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Abstract: To properly and quickly evaluate an object’s shape, in a manner that is suitable for real-
time applications, a set of parameters has been created and the shape parametric description (SPD) 
has been elaborated. This solution is focused on the classification of amber gemstones according to 
shape. To improve the results obtained by SPD, the most popular machine learning classification 
algorithms were applied and tested. The proposed method (i.e., SPD) achieved the fastest classifi-
cation, requiring the least computational resources, while providing an accuracy of approximately 
80%. The best results were achieved when the SPD parameters were used in a feedforward neural 
network (FFNN), and an accuracy of 91.5% was obtained, while the time required for the computa-
tions remained in a range that is acceptable for real-time applications. 
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1. Introduction and Related Work 
Nowadays, amber is still extracted from the Baltic Sea and adjacent mines and is used 

to create impressive jewelry, souvenirs, and mosaics. In order to provide amber art crafts-
men with suitable raw materials, amber gemstones are selected and sorted according to 
their size, shape, and shade. Amber can be considered a specific object because there are 
uncountable varieties of shades, shapes, and sizes. 

In this work, we aimed to create an image analysis algorithm capable of classifying 
amber gemstones on a conveyor, working under real-time conditions. As a result, the sub-
mitted object for processing must be assigned to the identified class, or the “other” class 
when it cannot be set to the given object with acceptable accuracy. The main purpose of 
this work was to achieve a classification accuracy comparable to expert’s work, but for 
real-time operations (fractions of a second) at the same time. 

Scientists in this field have achieved good results in obtaining visual properties and 
using them to classify and sort objects into a small number of categories. First- and second-
order statistical properties [1] are used for visual surface evaluation. Sorting is often used 
in the food industry [2] to separate objects in waste recycling operations [3]. These systems 
are based on the acquisition of the optical properties of objects’ surfaces using different 
types of sensors, such as CCD (charge-coupled device) cameras, spectroscopy [4], stereo 
vision, and infrared light. The optical properties depend on the lighting conditions, which 
makes it very important to isolate objects from the environment and to install a reliable 
source of artificial lighting. Such systems have strict operational requirements. 

In high-speed automation, qualitative classification is important when classifying 
color images. Using histogram limitation techniques, pixel counting, different types of 
lighting, and removal of contour color tones make it possible to obtain a good classifica-
tion accuracy [5]. 

Citation: Ostreika, A.; Pivoras, M.; 

Misevičius, A.; Skersys, T.;  

Paulauskas, L. Classification of  

Objects by Shape Applied to Amber 

Gemstone Classification. Appl. Sci. 

2021, 11, 1024. https://doi.org/ 

10.3390/app11031024 

Received: 13 November 2020 

Accepted: 17 January 2021 

Published: 23 January 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and insti-

tutional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Appl. Sci. 2021, 11, 1024 2 of 14 
 

Some authors [6,7] have proposed amber classification according to the shape, based 
on contour properties. The algorithm begins with the processing of each photo. Initially, 
a photo is converted from an RGB (red, green, blue) color palette to a binary form. Later, 
“empty” spaces in the object are filled up and shadows are removed. The image is nor-
malized so that the longitudinal part of the object is parallel to the X-axis. Finally, the 
object image is resized to fit a 256 × 256 pixel size. The centroid distance function (CDF) 
has been used to identify object forms. This is a one-dimensional function is expressed at 
a distance from the reference point to the centroid of the object. For each photo, 64 referrals 
are selected. The referral coordinates are found using the Moore–Neighbor tracking algo-
rithm modified by Jacob’s stopping criteria, which provides an array of the object’s con-
tour coordinates. Circular shift is applied to eliminate the angle of rotation, resulting in a 
64 × 64 matrix. The resulting matrix is normalized (to eliminate the effect of amber size) 
and inverted (to eliminate the mirror reflection of amber), which results in a 128 × 64 ma-
trix that is used for classification. 

The algorithm uses a decision tree ensemble consisting of several decision trees that 
have been trained with different training and testing data sets. The ultimate solution is 
the class provided by the decision tree ensemble. For each amber photo, a 128 × 64 matrix 
is created and passed to the decision tree ensemble. Due to the relatively large amount of 
data needed to describe the form of amber, the algorithm is not suitable for real-time op-
erating systems because it requires large computational resources. This approach [6,7] re-
quires an expert who must first select amber forms, classify them by hand, and then train 
the decision trees. Therefore, in this investigation, we also asked ourselves, are there any 
methods that could help us avoid manual work in such classification tasks? 

In [8,9], the authors suggested similar methods to identify forms, where the perimeter 
and the area ratio values are assigned to the pre-defined classes. The authors [8,9] 
achieved excellent (over 90%) results in the classification of standard forms such as 
squares, triangles, rectangles, ovals, and circles, but this method did not produce the de-
sired results in terms of sorting amber gemstones, since their form is difficult to evaluate 
and decide upon; therefore, in our investigation, other ways for form classification were 
explored. 

Good results were achieved by using convolutional neural networks in aluminum 
profile classification, harnessing a state of art Mask-RCNN (Region Based Convolutional 
Neural Network generating a segmentation mask) [10]. This work provides a good refer-
ence; however, convolutional neural networks require many computational resources to 
extract additional features, such as detection of the region of interest and mask prediction. 
Our current solution is intended to be transferred to low computational power computers 
such as “ODROID” with ARM processors. Therefore, convolutional neural networks 
(CNNs) seem too “heavy” for this hardware. Moreover, due to the principle of classifica-
tion, where only one amber gemstone at a time is dropped onto the conveyor and pushed 
to the classification “pocket” by air, there will never be multiple objects in a photo. Despite 
the mentioned restrictions, even small computing systems are becoming powerful 
enough, and convolutional neural networks could be the next step in pursuing this task. 

2. Proposed Methodology 
2.1. Shape Parametric Description 

To properly and quickly evaluate an object’s shape, in a manner suitable for real-time 
applications, we decided to create a set of parameters that could describe the features of 
an object’s shape but that would require only modest amounts data, thus allowing us to 
make fast calculations. As a result, shape parametric description (SPD) was elaborated 
and a corresponding algorithm for shape evaluation was created. 
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The algorithm evaluates the length of the X- and Y-axes, as well as diagonals passing 
through the center of the object, rotated by 45° from the axes mentioned above, and adja-
cent to the edge of the object, the actual area of the object, and the rectangular area limiting 
the object. Figure 1 illustrates the parameters for the object form identification. 

 
Figure 1. Parameters for form identification. 

Here, W1 and W2, analogous to Z1 and Z2, are the distances between the center of 
the object and the contour of the corresponding diagonals rotated at 45°. 

The shape of an amber gemstone can often be described as ambiguous. For example, 
one side of the stone can be oval-like, while the other side is shaped like a triangle; there-
fore, asymmetric form was included in the list of investigated forms.  

To properly evaluate the object’s shape, additional image processing steps are re-
quired, e.g., the long axis of an object is calculated and rotated parallel to the X coordinate 
axis. The image is subjected to a few more rotation procedures (when necessary), where 
the narrowest part of the object is aligned to the right with respect to the X-axis, and at the 
top with respect to the Y-axis.  

The proposed algorithm for object form classification applying the new SPD is pre-
sented in Codes 1–4 below. 

Code 1 
Pseudocode for the form identification algorithm. 
Herein, tol1 and tol2 refer to the tolerance values (allowed parameter deviation 

limits), P is the area of the rectangle limiting the object’s shape (P = x ∗ y), and p is the 
real area of the investigated object in pixels. 

IF Z1/Z2 < 1 − tol1 OR 1 + tol1 < Z1/Z2 
    THEN triangle form check 
ELSEIF W1/Z2 < 1 - tol1 OR 1 + tol1 < W1/Z2 
    THEN Asymmetrical form 
ELSEIF 1 - tol1 < X/Y AND X/Y < 1 + tol1 
    THEN symmetric proportional form check 
ELSEIF X/Y > 1 + tol1 
      THEN symmetric nonproportional form checking; 
END IF 

 

Code 2 
Pseudocode for checking triangle forms. 
IF X/Y < 1 − tol1 
    THEN Isosceles triangle 
ELSEIF X/Y > 1 − tol1 
    THEN Right triangle 
ELSE 
    THEN Equilateral triangle 
END IF 

 

Code 3 
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Pseudocode for checking proportional symmetric forms. 
IF p/P < 1 − tol1 
    THEN Circle 
ELSE 
    THEN Square 
END IF 

 
Code 4 
Pseudocode for checking nonproportional symmetric forms. 
IF p/P > 1 − tol1 AND X/Z < 1 − tol2 
    THEN Asymmetrical form 
ELSEIF p/P > 1 − tol2 AND X/Z > 1 + tol1 
    THEN Rectangle 
ELSEIF p/P < 1 − tol1 AND X/Z > 1 + tol1 
    THEN Oval 
END IF 
A complete list of the parametric conditions for each of the “basic” shapes is listed 

below. 
Circle:  
x/z = 1 AND x/y = 1 AND Z1 = Z2 AND p < P 
Oval:  
x/z > 1 AND x/y > 1 AND Z1 = Z2 AND p < P 
Rectangle:  
x/z > 1 AND x/y > 1 AND Z1 = Z2 AND p = P 
Square:  
x/z < 1 AND x/y = 1 AND Z1 = Z2 AND p = P 
Equilateral triangle:  
x/z < 1 AND x/y = 1 AND Z1 ≠ Z2 AND p < P 
Isosceles triangle:  
x/z < 1 AND x/y < 1 AND Z1 ≠ Z2 AND p < P 
Right triangle:  
x/z > 1 AND x/y > 1 AND Z1 ≠ Z2 AND p < P 
Uneven rhombus:  
x/z < 1 AND x/y < 1 AND Z1 = Z2 AND p = P 

2.2. Machine Learning Algorithms 
The main problem of the SPD, proposed above, is that in real circumstances, exact 

correspondence to all conditions described here rarely occurs. Such conditions as “x/y = 
1” or “Z1 = Z2” have no sense for practical applications unless we can allow some toler-
ance or some deviation of the parameters. However, if we allow deviation, then some 
decisions become questionable, e.g., when a circle becomes an oval or when an equilateral 
triangle turns into an isosceles triangle and so on. During the first experimental testing, 
there were no clear indications about how big the tolerances should be allowed to be in 
order to achieve classification results similar to experts’ classifications. Furthermore, for 
different shapes, the analytical results suggested different tolerances for the same param-
eters. Therefore, the decision was made to apply the most popular machine learning clas-
sification algorithms. The algorithms that we selected for the experiments are listed below. 

Ensembles of decision trees (EDTs): A non-parametric supervised learning method 
used for classification and regression. Decision trees learn from data to approximate a sine 
curve with a set of if–then–else decision rules. The deeper the tree, the more complex the 
decision rules and the better the fit of model. 
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Decision trees build classification or regression models in the form of a tree structure. 
They break down a data set into smaller and smaller subsets, while at the same time in-
crementally developing an associated decision tree. The final result is a tree with decision 
nodes and leaf nodes: a decision node has two or more branches, while a leaf node repre-
sents a classification or decision. The topmost decision node in a tree, which corresponds 
to the best predictor, is called the root node. Decision trees can handle both categorical 
and numerical data. EDTs combine several decision trees to achieve better predictive per-
formance than utilizing a single decision tree by grouping weak learners. 

K-nearest neighbors (KNN): A classification model that classifies, for each unlabeled 
instance, its K-nearest neighbors. The process of clustering K-means begins with ran-
domly assigning objects to a predetermined number of clusters. The objects are then dis-
tributed to other clusters to minimize cluster distribution, which is essentially a square 
distance from each observation to the center of the associated cluster. If redistributing an 
object to another cluster results in reduced cluster distribution, this object is moved to that 
cluster [11]. During the K-means clustering method, the cluster dependence may change 
at each stage of the clustering iteration. The important thing is that the number of clusters 
must be specified in advance in the clustering of K-means before analysis. 

Naïve Bayes (NB): An algorithm that works on the assumption that all data parame-
ters are considered independent of each other and that each parameter equally affects the 
final classification result. Naïve Bayes methods are a set of supervised learning algorithms 
based on applying Bayes’ theorem with the “naïve” assumption of conditional independ-
ence between every pair of features, given the value of the class variable 

Support vector machine (SVM): The essence of this classifier is to create hyperplanes 
that would separate the data into different classes. For creating a hyperplane, the training 
set objects are divided into parts, such that the distance between the nearest elements be-
longing to different classes to that hyperplane are maximal. Creating a hyperplane de-
pends solely on a subset of the training set consisting of so-called support vectors. 

Feedforward neural network (FFNN): An information processing structure that 
mimics some of the information transfer processes that take place in the brains of living 
organisms. A neural network consists of many interconnected, very simple computational 
elements (artificial neurons). These elements, connected by joints of various weights, are 
an approximate model of biological neurons. The artificial neural network aims to emulate 
some properties of biological systems, such as the ability of biological systems to learn 
and adapt. During learning, the strength of the connections bind neurons in the brain of 
living organisms. 

To compare and evaluate the algorithms, we adopted the confusion matrix, which is 
a good technique to summarize the performance results of classification calculations, since 
it is often used to describe the performance of a classification model (or “classifier”) based 
on a set of test data for which the true values are known. As the classes were unbalanced, 
the decision was made not just to calculate the prediction accuracy and calculation speed 
for the model evaluation, but the F1 macro- and F1 micro-scores as well. 

3. Experiments and Results 
3.1. Hardware and Implementation 

For the experimental testing, a real conveyor with amber splinters was used. The op-
eration was carried out as follows: pieces of amber fell off of the vibrating bowl onto the 
conveyor; the laser fork detected a piece of amber that interrupted the laser beam and sent 
the signal to the digital camera (type FFMV-03MTC, mpg Point Gray, Richmond, B.C. 
V6W 1K7 Canada), which captured an image and transmitted it for processing. MATLAB® 
by the MathWorks, Inc. version 2020b and a “AK4” computer by Mikrotestas UAB, con-
taining Intel® Core™ i9-9900K 3.6 GHz processor, 32 GB RAM, Windows 10 x64, SSD, 
were used for algorithm implementation and image processing.  
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During the first phase of the experiment, 4311 photos were produced with a resolu-
tion of 640 × 480 pixels. The expert manually sorted all of these images into corresponding 
classes. The distribution of the classes is presented in Figure 2. 

 
Figure 2. Expert-classified amber gemstones before processing. 

3.2. Preprocessing 
It is important to properly separate an object from a background before starting to 

calculate its properties. This is preceded by the automatic evaluation of the histogram and 
contrast adjustment, which removes shadows. If the shadows are not removed properly, 
the contour of the amber gemstone becomes similar to an oval in most cases, thus losing 
the most important properties for the classification. Figure 3 shows examples of amber 
gemstone pictures before processing. 

 
Figure 3. Images of amber gemstones before processing. 

Shadow intensity is highly dependent on the type of artificial lighting and amber 
color, which can vary in terms of transparency—being transparent, semi-transparent, and 
white—and can have many yellow or brown shades, etc. The best results were achieved 
with Dome-type lighting, where the light was evenly distributed. Figure 4 illustrates im-
ages of amber after shadow removal. Although the shades of the amber gemstones were 
different, the shadows were successfully removed and an exact representation of the ob-
ject was obtained in white pixels, as shown in Figure 5. 

 
Figure 4. Images of amber gemstones after shadow removal. 
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Figure 5. Amber gemstone representation in white pixels. 

In order to identify the shape of the objects, the dimensions described in Section 2 
were calculated for each amber photograph: the length of the X- and Y-axes passing 
through the center of the object, the diagonals of the object rotated 45° from the main axes, 
and the actual and rectangular areas of the object. 

Before starting the calculations, the long axis of the gemstone was rotated parallel to 
the X-axis. The long axis of the object was considered to be the long axis of an ellipse, 
which has the same second momentum as the white region representing the object. Then, 
if necessary, the photo of the amber was rotated so that the narrowest part of the object 
was on the right with respect to the X-axis and at the top with respect to the Y-axis. In 
Figure 6, a picture of an amber gemstone before and after the rotation operation is shown. 

The required dimensions were calculated after the initial steps had been performed 
in order to determine the shape of the object (shown in Figure 7). The sizes were relative 
to the image, which allowed the form to be unrelated to the image scale and actual height 
position of the camera. 

 
Figure 6. Gemstone image before and after rotation operations. 

 
Figure 7. Required dimensions to determine the shape of the object. 

3.3. Experimental Results for the SPD and CDF Approaches 
The decision was made to test the SPD approach by allowing some tolerance of the 

parameters. During the experiments, different tolerance limits were tested, from 5% to 
15%, to classify the objects when checking the ratio of the corresponding dimensions. It 
appeared that the classification results greatly depended on the value of the selected tol-
erance, which directly affected the distribution of the analyzed objects to the form classes. 
Lower tolerance values allowed more objects to be assigned to the triangle shape, which 
was not approved by the human expert. Therefore, the tolerance parameter needed to be 
adapted by performing additional experiments. 

At higher tolerance values, the analyzed objects were assigned more to the asymmet-
ric form, since the conditions of this particular class were met. When the tolerance value 
was chosen to be approximately 10%, then the more complex forms were distinguished 
and this provided the most acceptable results in comparison to the human expert assess-
ment (see Table 1). During the experiment, it was determined that different tolerance val-
ues should be used to evaluate the ratio of the real and rectangular limited areas. 
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By applying the SPD approach, the average accuracy of the classification algorithm 
reached 78.4% of the expert’s (human) decisions. There were cases where the form of an 
amber piece was difficult to identify unambiguously even for human eyes due to the un-
certainty of the shape; for example, when one side of an amber stone was similar to a circle 
and the other half to a square or the like. 

Table 1. Classification by form using the shape parametric description (SPD) approach. 

Class Correct Incorrect Accuracy 
1. Oval 1437 305 82.5% 
2. Circle 563 138 80.3% 
3. Rectangle 185 80 69.8% 
4. Square 173 74 70.0% 
5. Triangle 321 104 75.5% 
6. Asymmetrical 780 251 75.7% 
Total 3459 952 78.4% 

Using the same set of photographs taken during the real-time experiment, the 
method mentioned in [12,13] (i.e., classification by the form using centroid distance func-
tion (CDF)) was tested and compared. The results of the method are presented in Table 2. 

The experiments showed that the proposed SPD method provided better accuracy 
results than CDF. 

Table 2. Classification by form using the centroid distance function (CDF) approach. 

Class Correct Incorrect Accuracy 
1. Oval 1437 305 82.5% 
2. Circle 503 198 71.8% 
3. Rectangle 176 89 66.4% 
4. Square 155 92 62.8% 
5. Triangle 303 122 71.3% 
6. Asymmetrical 753 278 73.0% 
Total 3267 1084 74.1% 

One of the main differences between these methods was the speed of the object class 
identification. The class identification time using the CDF method took 0.33 s on average, 
while classification using the proposed SPD took an average of 0.03 s. Thus, the SPD 
method was up to 11 times faster than the CDF method. 

Since the form of amber could not be defined unambiguously in some cases, the de-
cision was made to carry out additional tests using a well-known set of three basic shapes. 
The set consisted of a circle (set of 3720 samples), a square (set of 3765 shapes), and a 
triangle (set of 3720 shapes). Table 3 shows examples of these basic forms. The size of the 
images analyzed was 200 × 200 pixels. Each form was individually tested for classification. 
Table 4 shows the results of the classification of the basic form data set. 

Table 3. Examples from the basic form data set. 

Circle Square Triangle 

   

The SPD method showed slightly better results than the CDF method (97.3% vs. 
97.1%), but the achieved difference can be treated as negligible. However, the average 
classification time provided similar proportions for the methods as in the previous exper-
iment with real amber photographs. This time, the CDF method identified a class in 0.12 
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s on average, while the proposed SPD method showed an average of 0.01 s. The size of 
the images and the central processing unit speed influenced the average time of the cal-
culations, but since the data sets were the same and the calculations were made on the 
same central processing unit (CPU), the proportional speed of both methods could be 
clearly identified. 

Table 4. Results of the classification of the main form data set. 

Form 
SPD Method CDF Method 

Properly  
Identified Class 

Incorrectly  
Identified Class 

Properly  
Identified Class 

Incorrectly  
Identified Class 

Circle 3484 99 3619 101 
Square 3277 100 3651 114 

Triangle 3286 103 3610 110 

3.4. Experimental Results after Applying Machine Learning 
As mentioned above, we met some difficulties in assigning tolerance values to the 

introduced shape parameters. Therefore, machine learning methods (i.e., EDT, Naïve 
Bayes, SVM, KNN, and FFNN) were tested in order to achieve a better association of the 
assigned parameters, proposed in the SPD algorithm, with the shapes classified by the 
expert. 

In order to understand whether the parameters defined in the SPD algorithm clearly 
describe the shapes under investigation, the distributions of the shape parameters were 
drawn and analyzed for the manually classified amber gemstones. As can be seen in Fig-
ure 8, some parameters, such as p/P (see SPD approach described above), had quite clear 
spatial locations, while others, such as Y1/Y2, overlapped quite a lot. Nevertheless, by 
combining the parameters into sets, good classification results could be achieved. 

X/Z X/Y Z1/Z2 W1/W2 

    
p/P X1/X2 Y1/Y2 Z2/Z1 

    

 
Classes 1 through 6 (see Table 2) denoted by colors 

Figure 8. Distribution of the shape parameters. 

To confirm this, machine learning was applied. Calculations were performed using 
MATLAB functions. Training and testing data were randomly separated into two differ-
ent data sets (training data set comprising 70% and testing data the remaining 30%). These 
data sets were kept the same during all of the experiments performed. The training data 
set was used to train the models, while the testing data set was used for validation. To 
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evaluate the performance and accuracy of the algorithms, confusion matrixes were cre-
ated and true positive rate (TPR) as well as false negative rate (FNR) values were calcu-
lated (see Figure 9). 

For the first machine learning (ML) experiment, linear and non-linear SVM kernels 
were tested. As seen from the distribution of the shape parameters (see Figure 8), it was 
hard to separate the classes using linear classification. Non-linear SVM kernels—quad-
ratic kernels provided better results—provided an overall accuracy of 82.3 and F1 macro- 
and micro-scores of 0.74 and 0.9, respectively. 

 
(a) Support vector machine (accuracy 82.3%) 

 

 
(b) Ensembles of decisions trees (accuracy 83.9%) 
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(c) K-nearest neighbors (accuracy 74.5%) 

 
(d) Naïve Bayes (accuracy 82.6%) 

 

 
(e) Feedforward neural network (accuracy 91.5%) 

Figure 9. Experimental results with machine learning algorithms. 
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An EDT was used when every tree in the ensemble was grown on an independently 
drawn bootstrap replica of the input data. The observations not included in this replica 
were “out of the bag” for this tree. Overall, this algorithm showed an 83.9% classification 
accuracy with F1 macro- and micro-scores of 0.76 and 0.91, respectively. 

The Manhattan, Minkowski, and Euclidean distance functions were tested with the 
KNN algorithm. The best result was achieved using the Euclidean distance function, 
achieving 74.5% with F1 macro- and micro-scores of 0.66 and 0.85, respectively. KNN pro-
vided the lowest accuracy of all of the methods tested in our experiments. 

The Naïve Bayes algorithm assumes that all instances are intended for one another 
and it takes individual measurements for prediction. The overall accuracy of this method 
achieved 82.6% with F1 macro- and micro-scores of 0.77 and 0.9, respectively. 

In the FFNN, one deep layer containing 12 nodes was used. Bayesian regularization 
backpropagation was used for the training function, which updates the weight and bias 
values according to Levenberg–Marquardt optimization. It also minimizes a combination 
of squared errors and weights and then determines the correct combination to produce a 
network that generalizes well. In training, 50 epochs were used with a learning rate of 
0.0001 and a damping factor (Mu) of 0.005. For training the neural network, CPU, as the 
main resource for calculation, was used and, on average, it took 5 s to train. This method 
allowed to achieve a good accuracy of 91.5% with F1 macro- and micro-scores of 0.89 and 
0.96, respectively. 

Most of the analyzed algorithms had trouble separating squares and rectangles. This 
can be explained by the unbalanced data set, since those two classes were the smallest 
ones. Naturally, amber stones are rarely discovered in the form of a square or rectangle, 
but these classes share some similarities; therefore, the training data set must be intention-
ally supplemented with new examples of these two shapes. 

3.5. Classification Performance 
To summarize the results, the time of the computations and the accuracy of the per-

formance were compared for the tested methods. Table 5 and Figure 10 show all of the 
results for the classification processes, with the timing including object preprocessing and 
classification operations. 

Table 5. Classification performance of the tested methods. 

Method CDF SVM EDT NB FFNN KNN SPD 
Time (s) 0.063 0.025 0.022 0.019 0.015 0.012 0.008 

Accuracy  75.9% 82.3% 83.9% 82.6% 91.5% 74.5% 78.4% 
F1 macro-score 0.62 0.74 0.76 0.77 0.89 0.66 0.73 
F1 micro-score 0.86 0.90 0.91 0.90 0.96 0.85 0.88 

An additional evaluation of the model’s performance provided us with F1 macro- 
and micro-scores, which are usually used in the statistical analysis of binary classification. 
Here, one is the best value and zero is the worst value. The F1 macro-score is the mean of 
classwise F1 scores, while the F1 micro-score measures the F1 scores of aggregated contri-
butions of all classes. Since square and rectangle shapes are rare in nature, causing an 
imbalance of the classes, the F1 score was slightly lower for those classes, thereby causing 
lower F1 macro-scores. 

The proposed SPD method achieved the fastest classification. It required the least 
computation resources but provided an accuracy of up to 80%. The machine learning 
methods (i.e., KNN, NB, EDT, SVM, and FFNN) showed comparable classification times 
between 0.012 and 0.025 s. The fastest among them was KNN with a 74.5% accuracy, while 
the slowest was SVM, which was also not the best performer from a qualitative point of 
view. The overall slowest tested method was CDF (0.063 s), because of the specifics of this 
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method in describing an object, and because this model uses three different decision trees, 
trained using different parameters. 

 
Figure 10. Classification speed vs. accuracy comparison. 

4. Conclusions 
The proposed SPD method acted quite well in terms of speed performance, which is 

one of the most important aspects when working under real-time conditions, e.g., con-
veyor. However, the accuracy of the classification was 78.4%, which could have been bet-
ter. EDT, Naïve Bayes, SVM, KNN, and FFNN were tested with the same parameters as 
SPD. The accuracy of the tested methods (see Figure 9) showed the worst results for KNN 
(74.5%), while the best results were achieved with FFNN (91.5%). As some classes over-
lapped with one another, the classic machine learning classifiers (i.e., EDT, Naïve Bayes, 
SVM, and KNN) showed worse results than FFNN. 

A comparison of the classification speed showed that the proposed SPD method is 
up to 11 times faster compared to the initially referenced method described in [6,7]. FFNN 
also showed good results in terms of timing, meaning it is applicable in real production 
processes, since it has an accuracy of more than 90%. Additionally, convolutional neural 
networks should be considered in future work, as neural networks showed great potential 
in handling this classification problem. 
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