristatomas originalus asimetrinio šifravimo protokolas, kurio 
saugumas yra paremtas matricinio laipsnio funkcija (MLF). Ši funkcija suriša 
vartotojo slaptąjį ir viešąjį raktus ir iki šiol nebuvo naudojama asimetriniam 
šifravimui. 

Disertaciją sudaro 10 skyrių. Pirmajame įvadiniame skyriuje apibrėžiami 
pagrindiniai darbo tikslai ir uždaviniai bei pateikiamas temos aktualumas. Antrajame 
skyriuje yra patektas matematinis aparatas, kuris yra naudojamas sudarant mūsų 
protokolą ir atliekant sukurto protokolo tyrimą. Trečiame skyriuje yra pateikta 
literatūros apžvalga. Šiame skyriuje pateikti komutatyvios ir nekomutatyvios 
asimetrinės kriptografijos protokolai, su kuriais yra lyginamas mūsų protokolas. 
Nurodyti protokolų privalumai ir trūkumai. 

Ketvirtame skyriuje yra pristatoma MLF ir nagrinėjamos šios funkcijos algebrinės 
savybės. Taip pat skyriuje nagrinėjamos MLF su jungtinumo apribojimais statistinės 
savybės siekiant įrodyti, kad ši funkcija gali būti naudojama kriptografiniams 
protokolams. 

Penkto skyriaus pagrindinis tikslas yra pristatyti mūsų protokolą ir ištirti jį 
naudojant vienkryptės funkcijos algebrines savybes. Protokolo veikimas yra 
demonstruojamas naudojant pavyzdį. Naudojant skaičių teorijos elementus yra 
parodoma, kad pirmoji siūlomo protokolo versija nėra atspari diskretinio logaritmo 
atakai. Dėl šios priežasties šiame skyriuje yra siūloma nauja multiplikatyvi pusgrupė, 
kuri yra formuojama naudojant Sylovo teoriją. Taip pat siūloma padidinti jugtinumo 
apribojimų skaičių, kas leidžia išvengti diskretinio logaritmo atakos.  

Šeštame skyriuje yra nagrinėjami pagrindiniai siūlomo protokolo parametrai ir 
pateikiama saugių viešųjų duomenų generavimo metodika. Taip pat šiame skyriuje 
siūlomas protokolas yra palyginamas su El-Gamal-2048 ir ECC-521 protokolais 
elementariųjų operacijų prasme. Tyrimo rezultatai parodė, kad naudojant pirmąją 
protokolo versiją skaičiavimų sanaudos yra vidutiniškai 235 kartų mažesnės lyginant 
su El-Gamal-2048 protokolu ir 69 kartus mažesnės lyginant su ECC-521 protokolu. 



 

Septintame skyriuje yra pateikiami pagrindiniai algoritmai, kurie buvo naudojami 
kuriant programinę priemonę siūlomam protokolui realizuoti. Naudojant sukurtą 
programinę priemonę siūlomas protokolas yra palyginamas su RSA asimetrinio 
šifravimo protokolu greitaveikos prasme. Nustatyta, kad, nors naudojant RSA 
protokolas pranešimas užšifruojamas greičiau, bendras užšifravimo ir iššifravimo 
laikas yra mažesnis, kai yra naudojamas mūsų protokolas. Taip pat šiame skyriuje 
mūsų protokolas lyginamas su Diffie-Hellman‘o ir elipsinių kreivių raktų apsikeitimo 
protokolais greitaveikos prasme. Rezultatai parodė, kad lyginant DH-1024 protokolą 
su panašaus šifravimo rakto ilgio MLAŠ protokolu gauname pagreitėjimą iki 12,7 
kartų užšifravimo ir 24,4 kartų iššifravimo atveju, o lyginant ECDH-571 protokolą su 
panašaus šifravimo rakto ilgio MLAŠ protokolu pagreitėjimas siekia 120 kartų 
užšifravimo ir 228 kartus iššifravimo atveju. 

Paskutiniuose skyriuose yra pateikiamos bendros šios disertacijos išvados, cituotos 
literatūros sąrašas ir paskelbtų disertacijos tema publikacijų sąrašas. 

Disertacijos tema yra paskelbti du straipsniai, kurie turi mokslinės duomenų bazės 
„ISI Web of Science“ citavimo indeksą. Dar du straipsniai yra konferencijų pranešimų 
medžiagoje. Disertacijos tema buvo pristatyta Lietuvos Matematikos Draugijos 53-
ioje konferencijoje Klaipėdoje bei tarptautinėse konferencijoje „BulCrypt 2012“ 
Sofijoje ir „Electronics 2013“ Palangoje. 
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