
J. Chem. Phys. 154, 024111 (2021); https://doi.org/10.1063/5.0031851 154, 024111

© 2021 Author(s).

Efficient implementation of isotropic
cubic response functions for two-photon
absorption cross sections within the self-
consistent field approximation
Cite as: J. Chem. Phys. 154, 024111 (2021); https://doi.org/10.1063/5.0031851
Submitted: 05 October 2020 . Accepted: 13 December 2020 . Published Online: 12 January 2021

 Karan Ahmadzadeh, Mikael Scott,  Manuel Brand,  Olav Vahtras, Xin Li,  Zilvinas Rinkevicius, and 
Patrick Norman

ARTICLES YOU MAY BE INTERESTED IN

Electronic structure software
The Journal of Chemical Physics 153, 070401 (2020); https://doi.org/10.1063/5.0023185

Model DFT exchange holes and the exact exchange hole: Similarities and differences
The Journal of Chemical Physics 154, 024101 (2021); https://doi.org/10.1063/5.0031995

Density-related properties from self-interaction corrected density functional theory
calculations
The Journal of Chemical Physics 154, 024102 (2021); https://doi.org/10.1063/5.0034545

https://images.scitation.org/redirect.spark?MID=176720&plid=1085727&setID=378408&channelID=0&CID=358608&banID=519992853&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=a6e1cecbc242d3b912549e1a9893d52b6202f329&location=
https://doi.org/10.1063/5.0031851
https://doi.org/10.1063/5.0031851
http://orcid.org/0000-0002-8707-3733
https://aip.scitation.org/author/Ahmadzadeh%2C+Karan
https://aip.scitation.org/author/Scott%2C+Mikael
http://orcid.org/0000-0003-3992-043X
https://aip.scitation.org/author/Brand%2C+Manuel
http://orcid.org/0000-0002-9123-8174
https://aip.scitation.org/author/Vahtras%2C+Olav
https://aip.scitation.org/author/Li%2C+Xin
http://orcid.org/0000-0003-2729-0290
https://aip.scitation.org/author/Rinkevicius%2C+Zilvinas
http://orcid.org/0000-0002-1191-4954
https://aip.scitation.org/author/Norman%2C+Patrick
https://doi.org/10.1063/5.0031851
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0031851
http://crossmark.crossref.org/dialog/?doi=10.1063%2F5.0031851&domain=aip.scitation.org&date_stamp=2021-01-12
https://aip.scitation.org/doi/10.1063/5.0023185
https://doi.org/10.1063/5.0023185
https://aip.scitation.org/doi/10.1063/5.0031995
https://doi.org/10.1063/5.0031995
https://aip.scitation.org/doi/10.1063/5.0034545
https://aip.scitation.org/doi/10.1063/5.0034545
https://doi.org/10.1063/5.0034545


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Efficient implementation of isotropic cubic
response functions for two-photon absorption
cross sections within the self-consistent field
approximation

Cite as: J. Chem. Phys. 154, 024111 (2021); doi: 10.1063/5.0031851
Submitted: 5 October 2020 • Accepted: 13 December 2020 •
Published Online: 12 January 2021

Karan Ahmadzadeh,1,a) Mikael Scott,2 Manuel Brand,1 Olav Vahtras,1 Xin Li,1 Zilvinas Rinkevicius,1,3

and Patrick Norman1,b)

AFFILIATIONS
1 Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health,
KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden

2Interdisciplinary Center for Scientific Computing, Ruprecht-Karls University, Im Neuenheimer Feld 205,
69120 Heidelberg, Germany

3Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology,
Kaunas LT-51368, Lithuania

a)Electronic mail: karana@kth.se
b)Author to whom correspondence should be addressed: panor@kth.se

ABSTRACT
Within the self-consistent field approximation, computationally tractable expressions for the isotropic second-order hyperpolarizability have
been derived and implemented for the calculation of two-photon absorption cross sections. The novel tensor average formulation presented
in this work allows for the evaluation of isotropic damped cubic response functions using only ∼3.3% (one-photon off-resonance regions)
and ∼10% (one-photon resonance regions) of the number of auxiliary Fock matrices required when explicitly calculating all the needed
individual tensor components. Numerical examples of the two-photon absorption cross section in the one-photon off-resonance and res-
onance regions are provided for alanine–tryptophan and 2,5-dibromo-1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene. Furthermore, a
benchmark set of 22 additional small- and medium-sized organic molecules is considered. In all these calculations, a quantitative assess-
ment is made of the reduced and approximate forms of the cubic response function in the one-photon off-resonance regions and results
demonstrate a relative error of less than ∼5% when using the reduced expression as compared to the full form of the isotropic cubic response
function.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0031851., s

I. INTRODUCTION

Two-photon absorption (TPA) is a nonlinear optical process
with a quadratic dependence on the intensity of the incoming elec-
tric field.1 It has been of high interest in the fields of chemistry
and physics where it is used in fundamental studies of electronic
structures and in applications such as 3D-microfabrication,2–5

multi-photon imaging,6–9 photodynamic therapy,10,11 optical power
limiting,12,13 and optical data storage.14 During the past decade,
the development of photo-removable protecting groups, or “caging
compounds,” has been pursued with the aim to achieve targeted
drug delivery by means of selective irradiation of damaged tis-
sue and triggered by the TPA process.15–24 As another very recent
application in medicine, we note the promising development of
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two-photon fluorescent probes for the diagnosis of Alzheimer’s
disease, which has been evaluated using theoretical calculations of
TPA cross sections.25

Theoretical models for spectroscopic properties and particu-
larly TPA cross sections can be used to reveal and analyze micro-
scopic relationships between the electronic structure and the nonlin-
ear optical processes vital to the development of novel two-photon
absorbing materials. In computational chemistry, response theory
with its long history represents a cornerstone in the development
of approximate-state approaches. In 1982, Dalgaard26 described
how quadratic response functions could be evaluated at the time-
dependent Hartree–Fock (HF) level of theory. In 1985, Olsen and
Jørgensen27 presented a general formulation of response theory that
was further developed by Norman et al.28–31 into a form includ-
ing a description of relaxation in the system. These formulations
utilized the Ehrenfest theorem as the equation of motion for HF
or multi-configurational self-consistent field (MCSCF) reference
states, and they have given rise to several algorithmic developments
and program implementations over the years, and of particular
relevance for this work are those concerned with cubic response
functions.32–36 In the conventional formulation of response the-
ory, excited-state and transition-state properties can be retrieved
from poles and residues of ground state response functions, whereas
the response functions themselves are divergent and unphysical
at these resonance frequencies.27 As an example, one can use
the residue of the quadratic response function to obtain two-
photon transition amplitudes. In a damped response theory for-
mulation,28–31 on the other hand, the real and imaginary parts of
the response function directly correspond to physical observables
and, e.g., TPA cross sections can be identified from the imagi-
nary part of the cubic response function involving electric-dipole
operators.

At present, there are several program implementations avail-
able for the calculation of TPA spectra. In Dalton,37 both the
quadratic and cubic response theory approaches are available at
the density functional theory (DFT) level of theory36,38 and the
former is also available for MCSCF39 and coupled cluster (CC)
wave functions.40 In Turbomole,41 the quadratic response theory
approach is available at the DFT level of theory,42 and in Dirac,43

it is available at the four-component level of DFT.44,45 At the level
of correlated wave-function theory, two-photon transition ampli-
tudes can be calculated with the algebraic diagrammatic construc-
tion (ADC) method in the Q-Chem program,46,47 and additional CC
implementations are available in several software packages.48–51

In cases when the quadratic and cubic response theory
approaches are both applicable, they result in near identical TPA
spectra,36,52,53 so in this situation, it is natural to choose the former
over the latter as it is, in general, computationally less expensive.
However, the residue-based quadratic response approach is lim-
ited to one-photon off-resonance regions of the spectrum and it
comes with a need to determine the eigenstates corresponding to the
final two-photon states in the absorption process. This is typically
achieved with the Davidson algorithm, and it therefore becomes
impractical when studying systems with a high density of states, such
as large-scale systems, or high-energy regions of the spectrum, such
as the soft x-ray region, where the semi-bound two-photon states are
found embedded in a continuum of valence-ionized states. In con-
trast, in the damped cubic response approach, the TPA cross sections

are evaluated in an arbitrary frequency range without reference to
the underlying eigenstates.

The key reasons as to why the calculation of TPA spectra from
the damped cubic response function is computationally expensive
are not associated with the fact that response equations become
complex per se as efficient and stable complex linear response equa-
tion solvers have been formulated and implemented,54,55 not least
recently in the VeloxChem program.56 Instead, they are concerned
with the facts that (i) response vectors that depend both linearly
and quadratically on the external electric field amplitudes must be
determined and (ii) there are a large number of components of the
second-order hyperpolarizability tensor (or γ-tensor) that needs to
be evaluated and each component involves multiple contractions
of generalized Hessian matrices. These computationally demanding
steps can both be formulated in terms of constructions of auxiliary
Fock matrices from perturbed densities. The specific objectives of
the present work are to formulate an algorithm such that a bare
minimum of such perturbed Fock matrices needs to be constructed
to determine the isotropic average of the imaginary part of the γ-
tensor and to the largest degree possible handle these Fock matrix
constructions in parallel in the sense that we construct as many
as possible from each evaluation of the set of electron-repulsion
integrals.

In Sec. II A, we provide the connection between the observable
TPA cross section and the microscopic γ-tensor associated with the
intensity-dependent refractive index (IDRI) nonlinear optical pro-
cess and introduce the isotropic average of the latter that is relevant
in gas and liquid phases. We further provide the computation-
ally tractable expression for the elements of the γ-tensor in terms
of complex cubic response functions and the formulation of con-
tractions of generalized Hessian matrices with response vectors in
terms of the above-mentioned perturbed Fock matrices. In Sec. II B,
which is the main section of this work, we present novel algorithms
for reaching TPA spectrum calculations based on complex cubic
response functions that are optimized with respect to Fock matrix
constructions. Specifically, in Sec. II B 1, we identify and list the
Fock matrices required for the evaluation of the isotropic second-
order hyperpolarizability using the method established in the pre-
vious implementations.36,57 This serves as a reference point for the
present work, and we are concerned with improvements that go
beyond a mere efficient handling of the identified Fock matrices. Most
importantly, in Sec. II B 4, we define compounded Fock matrices
that minimize the number of matrices that we need to calculate to
determine the observable without introducing any approximations
(at the given level of electronic structure theory). In Sec. II B 5, we
do introduce approximations and form a reduced expression for the
isotropic cubic response function that is well motivated for calcula-
tions concerned with one-photon off-resonance regions of the spec-
trum. We note that this is also the by far most important situation as
the TPA process can then be separated from multi-step one-photon
absorption processes in the experiment. In Sec. II B 6, a tabulated
overview of the various schemes that are discussed and developed in
this work is provided. Finally, in Sec. III, we provide illustrative TPA
spectrum calculations for two separate molecules: first, 2,5-dibromo-
1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene (BPVB) being a
relatively large π-conjugated system and representing a class of
two-photon compounds of real technical interest and, second, the
alanine–tryptophan (Ala–Trp) diamino acid being a medium-sized
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system with a high density of states in the near ultraviolet (UV) region
of the spectrum. We examine both the one-photon off-resonance and
resonance regions in these calculations.

II. THEORY AND METHODOLOGY
A. Two-photon absorption (TPA) cross sections
1. TPA cross sections and hyperpolarizabilities

Dipoles form in polarizable materials by the induced electric
field of incoming light. The resulting polarization can be expanded
in a perturbation series in terms of the applied electric field as

Pi = ϵ0χ(1)ij Ej + ϵ0χ(2)ijk EjEk + ϵ0χ(3)ijkl EjEkEl +⋯, (1)

where ϵ0, χ(1), χ(2), χ(3), and E are the electric constant, the linear and
non-linear susceptibilities, and the electric field vector, respectively.
The energy absorbed by the material per unit volume and time is
related to the intensity loss of the electric field as it travels through
the material (here in the z-direction),

⟨
d
dt
(

absorbed energy
volume

)⟩ = −
dI
dz
= σ(1)I + σ(2)I2 +⋯, (2)

where σ(1) and σ(2) are the one- and two-photon absorption cross
sections, respectively,

σ(1) =
4πh̵ω
nc

Im(χ(1)(−ω;ω)), (3)

σ(2) =
24π2h̵ω
n2c2 Im(χ(3)(−ω;ω,−ω,ω)). (4)

The bulk susceptibilities χ(1) and χ(3) are related to the microscopic
(molecular) linear polarizability, α, and second-order hyperpolar-
izability, γ, through the number density. These molecular proper-
ties, in turn, can be derived from response theory as corrections to
the expectation value of the electric-dipole moment operator in the
presence of an external electric field according to

⟨ψ(t)∣μ̂α∣ψ(t)⟩ = ⟨0∣μ̂α∣0⟩ + ∫
∞

−∞

ααβe
−iωtEωβdω

+
1
2 ∫

∞

−∞
∫

∞

−∞

βαβγe
−i(ω1+ω2)tEω1

β Eω2
γ dω1dω2

+
1
6 ∫

∞

−∞
∫

∞

−∞
∫

∞

−∞

γαβγδe
−i(ω1+ω2+ω3)t

× Eω1
β Eω2

γ Eω3
δ dω1dω2dω3 +⋯. (5)

When orientational averaging is taken into consideration [as implied
in Eq. (4)], the two-photon absorption cross section can be deter-
mined from the isotropic second-order hyperpolarizability defined
as

γ̄(−ω;ω,−ω,ω) =
1

15

x,y,z

∑
α,β
(γααββ + γαβαβ + γαββα). (6)

2. Hyperpolarizabilities and response functions
The second-order hyperpolarizability, γαβγδ , as referenced in

Eq. (5) is the third-order correction to the expectation value of the
dipole moment operator of a molecule in the α direction, μ̂α, in
the presence of a weak external electric field with the oscillation
frequencies ω1, ω2, and ω3 that interact with the molecular dipole
moments μ̂β, μ̂γ, and μ̂δ . The second-order hyperpolarizability can
be computed from the cubic response function ⟨⟨μ̂α; μ̂β, μ̂γ, μ̂δ⟩⟩ and
is written in terms of the first-, second-, and third-order response
vectors as

γαβγδ(−ωσ ;ω1,ω2,ω3) = − ⟨⟨μ̂α; μ̂β, μ̂γ, μ̂δ⟩⟩ω1 ,ω2 ,ω3

=∑P1,2,3(μ[1]α Nω1 ,ω2 ,ω3
β,γ,δ

+
1
2
μ[2]α (N

ω1 ,ω2
β,γ Nω3

δ + Nω3
δ Nω1 ,ω2

β,γ )

+ μ[3]α Nω1
β Nω2

γ Nω3
δ ). (7)

The damped response vectors in Eq. (7) are obtained by solving
the Ehrenfest equation that yields a set of complex non-Hermitian
matrix equations for the first-order (8), second-order (9), and third-
order (10) response vectors,

Nω1
j;β = (E

[2]
− ω1S[2] − iγR[2])−1

jk μ
[1]
k;β , (8)

Nω1 ,ω2
j;β,γ = (E

[2]
− (ω1 + ω2)S[2] − iγR[2])−1

jk Λ
ω1 ,ω2
k;β,γ , (9)

Nω1 ,ω2 ,ω3
j;β,γ,δ = (E[2] − (ω1 + ω2 + ω3)S[2] − iγR[2])−1

jk Λ
ω1 ,ω2 ,ω3
k;β,γ,δ . (10)

The second- and third-order gradient vectors are given by the
expressions

Λω1 ,ω2
j;α,β = μ

[2]
jk;βN

ω1
k;α + μ[2]jk;αN

ω
k;β − E

[3]
j(kl)N

ω1
k;αN

ω2
l;β , (11)

Λω1 ,ω2 ,ω3
j;β,γ,δ = [μ[3]j(kl);βN

ω2
k;γN

ω3
l;δ + μ[3]j(kl);γN

ω1
k;βN

ω3
l;δ + μ[3]j(kl);δN

ω1
k;βN

ω2
l;γ

− μ[2]jk;βN
ω2 ,ω3
k;γ,δ − μ

[2]
jk;γN

ω1 ,ω3
k;β,δ − μ

[2]
jk;δN

ω1 ,ω2
k;β,γ E[3]j(kl)

× [Nω1
k;βN

ω2 ,ω3
l;γ,δ + Nω2

k;γN
ω1 ,ω3
l;β,δ + Nω3

k;δN
ω1 ,ω2
l;β,γ ]

−T[4]jklmN
ω1
k;βN

ω2
l;γN

ω3
m;δ], (12)

where we have used the compounded fourth-order tensor defined as

T[4]jklm(ω1,ω2,ω3) = (E[4]j(klm) − ω1S[4]jk(lm) − ω2S[4]jl(km)

−ω3S[4]jm(kl) − iγR
[4]
j(klm)). (13)

The explicit expressions for tensors E[4], R[4], S[4] have been exten-
sively treated previously and are discussed in the work of Olsen and
Jørgensen27 and Norman et al.36,57 Combining the expression for the
cubic response function of Eq. (7) and the first- and second-order
response vectors of Eqs. (8) and (9) together with the third-order
gradient vector of Eq. (12), we obtain the main equation for the cubic
response function used in this work,
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γαβγδ(−ω;ω,−ω,ω) = − ⟨⟨μ̂α; μ̂β, μ̂γ, μ̂δ⟩⟩ω,−ω,ω = N
−ω
j;α [μ

[3]
j(kl);βN

−ω
k;γ N

ω
l;δ + μ[3]j(kl);γN

ω
k;βN

ω
l;δ + μ[3]j(kl);δN

ω
k;βN

−ω
l;γ ]

−N−ωj;α [μ
[2]
jk;βN

−ω,ω
k;γ,δ + μ[2]jk;γN

ω,ω
k;β,δ + μ[2]jk;δN

ω,−ω
k;β,γ ] + N−ωj;α E

[3]
j(kl)[N

ω
k;βN

−ω,ω
l;γδ + N−ωk;γ N

ω,ω
l;β,δ + Nω

k;δN
ω,−ω
l;β,γ ]

−N−ωj;α T
[4]
jklmN

ω
k;βN

−ω
l;γ N

ω
m;δ + μ[2]

(jk);α[N
ω
j;βN

−ω,ω
k;γ,δ + N−ωj;γ N

ω,ω
k;β,δ + Nω

j;δN
ω,−ω
k;β,γ ] + μ[3]

(jkl);αN
ω
j;βN

−ω
k;γ N

ω
l;δ , (14)

where tensor indices in parentheses are permuted. In the present
implementation, the coupled equations are solved in separate steps:
first, the first-order response vectors are converged, and from these,
perturbed Fock matrices required for the construction of the second-
order gradients are computed, which are then used to compute the
second-order response vectors. Second, these are then used to com-
pute the third-order gradients, which are used to evaluate the cubic
response function, avoiding the use of Eq. (10). The E[2] tensors in
response equations (8) and (9) quickly become large with increasing
system size and are not formed explicitly. Instead, damped response
equations (8) and (9) are solved in a reduced subspace, and the
details of this procedure are described in the work of Kauczor and
Norman.55

3. Evaluation of response functions by means
of Fock matrices

The contraction of the generalized Hessian tensors E[4] and E[3]

in Eq. (14) can be written in terms of transformed Fock matrices
without explicit reference to the E[4] and E[3] tensors.57 The contrac-
tion of the E[3] tensor with one first-order response vector and one
second-order response vector can be written as

E[3]j(kl)N
ω1
k;βN

(ω2 ,ω3)

l;γ,δ = −2[
¯̄Fsi
− ¯̄Fis
], (15)

where i and s refer to occupied and unoccupied orbitals, respectively.
The components of the resultant vector can be expressed in terms
of one-time transformed first-order Fock matrices of the form Fω1

β
[Eq. (27)] and one-time transformed second-order Fock matrices
[Eq. (31)] of the form Fω1 ,(ω2 ,ω3)

β,γδ and the matrix representation of

the first- and second-order response vectors κω1
β , κ(ω2 ,ω3)

γ,δ ,

¯̄F = ζω1 ,(ω2 ,ω3)

β,γδ + F(β,γδ), (16)

F(β,γδ)
= Fω1 ,(ω2 ,ω3)

β,γδ + F(ω2 ,ω3),ω1
γδ,β , (17)

ζω1 ,(ω2 ,ω3)

β,γδ = [κω1
β , [κ(ω2 ,ω3)

γ,δ ,F0] + 2F(ω2 ,ω3)

γδ ]

+ [κ(ω2 ,ω3)

γ,δ , [κω1
β ,F0] + 2Fω1

β ]. (18)

As can be seen in Eqs. (16)–(18), the contraction of the E[3] ten-
sors with two response vectors exhibits a permutation symmetry
with respect to the contracting response vectors. This, as will be
seen subsequently, will have consequences for the property gradi-
ents that need to be constructed. The E[4] contraction can similarly

be expressed in terms of transformed Fock matrices as

E[4]j(klm)N
ω
k;βN

−ω
l;γ N

ω
m;δ = −2

⎡
⎢
⎢
⎢
⎢
⎣

¯̄̄Fsi
−

¯̄̄Fis

⎤
⎥
⎥
⎥
⎥
⎦

. (19)

The Fock matrix ¯̄̄F resulting from the contraction of E[4] can be
divided into four parts where λ, σ, τ are composed of one-time trans-
formed first-order Fock matrices Fωα and two-time transformed first-
order Fock matrices Fω1 ,ω2

α,β [Eq. (28)] and have leading terms that are
related to the operators μ̂β, μ̂γ, μ̂δ in the cubic response function of
Eq. (14). The last term is known as the three-time transformed first-
order Fock matrix F(βγδ); see Eq. (29). The total expression takes the
form

¯̄̄F = (λ + σ + τ + 3F(βγδ)), (20)

λ = [κωβ , [κ−ωγ , [κωδ ,F] + 3Fωδ ] + [κωδ , [κ−ωγ ,F] + 3F−ωγ ] + 3F(γδ)], (21)

σ = [κ−ωγ , [κωβ , [κωδ ,F] + 3Fωδ ] + [κωδ , [κωβ ,F] + 3Fωβ ] + 3F(βδ)], (22)

τ = [κωδ , [κ−ωγ , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωγ ,F] + 3F−ωγ ] + 3F(βγ)]. (23)

The operator indices in parentheses in Eqs. (20)–(22) are permuted
with respect to operator and frequency pairs,

F(αβ) = Fω1 ,ω2
α,β + Fω2 ,ω1

β,α , (24)

F(βγδ) = Fω1 ,−ω2 ,ω3
β,γ,δ + Fω1 ,ω3 ,−ω2

β,δ,γ + F−ω2 ,ω1 ,ω3
γ,β,δ + F−ω2 ,ω3 ,ω1

γ,δ,β

+ Fω3 ,−ω,ω1
δ,γ,β + Fω3 ,ω1 ,−ω

δ,β,γ . (25)

B. Fock matrices in the intensity-dependent refractive
index (IDRI) optical process

In this section, we will present the unique sets of Fock matrices
that need to be constructed for the evaluation of all the second-order
hyperpolarizability tensor components, γαβγδ , contained within the
isotropic second-order hyperpolarizability γ̄ of Eq. (6).

1. Complete set of Fock matrices
We start out by identifying the unique first-order response

vectors that are required per frequency for the evaluation of the
isotropic second-order hyperpolarizability of Eq. (6). Looking at
Eqs. (6) and (14), it is evident that three first-order response vectors
per frequency are required corresponding to the x, y, and z spatial
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components of μα. Furthermore, there are response vectors with the
same operator but with opposite sign of the optical frequency. The
relationship between response vectors with opposite optical frequen-
cies within the self-consistent field (SCF) approximation is given by

Nω
α = [

Z
−Y∗], N−ωα = [

Y
−Z∗], (26)

which implies that one only needs to solve Eq. (8) for one sign of
the optical frequencies and then obtain the reversed signed response
vectors by vector manipulation. From the six unique response vec-
tors formed by combining Eq. (26) with response equation (8),
six unique one-time transformed first-order Fock matrices can be
formed as

Fωα = [κ
ω
α ,D0
]L, (27)

where κ is the matrix representation of the response vectors of
Eq. (26), D0 is the SCF density matrix, and L is a matrix containing
Coulomb and exchange integrals.27

The two-time transformed first-order Fock matrices get their
frequency dependence from the first-order response vectors, and
their structure is given by

Fω1 ,ω2
α,β = [κω1

α , [κω2
β ,D0

]]L. (28)

In general, the two-time transformed first-order Fock matrices do
not possess permutation symmetry with respect to the interchange
of operators or frequency pairs, which leads to the following set of
27 unique Fock matrices:

{(α,β) ∈ {x, y, z},ω > 0 ∣Fω,ω
α,β ,Fω,−ω

α,β ,F−ω,ω
α,β }.

These Fock matrices will later be referenced and used in Eqs. (47)–
(49), (53), (54), and (58)–(60).

The three-time transformed first-order Fock matrices get their
frequency dependence from the first-order response vectors and are
constructed as

Fω1 ,ω2 ,ω3
α,β,γ = [κω1

α , [κω2
β , [κω3

γ ,D0
]]]L. (29)

They can be found outside the commutators in the E[4] contrac-
tion of Eq. (19). Since there are 21 unique γαβγδ tensor components
in the isotropic second-order nonlinear hyperpolarizability and the
evaluation of each γαβγδ tensor component requires six three-time
transformed first-order Fock matrices, the total number of three-
time transformed first-order Fock matrices to be computed is 126.
However, many of these three-time transformed first-order Fock
matrices reoccur and are shared between different tensor compo-
nents. From Eqs. (66)–(68), where all the three-time transformed
first-order Fock matrices have been explicitly written, a set of 21
unique three-indexed first-order Fock matrices can be identified as

{(α,β) ∈ {x, y, z},β ≠ α,ω > 0 ∣F−ω,ω,ω
α,α,α ,F−ω,ω,ω

α,β,β ,F−ω,ω,ω
β,β,α ,F−ω,ω,ω

β,α,β }.

In addition, the two corresponding sets obtained by permuting
the negative frequency with any one of the positive ones are also
needed. In total, 63 unique three-indexed first-order Fock matrices
are required in order to evaluate the isotropic second-order hyper-
polarizability. The unique second-order response vectors required
for the computation of the isotropic second-order hyperpolariz-
ability are considered next. These can be identified from Eq. (78)
where all the second-order response vectors involved in the E[3]

contractions have been written explicitly and are described by
the set

{(α,β) ∈ {x, y, z},ω > 0∣Nω,ω
αβ ,N−ω,ω

αβ }.

From the second-order gradients of Eq. (11), we see that the gra-
dients exhibit a permutation symmetry with respect to the inter-
change of the response vectors, which implies that the second order
response vectors possess a permutation symmetry with respect to the
interchange of the operator and frequency pairs,

Λω1 ,ω2
α,β = Λω2 ,ω1

β,α ⇒ Nω1 ,ω2
α,β = Nω2 ,ω1

β,α . (30)

Furthermore, Eq. (30) implies that we get six unique second-order
response vectors where both frequencies are positive, Nω,ω

αβ , since
the interchange of α and β yields the same gradient and hence the
same second-order response vector. Meanwhile, we get nine unique
second-order response vectors of the form N−ω,ω

αβ since interchang-
ing α and β does not yield the same second-order gradient since the
frequencies now have different signs. Thus, we need to compute 15
second-order response vectors in total.

The one-time transformed second-order Fock matrices are
formed from the second-order response vectors as

F(ω1 ,ω2)

αβ = [κ(ω1 ,ω2)

αβ ,D0
]L. (31)

The set of unique one-time transformed second-order perturbed
Fock matrices can be described by the set

{(α,β) ∈ {x, y, z},ω > 0∣F(ω,ω)
αβ ,F(ω,−ω)

αβ }.

As can be seen from Eq. (31), there can only be as many unique one-
time transformed second-order Fock matrices as there are unique
second-order response vectors; thus, there are in total 15 unique
one-time transformed Fock matrices.

The two-time transformed second-order Fock matrices are
constructed from one first-order and one second-order response
vector as

Fω1 ,(ω2 ,ω3)

α,βγ = [κω1
α , [κ(ω2 ,ω3)

βγ ,D0
]]L. (32)

From the 21 unique γ-tensor components required for the isotropic
nonlinear second-order hyperpolarizability, one would in the worst
case scenario require 126 two-time transformed second-order
Fock matrices since each γ tensor component would require six
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two-time transformed second-order Fock matrices [see Eqs. (33)
and (34)] where we have explicitly written out all the two-time
transformed second-order Fock matrices. Among these 126 two-
time transformed second-order Fock matrices, some are however
shared between different γ-tensor components, and thus, the unique
set of two-time transformed second-order Fock matrices is much
smaller. To make the analysis simpler, we separate them based on the
frequency of the second-order response vectors involved in the E[3]

contraction. The two-time transformed second-order Fock matrices
formed using the second-order response vectors with one negative
and one positive frequency can be described by the set

{(α,β) ∈ {x, y, z},α ≠ β,ω > 0∣Fω,(ω,−ω)
α,αα ,F(ω,−ω),ω

αα,α ,Fω,(ω,−ω)
α,ββ ,

F(ω,−ω),ω
ββ,α ,Fω,(ω,−ω)

β,αβ ,F(ω,−ω),ω
αβ,β }.

This set is composed of a total of 42 unique Fock matrices. Further-
more, there is another set of Fock matrices of the form F−ω,(ω,ω)

β,αβ ; this

set however contains 12 fewer unique Fock matrices since F−ω,(ω,ω)
β,αβ

= F−ω,(ω,ω)
β,βα due to the second-order gradient symmetry of Eq. (30);

these Fock matrices can be described by the set

{(α,β) ∈ {x, y, z},α ≠ β,ω > 0∣F−ω,(ω,ω)
α,αα ,F(ω,ω),−ω

αα,α ,F−ω,(ω,ω)
α,ββ ,

F(ω,ω),−ω
ββ,α ,F−ω,(ω,ω)

β,αβ ,F(ω,ω),−ω
αβ,β }.

Thus, in total, there are 72 unique two-time transformed second-
order Fock matrices. In the off-resonance regions where a reduced
cubic response equation is applicable [see Eq. (115)], only 30 Fock
matrices are required since only the second-order response vectors
with two positive frequencies have resonance contributions in these
regions.

2. Exploiting Fock matrix linearity
In this section, we will present an algorithm where the linear-

ity of the Fock matrices in the density argument [see Eq. (42)] is
used in order to minimize the number of Fock matrices required
while retaining all the information about each individual γ-tensor
components in the nonlinear second-order hyperpolarizability of
Eq. (6). For the two-time transformed first-order Fock matrices, we
can add all the permutations in Eqs. (47)–(49), (53), (54), and (58)–
(60) while retaining information regarding the individual tensor ele-
ments. The set of unique sums of two-time transformed first-order
Fock matrices can be described by the set

{(α,β) ∈ {x, y, z},ω > 0∣(F−ω,ω
α,β + Fω,−ω

β,α ), (F
ω,ω
α,β + Fω,ω

β,α )}.

There will be nine unique sums of the form (F−ω,ω
α,β + Fω,−ω

β,α ) since α
and β each make up three different values and interchanging α and
β will yield different sums. For the terms of the form (Fω,ω

α,β + Fω,ω
β,α ),

interchange of α and β yields the same sum such that we get 6 unique

sums. Thus, in total, we have 15 unique sums of two-time trans-
formed first-order Fock matrices.

The three-time transformed first-order Fock matrices are
obtained from Eqs. (66)–(68), where we have explicitly written out
the sums. Since the three-time transformed Fock matrices originat-
ing from the γααββ components and the γαββα components yield
the same sums of three-time transformed Fock matrices as can be
seen in Eqs. (66) and (67), we obtain the unique contributions from
Eqs. (66) and (68). Thus, the unique sums are described by the set

{(β,α) ∈ {x, y, z},ω > 0∣F(αββ)α ,F(βαβ)α }.

The sums of permutations of the three-time transformed Fock
matrices of Eqs. (66) and (68) are only equal when α = β; hence,
we get nine unique sums of Fock matrices from each minus three
sums of Fock matrices that occur in both expressions for α = β.
Thus, in total, we obtain 15 unique sums of three-time transformed
first-order Fock matrices.

One of the constraints for adding second-order response vec-
tors is that they must possess the same frequency arguments such
that the matrix to be inverted is the same [see Eqs. (43) and (44)];
thus, one would need to add response vectors from different tensor
components in the isotropic gamma tensor; therefore, we cannot use
the gradient addition method and retain the individual γαβγδ tensor
elements.

Next, we will treat the two-time transformed Fock matrices that
are found outside the commutators in the E[3] contraction. Since
in total there are 21 unique γ-tensor components in the isotropic
cubic response function, we would in the worst-case scenario have
21 unique sums of two-time transformed second-order Fock matri-
ces. However, the terms arising from γααββ and γαββα are equivalent.
Therefore, we get that the sums of two-time transformed second-
order Fock matrices that can be added for the E[3] contractions while
retaining the individual γ-tensor components can be described by
the set

{(α,β) ∈ {x, y, z},ω > 0∣F(α,ββ),F(β,αβ)
},

where

F(α,ββ)
= F(ω,ω),−ω

αβ,β + F−ω,(ω,ω)
β,αβ + Fω,(ω,−ω)

α,ββ + F(ω,−ω),ω
ββ,α

+ Fω,(ω,−ω)
β,αβ + F(ω,−ω),ω

αβ,β , (33)

F(β,αβ)
= F(ω,ω),−ω

ββ,α + F−ω,(ω,ω)
α,ββ + Fω,(ω,−ω)

β,αβ + Fω,(ω,−ω)
β,βα

+ F(ω,−ω),ω
αβ,β + F(ω,−ω),ω

βα,β . (34)

The maximum number of sums we can obtain from each expres-
sion in Eqs. (33) and (34) is nine, respectively; however, since the
expressions are identical for α = β, we get that there are three dupli-
cates. Furthermore, there is no symmetry with respect to the inter-
change of indices α and β in Eqs. (33) and (34) as can be seen from
just the two first terms in each equation. Thus, we get a total of 15
unique sums of two-time transformed second-order Fock matrices.
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In the off-resonance regions, the only terms that give contributions
in Eqs. (33) and (34) are

F(α,ββ)
α = F(ω,ω),−ω

αβ,β + F−ω,(ω,ω)
β,αβ , (35)

F(β,αβ)
α = F(ω,ω),−ω

ββ,α + F−ω,(ω,ω)
α,ββ . (36)

For the same reason as in the resonance regions, the number of
unique sums of two-time transformed second-order Fock matrices
that can be formed for the E[3] contraction while retaining informa-
tion about individual γ tensor components is 15 per frequency.

3. Subspace extraction
In the optimization scheme developed in this paper, we make

full utilization of the subspace procedure for solving the first- and
second-order response vectors by constructing Fock matrices used
in the third- and fourth-order contractions of the Hessian tensors
as linear combinations of the contractions of subspace vectors with
the E[2] tensors used in the response equation solver. The one-time
transformed first-order Fock matrices can be written in terms of the
first-order response vectors as

[
(Fωα )si
−(Fωα )is

] = E[2]Nω
α − [

[κωα ,F0
]si

−[κωα ,F0
]is
], (37)

where the E[2] tensor contraction can be written in terms of the sub-
space vectors constructed in the symmetrized subspace procedure
presented in the work of Kauczor and Norman55 as

E[2]N =
p

∑
i=1
(Ni,g)

R
red f̄i,g +

q

∑
j=1
(Nj,u)

R
red f̄j,u

+ i(
p

∑
i=1
(Ni,g)

I
red f̄i,g +

q

∑
j=1
(Nj,u)

I
red f̄j,u). (38)

where the transformed Fock matrix f̄ is written in terms of the
matrix representation of the vectors that span the subspace, b, as

f̄ = [b,F0
] + [b,D0

]L. (39)

In the contraction of the E[3] tensor, all the one- and two-time trans-
formed first- and second-order Fock matrices contained in the ζ
term of Eq. (18) can be constructed with no additional computa-
tional cost from subspace equations (37) and (38). Likewise, the
first-order one-time transformed Fock matrices extracted from the
subspace can be used in the terms λ, σ, τ of the E[4] contraction in
Eqs. (21) and (22).

4. Compounded Fock matrices for tensor averages
In this section, a novel tensor average algorithm that minimizes

the number of Fock matrices and response vectors for the com-
putation of the isotropic second-order hyperpolarizability tensor is

presented. Using Eq. (6) and the expression for a single component
of the second-order hyperpolarizability tensor [Eq. (14)], the total
isotropic second-order hyperpolarizability can be written as

γ̄(−ω;ω,−ω,ω) =∑
α,β
(N−ωj;α [Λ

ω,−ω,ω
k;α,β,β + Λω,−ω,ω

k;β,β,α + Λω,−ω,ω
k;β,α,β ]

+ μ[2]
(jk);α[2N

ω
j;αN

−ω,ω
k;β,β + 2Nω

j;β(N
−ω,ω
k;β,α

+ N−ω,ω
k;α,β ) + 2N−ωj;β N

ω,ω
k;α,β + N−ωj;α N

ω,ω
k;β,β]

+ μ[3]
(jlk);α[N

ω
j;αN

−ω
k;βN

ω
l;β + Nω

j;βN
−ω
k;βN

ω
l;α

+ Nω
j;βN

−ω
k;αN

ω
l;β]), (40)

where the symmetry of the second-order response vectors of Eq. (30)
has been used to simplify the μ[2] contraction. All higher order
Hessians and response vectors are contained within the third-order
gradients of Eq. (40); as such, the first term in the sum is the most
computationally demanding contribution to the isotropic second-
order hyperpolarizability. Consequently, the remaining parts of this
section are devoted to reducing the number of Fock matrices and
response vectors contained within the third-order gradients. As seen
in the first term of Eq. (40), there exists a unique sum of third-order
gradients for every response vector Nω

j;α. In order to construct these
unique sums of third-order gradients as efficiently as possible, two
methods are primarily utilized, namely, density and second-order
gradient addition. Pertaining to the first optimization strategy, the
transformed Fock matrices can be seen as linear transformations of
densities,

F(D) = DL, (41)

and the linear nature of the Fock matrix construction from the densi-
ties allows for the construction of sums of Fock matrices at the same
computational cost of computing an individual Fock matrix,

F(D1) +⋯ + F(Dn) = F(D1 +⋯ + Dn). (42)

The second optimization strategy is the addition of second-order
gradients. The matrix that is to be inverted in the linear response
equation depends solely on the perturbing frequencies and can be
written as

N(Λ,ω) =M(ω)−1Λ. (43)

This implies that for a given frequency, the response equation is also
a linear transformation of the property gradients,

N(Λ1,ω) +⋯ + N(Λn,ω) = N(Λ1 +⋯ + Λn,ω). (44)

Equation (44) allows for the computation of sums of response vec-
tors at the same computational cost as computing a single response
vector. In order to make use of Eqs. (42) and (44), the Hessian
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contractions formulated within Eq. (40) are reformulated in terms
of compounded Fock matrices and compounded response vectors
wherever possible. As can be seen in the expression for the E[3]

and T[4] contractions [Eqs. (18), (21), and (22)], there exists a
recurrence of the one-time transformed first-order Fock matrices
required, and all of these Fock matrices can be extracted from the
subspace when solving the response equations of Eq. (8) using the
subspace extraction scheme developed in Sec. II B 3. The contrac-
tion of the E[3] tensors for the second-order hyperpolarizability of
Eq. (14), however, also requires the computation of second-order
response vectors [Eq. (9)], which require the construction of second-
order gradients of the form of Eq. (11), which themselves require
E[3] contractions with first-order response vectors. The E[3] con-
tractions within the second-order gradients are constructed from
two-time transformed first-order Fock matrices, as can be seen by
using Eqs. (15)–(18) with two first-order response vectors. Two-time
transformed Fock matrices are also found in the T[4] contraction
terms of Eqs. (21) and (22). Thus, the newly defined compounded
two-time transformed Fock matrices must be constructed in such
a manner that they can be used in both stages. Many of the Fock
matrices required for the T[4] contractions are confined within com-
mutators, as can be seen in Eqs. (21) and (22). Thus, one constraint
for the application of Eq. (42) is that the leading response matrices
in the commutators must be identical such that the two-time trans-
formed first-order Fock matrices within the commutators can be
added,

[κωA,Θ1 + F1] +⋯ + [κωA,Θn + Fn] =
⎡
⎢
⎢
⎢
⎢
⎣

κωA,
n

∑
j
(Θj + Fj)

⎤
⎥
⎥
⎥
⎥
⎦

. (45)

One must first note that since the contractions of the T[4] tensor
with three single-indexed response vectors yield Fock vectors that
are ultimately dotted with vectors of the form N−ωj;α , one would need
to separate the resulting Fock vectors based on the α-component of
the third-order gradient from Eq. (40). For the E[4] contributions to
γ in Eq. (40) and with further use of Eq. (12), we obtain

x,y,z

∑
α,β

N−ωj;α E
[4]
j(klm)[N

ω
k;αN

−ω
l;β N

ω
m;β + Nω

k;βN
−ω
l;α N

ω
m;β + Nω

k;βN
−ω
l;β N

ω
m;α]

= −2
x,y,z

∑
α
N−ωj;α ([

(λααββ + σααββ + τααββ)is
−(λααββ + σααββ + τααββ)si

]

+ [ (λ
αβαβ + σαβαβ + ταβαβ)is

−(λαβαβ + σαβαβ + ταβαβ)si
]

+ [ (λ
αββα + σαββα + ταββα)is

−(λαββα + σαββα + ταββα)si
] + [ (F

λστ
α )is

−(Fλστα )si
]). (46)

We will first define and treat the terms in Eq. (46) related to λ. Using
the expression for λ in Eq. (21) together with the expression for
the isotropic second-order hyperpolarizability [Eq. (40)], we get the
three λ contributions corresponding to γααββ, γαβαβ, and γαββα as

λααββ =
x,y,z

∑
β
[κωα , [κ−ωβ , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωβ ,F] + 3F−ωβ ]

+ 3F−ω,ω
β,β + 3Fω,−ω

β,β ], (47)

λαβαβ =
x,y,z

∑
β
[κωβ , [κ−ωα , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωα ,F] + 3F−ωα ]

+ 3F−ω,ω
α,β + 3Fω,−ω

β,α ], (48)

λαββα =
x,y,z

∑
β
[κωβ , [κ−ωβ , [κωα ,F] + 3Fωα ] + [κωα , [κ−ωβ ,F] + 3F−ωβ ]

+ 3F−ω,ω
β,α + 3Fω,−ω

α,β ]. (49)

From Eq. (45), we see that provided that the leading response matri-
ces are the same in Eqs. (47)–(49), one can add the two-time trans-
formed Fock matrices within the commutators. To adhere to the
constraint of Eq. (45), we divide the sums of Eqs. (47)–(49) into
terms where the leading response matrix has an α index and one
where the leading response matrix has a β index, where we fix α and
let β run through the values x, y and z. To this end, we take the terms
where α = β from the sums in Eqs. (48) and (49) and add them to
Eq. (47) to get the total expression

λααββ + λαβαβ + λαββα =
⎡
⎢
⎢
⎢
⎢
⎣

κωα ,
x,y,z

∑
β
([κ−ωβ , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωβ ,F] + 3F−ωβ ] + 3F−ω,ω

β,β + 3Fω,−ω
β,β )

+ 2[κ−ωα , [κωα ,F] + 3Fωβ ] + 2[κωα , [κ−ωα ,F] + 3F−ωα ] + 6F−ω,ω
α,α + 6Fω,−ω

α,α

⎤
⎥
⎥
⎥
⎥
⎦

+
x,y,z

∑
β≠α
([κωβ , [κ−ωα , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωα ,F] + 3F−ωα ] + 3F−ω,ω

α,β + 3Fω,−ω
β,α

+ [κ−ωβ , [κωα ,F] + 3Fωα ] + [κωα , [κ−ωβ ,F] + 3F−ωβ ] + 3F−ω,ω
β,α + 3Fω,−ω

α,β ])

=

x,y,z

∑
β
[κωβ ,Θλ

αβ + Fλαβ], (50)
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where we have introduced the auxiliary matrices

Θλ
αβ = [κ

−ω
α , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωα ,F] + 3F−ωα ]

+ [κ−ωβ , [κωα ,F] + 3Fωα ] + [κωα , [κ−ωβ ,F] + 3F−ωβ ]

+ δαβ
x,y,z

∑
ρ
([κωρ , [κ−ωρ ,F] + 3F−ωρ ] + [κ−ωρ , [κωρ ,F] + 3Fωρ ]), (51)

Fλαβ = 3(F−ω,ω
α,β + Fω,−ω

βα + F−ω,ω
β,α + Fω,−ω

α,β )

+ 3δαβ
x,y,z

∑
ρ
(F−ω,ω

ρ,ρ + Fω,−ω
ρ,ρ ). (52)

Fλαβ in Eqs. (50) and (52) are defined as the two-time transformed
compounded first-order Fock matrices that adhere to the commu-
tator density addition constraint of Eq. (45). The first index in
Fλαβ refers to that the first index of the gamma tensors whose λ
components were added was set to α. The second index in Fλαβ refers
to that the second operator in all the gamma tensors added had
β. The leading terms of all λ terms get their components from the
second operator of the gamma tensor, while the third and fourth

operators run through all possible values such that the combination
of operators still belongs to the set of gamma tensors that belong
to the set of gamma tensors within the isotropic average. For a
particular alpha, we can write the expressions for σ in Eq. (46) as

σααββ =
x,y,z

∑
β
[κ−ωβ , [κωα , [κωβ ,F] + 3Fωβ ] + [κωβ , [κωα ,F] + 3Fωα ]

+ 3Fω,ω
α,β + 3Fω,ω

β,α ], (53)

σαβαβ =
x,y,z

∑
β
[κ−ωα , [κωβ , [κωβ ,F] + 3Fωβ ] + [κωβ , [κωβ ,F] + 3Fωβ ]

+ 3Fω,ω
β,β + 3Fω,ω

β,β ], (54)

σαββα =
x,y,z

∑
β
[κ−ωβ , [κωβ , [κωα ,F] + 3Fωα ] + [κωα , [κωβ ,F] + 3Fωβ ]

+ 3Fω,ω
β,α + 3Fω,ω

α,β ]. (55)

We can then combine all the terms as

σαβαβ + σααββ + σαββα =
⎡
⎢
⎢
⎢
⎢
⎣

κ−ωα ,
x,y,z

∑
β
([κωβ , [κωβ ,F] + 3Fωβ ] + [κωβ , [κωβ ,F] + 3Fωβ ] + 3Fω,ω

β,β + 3Fω,ω
β,β )

+ 2[κωα , [κωα ,F] + 3Fωα ] + 2[κωα , [κωα ,F] + 3Fωα ] + 12Fω,ω
α,α

⎤
⎥
⎥
⎥
⎥
⎦

+
x,y,z

∑
β≠α
([κ−ωβ , [κωα , [κωβ ,F] + 3Fωβ ] + [κωβ , [κωα ,F] + 3Fωα ] + 3Fω,ω

α,β + 3Fω,ω
β,α

+ [κωβ , [κωα ,F] + 3Fωα ] + [κωα , [κωβ ,F] + 3Fωβ ] + 3Fω,ω
β,α + 3Fω,ω

α,β ])

=

x,y,z

∑
β
[κ−ωβ ,Θσ

αβ + Fσαβ], (56)

where we have introduced the auxiliary matrices

Θσ
αβ = 2[κωα , [κωβ ,F] + 3Fωβ ] + 2[κωβ , [κωα ,F] + 3Fωα ]

+ 2δαβ
x,y,z

∑
ρ
([κωρ , [κωρ ,F] + 3Fωρ ]),

Fσαβ = 6Fω,ω
α,β + 6Fω,ω

β,α + δαβ
x,y,z

∑
ρ

6Fω,ω
ρ,ρ .

(57)

The first index in Fσαβ refers to that the first index in the gamma ten-
sors whose σ components were added was set to α. The second index
refers to that the third operator in the added gamma tensors was set
to β. The leading terms of all σ terms get their components from the
third operator of the gamma tensor [see Eq. (21)], while the second
and fourth operators run through all possible values such that the
combination of operators still belongs to the set of gamma tensors
that exist in the isotropic average. Finally, we now apply Eq. (22) to

Eq. (6) and we obtain

τααββ =
x,y,z

∑
β
[κωβ , [κ−ωβ , [κωα ,F] + 3Fωα ] + [κωα , [κ−ωβ ,F] + 3F−ωβ ]

+ 3Fω,−ω
α,β + 3F−ω,ω

β,α ], (58)

ταβαβ =
x,y,z

∑
β
[κωβ , [κ−ωα , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωα ,F] + 3F−ωα ]

+ 3Fω,−ω
β,α + F−ω,ω

α,β ], (59)

ταββα =
x,y,z

∑
β
[κωα , [κ−ωβ , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωβ ,F] + 3F−ωβ ]

+ 3Fω,−ω
β,β + F−ω,ω

β,β ]. (60)

We can combine all the terms as
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τααββ + ταβαβ + ταββα =
⎡
⎢
⎢
⎢
⎢
⎣

κωα ,
x,y,z

∑
β
([κ−ωβ , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωβ ,F] + 3F−ωβ ] + 3F−ω,ω

β,β + 3Fω,−ω
β,β )

+ 2[κ−ωα , [κωα ,F] + 3Fωβ ] + 2[κωα , [κ−ωα ,F] + 3F−ωα ] + 6F−ω,ω
α,α + 6Fω,−ω

α,α

⎤
⎥
⎥
⎥
⎥
⎦

+
x,y,z

∑
β≠α
([κωβ , [κ−ωα , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωα ,F] + 3F−ωα ] + 3F−ω,ω

α,β + 3Fω,−ω
β,α

+ [κ−ωβ , [κωα ,F] + 3Fωα ] + [κωα , [κ−ωβ ,F] + 3F−ωβ ] + 3F−ω,ω
β,α + 3Fω,−ω

α,β ])

=

x,y,z

∑
β
[κωβ ,Θτ

αβ + Fταβ], (61)

where we have introduced the auxiliary matrices

Θτ
αβ = [κ

−ω
α , [κωβ ,F] + 3Fωβ ] + [κωβ , [κ−ωα ,F] + 3F−ωα ]

+ [κ−ωβ , [κωα ,F] + 3Fωα ] + [κωα , [κ−ωβ ,F] + 3F−ωβ ]

+ δαβ
x,y,z

∑
ρ
([κωρ , [κ−ωρ ,F] + 3F−ωρ ] + [κ−ωρ , [κωρ ,F] + 3Fωρ ]),

(62)

Fταβ = 3(F−ω,ω
α,β + Fω,−ω

β,α + F−ω,ω
β,α + Fω,−ω

α,β )

+ 3δαβ
x,y,z

∑
ρ
(F−ω,ω

ρ,ρ + Fω,−ω
ρ,ρ ). (63)

The first index in Fταβ refers to that the first index in the gamma ten-
sors whose τ components were added was set to α and the second
index refers to that the fourth operator in the added gamma tensors
was set to β since the leading terms of all τ terms get their compo-
nents from the fourth operator of the gamma tensor [see Eq. (22)],
while the second and third operators run through all possible val-
ues such that the combination of operators still belongs to the set of
gamma tensors that exist in the isotropic average.

From Eqs. (50) and (61), we see that we can add the terms
involving λ and τ since the they have the same matrix in the lead-
ing term, which results in a newly defined two-time transformed
compounded first-order Fock matrix,

F(λ+τ)
αβ = 6F−ω,ω

α,β + 6F−ω,ω
β,α + 6F−ω,ω

β,α + 6Fω,−ω
α,β

+ δα,β

x,y,z

∑
ρ
(6F−ω,ω

ρ,ρ + 6Fω,−ω
ρ,ρ ). (64)

For the three-time transformed first-order compounded Fock matri-
ces, we get from γααββ, γαββα, and γαβαβ that

Fλστα = F
(βαβ) + F(ββα) + F(βαα), (65)

where

F(αββ) =
x,y,z

∑
β
(Fω,−ω,ω

αββ + Fω,ω,−ω
αββ + F−ω,ω,ω

βαβ + F−ω,ω,ω
ββα

+ Fω,−ω,ω
ββα + Fω,ω,−ω

βαβ ), (66)

F(ββα) =
x,y,z

∑
β
(Fω,−ω,ω

ββα + Fω,ω,−ω
βαβ + F−ω,ω,ω

ββα + F−ω,ω,ω
βαβ

+ Fω,−ω,ω
αββ + Fω,ω,−ω

αββ ), (67)

F(βαβ) =
x,y,z

∑
β
(Fω,−ω,ω

βαβ + Fω,ω,−ω
ββα + F−ω,ω,ω

αββ + F−ω,ω,ω
αββ

+ Fω,−ω,ω
βαβ + Fω,ω,−ω

ββα ). (68)

Finally, we can combine Eqs. (64), (57), and (65) to get the total
perturbed Fock matrix as

Fα =
x,y,z

∑
β
([κωβ ,Θ(λ+τ)

αβ + F(λ+τ)
αβ ] + [κ−ωβ ,Θσ

αβ + Fσαβ]) + Fλστα . (69)

Thus, the total E[4] contraction of Eq. (46) can be written with
Eq. (69) as

x,y,z

∑
α,β

N−ωj;α E
[4]
j(klm)[N

ω
k;αN

−ω
l;β N

ω
m;β + Nω

k;βN
−ω
l;α N

ω
m;β + Nω

k;βN
−ω
l;β N

ω
m;α]

= −2
x,y,z

∑
α,β

N−ωj;α

⎡
⎢
⎢
⎢
⎢
⎢
⎣

([κωβ ,Θ(λ+τ)
αβ + F(λ+τ)

αβ ] + [κ−ωβ ,Θσ
αβ + Fσαβ] + Fλστα )

is

−([κωβ ,Θ(λ+τ)
αβ + F(λ+τ)

αβ ] + [κ−ωβ ,Θσ
αβ + Fσαβ] + Fλστα )

si

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (70)
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The number of Fock matrices needed to evaluate Eq. (70) can be
reduced further by realizing symmetries within the compounded
Fock matrices. From the definition of F(λ+τ)

αβ and Fσαβ, we see that if
we reverse the indices, the compounded Fock matrix is unchanged,
provided that α ≠ β,

Fσβα = F
σ
αβ, F(λ+τ)

βα = F(λ+τ)
αβ , α ≠ β. (71)

Next, we consider the densities required for the computation of
the compounded Fock matrices. From Eq. (64), we get

D(λ+τ)
αβ = 6[κ−ωα ,Dω

β ] + 6[κ−ωβ ,Dω
α ] + 6[κωα ,D−ωβ ] + 6[κωβ ,D−ωα ]

+ 6δαβ
x,y,z

∑
ρ
([κ−ωρ ,Dω

ρ ] + [κωρ ,D−ωρ ]). (72)

Likewise from Eq. (57), we obtain

Dσ
αβ = 6[κωα ,Dω

β ] + 6[κωβ ,Dω
α ] + 6δαβ

x,y,z

∑
ρ
([κωρ ,Dω

ρ ]). (73)

Using Eqs. (66)–(68), we can write the compounded densities for
the three-indexed first-order densities in terms of the two-time
transformed first-order densities as

D(αββ) =
x,y,z

∑
β
([κωα ,D−ω,ω

ββ + Dω,−ω
ββ ] + [κ−ωβ ,Dω,ω

αβ + Dω,ω
βα ]

+ [κωβ ,D−ω,ω
βα + Dω,−ω

αβ ]), (74)

D(ββα) =
x,y,z

∑
β
([κωβ ,D−ω,ω

βα + Dω,−ω
αβ ] + [κ−ωβ ,Dω,ω

βα + Dω,ω
αβ ]

+ [κωα ,D−ω,ω
ββ + Dω,−ω

ββ ]), (75)

D(βαβ) =
x,y,z

∑
β
([κωβ ,D−ω,ω

αβ + Dω,−ω
βα ] + [κ−ωα ,Dω,ω

ββ + Dω,ω
ββ ]

+ [κωβ ,D−ω,ω
αβ + Dω,−ω

βα ]). (76)

The three-time transformed first-order densities can be written in
terms of the compounded two-time transformed densities as

D(αββ) + D(ββα) + D(βαβ) =
x,y,z

∑
β
[κ−ωβ ,

1
3
Dσ
αβ] + [κωβ ,

1
3
Dλ+τ
αβ ]. (77)

Using density addition, one can also rewrite the E[3] contractions in
terms of compounded Fock matrices. The Fock matrices within the
commutators of the contraction of the E[3] tensor can be extracted
from the subspace of the response solver; thus, the explicit goal
of this section is not to minimize the number of Fock matrices
within the commutators; instead, the optimization goal is to add
as many compounded second-order response vectors and minimize
the number of Fock matrices outside the commutators with den-
sity addition. There are some constraints to which second-order
response vectors can be added. The first constraint is, as can be
seen from Eqs. (43) and (44), that the frequency arguments of the
response vectors that are to be added must be the same in order to
be able to solve a compounded response vector from the response
equations by a single matrix inversion. The second constraint is
that once compounded response vectors are obtained, one can no
longer obtain all the individual Fock matrices. Thus, one can only
add the response vectors that correspond to the Fock matrices that
are within the commutators that can also be added using den-
sity addition [see Eq. (45)]. Furthermore, one additional constraint
is that the compounded second-order response vectors must be
defined in a manner in which the property gradients used to form
them can be written in terms of the compounded Fock matrices
[see Eqs. (57) and (64)]. Since the second-order response vectors
possess permutation symmetry with respect to the interchange of
operator and frequency pairs [see Eq. (30)], we can use Eqs. (40),
(14), and (25) to write the total contraction of the E[3] tensors as

x,y,z

∑
α,β

N−ωj;α E
[3]
j(kl)(2N

ω
k;β(N

−ω,ω
l;β,α + N−ω,ω

l;α,β ) + 2Nω
k;αN

−ω,ω
l;β,β + N−ωk;αN

ω,ω
l;β,β + N−ωk;β (N

ω,ω
l;α,β + Nω,ω

l;β,α))

= −2
x,y,z

∑
α,β

N−ωj;α

⎡
⎢
⎢
⎢
⎢
⎣

(2ζω,(−ω,ω)
β,βα + 2ζω,(−ω,ω)

β,αβ + 2ζω,(−ω,ω)
α,ββ + ζω,(ω,ω)

α,ββ + ζω,(ω,ω)
β,αβ + ζω,(ω,ω)

β,βα + Fλ,στ
α )

si

(2ζω,(−ω,ω)
β,βα + 2ζω,(−ω,ω)

β,αβ + 2ζω,(−ω,ω)
α,ββ + ζω,(ω,ω)

α,ββ + ζω,(ω,ω)
β,αβ + ζω,(ω,ω)

β,βα + Fλ,στ
α )

is

⎤
⎥
⎥
⎥
⎥
⎦

. (78)

We now proceed to define the second-order response vectors that
can be added using gradient addition. We first apply the frequency
constraint on the response vectors [see Eqs. (79) and (81)] we wish
to combine. We thus start with the first term in the first sum of
Eq. (78), and we divide this term into two sums as dictated by the
density addition constraint [Eq. (45)], which dictates that the first-
order response vectors must be the same such that we may add the
Fock matrices within the commutators,

x,y,z

∑
β
[2Nω

k;β(N
−ω,ω
l;β,α + N−ω,ω

l;α,β ) + 2Nω
k;αN

−ω,ω
l;β,β ]

=

x,y,z

∑
β≠α

2Nω
k;β(N

−ω,ω
l;β,α + N−ω,ω

l;α,β ) + 4Nω
k;αN

−ω,ω
l;α,α

+ 2
x,y,z

∑
β
Nω

k;αN
−ω,ω
l;β,β . (79)
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We can see that if we introduce the Kronecker delta function and the
dummy variable ρ, we can rewrite Eq. (79) and implicitly define one
set of compounded second-order response vectors as

x,y,z

∑
β
Nω

k;β

⎡
⎢
⎢
⎢
⎢
⎣

2(N−ω,ω
l;β,α + N−ω,ω

l;α,β ) + 2δαβ
x,y,z

∑
ρ
N−ω,ω

l;ρρ

⎤
⎥
⎥
⎥
⎥
⎦

≡

x,y,z

∑
β
Nω

k;βN
(λ+τ)
l;α,β . (80)

In the same way, we can implicitly define a second set of com-
pounded response vectors from the second term in the first sum of
Eq. (78) as

x,y,z

∑
β
[N−ωk;αN

ω,ω
l;β,β + N−ωk;β (N

ω,ω
l;α,β + Nω,ω

l;β,α)]

=

x,y,z

∑
β≠α

2N−ωk;βN
ω,ω
l;β,α + 2N−ωk;αN

ω,ω
l;α,α +

x,y,z

∑
β
N−ωk;αN

ω,ω
l;β,β

=

x,y,z

∑
β
N−ωk;β

⎡
⎢
⎢
⎢
⎢
⎣

2Nω,ω
l;α,β + δαβ

x,y,z

∑
ρ
N−ω,ω

l;ρ,ρ

⎤
⎥
⎥
⎥
⎥
⎦

≡

x,y,z

∑
β
N−ωk;βN

σ
l;α,β. (81)

The explicit expressions for these compounded second-order
response vectors become

N(λ+τ)
j;α,β = 2N−ω,ω

j;α,β + 2N−ω,ω
j;β,α + δαβ

x,y,z

∑
ρ

2N−ω,ω
j;ρ,ρ , (82)

Nσ
j;α,β = 2Nω,ω

j;α,β + δαβ
x,y,z

∑
ρ
Nω,ω

j;ρ,ρ. (83)

From Eqs. (82) and (83), we see that the compounded response vec-
tors also possess permutation symmetry in the interchange of α and
β when β ≠ α,

N(λ+τ)
α,β = N(λ+τ)

β,α , Nσ
α,β = N

σ
β,α α ≠ β. (84)

The fact that there are repetitions of elements such as γxxxx in γ̄ gives
rise to the α-dependent additional terms 4Nω,−ω

l;α,α and 2Nω,ω
l;α,α that

break the symmetry when β = α. There will thus be six unique com-
pounded response vectors for each frequency for Nσσ

l;αβ and N(λλ+ττ)
l;αβ ,

respectively. In order for these compounded response vectors to be
usable, one also needs to be able to express their compounded prop-
erty gradients in terms of the compounded Fock matrices otherwise,
one would need to compute new Fock matrices that would render
the whole method inefficient. The compounded response vectors are
solutions to equations of the form

N(λ+τ)
α,β = (E[2] − iγR[2])−1Λ(λ+τ)

α,β , (85)

Nσ
α,β = (E

[2]
− 2ωS[2] + iγR[2])−1Λσ

α,β. (86)

The property gradients are obtained by combining the expression
for the second-order property gradient [Eq. (11)] with the expres-
sion for the second-order response vectors [Eq. (9)] together with

newly defined compounded second-order response vectors defined
in Eqs. (82) and (83). As the gradient for Eq. (86), we obtain

Λσ
j;α,β = 2Λω,ω

j;α,β + δα,β

x,y,z

∑
ρ
Λω,ω
j;ρ,ρ

= 2μ[2]jk;αN
ω
k;β + 2μ[2]jk;βN

ω
k;α − 2E[3]j(kl)N

ω
k;αN

ω
l;β

+ δαβ
x,y,z

∑
ρ
(2μ[2]jk;ρN

ω
k;ρ − E

[3]
j(kl)N

ω
k;ρN

ω
l;ρ), (87)

which can be rewritten in terms of one- and two-time transformed
first-order Fock matrices by applying Eqs. (15)–(18) to two first-
order response vectors,

Λσ
j;α,β = 2μ[2]jk;βN

ω
k;α + 2μ[2]jk;αN

ω
k;β − 2ζω,ω

j;α,β − 2Fω,ω
j;α,β − 2Fω,ω

j;β,α

+
x,y,z

∑
ρ
(2μ[2]jk;ρN

ω
k;ρ − ζ

ω,ω
j;ρρ − 2Fω,ω

j;ρρ). (88)

We can now verify that the compounded gradients can indeed
be written in terms of the compounded Fock matrices of Eqs. (57)
and (64) as

Λσ
j;α,β = 2μ[2]jk;βN

ω
k;α + 2μ[2]jk;αN

ω
k;β − 2ζω,ω

j;α,β −
1
3
Fσj;α,β

+ δαβ
x,y,z

∑
ρ
(2μ[2]jk;ρN

ω
k;ρ − ζ

ω,ρ
j;ρ,ρ). (89)

Likewise, for the gradients of Eq. (85), we obtain

Λ(λ+τ)
j;α,β = 2Λ−ω,ω

j;α,β + 2Λ−ω,ω
j;β,α + δαβ

x,y,z

∑
ρ

2Λ−ω,ω
j;ρ,ρ

= 2μ[2]jk;β[N
−ω
k;α + Nω

k;α] + 2μ[2]jk;α[N
−ω
k;β + Nω

k;β]

− 2E[3]j(kl)N
−ω
k;αN

ω
l;β − 2E[3]j(kl)N

ω
k;αN

−ω
l;β

+ δαβ
x,y,z

∑
ρ
(2μ[2]jk;ρ[N

−ω
k;ρ + Nω

k;ρ] − 2E[3]j(kl)N
−ω
k;ρ N

ω
l;ρ). (90)

Using Eqs. (15)–(18), Eq. (90) can be rewritten in terms of one-
and two-time transformed Fock matrices as

Λ(λ+τ)
j;α,β = 2μ[2]β [N

−ω
α + Nω

α ] + 2μ[2]α [N
−ω
β + Nω

β ]

− 2ζ−ω,ω
αβ − 2ζ−ω,ω

βα − 2F−ω,ω
αβ − 2F−ω,ω

βα

+ δαβ
x,y,z

∑
ρ
(2μ[2]ρ [N

−ω
ρ + Nω

ρ ] − 2ζ−ω,ω
ρρ − 2F−ω,ω

ρρ − 2Fω,−ω
ρρ ).

(91)

We can now verify that the compounded gradients can be written in
terms of the compounded Fock matrices (57) and (64) as

Λ(λ+τ)
j;α,β = 2μ[2]β [N

−ω
α + Nω

α ] + 2μ[2]α [N
−ω
β + Nω

β ] − 2ζ−ω,ω
αβ − 2ζ−ω,ω

βα

−
1
3
F(λ+τ)
αβ + δαβ

x,y,z

∑
ρ
(2μ[2]ρ [N

−ω
ρ + Nω

ρ ] − 2ζ−ω,ω
ρρ ). (92)
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The compounded gradients share the same symmetry as the com-
pounded Fock matrices of Eqs. (57) and (64). We have thus derived
compounded response vectors that abide to all three constraints and
can now rewrite the expression for the total contraction of the E[3]

tensor in Eq. (78) in terms of the compounded response vectors in
Eqs. (82) and (83) as

x,y,z

∑
α,β

N−ωj;α E
[3]
j(kl)(N

ω
k;βN

(λ+τ)
l;α,β + N−ωk;βN

σ
l;α,β)

= −2
x,y,z

∑
α
N−ωj;α

⎡
⎢
⎢
⎢
⎢
⎣

(ζσα + ζ(λ+τ)
α + Fλσ,τ

α )
si

(ζσα + ζ(λ+τ)
α + Fλσ,τ

α )
is

⎤
⎥
⎥
⎥
⎥
⎦

. (93)

We here define the compounded vector elements using Eqs. (16)–
(18) and (93) as

ζσα =
x,y,z

∑
β
[κ−ωβ , [κσα,β,F0

] + 2Fσσαβ] + [κσα,β, [κ−ωβ ,F0
] + 2F−ωβ ], (94)

ζ(λ+τ)
α =

x,y,z

∑
β
[κωβ , [κ(λ+τ)

α,β ,F0
] + 2F(λλ+ττ)

αβ ]

+ [κ(λ+τ)
α,β , [κωβ ,F0

] + 2Fωβ ], (95)

where the one-time transformed second-order compounded Fock
matrices in Eqs. (94) and (95) are defined as

Fσσαβ = D
σσ
αβL, (96)

F(λλ+ττ)
αβ = D(λλ+ττ)

αβ L. (97)

These compounded Fock matrices can be constructed as linear com-
binations of Fock matrices from the subspace of the iterative solver
and the SCF Fock matrix as

[
(Fσσαβ)si
−(Fσσαβ)is

] = E[2]Nσ
α,β − [

[κσα,β,F0
]si

−[κσα,β,F0
]is
],

⎡
⎢
⎢
⎢
⎢
⎣

(F(λλ+ττ)
αβ )

si
−(F(λλ+ττ)

αβ )
is

⎤
⎥
⎥
⎥
⎥
⎦

= E[2]N(λ+τ)
α,β −

⎡
⎢
⎢
⎢
⎢
⎣

[κ(λ+τ)
α,β ,F0

]si

−[κ(λ+τ)
α,β ,F0

]is

⎤
⎥
⎥
⎥
⎥
⎦

.
(98)

However, the second-order two-time transformed Fock matrices
must be determined as

Fλ,στ
α = Dλ,στ

α L, (99)

where the compounded densities are given by

Dσσ
αβ = [κ

σ
αβ,D0

], (100)

D(λλ+ττ)
αβ = [κ(λ+τ)

αβ ,D0
], (101)

Dλ,στ
α =

x,y,z

∑
β
([κ−ωβ ,Dσσ

αβ] + [κσσαβ,D−ωβ ] + [κωβ ,D(λλ+ττ)
αβ ]

+ [κ(λλ+ττ)
αβ ,Dω

β ]). (102)

5. One-photon off-resonance regions
All the Fock matrices defined up to this point obtain their

frequency dependence from either the first-order response vectors
[Eq. (8)] or the second-order response vectors [Eq. (9)] and thus
exhibit different frequency dependent behaviors. Insights can be
drawn from exact state response theory in order to further optimize
the approximate state theory implementation. In exact response
theory, the one-photon transition frequencies ωk from state |0⟩ to
excited state |k⟩ can be obtained by solving the generalized response
eigenvalue equation. The response vectors in Eqs. (8), (85), and (86)
in damped exact theory can be written in terms of the transition
frequencies ωk as

Nω
k;α =

μk;α

ω∣k∣ − sgn(k)(ω + iγ)
, (103)

N(λ+τ)
k;α,β =

Λ(λ+τ)
k;α,β

ω∣k∣ − isgn(k)γ
, (104)

Nσ
k;α,β =

Λσ
k;α,β

ω∣k∣ − sgn(k)(2ω + iγ)
. (105)

The elements of the damped response vectors in Eq. (103) can
be decomposed into real and imaginary parts, assuming that the
gradient is real, and the components can be expressed as

(Nω
k;α)

R
=

sgn(k)(ω∣k∣ − sgn(k)ω)μk;α

(ω∣k∣ − sgn(k)ω)2 + γ2 ,

(Nω
k;α)

I
=

sgn(k)γμk;α

(ω∣k∣ − sgn(k)ω)2 + γ2 .
(106)

Equation (106) implies that when the optical frequency ω is far from
any one-photon transition frequency ωk, the imaginary part of the
response vectors approaches zero much faster than the real part, and
thus, the response vectors will be real for all practical purposes,

Nω
α ≈ (N

ω
α )

R for ∣ωk ± ω∣≫ γ. (107)

The second-order response vectors, however, display quite a dif-
ferent behavior. In the expression for the second-order hyperpo-
larizability, there are two fundamentally different types of second-
order response vectors, as can be seen in Eqs. (104) and (105). The
response vector from Eq. (105) will have non-zero imaginary ele-
ments as 2ω → ωk, and they will thus have resonance at half the
frequency of the single-indexed response vectors of Eq. (103). Fur-
thermore, there are two fundamentally different types of two-photon
excitations: those that are mediated through a virtual state |0⟩→ |v⟩
→ | f ⟩ and those that pass through a real state |0⟩→ |m⟩→ | f ⟩. The
latter occur if both ωk/2 and ωk are eigenvalues of the generalized
eigenvalue equation. The full cubic response equation can handle
both these cases, but we can obtain significant reductions in the
computational cost if we limit ourselves to the case when we pass
through a virtual state before exciting to the final state. This case is
very similar to the residual based method of obtaining second-order
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transition amplitudes from the residual of the quadratic response
function. In the regions far from resonances of Eq. (103), many of
the first-order Fock matrices will have zero imaginary components.
The fact that the first-order response vectors [Eq. (103)] are real in
off-resonance regions implies that the first-order densities are real,
and thus,

Fωα ≈ (F
ω
α )

R for ∣ωk ± ω∣≫ γ. (108)

Furthermore, since the two-time transformed first-order densities
depend on the one-time transformed first-order densities, these like-
wise approach zero. As a result, the imaginary component of the
two-time transformed first-order Fock matrices also approach zero,
and since the compounded Fock matrices are formally sums of these
Fock matrices, their imaginary components will also approach zero
in optical regions far from any one-photon transition frequency ωk,

Fω,ω
α,β ≈ (F

ω,ω
α,β )

R
→ F(λ+τ)

α,β

≈ (F(λ+τ)
α,β )

R
,Fσα,β ≈ (F

σ
α,β)

R for ∣ωk ± ω∣≫ γ. (109)

As a consequence of this, the imaginary component of the first-
order three-indexed densities will also approach zero. This implies
that the imaginary component of the three-time transformed first-
order Fock matrices also approach zero in optical regions far from
any one-photon transition frequencies ωk,

Fω,ω,ω
α,β,γ ≈ (F

ω,ω,ω
α,β,γ )

R
→ F(σλτ)α ≈ (F(σλτ)α )

R
for ∣ωk±ω∣≫ γ. (110)

This, in turn, also has consequences for the property gradients that
also get their frequency dependence from the first-order response
vectors, as seen from Eqs. (89) and (92). Thus, in regions far from
any one photon resonance, we get that the imaginary components of
the compounded property gradients will approach zero,

Λσ
α,β ≈ (Λ

σ
α,β)

R, Λ(λ+τ)
α,β ≈ (Λ(λ+τ)

α,β )
R

for ∣ωk ± ω∣≫ γ.
(111)

Since the first-order response vectors are real in regions far from
any one-photon resonance, this means that many of the terms in
the imaginary component of the second-order hyperpolarizability
approach zero. Thus, we have that for all the terms in Eq. (14)
that get their frequency dependence from the first-order response
vectors, in regions where |ωk ± ω|≫ γ,

Im(N−ωj;α T
[4]
jklmN

ω
k;βN

−ω
l;γ N

ω
m;δ) ≈ 0, (112)

Im(N−ωj;α E
[3]
j(kl)N

ω
k;δN

ω,−ω
l;βγ ) ≈ 0, (113)

Im(N−ωj;α μ
[3]
jkl;βN

ω
k;γN

ω
l;δ + N−ωj;α μ

[3]
jkl;γN

ω
k;βN

ω
l;δ

+N−ωj;α μ
[3]
jkl;δN

ω
k;βN

−ω
l;γ − μ

[3]
(jlk);αN

ω
j;βN

−ω
k;γ N

ω
l;δ) ≈ 0. (114)

Therefore, we are left with a computationally much less demand-
ing expression for the imaginary part of the isotropic second-order

hyperpolarizability when sufficiently far away from any one-photon
transition frequencies ωk,

γ̄I(−ω;ω,−ω,ω) = Im
⎛

⎝

x,y,z

∑
α,β
(N−ωj;α E

[3]
j(kl)N

−ω
k;βN

σ
l;αβ

−N−ωj;α μ
[2]
jk;βN

σ
k;αβ − μ

[2]
(jk);αN

−ω
j;β N

σ
k;αβ)
⎞

⎠
. (115)

6. Minimal set of Fock matrices
In this section, a comparison is made between the number of

Fock matrices and response vectors required for the isotropic cubic
response function using the tensor average algorithm and the ten-
sor component algorithm. The quantities in Table I are given on
a per frequency basis and are irrespective of the molecular system
and basis set employed. The computation of the response vectors
also requires E[2] tensor contractions that can be written in terms of
Fock matrices. However, the exact number of Fock matrices needed
for this step is system, basis set, and frequency dependent. Differ-
ent systems, basis sets, and the proximity of the optical frequency
to resonances will require different numbers of trial vectors to reach
the convergence threshold. The latter aspect is due to the fact that
the preconditioner becomes close to singular near resonances and,
as a consequence, the convergence efficiency in general reduces.55

The total number of response vectors and the total number of Fock
matrices are not involved in the subspace method for the response
equations, depending on which γ-components are involved in the
isotropic cubic response function. To make the comparison as gen-
eral as possible, it is therefore the total number of response vec-
tors that is compared between the different levels of optimization.
In Table I, the tensor component column refers to the algorithms
treated in Secs. II B 1 and II B 2, where for each frequency, 21
γ-tensor components are calculated explicitly and added to evalu-
ate Eq. (6). Algorithm A refers to the computation of the isotropic
second-order hyperpolarizability when only computing unique
Fock matrices and response vectors; it serves as a reference.
Algorithm B refers to the use of density addition and sub-
space extraction. The tensor average column refers to the method
described in Sec. II B 3, where one can obtain greater computational
efficiency by computing sums of γαβγδ instead of the individual
components explicitly.

In the off-resonance regions, we can reduce the number of Fock
matrices since in these regions, the imaginary parts of the first-order
Fock matrices approach zero. Comparing columns 1 and 2 with 5
and 6 in Table I, we see that we get ∼72% reduction in the number
of Fock matrices using the reduced expression with Algorithm A.
We can however obtain an even greater efficiency while maintain-
ing the full accuracy and getting the γ-tensor components explicitly
by using Algorithm B developed in this paper. This is seen by com-
paring the first two columns with columns 3 and 4, which are for
the full second-order hyperpolarizability, where we see that we get
∼75% reduction in the number of Fock matrices required. The first
two columns represent the unique Fock matrices, while columns 3
and 4 get the one-time transformed first-order Fock matrices from
the subspace of the response solver in addition to adding the per-
mutations of Fock matrices, as outlined in Sec. II B 2, while still
returning all the 21 unique γ-tensor components explicitly. If we
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TABLE I. Number of Fock matrices and response vectors per frequency for the calculation of TPA cross sections with different algorithms. Algorithms A and B are described in
Secs. II B 1 and II B 2, respectively. Algorithms B and C both make use of the subspace extraction technique described in Sec. II B 3.

Tensor componentsa Tensor averageb

Fullc Reducedd Fullc Reducedd

A B A B C C

Re Im Re Im Re Im Re Im Re Im Re Im

First-order
Fα 6 6 0 0 6 6 0 0 0 0 0 0
Fσαβ 9 9 6 6 9 9 6 0 6 6 6 0
F(λ+τ)
αβ 18 18 9 9 0 0 0 0 6 6 0 0

Fσλτα 63 63 15 15 0 0 0 0 3 3 0 0

Second-order
F(λλ+ττ)
αβ 9 9 0 0 0 0 0 0 0 0 0 0

Fσσαβ 6 6 0 0 6 6 0 0 0 0 0 0
Fσλ,τ
α 72 72 15 15 30 30 15 15 3 3 3 3

Total 183 183 45 45 51 51 21 15 18 18 9 3

Response vectors
Nα 3 3 3 3 3 3 3 0 3 3 3 0
Nσ
αβ 6 6 6 6 9 9 6 6 6 6 6 6

N(λ+τ)
αβ 9 9 9 9 0 0 0 0 6 6 0 0

Total 18 18 18 18 12 12 9 6 15 15 9 6

aRefers to the approach described in Secs. II B 1 and II B 2.
bRefers to the approach described in Sec. II B 4.
cIncludes the full set of terms in the evaluation of the γ-tensor as expressed in Eq. (14).
dIncludes a reduced set of terms in the evaluation of the γ-tensor as expressed in Eq. (115).

use the reduced expression with Algorithm B, we obtain a reduction
in the number of Fock matrices by ∼90%, as can be seen by com-
paring columns 1 and 2 with 7 and 8. A further reduction can be
achieved when using the tensor average algorithm developed in this
paper together with the subspace extraction. Comparing the first two
columns with columns 9 and 10, corresponding to the full calcula-
tion, we see that the tensor average method in conjunction with the
subspace extraction method yields ∼90% reduction in the number of
Fock matrices with no loss in accuracy. In the tensor average algo-
rithm, the information about the individual γ-components is only
found implicitly within the tensor average, which is indeed the rel-
evant quantity for the two-photon absorption cross section. Using
the reduced expression with further use of the tensor average algo-
rithm in the off-resonance region yields a reduction in the number
of Fock matrices required by ∼97%, as can be seen by comparing
columns 1 and 2 with columns 11 and 12. The addition of gradients
in the novel tensor average scheme also allows for the computation
of fewer second-order response vectors as they are not solved explic-
itly but rather summed together. This is most relevant for the full
calculation as most of the benefits comes from adding the N(λ+τ )

response vectors. Comparing column one with nine, we see that we

get ∼17% reduction in the number of response vectors using the
tensor average method. In the off-resonance regions, we get a reduc-
tion of ∼37%, which is due to the complete omission of the N(λ+τ )

vectors.

III. EXAMPLE CALCULATIONS
A. Computational details

We adopt optimized structures of 2,5-dibromo-1,4-bis(2-(4-
diphenylaminophenyl)vinyl)-benzene (BPVB) and alanine–
tryptophan (Ala–Trp) as obtained at the B3LYP-D3/6-31(d,p) level
of theory; see Fig. 1. All response calculations were performed at
the HF level of theory and using the VeloxChem program.56 In
these property calculations, we made use of the def2-SVPD basis set,
corresponding to 545 and 1314 contracted basis functions for Ala–
Trp and BPVB, respectively. For the additional set of 22 molecules
used for the validation calculations, all molecules were optimized
using tight binding DFT,58 and the response calculations were per-
formed at the HF/def2-SVP level of theory. A damping parameter
of γ = 120 meV was employed throughout the present work. In the
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FIG. 1. Molecular structures of (a) BPVB and (b) Ala–Trp.

complex linear response equation solver, the relative convergence
threshold was set to 10−3 with respect to the gradient norm.

B. 2,5-dibromo-1,4-bis
(2-(4-diphenylaminophenyl)vinyl)-benzene

BPVB is a push–pull system with a large spin–orbit coupling
that can act as an efficient triplet sensitizer,59 and it is representa-
tive in size and has the π-conjugated character of two-photon active
compounds used in real applications. The lowest band is found in
the near UV region with a vertical transition energy of 3.47 eV. This
theoretical estimate of the excitation energy is of course unrealis-
tically high as our calculations are performed at the uncorrelated
HF level of theory. So just to make it clear from the beginning,
our goal in this section is not to make accurate predictions of any
specific chromophore spectrum but merely to demonstrate the fea-
sibility of treating systems of adequate size and excited-state char-
acter in the cubic response theory approach to TPA. The focus of
the present work is to maximize the efficiency of the construction
of Fock matrices, and choosing to illustrate our algorithms at the
level of HF is relevant as the Coulomb and exchange contributions
will be prevalent also at the level of DFT with the use of hybrid
functionals.

In Fig. 2, the calculated TPA spectrum of BPVB is shown. The
two approaches based on Eqs. (40) and (115) are denoted as “Full”
and “Reduced,” respectively. As shown in panel (a), the dominat-
ing TPA band in the low-energy region of the spectrum is found
at a photon energy of 2.12 eV or likewise at an excitation energy
of 4.24 eV. This result is a manifestation of the complementarity
of one- and two-photon spectroscopies, where the former probes
the electronic transition from the highest-occupied (HOMO) to the
lowest unoccupied molecular orbital (LUMO) forming the S1 state
and the latter probes a higher-lying state, in this case state S3, of a
different symmetry character.

As shown in Fig. 2(a), the reduced expressions for the two-
photon absorption cross section are quantitatively accurate with a
relative error of less than 5% in the shown spectral region where
the photon energy is detuned by at least 1.2 eV from the lowest
one-photon resonance. In this off-resonance region, the dominating
contributions to the TPA cross section stem from the μ[2] terms as is
seen by comparing the spectrum decomposition depicted in panels
(b)–(d).

In Fig. 3, we shift focus to the one-photon resonance region.
Here, there are important contributions also from the imaginary
part of the first-order response vectors as illustrated by the presen-
tation of the summed norm of the imaginary parts of these response
vectors; see the green dashed curve in panel (a). In this resonance
region, there are large negative contributions to σ(2) from all types
of terms, as shown in panels (b)–(d). However, the physical total
absorption cross section will remain positive as in this region it will
be dominated by the positive σ(1)-term in the expansion. Rather
surprisingly, the σ(2) spectrum based on the reduced expression
agrees well with that based on the full expression also in the one-
photon resonance region. This is, however, a finding that is specific
to this particular system and cannot be exploited in the general
case.

C. Alanine–tryptophan
The Ala–Trp dipeptide has a high density of states in the UV

region, and in such a situation, it can be advantageous to use the
cubic-response rather than the quadratic-response residue based
approach to calculate the TPA spectrum as the latter requires a spec-
tral resolution. The 30 lowest excited singlet states of Ala-Try are
presented in Fig. 4 with vertical bars representing the correspond-
ing oscillator strengths. The lowest S1 ← S0 transition is found at
2.6 eV, which means that the first one-photon resonance in the TPA
spectrum will occur at an excitation energy of 5.2 eV.
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FIG. 2. Two-photon absorption spectra of BPVB in the off-resonance region at the HF/def2-SVPD level of theory: (a) total two-photon absorption cross section σ(2). The total
magnitude of the imaginary component of the first-order response vectors ∣NI∣ = ∑x,y,z

α ∣NI
α ∣; (b) contributions to σ(2) from μ[2]; (c) contributions to σ(2) from E[3]; and (d)

contributions to σ(2) from T [4] and μ[3].

The TPA spectrum in Fig. 4 refers to the one-photon off-
resonance region, and it is calculated based on the full [Eq. (14)] as
well as the reduced [Eq. (115)] expressions for the isotropic second-
order hyperpolarizability. The strongest TPA bands in this region
are found between 4.0 eV and 4.3 eV, and they are thus associated
with rather highly excited states in the spectrum. It can be clearly
seen that the full and the reduced expressions for the TPA cross
section give rise to nearly identical results. As one approaches the
one-photon resonance at around 5.2 eV, the cross sections based on
the reduced and full cubic response functions start to differ but only
so slightly. This is further analyzed in Fig. 5, where we present the
different types of contributions to the TPA cross section as well as
the norm of the imaginary component of the first-order response

vectors in panel (a). We note a near perfect agreement for σ(2)-
contributions from μ[2] [panel (b)] and E[3] [panel (c)] terms and
a fortuitous partial cancellation of the μ[3] and T[4] terms [panel (d)]
that are not included in the reduced expression.

As we get within 0.4 eV of the one-photon resonance, the
imaginary part of the first-order response vectors becomes large, as
shown in Fig. 6(a). The T[4] and μ[3] contributions start to play a
more prominent role. The reduced expression for the second-order
hyperpolarizability is very similar to the residue approach based on
quadratic response functions, and as such, it can be viewed as a
sum of products of two-photon transition elements from the initial
ground to the final excited states. As we approach a one-photon res-
onance, the intermediate state is a true rather than a virtual state and
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FIG. 3. Two-photon absorption spectra of BPVB in the resonance region at the HF/def2-SVPD level of theory: (a) total two-photon absorption cross section σ(2). The total
magnitude of the imaginary component of the first-order response vectors ∣NI∣ = ∑x,y,z

α ∣NI
α ∣, (b) contributions to σ(2) from μ[2], (c) contributions to σ(2) from E[3], and (d)

contributions to σ(2) from T [4] and μ[3].

the TPA cross section now includes contributions from inter-excited
state transition elements. These, in turn, appear in the T[4], μ[3], and
E[3] contributions related to the second-order response vectors of
N(λ+τ ) terms and are omitted in the reduced expression in order
to gain computational efficiency in the off-resonance regions. This
effect is clearly seen in Fig. 6. As we approach a photon frequency of
5.2 eV, the T[4] and μ[3] contributions together with the terms in E[3]

that are not included in the reduced expression start to dominate the
TPA spectrum.

D. Assessment of the reduced form TPA expression
In order to further assess the accuracy of the reduced

form expression of the TPA cross section, we have performed a

benchmark investigation involving a set of 24 molecules. This set
includes small- and medium-sized molecules that are of biochem-
ical interest or being used as building blocks in two-photon mate-
rial design. For the design of organic two-photon materials, it is
well known that π-conjugated push–pull systems are of particular
interest. These are divided into the sub-classes of di-, quadru-, and
octopolar systems, typically created by variations of terminal donor
(D) and acceptor (A) groups.60 It has been demonstrated that the
length of the π-conjugated backbone and the molecular symmetry
play key roles for the two-photon activity.61 Our benchmark set of
molecules therefore includes systems spanning the chemical space
in these directions.

Specifically, symmetric conjugated push–pull systems with ter-
minal A/D groups change their quadruple moment upon excitation

J. Chem. Phys. 154, 024111 (2021); doi: 10.1063/5.0031851 154, 024111-18

© Author(s) 2021

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 4. Oscillator strengths (bars) for
the 30 lowest excited states of Ala–
Trp and the corresponding TPA spec-
trum calculated using the full (black)
and reduced (red) expressions for the
isotropic second-order hyperpolarizabil-
ity. The results are obtained at the
HF/def2-SVPD level of theory.

as to result in large second-order hyperpolarizabilites.62 Belonging to
this class and included in our study, 2,5-di(pyridin-4-yl)thiophene
is a symmetric A–π–A system with a π-electron rich thiophene
core attached to two pyridine acceptor groups; 5,5′-di(pyridin-4-
yl)-2,2′-bithiophene is a symmetric A–π–A system with a longer
conjugated core; 4,6-bis((E)-4-(diethylamino)styryl)pyrimidin-2-ol
is a symmetric D–π–D system that has been used as a two-photon
probe for the bio-imaging of enzymes.63

Asymmetric dipolar push–pull systems of the form D–π–A
have been shown to possess changes in dipole moment between the
ground and excited states, which, in turn, can yield a large nonlin-
ear second-order hyperpolarizability.62 The rigidity of the π-electron
core has also been shown to enhance the nonlinear second-order
hyperpolarizability. This can be seen by comparing fluorene and
biphenyl as π-electron cores, where the latter has a single bond that
can rotate and break the conjugation.64 As a representative dipolar
push–pull system, we have chosen 4-(7-(thiophen-2-yl)-9H-fluoren-
2-yl)pyridine that is a small dipolar system with a thiophene donor
group, a fluorene π-core, and a pyridine acceptor group as well
as para-nitroanline (PNA). We have also included the octupolar
push–pull system nitrilotris(hepta-2,4,6-trienenitrile).

In regard to state selection, we consider only valence-excited
states below the first ionization edge. We further limit the study
to include only states with significant TPA cross sections and for
which the photon energies, i.e., h̵ωf 0/2, are detuned with respect
to the corresponding lowest one-photon transition by at least three
times the γ-broadening parameter or some 0.37 eV. In Fig. 7, we
show the discrepancies between TPA cross sections at resonant

energies, i.e., σ(2)(ωf 0/2), as obtained with the full [Eq. (14)] and
reduced [Eq. (115)] expressions, and we do so for the several two-
photon transitions that pass the selection criteria for each of the
24 molecules in the benchmark set. As shown in Eqs. (107)–(114),
the validity of approximating the full expression with the reduced
one critically depends on the laser detuning compared to the γ-
broadening. The magnitude of an element of the imaginary com-
ponent of the first-order response vectors has a Lorentzian profile
shape as seen from Eq. (106), and it is therefore expected to reduce
to one tenth of its maximum value at a detuning of h̵(ω10 − ω)
= 3h̵γ = 0.37 eV. As shown in Fig. 7, there is a clear trend of reduced
relative errors with increased laser detuning. Not surprisingly, the
molecules showing the largest relative errors were those with two-
photon active states with a small laser detuning for which the cor-
responding S0 ← S1 one-photon transition was very strong. With
all states and all molecules considered, the relative error remained
below 16%, and with a laser detuning of at least 1.0 eV, the error
is throughout less than 5%. For the purpose of two-photon mate-
rial screening and design, we can thus recommend the use of the
approximate form of the expression for the hyperpolarizability as
errors of some 10% in TPA cross sections are of minor or no
concern.

E. Computational efficiency in cubic response
TPA calculations

The two key points to consider when assessing the computa-
tional efficiency in implementations of SCF response theory are the
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FIG. 5. Two-photon absorption spectra of Ala–Trp in the off-resonance region at the HF/def2-SVPD level of theory: (a) total two-photon absorption cross section σ(2). The
total magnitude of the imaginary component of the first-order response vectors ∣NI∣ = ∑x,y,z

α ∣NI
α ∣, (b) contributions to σ(2) from μ[2], (c) contributions to σ(2) from E[3], and

(d) contributions to σ(2) from T [4] and μ[3].

number of auxiliary Fock matrices that need to be constructed and
the extent to which these constructions can be made in parallel by
supplying multiple auxiliary density matrices to the program mod-
ule constructing the Fock matrix. As a benchmark, we choose the
calculation of the TPA spectrum of Ala–Trp in the optical region
between 2.5 eV and 4.5 eV with a frequency grid point separation
such that a total of 100 frequencies are employed in the spectrum cal-
culation. We consider the full [Eq. (14)] and the reduced [Eq. (115)]
forms for the calculations of the needed isotropic complex second-
order hyperpolarizability, γ(−ω;ω,−ω,ω). Our calculations are per-
formed on ten standard cluster nodes (Intel Xeon Gold 6130, 32
cores, 96 GB) with a hybrid MPI/OpenMP parallelization scheme
for the construction of Fock matrices.

1. Step 1

The first step of the calculation is to obtain the first-order com-
plex response vectors in Eq. (8) for each of the three Cartesian axes
{x, y, z}. As there is a relation between response vectors related
with positive and negative frequencies [Eq. (26)], we need only to
consider the set of positive frequencies in the calculation and there
are thus a total of 300 first-order complex response vectors to be
determined. We perform this part of the calculation in both the full
and reduced approaches, and the complex linear response equation
solver converges the entire set of 300 response vectors in a mere
eight iterations with a final dimension of the reduced subspace that
is as small as 156. The underlying reason for this remarkably small
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FIG. 6. Two-photon absorption spectra of Ala–Trp in the resonance region at the HF/def2-SVPD level of theory: (a) total two-photon absorption cross section σ(2). The total
magnitude of the imaginary component of the first-order response vectors ∣NI∣ = ∑x,y,z

α ∣NI
α ∣, (b) contributions to σ(2) from μ[2], (c) contributions to σ(2) from E[3], and (d)

contributions to σ(2) from T [4] and μ[3].

dimension of the common subspace for the entire set of complex
response vectors is the lack of one-photon resonances in this region
and the large degree of linear dependence between the resulting
response vectors. This part of the calculation finishes in a wall time
of 4 min.

2. Step 2
Once the 300 first-order response vectors are available, the sec-

ond step in the calculation can be performed. This step involves the
calculation of 2400 two-time transformed first-order Fock matrices
Fσ in Eq. (57) and F(λ+τ ) in Eq. (64), which are used to construct
the 600 second-order complex gradients Λσ in Eq. (89) and an equal

number of Λ(λ+τ ) in Eq. (92). We note that these Fock matrices are
also later reused for the E[4]-tensor contraction in Eq. (70).

When employing the reduced form, the number of Fock matri-
ces is halved owing to the fact that the N(λ+τ ) vectors do not signif-
icantly contribute in the one-photon off-resonance regions, as seen
from Eq. (104). The number of Fock matrices is then halved again
since the imaginary components of the first-order response vectors
are small and can be neglected in this region. The first-order Fock
matrices can thus be approximated with only the real component of
the 600 Fσ matrices of Eq. (57).

The second step of the calculation also involves the calculation
of the 600 three-time transformed first-order Fock matrices F(λστ ) in
Eq. (65). These are exclusively used for the E[4]-tensor contraction
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FIG. 7. Relative errors for the low-lying
two-photon transitions in the benchmark
set of 24 molecules. The results are
obtained at the HF/def2-SVP level of
theory.

in Eq. (70) and are therefore only calculated when considering the
full form of the hyperpolarizability. This is understood since all first-
order response vectors are approximately real in the one-photon off-
resonance region, and so, the imaginary parts of E[4]-terms are neg-
ligible. Consequently, the three-time transformed first-order Fock
matrices F(λστ ) need not be calculated in this case.

As a technical remark, we note that the calculation of the 3000
Fock matrices in the second step of the calculation (using the full
form) was conducted in two batches due to memory limitation on
the compute nodes and every batch requires one calculation of the
full set of ERIs. The second step in the calculation was completed
within wall times of 71 min and 13 min when employing the full and
reduced forms, respectively.

3. Step 3
With access to the compounded second-order gradients, the

third step in the calculation involves the calculation of the corre-
sponding 1200 second-order response vectors Nσ in Eq. (83) and the
same number of response vectors N(λ+τ ) in Eq. (82). Convergence
for all 2400 response vectors in the iterative linear response equation
solver is in this case reached after eight iterations, resulting in a final
subspace dimension of 1882. Despite the facts that the second-order
response vectors are much less linearly dependent than the first-
order ones and the optical second-harmonic frequency in Eq. (83)
is in resonance with the transition frequencies of the two-photon
states, we observe a convergence of all linear response equations
with less than one trial vector per response vector. When employ-
ing the reduced form of the expression for the hyperpolarizability,
there are only 600 second-order response equations to be solved and
the final subspace dimension becomes in this case equal to 1037.
The third step in the calculation is completed within wall times of

60 min and 28 min when employing the full and reduced forms,
respectively.

4. Step 4
With access to the second-order response vectors, the E[3]-

tensor contraction in Eq. (15) can be performed. For this, an addi-
tional 600 compounded two-time transformed second-order Fock
matrices Fλ ,στ as defined in Eq. (99) are required to evaluate the
total E[3]-contribution to the hyperpolarizability as provided in
Eq. (93).

The second-order response vectors Nσ are resonant in the two-
photon spectral region, as seen in Eq. (105), and they will have both
real and imaginary parts that are significant. In turn, this implies
that the second-order two-time transformed Fock matrices Fλ ,στ in
Eq. (99) will need to be determined in both the full and reduced
forms of the expressions for the isotropic hyperpolarizability. With
three Cartesian axes, 100 optical frequencies, and independent real
and imaginary parts, this adds a need for the calculation of 600 Fock
matrices in the fourth step of the calculation, which was completed
within a wall time of 13 min.

5. In total
Using the reduced form of the expression for the isotropic

complex second-order hyperpolarizability in the one-photon off-
resonance regions provides a substantial reduction in the compu-
tational effort. As can be seen in Table II, the use of the reduced
form leads to a reduction in the number of first-order Fock matri-
ces by 80% in comparison to the full form, which translated to a
reduction in the wall time for this part of the calculation by 79%.
In practical applications, we note that the drastically reduced mem-
ory footprint is equally important and the example calculation of a
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TABLE II. Number of Fock matrices and wall time (in minutes) required for the calculation of the UV/vis TPA spectrum for
Ala–Trp in the region of 2.5 eV–4.5 eV (adopting 100 frequency grid points and a damping parameter of 0.12 eV). The
calculation employs the def2-SVPD basis set (545 contracted basis functions) and is performed on ten standard cluster
nodes (Intel Xeon Gold 6130, 32 cores, 96 GB) with a hybrid MPI/OpenMP parallelization scheme for the construction of Fock
matrices.

Algorithm C

Full Reduced

Fock matrices Wall time Fock matrices Wall time

Linear response equation solver
First-order response vectors 156 4 156 4
Second-order response vectors 1882 60 1037 28
Tensor contractions
First-order Fock matrices
Λ-gradients 2400 . . . 600 . . .

E[4]-contractions 600 . . . 0 . . .
3000 71 600 13

Second-order Fock matrices
E[3]-contractions 600 14 600 13
Total 5638 150 2393 58

medium-sized system using an appropriate basis set for nonlinear
response property calculations is completed within a wall time of 1 h
on ten standard cluster nodes.

For comparison, the calculation of a TPA spectrum over a
spectral region covered by 100 frequency grid-points using the γ-
tensor component method (Algorithm A) would require an aston-
ishing 36 600 first- and second-order Fock matrices. In the present
work, we have reduced this number to 3600 and 1200 using, respec-
tively, the full and reduced forms of the γ-tensor average method
(Algorithm C).

IV. SUMMARY
Computationally tractable expressions for the calculation of

TPA spectra from the imaginary part of the second-order hyperpo-
larizability have been derived and implemented using the complex
polarization propagator approach to cubic order in perturbation
theory. The present work adopts the Hartree–Fock approximation
with Fock-matrix driven handling of the contractions of second-,
third-, and fourth-order generalized Hessian matrices with trial and
first- and second-order response vectors.

We have demonstrated a highly efficient algorithm for obtain-
ing TPA cross sections for randomly oriented systems where
the isotropic γ-tensor is put in computational focus without
explicit reference to individual tensor components. The presented
tensor-average algorithm introduces compound Fock matrices and
response vectors, and without the introduction of approxima-
tions, TPA cross sections are determined with a mere 10% of
the number of unique Fock matrices required in the tensor-
component approach. With the introduction of physically well
motivated approximations in one-photon off-resonance regions
of the spectrum, the number of Fock matrices in the calcula-
tion has been further reduced by a factor of three. The error in

the TPA cross section as introduced by these approximations is
shown to be negligible in example calculations on the dipeptide
alanine–tryptophan and the two-photon chromophore 5-dibromo-
1,4-bis(2-(4-diphenylaminophenyl)vinyl)-benzene as well as for a
wider benchmark study.

In contrast to conventional calculations of TPA moments
from residues of quadratic-response functions, the cubic-response
approach is perfectly applicable to systems with a high density of
states. Combined with the fact that the presented novel reduced-
form algorithm largely removes central processing unit (CPU) and
memory bottlenecks associated with cubic-response based TPA cal-
culations, we argue that our work will be important so as to enable
TPA spectrum simulations for large-scale systems of real tech-
nical interest. Before reaching this point, however, it is impera-
tive to extend the present work to the level of DFT. Since the
exchange–correlation kernels are nonlinear, the constructions of
compound Fock matrices will not directly apply to the correspond-
ing Kohn–Sham matrices. However, we expect the Coulomb and
exact exchange contributions treated in the present work to dom-
inate the overall computational cost so that a more expensive
approach can be afforded for the exchange–correlation contribu-
tions. This will be the study of future work.
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