Title |
Deep learning based evaluation of spermatozoid motility for artificial insemination / |
Authors |
Valiuškaitė, Viktorija ; Raudonis, Vidas ; Maskeliūnas, Rytis ; Damaševičius, Robertas ; Krilavičius, Tomas |
DOI |
10.3390/s21010072 |
Full Text |
|
Is Part of |
Sensors.. Basel : MDPI. 2021, vol. 21, iss. 1, art. no. 72, p. 1-14.. ISSN 1424-8220 |
Keywords [eng] |
Convolutional neural network (CNN) ; Deep learning ; Sperm head detection ; Sperm quality |
Abstract [eng] |
We propose a deep learning method based on the Region Based Convolutional Neural Networks (R‐CNN) architecture for the evaluation of sperm head motility in human semen videos. The neural network performs the segmentation of sperm heads, while the proposed central coordi-nate tracking algorithm allows us to calculate the movement speed of sperm heads. We have achieved 91.77% (95% CI, 91.11%–92.43%) accuracy of sperm head detection on the VISEM (A Mul-timodal Video Dataset of Human Spermatozoa) sperm sample video dataset. The mean absolute error (MAE) of sperm head vitality prediction was 2.92 (95% CI, 2.46–3.37), while the Pearson cor-relation between actual and predicted sperm head vitality was 0.969. The results of the experiments presented below will show the applicability of the proposed method to be used in automated artificial insemination workflow. |
Published |
Basel : MDPI |
Type |
Journal article |
Language |
English |
Publication date |
2021 |
CC license |
|