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Abstract: Hydroquinone (HQ) is one of the major deleterious metabolites of benzene in the hu-
man body, which has been implicated to cause various human diseases. In order to fabricate a
feasible sensor for the accurate detection of HQ, we attempted to electrochemically modify a piece
of common 2B pencil lead (PL) with the conductive poly(3,4-ethylenedioxythiophene) or PEDOT
film to construct a PEDOT/PL electrode. We then examined the performance of PEDOT/PL in the
detection of hydroquinone with different voltammetry methods. Our results have demonstrated that
PEDOT film was able to dramatically enhance the electrochemical response of pencil lead electrode to
hydroquinone and exhibited a good linear correlation between anodic peak current and the concen-
tration of hydroquinone by either cyclic voltammetry or linear sweep voltammetry. The influences of
PEDOT film thickness, sample pH, voltammetry scan rate, and possible chemical interferences on the
measurement of hydroquinone have been discussed. The PEDOT film was further characterized by
SEM with EDS and FTIR spectrum, as well as for stability with multiple measurements. Our results
have demonstrated that the PEDOT modified PL electrode could be an attractive option to easily
fabricate an economical sensor and provide an accurate and stable approach to monitoring various
chemicals and biomolecules.

Keywords: poly(3,4-ethylenedioxythiophene); pencil lead; graphite; hydroquinone; biosensor

1. Introduction

Hydroquinone (HQ) is considered one of the main benzene metabolites detected in
human urine and blood, which could also be generated from chemicals of other sources,
such as automobile exhaust, dietary intake, and cigarette smoke [1–7]. In humans, HQ is
often found to form specific complexes with proteins that could interfere with the biological
functions of proteins or induce the accumulation of oxidative stress that is inevitably
responsible for DNA damage, apoptosis, cytotoxicity, and tumorigenesis [8–13]. Long-term
exposure to HQ has been deliberated to play an important role in organ dysfunction,
leukemia pathogenesis, and cancer formation [13,14]. Therefore, tracing HQ in human
urine and blood is strongly recommended in the pollution-intensive industrial society,
especially for benzene-exposed workers.

Hydroquinone (HQ) in human urine and blood can be accurately measured in the
laboratory with expensive instruments, such as the gas chromatography-mass spectrometry
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method [15], synchronous fluorescence technique [16], coupled-column HPLC with fluori-
metric detection [17], HPLC [18,19], flow-injection chemiluminescence (CL) method [20],
capillary electrophoresis/electrospray ionization-mass spectrometer [21], and others. No-
tably, these methods are apparently inconvenient for routinely monitoring workers to avoid
possible occupational benzene poisoning. Since HQ possesses anti-oxidative property, it
can be easily oxidized to catechol and vice versa. Therefore, electrochemical methods
have shown great promise to precisely detect both hydroquinone and catechol [14,22–25].
Although numerous electrodes have been fabricated to achieve the sensitive quantification
of hydroquinone and catechol, there is still some room for improvement regarding feasible
construction and cost reduction. In order to replace the relatively expensive metal or glassy
carbon electrodes, the use of extremely cheap and disposable pencil lead (PL or graphite),
commonly used in writing instruments, was attempted to construct more environmentally
friendly electrodes.

Recently, a variety of modified pencil graphite electrodes have shown great promise
for the detection of folic acid, ascorbic acid, hydrazine, nicotine, as well as DNA and
RNA [26–30]. Since pencil lead is usually made from a mixture of graphite and clay, some
unexpected electrochemical signals might inevitably appear while directly using the pencil
lead as the working electrode, we, therefore, attempted to coat the pencil lead with the
conductive polymer, poly(3,4-ethylenedioxythiophene) or PEDOT. Generally, PEDOT film
is facilely fabricated on an electrode with an electrochemical procedure, and its well-defined
surface morphology is suitable for the immobilization of biomolecules. In particular, the
sulfur atoms in the PEDOT molecular structure open up the opportunity to stably capture
the golden nanoparticles, which are able to immobilize a variety of biomolecules with thiol
groups (-SH), such as proteins and nucleotides, to construct various biosensors [31–33].
Previously, we have also demonstrated that modification of a platinum electrode with
the conductive PEDOT film could effectively eliminate the hydrogen ion reduction and
water oxidation at slightly negative or positive potentials [33], which provided limited
background interference for a sensitive detection [32,34–36].

In this study, we attempted to modify an extremely inexpensive pencil lead electrode
with the electrochemically modified PEDOT, named PEDOT/PL electrode, in order to
accomplish stable and sensitive sensing of hydroquinone. For this purpose, we charac-
terized the PEDOT film on the PL electrode and its stability for multiple measurements.
The linear correlation between the electrochemical signal and the concentration of HQ was
established with different methods, such as cyclic voltammetry (CV) and linear sweep
voltammetry (LSV). In addition, we explored the influences of pH, temperature, scan rate
of voltammetry, film thickness of PEDOT, as well as some components in human blood, on
the performance of PEDOT/PL in sensing HQ.

2. Material and Methods
2.1. Chemicals

Lithium perchlorate trihydrate (LiClO4) used as an electrolyte for PEDOT synthesis
was the product of Merck KGaA at Darmstadt, Germany. Monomer EDOT was bought
from Sigma-Aldrich Corp. at St. Louis, MO, USA, A piece of 2B pencil lead in 0.5 mm
diameter was available from a convenient stationery office. All other chemical reagents
from different sources were of analytical grade.

2.2. Construction of a PEDOT/PL Electrode

A CHI-621B electrochemical analyzer (CHI instruments at Austin, TX, USA) was
routinely utilized for electrochemical analysis of PEDOT film and subsequent detections.
To prepare the working electrode, a PL with a length of 1.5 cm and a diameter of 0.6 mm
was first polished with white print paper to remove the surface wax, then one centimeter
of the PL was submerged into a solution containing 0.1 M of LiClO4 and 0.01 M of EDOT.
To electrochemically synthesize PEDOT film on the PL, a bare pencil lead and an Ag/AgCl
(3 M NaCl) electrode served as auxiliary and reference electrodes, respectively, while the
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potential was swept from 0.0 to 1.0 V with a scan rate of 100 mV·s−1 for six cycles under an
ambient environment, around 25 ◦C. The constructed PEDOT/PL electrode was soaked in
a 0.1 M phosphate-buffered saline buffer (PBS, pH 7.4) for 10 minutes to eliminate possible
unreacted EDOT and was gently rinsed with the PBS buffer three times, then was stored in
a desiccator under room temperature for further experiments.

2.3. Characterizations of PEDOT/PL

The FE-SEM images and the EDS mapping of the PL and PEDOT/PL electrodes
were taken by the FEI Nova NanoSEM 230 from Thermo Fisher Scientific (Hillsboro, OR,
USA). The sample was taped on the carbon conductive tape then kept under vacuum for
one day to remove the moisture. Without being sputtered by conductive elements, the
sample was placed into the electron microscope for observation. During the operation, the
accelerating voltage was set as 10 kV, and the EDS mapping was performed by collecting
the Kα signals of carbon, oxygen, and sulfur over 150 s. The FTIR spectra of PL and
PEDOT/PL electrodes were obtained on an IRTracer-100 Fourier Transform Infrared (FTIR)
Spectrophotometer from Shimadzu (Kyoto, Japan). The sample was placed on the surface
of an ATR crystal plate in the high-pressure single reflection MIRacle ATR system for
scanning in the wavenumber range of 650–4000 cm−1, and the ATR spectrum was then
processed by the ATR correction program for better band intensities.

2.4. Measurement of Hydroquinone by the Constructed PEDOT/PL Electrode

All electrochemical measurements were conducted in a miniature electrochemical
cell with a modified PEDOT/PL electrode as the working electrode, a bare pencil lead as
the auxiliary electrode, and an Ag/AgCl (3M NaCl) electrode as the reference electrode.
The cyclic voltammetry (CV) and linear sweep voltammetry (LSV) were carried out in 6
mL of 100 mM PBS containing hydroquinone with pH about 7.4 under room temperature.
The scan rate was 100 mV·s−1 and the potential window was from −0.5 to 0.7 V. During
the 21-day period experiment, the electrode was gently washed with distilled water three
times and stored at room temperature for the next test.

3. Experimental Results
3.1. Biosensor Fabrication and Characterizations

It has been reported that the PEDOT coated on the platinum electrode might be
the best candidate for the electrochemical detection of hydroquinone due to its intrinsic
capability for electron transfer [37]. However, we have demonstrated that the direct coating
of electrochemically synthesized PEDOT film on the Pt electrode often leads to film crack
during multiple measurements [31,33]. In this study, we successfully modified a pencil
lead (PL) electrode with the electrochemically synthesized PEDOT film. As shown in
Figure 1, we could clearly notice the interface of PEDOT film and the uncovered pencil lead.
After enlarging the images, we were able to distinguish the surface morphology difference
between pencil lead and PEDOT film such as pieces of graphite on the pencil lead and small
granules on the PEDOT film (Figure S1 in Supplementary Materials). The EDS analysis has
revealed that the pencil lead was predominately carbon element, whereas the oxygen and
sulfur elements arose on the PEDOT film besides the carbon elements. The distribution
of oxygen and sulfur elements that originated from PEDOT could also be observed by
element mapping, as shown in Figure 1B–D, where the interface was clearly noticed, and
oxygen and sulfur elements shined on the PEDOT film. The ratio of O/S for PEDOT film
was approximately 3.1, which was greater than 2 according to the molecular structure of
PEDOT, possibly due to the exposure of the electrode to the atmosphere. In addition, the
excess carbon element for PEDOT film implicated the super thin layer of the PEDOT from
six cycles of cyclic voltammetry synthesis, which might be related to the general detection
depth, approximately 1–3 µm, in EDS analysis. In conclusion, the conductive PEDOT film
was effectively synthesized on the PL electrode with the electrochemical approach.
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Figure 1. The surface images of PL and PEDOT/PL electrodes by SEM. (A) the interface between
PEDOT film and uncoated PL. (B–D) the element mapping of carbon, oxygen, and sulfur for PL and
PEDOT film, respectively.

3.2. Characterization of PEDOT/PL by FTIR

FTIR is commonly employed to track the surface modification of materials. Figure 2
displays the FTIR spectra of PL and PEDOT/PL, which also demonstrated the successful
synthesis of PEDOT on the PL electrode. For the bare PL electrode (line a), we noticed the
significant noise that might have resulted from the other ingredients in the pencil lead from a
convenient stationery office, such as clay and wax. Nevertheless, we could still observe the
broad vibrational bands in the range of 2500–3300 and around 1430 cm−1 in corresponding
to the CH2 stretching [38,39]. Besides, some characteristic bands related to oxygen functional
groups were found at 3500, 1580, 1270, and 1072 cm−1, which might also contribute to the
higher O/S element ratio in EDS analysis. Lines b demonstrated the typical spectra of PEDOT,
which including asymmetric stretching vibrations of C=C and C–C in the thiophene ring at
1528 and 1372 cm−1, bend vibration of C–O–C in the ethylenedioxy ring at 1220 and 1062 cm−1,
stretching vibrations of C–S–C bond in the thiophene ring at 980, 850, and 696 cm−1, and
possible deformation of the ethylenedioxy ring at 920 cm−1 [35,40,41]. The FTIR spectrum of
PEDOT remained almost the same after HQ measurement as shown by line c, indicating the
good stability of PEDOT film on the PL electrode.

3.3. Detection of Hydroquinone with a PEDOT/PL Electrode

Cyclic voltammetry (CV) is a sophisticated electrochemical technology used to provide
convenient and precise measurement of target chemical compounds. Figure 3 displays that
the CV profile of a bare PL electrode in response to HQ, where the anodic peak demonstrated
the oxidation of hydroquinone to benzoquinone and the cathodic peak exhibited its reversed
reduction of benzoquinone to hydroquinone. The reductive and oxidative mechanism was
shown in Figure S2 (in Supplementary Materials). Based on the results, we could learn that
the PEDOT/PL electrode had the potential for the electrochemical measurement of HQ, but
the bare commercial pencil lead could only provide a CV profile with relatively flat and more
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separated redox peaks. In comparison, the modification of PL electrode by PEDOT film could
make the redox peaks closer and sharper with higher intensity, indicating the role of PEDOT
film in reducing redox potentials, accelerating electron transfer, and minimizing the adsorption
of HQ and its reduced product on the electrode.

Polymers 2021, 13, x FOR PEER REVIEW 5 of 15 
 

 

 
Figure 2. FTIR spectra of (A) PL electrode, (B) PEDOT film on a PL electrode, and (C) PEDOT/PL 
electrode after HQ measurement. 

3.3. Detection of Hydroquinone with a PEDOT/PL Electrode 
Cyclic voltammetry (CV) is a sophisticated electrochemical technology used to pro-

vide convenient and precise measurement of target chemical compounds. Figure 3 dis-
plays that the CV profile of a bare PL electrode in response to HQ, where the anodic peak 
demonstrated the oxidation of hydroquinone to benzoquinone and the cathodic peak ex-
hibited its reversed reduction of benzoquinone to hydroquinone. The reductive and oxi-
dative mechanism was shown in Figure S2 (in Supplementary Materials). Based on the 
results, we could learn that the PEDOT/PL electrode had the potential for the electrochem-
ical measurement of HQ, but the bare commercial pencil lead could only provide a CV 
profile with relatively flat and more separated redox peaks. In comparison, the modifica-
tion of PL electrode by PEDOT film could make the redox peaks closer and sharper with 
higher intensity, indicating the role of PEDOT film in reducing redox potentials, acceler-
ating electron transfer, and minimizing the adsorption of HQ and its reduced product on 
the electrode. 

Figure 2. FTIR spectra of (A) PL electrode, (B) PEDOT film on a PL electrode, and (C) PEDOT/PL
electrode after HQ measurement.

Polymers 2021, 13, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 3. The cyclic voltammetry profiles of (a) a bare PL electrode and (b) a PEDOT/PL electrode 
in response to 6 mM of hydroquinone in PBS buffer. The potential was swept from −0.5–0.7 V with 
the rate of 100 mV s−1. 

Figure 4A shows the cyclic voltammetry profile of different concentrations of hydro-
quinone on the PEDOT/PL electrode, where well-defined anodic and cathodic peaks are 
located at the potential of near 0 V to 0.1 V, respectively. Although the PEDOT brought 
the anodic and cathodic peaks closer, the separation was still larger than the value of 28 
mV for a normal two-electron reversible process and increased by increasing the concen-
tration of hydroquinone. In addition, the average ratio of anodic peak current (ipa) and 
cathodic peak current (ipc) was slightly larger than unity, for example, ipa/ipc = 1.36 for 6 
mM, both indicating the inevitable influences from the diffusion resistance and possible 
adsorption of hydroquinone and benzoquinone on the electrode during the cyclic voltam-
metry measurement. Figure 4B presents a nice linear correlation between the anodic peak 
current and the concentration of hydroquinone, where the slope of linear correlations for 
concentration ranges of 2 to 10 mM was 0.1272 µA·µM−1. Considering the surface area of 
this PEDOT film was approximately 0.1719 cm2, the sensitivity of the PEDOT/PL electrode 
in sensing hydroquinone would be 734 µA·mM−1·cm−2. The inlet figure also revealed a 
good linear correlation for lower concentrations of HQ in the range of 10–100 µM with a 
slope of 0.3404 µA·µM−1 and sensitivity of about 1980.2 µA·mM−1·cm−2. Based on the stand-
ard deviation of the peak current, the limit of detection (LOD) of this study was approxi-
mately 7.7 µM, which was compatible with other approaches [42]. 

 
Figure 4. (A) The cyclic voltammetry profiles of PEDOT/PL electrode in response to different concentrations of hydroqui-
none (2 to 10 mM). (B) The linear correlation between the anodic peak current and the concentration of hydroquinone. 

Figure 3. The cyclic voltammetry profiles of (a) a bare PL electrode and (b) a PEDOT/PL electrode in
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Figure 4A shows the cyclic voltammetry profile of different concentrations of hydro-
quinone on the PEDOT/PL electrode, where well-defined anodic and cathodic peaks are
located at the potential of near 0 V to 0.1 V, respectively. Although the PEDOT brought the
anodic and cathodic peaks closer, the separation was still larger than the value of 28 mV
for a normal two-electron reversible process and increased by increasing the concentration
of hydroquinone. In addition, the average ratio of anodic peak current (ipa) and cathodic
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peak current (ipc) was slightly larger than unity, for example, ipa/ipc = 1.36 for 6 mM, both
indicating the inevitable influences from the diffusion resistance and possible adsorption
of hydroquinone and benzoquinone on the electrode during the cyclic voltammetry mea-
surement. Figure 4B presents a nice linear correlation between the anodic peak current and
the concentration of hydroquinone, where the slope of linear correlations for concentration
ranges of 2 to 10 mM was 0.1272 µA·µM−1. Considering the surface area of this PEDOT
film was approximately 0.1719 cm2, the sensitivity of the PEDOT/PL electrode in sensing
hydroquinone would be 734 µA·mM−1·cm−2. The inlet figure also revealed a good linear
correlation for lower concentrations of HQ in the range of 10–100 µM with a slope of
0.3404 µA·µM−1 and sensitivity of about 1980.2 µA·mM−1·cm−2. Based on the standard
deviation of the peak current, the limit of detection (LOD) of this study was approximately
7.7 µM, which was compatible with other approaches [42].
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The inlet indicated the linear correlation for a low concentration of hydroquinone (10–100 µM). The measurements were
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3.4. The effect of pH on the Detection

Considering the pKa of HQ is about 9.85, it was reported that pH near or higher
than the pKa might lead it to easy deprotonation [34]. We, therefore, investigated the
performance of the PEDOT/PL electrode in response to 6 mM of HQ in 0.1 M PBS buffer
with different pH. In Figure 5A, we clearly observed that the measurement preferred pH 7.4
to other pH examined. While increasing the pH from 5.9 to 7.4, the HQ was deprotonated
more easily, however, too much hydroxyl ions would decrease the adsorption of HQ on
the PEDOT film and therefore the peak current [34]. According to Figure 5B, the oxidation
potential of HQ decreased from 0.3 V to 0.1 V by increasing pH from 5.9 to 8.9, which was
ascribed to the easiness of HQ deprotonation under a relatively higher pH. On the other
hand, the oxidation of HQ under the pH below its pka implicated that the oxidation of HQ
might be also catalyzed by coupling of the intrinsic reduction of PEDOT film. If we applied
the PEDOT/PL electrode with multiple cyclic voltammetry measurements first in pH 10.9
then in pH 7.4, we found a dramatic decrease of anodic peak current in comparison with
those continuously measured in pH 7.4, suggesting the possible damage of PEDOT film
under pH 10.9. It has been pointed out that the electrochemical performance of PEDOT:PSS
modified electrode under the pH above 10 would cause the over-oxidation of PEDOT film
that might result from the breakage of the dioxane ring, therefore reducing the conductivity
of PEDOT film [43]. That could be the major cause for the drop of anodic current while pH
was changed from 7.4 to 10.9 in Figure 5. In addition, the temperature has insignificant
effects on the anodic peak current, which slightly increased with temperature in the range
of 17 to 37 ◦C, then decreased at 45 ◦C (Figure S3 in Supplementary Materials).
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3.5. The Effect of Synthesis Cycle for PEDOT Film on the Performance

A study on the measurement of HQ with a PEDOT modified platinum electrode has
demonstrated that the anodic peak current was significantly enhanced by increasing the
PEDOT film thickness due to the increase of effective surface area [37]. Similar results were
reported for the poly(thionine) modified glassy carbon electrode [14]. In this study, we found
that the increase of the cyclic voltammetry cycle for PEDOT synthesis resulted in the increase of
the oxidative detection current, however, both anodic and cathodic peaks gradually lost their
peak symmetry and exhibited a tailed voltammogram where the waves did not quickly return
back to their baseline, as shown in Figure 6A. This phenomenon might suggest that increase
in PEDOT film thickness might result in the slower mass transport of HQ for the anodic part
and BQ for the cathodic part to the surface of the electrode. It is necessary to be declared
whether it is caused by increasing the size of the diffusion layer as well as film resistance
due to more cycles applied for PEDOT synthesis. Considering the limited contribution of the
anodic peak current from the increasing of cyclic voltammetry synthesis cycles (Figure 6B), we
recommended six cycles for PEDOT synthesis in this study.
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In addition, the size of the diffusion layer above the electrode surface could be de-
termined by the employed potential scan rate. In general, the diffusion layer will be
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continuously built up and become thicker above the electrode with a slow potential scan
rate, which may result in a lesser concentration gradient between the bulk solution and
the surface of the electrode and thus a smaller mass flux of the target compound, such as
HQ in this study. Consequently, the magnitude of the electrochemical current that was
proportional to the mass transport rate of HQ towards the electrode was developed to
be larger and larger with the increase in the potential scan rate, as shown in Figure 7A.
However, it was also accompanied by a larger peak-to-peak separation with a fast scan rate,
implicating that the rate of electrochemical kinetics on the PEDOT/PL electrode was still
not very efficient to achieve the equilibrium at the solution-electrode interface. Figure 7B
demonstrates the linear correlation between the anodic peak current and the square root of
scan rate, suggesting a diffusion-controlled process. This would lead us to future studies on
the improvement of electrochemical kinetics of HQ on the PEDOT/PL electrode through
either the enhancement of the electrochemical activity of PEDOT film or the acceleration of
the chemical reaction on the surface of PEDOT film.
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3.6. Stability of PEDOT/PL for Multiple Measurements

During our routine experiments, the PEDOT/PL electrode was found to be reusable
for multiple measurements. As shown in Figure 8A, the PEDOT/PL electrode was quite
stable in detecting 6 mM of HQ for 10 individual tests, and the electrode was thoroughly
washed with distilled water three times after each test and stored under room temperature
for the next test. The reduction of anodic peak current could be controlled within 10% for
the first 10 tests and 20% for the next 20 tests. With the modification of PEDOT film and
the optimization of the wash process, the stability of PEDOT/PL electrode performance
could be further improved.

3.7. Potential Interference on the Measurement

Since HQ is easily oxidized to form catechol, they are sometimes coexisting in the
environment or human body, it is, therefore, necessary to understand the interference of
catechol on the HQ measurement. As shown in Figure 9A, there was no obvious anodic
peak for catechol at the potential near 0.1 V, which was assigned for the anodic peak of
HQ. In addition, mixing 6 mM HQ and 0.05 mM catechol, we could only identify the
oxidation of HQ at the potential of 0.1 V without notable reduction. Meanwhile, other
naturally electroactive species in blood, such as glucose, vitamin C, uric acid, and others,
can be easily oxidized on the electrode, therefore generating potential interferences in the
accurate detection of the target compound. In this study, we investigated the influence of
glucose, vitamin C, and uric acid on the detection of 6 mM of HQ. The results were shown
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in Figure 9, where 0.5 mM of vitamin C and 10 mM of glucose resulted in a 1.31 and 3.50%
reduction of anodic peak current, respectively. However, 0.02 mM of uric acid generated
about 17.33% reduction of anodic peak current in comparison with that of HQ alone. To
effectively eliminate the potential interferences from uric acid and others, researchers have
recommended employing Nafion and polymer micromembranes to build up permselective
barriers [44–46]. Nevertheless, our results have indicated the potential applications of
PEDOT/PL electrodes for environmental and clinical measurement of HQ.
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3.8. The Linear Sweep Voltammetry (LSV) Measurement of HQ with the PEDOT/PL Electrode

Considering the inevitable influences from the diffusion resistance and possible adsorp-
tion of hydroquinone and benzoquinone on cyclic voltammetry measurements. We then
employed the simple and quick linear sweep voltammetry (LSV). From Figure 10A, we could
clearly notice the dramatic increase of the oxidative peak current by increasing the concentration
of hydroquinone. Figure 10B shows that the anodic peak current had a nice linear correlation
with the concentration of hydroquinone. The sensitivity was about 901.7 µA·mM−1·cm−2,
which was increased by 22.8% in comparison with CV measurement.
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3.9. The Practical Applications and Future Research Perspectives of Conductive PEDOT in Biosensors

Conductive polymers have gained tremendous attention and inspired extensive stud-
ies in scientific communities, especially since the Nobel Prize in Chemistry 2000 was
awarded to Alan J. Heeger, Alan G. MacDiarmid, and Hideki Shirakawa who were pio-
neers in the discovery and development of conductive polymers. Among them, poly(3,4-
ethylenedioxythiophene) or PEDOT is the most amazing conductive polymer due to its
intrinsic features of low bandgap, great conductivity, pronounced electrochromic activity,
long-term air stability, and many promising applications in various fields and it is easily
synthesized [47,48]. Previously, we have successfully employed horseradish peroxidase
(HRP) to synthesize PEDOT with good electrochemical properties, excellent solubility, and
biocompatibility [49,50]. Recently, we have also developed a green chemical process by
using non-thermal plasma activated hydrogen peroxide to promote the synthesis of PEDOT
and demonstrated the degradability of PEDOT [51,52]. Meanwhile, we have employed PE-
DOT to modify a platinum electrode to construct biosensors for sensing hydrogen peroxide
and glucose [31,32,35]. So far, PEDOT has been proposed for a great variety of promising
applications in bioelectronics, conductive hydrogel, and other functional materials [53–56].

The original goal of this study was to modify the graphene or its derivatives for the
construction of a hydroquinone biosensor. In modern materials, graphene is sometimes con-
sidered a spectacular material, possessing remarkable mechanical properties, impressive
thermal conductivity, and quick electron mobility [57], but it is normally quite expensive
and difficult to use for mass production. On the other hand, graphene oxide (GO) can be
easily made from abundant graphite and tuned with oxygen-containing groups, but its
conductivity is somehow not satisfactory. Fortunately, the intrinsic properties of graphene
could be regained by transferring GO to reduced graphene oxide (rGO). Due to the lack of
functional groups that are ready for the automatic covalent binding of functional enzymes,
it has to go through the encapsulation of enzymes in a porous matrix of the chemical
crosslinking of enzymes onto the rGO coated electrode surface [58,59]. To fabricate a
successful biosensor, golden nanoparticles could electrochemically deposit onto the rGO
membrane with a time-consuming procedure [45]. Reproducibility is always the main
challenge in developing rGO-based electrochemical sensors [58,60,61]. On the other hand,
there are abundant sulfur atoms in a PEDOT molecular structure that are ready for the
stable immobilization of golden nanoparticles, which can then immobilize a variety of
biomolecules with thiol groups (-SH) to construct various biosensors [31–33]. Modifica-
tion of a platinum electrode with the conductive PEDOT film has also been reported to
effectively eliminate the evitable hydrogen ion reduction or water oxidation at slightly
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negative or positive potentials [33], and to improve the sensitivity of a biosensor [32,34–36].
Therefore, the modification of GO or rGO with the conductive PEDOT will open up an era
of fabricating more effective sensors for various applications.

Recently, pencil lead (PL), which is usually made from stacked graphite, has drawn
much attention in developing low-cost sensors because of its ready availability and ease of
modification [62,63]. In this study, we modified an inexpensive PL with electrochemically
synthesized PEDOT film and explored its application in the detection of hydroquinone
(HQ). In comparison with a bare PL electrode, our results have demonstrated that the PL
electrode modified with electrochemically synthesized PEDOT film had the advantages
of reducing redox potentials, accelerating electron transfer, and minimizing the adsorp-
tion of HQ and its reduced product on the electrode. Besides, PEDOT film provides a
platform for the stable capture of golden nanoparticles by a self-assembly procedure, and
then the biomolecules with S-H functional groups. So far, the main challenge of the PE-
DOT/PL electrode is to eliminate the interferences from the electroactive species in human
blood. Fortunately, the interferences can be effectively eliminated by a permselective
membrane [44–46]. In conclusion, PEDOT/PL sensors have promising perspectives in
fabricating low cost and effective sensors.

4. Conclusions

HQ has been wildly used in industry and many livelihood products, scientific re-
searches have implied that HQ, either in nature or derived from body metabolism, has
a potential impact on human health. Our goal is to construct a very low-cost but quite
effective electrode for monitoring hydroquinone (HQ). In comparison with the use of
a platinum electrode as a substrate, the PEDOT film on a PL electrode was very stable
and ready for multiple measurements. Both cyclic voltammetry (CV) and linear sweep
voltammetry (LSV) demonstrated that the PEDOT/PL electrode possessed competitive
sensitivity, high selectivity, and good stability in sensing HQ with fine correlations between
the anodic peak current of HQ oxidation and the concentration of HQ. Some electroac-
tive compounds, such as glucose and vitamin C, naturally found in human blood have
been examined to show negligible interference on the HQ detection. Although uric acid
has a significant interference in HQ detection, it could be eliminated by a permselective
membrane as recommended by the literature [44–46]. Nevertheless, the performance of
the PEDOT/PL electrode could be further improved by modifying or functioning PEDOT
film and optimizing detection condition or procedure. Therefore, the extremely cheap,
easily available, and disposable pencil lead (PL or graphite) is a suitable electrode for the
construction of various chemical sensors or biosensors.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
360/13/3/343/s1, Figure S1: The surface images of PL and PEDOT/PL electrodes by SEM. (A)
the interface of PEDOT film on the PL electrode. (B) and (C) were the enlarged images of PL and
PEDOT film, respectively; Figure S2: The oxidation and reduction mechanism for hydroquinone
and para-benzoquinone; Figure S3: (A) The effect of temperature on the performance of PEDOT/PL
electrode for the detection of 6 mM of hydroquinone in 100 mM of PBS buffer. The potential was
swept from −0.5~0.7 V with different scan rate (B) The effect of temperature on the anodic peak
current.
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