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Introduction
Physical training is an effective tool for health diagnostics, rehabilitation, and preven-
tion of unwanted health problems such as obesity, hypertension or Parkinson’s disease 
[2, 49, 58]. Kinetic therapy sessions can help both healthy people and people with motor 
dysfunctions to improve their control, strength, skills and the range of motion [22]. 
However, older and disabled people may have difficulties attending physical training ses-
sions outside of their homes, while they rarely perform enough exercises at home due to 
low motivation. Motivation can be increased by exergames, which employ the advances 
in virtual reality, sensory and motion tracking technologies [17, 37, 41]. Motion sensor 
technology can be employed to monitor certain elements of physical training and pro-
vide motivation by a virtual personal trainer [62]. Analysis of human skeleton data in 
motion can be used to provide feedback on the incorrect body posture [59] or incorrect 
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sequence of exercises as well as to analyse the accuracy of movements [52], perform 
gait analysis for "Get Up and Go Test" in rehabilitation [9], capture long-term trends in 
human physical fitness [10], and perform ergonomic studies [50] as well as to facilitate in 
rehabilitation of stroke patients [64] and to recognize hand gestures [63]. Data obtained 
by using the Kinect sensor is recognized as of sufficient quality for using for diagnostics 
and rehabilitation [11, 15, 55] and can serve as an alternative to other high cost motion 
tracking systems such as Vicon and OptiTrack.

Therefore, there is a need for developing a reliable human motion observation system 
that could be used in home environment for providing feedback on physical training 
exercises performed by healthy or recovering subjects The aim of the paper is to propose 
a novel method for fusion of data provided by three Kinect devices, and to evaluate the 
method experimentally using a multi-Kinect based virtual training system. The paper 
describes the proposed multi-Kinect sensor system, which uses three Kinect devices for 
monitoring in-home training and provide an accurate view on subject’s performance 
and movement related state-of-health characteristics. Our contributions are detailed as 
follows:

1.	 A novel data fusion algorithm using algebraic operations in vector space,
2.	 The deployment of the system using three Kinect units,
3.	 Analysis of dynamic characteristics of human motion during physical exercising,
4.	 Evaluation of intra-session reliability of the system using test–retest reliability met-

rics (intra-class correlation coefficient, coefficient of variation and coefficient of 
determination).

The structure of the remaining parts of paper is as follows. “Related work” section 
discusses the related work. “Methods” section describes the three-Kinect based subject 
tracking method, presents the deployment of multiple Kinect units, and discusses the 
measured human skeleton performance measures. “Experiments and results” section 
provides the results of experiments and “Discussion” section discusses the results and 
outlines the limitations. Finally, “Conclusions” section presents conclusions.

Related work
Since its arrival in 2010, the Microsoft Kinect™ (Kinect) [53] technology have been used 
for various applications. Kinect combines optical video Red, Green, and Blue (RGB) 
camera and infrared (IR) radar based depth-sensing technologies for skeleton tracking 
and capturing of 3D motion. In 2014, a new and more precise Kinect sensor based on 
time-of-flight technology was introduced [47]. Kinect SDK 2.0 allows tracking of up to 
25 body joints. With Kinect sensors able to detect human motions in real time, they offer 
possibilities for enhancing the physical and social well-being of people with restricted 
mobility, and assisted living environments for the elderly and people with disabilities 
[23].

One of the main drawbacks of the Kinect skeleton model that makes it difficult to 
directly apply for healthcare is the use of a non-anthropometric kinematic model, which 
allows for variable limb lengths [45]. The accuracy of Kinect may be improved by more 
precise estimation of anatomical features, using the best orientation of Kinect facing 
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the subject, or using multiple Kinect units. More complicated applications for analysis 
of complex human movement sequences require to use multiple cameras to capture 
orthogonal views of the same subject in order to extract the motion information and 
assure an objective evaluation of the training progress. For example, the studies have 
reported the use of two [16], three [31, 65, 66], four [44, 51], or even five [39] Kinect sen-
sors for estimating joint positions.

Combination of data from multiple Kinect devices requires the solution of several 
technical problems such as fusion of inconsistent and noisy depth measurements, and 
estimates of 3D joints’ positions. Using point clouds and depth information obtained 
from multiple cameras and performing object detection on colour images can improve 
the detection of a person using a combination of multiple Kinects [57]. Different variants 
of deployment of Kinect devices can be used for obtaining the 3D model of skeleton, for 
example, by using different Kinect devices to capture different parts of a human body [7], 
to capture depth data and RGB data from different viewpoints [16], to aggregate tracked 
data by weighting [4], to solve occlusion problems by data fusion [31]. A human pose 
recognition system utilizing a combination of body pose estimation and tracking using 
ridge body parts features from the joints points of the skeleton model, capable of achiev-
ing the mean recognition rate of 91.19%, is described in [23]. The same team presented 
a real-time tracking system for body parts pose recognition utilizing the ridge data of 
depth maps to estimate 3D body joint angles using the forward kinematic analysis [25]. 
A bag of features approach to re-identifying people among different view-independent 
multi camera tracks can achieve higher than 90% classification rate [21].

Accurate skeleton reconstruction from multiple sensors requires specific calibration 
procedures. Calibration procedures for multiple Kinect sensors with at least three acqui-
sitions (point cloud fusion) are considered in [12]. By optimizing the re-projection error 
and setting weights to the external cameras in different locations, a joint calibration 
method of multiple devices is presented in [34]. Kim et al. [30] combine joint depth data 
retrieved from multiple sensors by transforming the coordinate systems in point clouds 
into a single coordinate system using the iterative closest point method. Chen et al. [8] 
combine the joint coordinates acquired by two Kinect devices to a common coordinate 
system and apply a heuristic skeleton fusion algorithm to reconstruct convinced human 
pose. Het et al. [20] adopted the information weighted consensus filter (IWCF) method 
based on roper weighting the prior and measurement information for human skeleton 
fusion from multiple view. Removing noisy effects from the background and tracking 
human silhouettes using temporal continuity constraints of human motion information 
can further improve the results [24].

The problem of accurately tracking the 3D motion of a monocular camera in 
a known 3D environment and dynamically estimating the 3D camera location is 
described in [32], suggesting a fully automated landmark-based camera calibration 
to initialize the motion estimation and employ extended Kalman filtering techniques 
to track landmarks and to estimate the camera location. Kalman filter also was used 
in other studies such as [13, 33, 39, 44, 48] for reducing the noise in the acquired 
signals. Several studies have demonstrated that Kalman filter has achieved the best 
denoising performance when compared to other filter-based approaches [14]. Other 
types of filters such as double exponential smoothing filter [65], median filtering [67], 
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fourth-order low-pass Butterworth filter [40]. also have been used. However, we use 
of filtering methods have not been demonstrated to increase the accuracy for multi-
Kinect systems [10].

The reliability of Kinect V2 is not lower as that of other (high cost) motion tracking 
systems and Kinect can be used as a reliable and valid clinical measurement tool [33, 
46, 68]. However, such studies typically used simple poses such as standing, walk-
ing, sit down and stand up, and for more complex poses such as performing different 
kinds of physical exercises, the accuracy reliability still could improved using multiple 
Kinect sensors rather than a single sensor, which was demonstrated to fail, for exam-
ple, for tracking a lying person [43].

Several studies analysed the use of multiple Kinect sensors for human tracking [5, 
39, 54, 56], however, these studies were oriented at tracking multiple skeletons at the 
same time, and all experiments were performed using standard poses when a sub-
ject is standing on both feet and performing movements in front of cameras. None of 
these studies were validate for uncommon poses such as a person lying on the ground. 
The summary of the related work is presented in Table 1.

Methods
In this section, we describe our proposed human subject tracking method based on 
the use of three Kinect sensors. The method is based on the fusion of data received 
from three Kinect devices and includes the alignment of the Kinect coordinate sys-
tems using algebraic operations in vector space. Hereinafter we describe the appli-
cation of our method by detailing the required deployment of Kinect devices. We 
finalize this section with the description of skeleton performance measures imple-
mented for the assessment of human limb performance during a physical training 
session.

Table 1  Summary of related work on multi-Kinect systems

References Number 
of Kinect 
sensors used

Data pre-processing (filtering) 
methods used

Data (skeleton) fusion methods used

[3] 3 Mamdani Fuzzy Inference Scheme 
(FIS)

Maximization of energy sum function 
over candidate positions

[8] 2 Not used Coordinate transform with joint state 
inference

[12] 4 Not used Point cloud matching

[16] 2 Not used Point cloud registration in a maximum a 
posteriori framework

[20] 4 Information weighted-consensus filter 
(IWCF)

Interactive multiple model (IMM)

[31] 3 Not used Iterative Closest Point (ICP) algorithm & 
Rigid Transformation (RT) to reference 
frame

[39] 5 Kalman filter Weighted Measurement Fusion

[56] 3 Kalman filter Trajectory matching

[57] 4 Median filter Iterative Closest Point (ICP) algorithm

[65] 3 Double exponential smoothing Weighted position averaging
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Proposed data fusion algorithm

Suppose we have Kinect sensors K1,K2, . . . ,Kn that monitor an intersecting volume of 
space. The position of each Kinect sensor p is denoted by coordinates Cnp =

(

xp, yp, zp
)

 . 
Each sensor has its own coordinate system CSp and all the data sent by that sen-
sor are provided in this coordinate system. For simplicity, we consider only two sen-
sors K1 and K2 , and two reference joints J1 and J2 . We transform the local coordinate 
systems obtained from different cameras into a single global coordinate system using 
linear algebra operations in vector space [35]. Let us denote the transformation that 
transforms data from a Kinect sensor p to a common coordinate system as Tp. Then 
the final coordinates of point q from sensor p in a common coordinate space are 
(

xfq , yfq , zfq
)

= Tp

(

xpq , ypq , zpq
)

.
The transformation consists of two steps:

1.	 Rotate sensor coordinate space so that its x0z plane matches the floor plane. It is 
needed because each sensor is oriented at different angles to the floor.

2.	 Rotate and move coordinate space so that it matches common coordinate space.

Step 1 is needed because each sensor is oriented at different angles to the floor. For-
tunately, the Kinect sensor detects and reports the floor plane. Given the fact that all 
sensors monitor the intersecting volume of space, in most cases all sensors will stand 
on the same floor plane. The goal of the first transformation is to modify each sensor’s 
coordinate space so that its x-0-z plane is the same as the floor plane. Note that the y axis 
points upwards in the Kinect’s coordinate system (Fig. 1).

Suppose that floor plane equation in sensor’s p coordinate system is.

Then the normal vector for the plane is 
−→
Pp =





Ap

Bp

Cp



 . The desired normal vector for 

this plane is 
−→
N =





0
1
0



 , because it represents the desired x0z plane. Then there is a 

matrix Tp1 that could be applied to vector 
−→
Pp to get vector −→N  : 

−→
PpTp1 =

−→
N  . The 

(1)Apx + Bpy+ Cpz + Dp = 0.

Fig. 1  The Kinect coordinate system
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transformation could be applied to whole sensor’s point space. After this transformation 
sensor stays above the floor at the distance D , so it must be subtracted from the result 
we got after the transformation. Thus, the final transformation to transform the sensor’s 
coordinate system so that its position and orientation matches the floor is:

here Ap is original sensor’s p space, Tp1—transformation matrix, Dp—free coefficient 
from floor plane equation and Atp is transformed sensor’s p space.

After this transformation, all sensors lie on the same plane and are oriented with no 
tilt. This simplifies further transformations as we only need to study a two-dimensional 
case only.

Suppose we have two sensors K1 and K2 and two reference joints J1 and J2 . Let us use 
the origin of the K1 sensor coordinate system as the base. We can select any point in 
the space monitored by both sensors, say, J3 , and two vectors 

−−→
K1J3 and 

−−→
K2J3 (see Fig. 2). 

The first vector’s coordinates in coordinate space CS1 CS1 are the coordinates of point 
J3 in this coordinate system. The same holds true for the second vector and CS2 . The 
vector connecting both origins of coordinate spaces is 

−−→
K1K2 . It is easy to see that 

−−→
K2K1 =

−−→
K2J3 −

−−→
K1J3 . The vector CS2 must be shifted by to match CS1.

First, we must find the angle between the coordinate systems of both sensors. Let 
us denote the vector 

−→
J1J2 as 

−→
J  . This vector has different coordinates in each sen-

sor’s coordinate system. Let us choose the polar coordinate system. Then the system 
vector’s coordinates are (R1,ϕ1) for sensor K1 and (R2,ϕ2) for sensor K2 . The angle 
ϕ1 shows the angle between sensor’s K1 abscissa axis and vector 

−→
J  and ϕ2 shows the 

angle between sensor’s K2 abscissa and the same vector 
−→
J  . Let us rotate the vector 

−→
J  

by the value of −ϕ1 . This would change the polar rotation coordinate of the vector in 
both sensors’ coordinate systems by this value. Then the resulting vector’s direction 
matches the sensor’s x axis direction and the new angle between K2 abscissa and 

−→
J  

(2)Atp = ApTp1 −
(

0,Dp, 0
)

Fig. 2  Rotation of sensor coordinate systems for data fusion
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is ϕ2 − ϕ1 . As both rotated vector and K1 x axis point the same direction, this is also 
the angle ϕr2 between the coordinate systems of K1 and K2 . To find the value of ϕr2 , we 
need to find the values of ϕ1 and ϕ2 as follows: ϕrp = ϕp − ϕ1 , where

To apply the transformation, the rotation could be done in the polar coordinate sys-
tem and then transformed into the Cartesian coordinates. If the original coordinates 
of a point Jq are [xq , yq] , in the polar coordinate system, they become 
[

Rq ,ϕq
]

=

[√

xq2 + yq2,ϕq

]

 . Then we need to rotate this by angle ϕr2 and the resulting 

vector is 
[

Rq ,ϕq + ϕr2
]

 which, in square coordinate system, is equal to 
[

Rqcos
(

ϕq + ϕr2
)

, Rqsin
(

ϕq + ϕr2
)]

 (Fig. 2) as follows:

here Rq =

√

x2q + y2q .

Once we have applied the transformations Tp1 and rotation ϕr2 , we need to move 
both sensors’ coordinate systems’ origins to the same point. After these transforma-
tions, the sensors will be oriented parallel to floor, on the same height, facing the 
same direction and on the same point in space. Thus, the coordinate systems of both 
sensors will be the same.

Suppose that the coordinates of J3 (see Fig. 3) are [x13, y13] in the coordinate space 
CS1 and [x23, y23] . Then the required transformation vector is

In general case, we compare sensor Kp against K1 . The required transformation is:

(3)ϕi =























acos

�

xi
�

x2i +z2i

�

, if xi ≥ 0

2π − acos

�

xi
�

�

x2i +z2i
�

�

, if xi < 0

,

(4)Bt2 =
[

Rq cos
(

ϕq + ϕr2
)

, yq ,Rq sin
(

ϕq + ϕr2
)]

for ∀q ∈ Bt1,

(5)T21 = [x23, y23]− [x13, y13],

Fig. 3  Coordinate systems of two Kinect sensors observing the same joint
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Thus, the transform of a set of points Bp from sensor’s Kp coordinate space CSp to the 
sensor’s K1 coordinate space CS1 as B1 is as follows:

here Bp is the original coordinate space of sensor p , Tp1 – the transformation matrix, 
Dp – the free coefficient from floor plane equation and Btp is the transformed coordinate 
space of sensor p . Select any vector J3 of two points known by both sensors with coordi-
nates [x13, y13] in CS1 and 

[

xp3, yp3
]

 in CSp:

If sensors do not move during monitoring, the position of sensors does not need to 
be re-evaluated after each calculation. The parameters ϕrp and Tp2 can be pre-calculated 
using the same methods as described above, and the transform is simplified as follows:

here Rq =

√

x2q + y2q  and B1 = Bt2 + Tp2.

This transformation could be applied to any number of sensors. The base sensor K1 
must be chosen and data from each other sensor Kp could be transformed to coordi-
nate space CS1 using the suggested algorithm one by one. The algorithm does not require 
to know the positions of sensors in advance, so any configuration of the Kinect sensors 
could be used. However, due to noisy input and camera capture errors, the obtained 
skeletal joints in the global coordinate system may not coincide perfectly. Therefore, 
the averages of joint coordinates are used to best represent the skeleton. The aggregated 
human skeleton is computed from the average positions of joints. The calculations are 
summarized as an algorithm in a data flow diagram in Fig. 4.

Deployment of kinect units

In Fig. 5, the deployment of three Kinect V2 devices for the capture of human skeleton 
positions is given. The subject is assumed to be standing in the middle of the room, while 
Kinect devices are located around him at 120° angles with respect to each other while 
keeping within the typical range of Kinect sensors (1.2–3.5 m). The system uses three 
Kinect sensors and three Client Personal Computers (PCs) for sensor data reading and 
processing. Each Kinect sensor device is connected to its own computer. The system also 
has the Wi-Fi Router for transmission of data between computers and Main Server. The 
data streamed is packetized and contains RGB and depth stream data. The data is sent to 
the Main Server, where the data is aggregated, stored and processed. Since each Kinect 
device is connected to its own Client computer, the lag of the system does not exceed 

(6)Tp1 =
[

xp3, yp3
]

− [x13, y13],

(7)Bt1 = BpTp1 −
[

0,Dp, 0
]

,

(8)Tp3 =
[

xp3, 0, yp3
]

−
[

xp3, 0, yp3
]

,

(9)B1 = Bt2 + Tp2

(10)Bt1 = BpTp1 −
[

0,Dp, 0
]

,

(11)Bt2 =
[

Rq cos
(

ϕq + ϕr2
)

, yq ,Rq sin
(

ϕq + ϕr2
)]

for ∀q ∈ Bt1,
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the lag of a single Kinect unit system (60–80 ms). A total latency of the system, which 
included calculation of skeleton key performance indicators (KPIs), is between 60 and 
80 ms (mean = 70.8 ms), which was determined using the USB mouse based method as 
described in [36].

Skeleton performance measures

To evaluate the quantitative performance of human skeleton during motion activities 
the systems provides several types of metrics (or KPIs) as follows: evolution of joint 

Fig. 4  Data flow diagram of the Kinect sensor data fusion algorithm
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movement amplitudes and velocities [6], position of joints, angles at joints, functional 
working envelope (FWE), velocity of joints, rate of fatigue [18], mean velocity of the 
hand, normalized mean speed, normalized speed peaks, shoulder angle, and elbow angle 
[38]. The angle at joint is calculated as the scalar product between the segments (links) 
that connect at a given joint. For example, to compute the elbow angle, the scalar prod-
uct is calculated between the normalized forearm and upper arm vectors. The rate of 
fatigue is calculated as the average difference in the joint movement velocity in the first 
versus the last half of a training session [29]. FWE defines the volume generated using all 
possible points touched by a considered body limb.

Experiments and results
Data collection and processing

The data for the experiments was collected from 28 healthy subjects (16 males and 12 
females) with no reported motoric disorders, aged 22–36 years (mean 25.6 ± 1.8), height 
1.68–1.92 m. All subjects were informed about the purpose study and participated in the 
tests freely. Data collection was approved by the local ethics committee and strictly fol-
lowed the principles of the Helsinki declaration.

We have set up three Kinect devices (as described in Section 3.2) that send wirelessly 
the registered joint data to a computer that performs the required computations to com-
pose full human skeleton and analyse motion sequences. The subjects were informed to 
move within 1–3 m of distance with respect to the Kinect sensors so that the data would 
not be overly affected by low resolution of depth measurements and noise [61].

We have collected the recordings of the Kinect skeleton data and performed data 
fusion using custom software written in C#. We have recorded the 25 joints of skel-
eton data for each person, while the position of three Kinect sensors throughout our 
experiment has not changed. Three thousand frames of video capture were used in each 

Fig. 5  Deployment diagram of Kinect devices for virtual training system. Placement is schematic only. Real 
angle of placement is 120°
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experiment. The captured data was post-processed by aligning all the modalities in the 
temporal domain.

For time synchronization, we have adopted the solution proposed in [42], which uses 
the precision time protocol (PTP) allowing to synchronize computers in a network with 
millisecond accuracy. The timestamps of the captured data frames were used to align the 
data streams from both Kinect devices in time.

Once the full skeleton data is obtained, further analyses have been performed to eval-
uate recognition accuracy and reliability. Finally, the skeleton data (positions of joints) 
were further analysed using MATLAB (MathWorks, Inc., Natick, MA) to calculate the 
individual skeleton KPI values and evaluate system’s reliability.

Physical exercise protocol

For a physical exercise sequence, we adopted a training protocol described in [61]. The 
training protocol consisted of three parts: (1) Warm-Up (10 min): slow movements of 
main body muscle groups followed by static and dynamic stretching exercises, (2) Active 
exercise (45 min): continuous muscle activities with an increasing level of difficulty and 
intensity, starting with a short walk, alternated with step exercises on the platform. Then, 
the subjects perform upper-limb lifts and lower limb flexions and extensions (knee lifts, 
side and forward–backward leg lifts, leg curls), repeated over time, and (3) Recovery 
(10 min): various postural control and spine mobility exercises.

Posture analysis

Table 2 shows the aggregated data for several standard and non-standard human pos-
tures. Each posture was measured for 20  s, during which the subject was required to 
stand still. The best and worst recognized human joints with their recognition error are 
given, and the entire visibility of human skeleton is evaluated.

Assessment of accuracy

We assessed the accuracy of the developed multi-Kinect system using the marker track-
ing approach described in [60]. Reflective markers made of a polystyrene foam with a 
sticky back surface were attached to the joints of the human body (except hands) and 
tracked using a Vicon motion capture system (Vicon, Oxford, UK) with a sampling rate 
of 120 Hz. The Vicon tracking system was controlled by a different computer. Time syn-
chronization between Vicon and our system was performed using cross-covariance of 
both data streams. The spatial coordinates of the reflective markers captured by Vicon 
were interpolated using cubic spline interpolation and downsampled to the original 
Kinect frame rate of 30 Hz. Then the coordinates were transformed to the Kinect coor-
dinate system, assuming that X is assigned to the walking direction, Y is assigned to the 
vertical axis, and Z is the depth axis, and used as ground truth for comparing the accu-
racy of the proposed multi-Kinect system and a single Kinect system facing the subject. 
The results of comparison are presented Fig. 6. The overall results show an improvement 
of 15.7% in accuracy while using the multi-Kinect system. The result is statistically sig-
nificant (p < 0.001 using the Student’s paired t-test).
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Table 2  Accuracy of the three-Kinect sensor based recognition of analysed human poses

Pose picture Pose title/average 
error

Best recognized 
segment and its 
error

Worst recognized 
segment and its 
error

Human skeleton 
visibility

Standing facing 
camera

10%

Right ankle–right 
hand (0.4%)

Left wrist–left hand 
(36%)

100%
Left arm recognized 

incorrectly. Right leg 
is not fully tracked

Standing sideways to 
the camera

12%

Spine mid–right 
shoulder (0.1%)

Mid hip–left hip (54%) 72%
Hands are dispro-

portionate. Right 
shoulder recognized 
incorrectly

Squatting while hold-
ing legs

15%

Right ankle–right foot 
(1.5%)

Right ankle–right 
hand (44%)

68%
Legs recognized incor-

rectly. Fingers are 
disproportionate

Reaching toes stand-
ing

35%

Right hip–right knee 
(10.4%)

Spine mid–left shoul-
der (102%)

76%
Hands are in wrong 

position. Head and 
spine recognized 
incorrectly

Lying face down
17%

Right hip–right knee 
(1.4%)

Left wrist–left hand 
(70%)

68%
Proportions of body 

parts are correct, but 
positioning is not 
correct

Standing upside 
down

24%

Left hip–left knee 
(1.0%)

Neck–spine mid 
(71%)

Recognized as stand-
ing normally instead 
of upside down

Standing on one leg. 
Bending forward 
and holding 
another leg

21%

Neck–spine mid 
(0.4%)

Left wrist–left hand 
(133%)

88%
Hands are dispropor-

tionate

Laying legs up
31%

Right knee–right 
ankle (0.7%)

Spine mid–right 
shoulder (106%)

64%
Skeleton is completely 

warped: hands 
instead of feet. Other 
body parts are also in 
wrong places

Stretching
32%

Spine mid–right 
shoulder (1.4%)

Right ankle–right 
hand (62%)

88%
Body is not fully 

tracked–legs are 
tracked only above 
knees. Shoulder line 
is too high

Low start pose
25%

Neck–spine mid 
(2.9%)

Right ankle–right 
hand (63%)

80%
Legs are incorrect. 

Spine and neck 
are not accurately 
recognized
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Analysis of dynamic characteristics of skeleton motion

Following [27], we use the movement characteristics (amplitude, velocity) as a proxy var-
iable to evaluate relative human fatigue during a physical training session. To analyse the 
dynamic characteristics of skeleton motion during the training exercise, the evolution of 
the speed of joints, which is computed as the distance travelled by the analysed joint in 
the time interval, is monitored. Figure 7 shows a graphical representation of joint fatigue 
calculated as the decrease of joint velocity in the second half of the training session with 
respect to the joint velocity in the first half of the session.

The travelled distance of each body limb that connects two joints of the body is also be 
used to evaluate relative fatigue during the training session (Fig. 8). This information can 
be used by a physiotherapist to adjust the training sequence or rehabilitation procedure.

Table 2  (continued)

Pose picture Pose title/average 
error

Best recognized 
segment and its 
error

Worst recognized 
segment and its 
error

Human skeleton 
visibility

Sitting. legs straight
18%

Spine mid–right 
shoulder (1.4%)

Left wrist–left hand 
(53%)

96%
Body part lower than 

shoulders are tracked 
incorrectly (points 
are in incorrect posi-
tions)

Bending sideways
20%

Right hip–right knee 
(0.1%)

Spine mid–left shoul-
der (113%)

96%
Most of the points 

are misaligned with 
actual pose

Bend stretching while 
laying

21%

Spine mid–left shoul-
der (1.1%)

Left knee–left ankle 
(51%)

80%
Both legs and arms are 

tracked on arms

Fig. 6  Comparison of the accuracy of joint coordinate measurement using multi-Kinect and single-Kinect 
system
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The asymmetries in the joint movement amplitudes and speed between the left side 
and the right side of the body are important for monitoring the correctness of execution 
of training sequence as well as for rehabilitation of traumas. In some cases, such asym-
metries can indicate some neurological disorders such as Huntington’s disease due to 
rigidity of limbs. Here we calculate the asymmetry of the body movements as the ratio 
between the maximal speed of left side and right side joints achieved during the train-
ing session. The example of results is presented in Fig. 9. Note that we did not calculate 
mean values for all subjects due to individual differences in subjects, which make the 
averaging of values meaningless.

The FWE of a joint is calculated by collecting the positions of a joint in a 3D coordi-
nate space. Then a probability density function (PDF) estimate of position points in the 
3D space is calculated as the multiply of probability densities in each dimension. Finally, 
an isosurface is drawn at a specific threshold value of 3D PDF. The threshold value is 
calculated for the envelope to contain 95% of data points. The example of FWE for the 
shoulder-elbow link during a training exercise is given in Fig. 10. The volume and surface 
area of FWE can be used as a KPI for further analysis of human performance character-
istics when performing physical motion tasks.

Fig. 7  Example of fatigue of joints during a physical training exercise (Subject 1): a larger value of fatigue 
(measured in acceleration units, m/s2) is indicated by a hotter colour

Fig. 8  Example of fatigue of body limbs during a physical training exercise (Subject 1): a larger value of 
fatigue (measured in acceleration units, m/s2) is indicated by a hotter colour
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Evaluation of reliability

The reliability of human skeleton KPIs, i.e. normalized mean limb length (NML), normal-
ized mean joint speed (NMS), normalized speed peaks (NSP) (as defined by [38]) were 
assessed using intra-class correlation coefficient (ICC), coefficient of variation (CoV) and 
coefficient of determination (R-squared) measures as suggested in [3]. Here normalized 
mean limb length (NML) is the mean value of the length of each body limb (link between 
adjacent joints) Lmean divided by its maximum value Lmax . Normalized mean joint speed 
(NMS) is the mean value of the speed of each joint over time window Vmean , divided by its 
maximum value Vmax . Speed peaks are points where acceleration crosses the zero value and 
changes its sign. NSP is defined as the number of speed peaks divided by the number of 
data samples N .

(12)NML =
Lmean

Lmax

Fig. 9  Example of asymmetry of joint speed observed during a physical training session (Subject 1)

Fig. 10  Example of FWE for the left shoulder-elbow link during a physical training sequence recorded using 
the proposed three-Kinect system (Subject 1)
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The coefficient of variation (CoV) is a standardized measure of dispersion that is 
defined as the ratio of the standard deviation to the mean as follows:

here σ is standard deviation, and µ is mean of sample X.
The coefficient of determination (R-squared) is the proportion of the variance in the 

dependent variable derived from the second session that can be predicted from the 
same variable derived from the first session. It is defined as squared correlation of data 
between first and second samples:

here rX1 and rX2 are ranked sequences of samples of X1 and X2 , and cov is the covariance.
The intra-session variabilities were analysed. Intra-session variability concerns the 

measurements taken during the same session, where a session was divided into two sub-
sessions of equal length. The mean value and standard deviation as well as the intra-
session test–retest reliability of the results expressed by ICC, R-squared and CoV are 
presented in Table 3. The results show that the performance indices, NMLL, NMS and 
NSP, all have more than 0.75 ICC values (excellent, according to (Lin, 1989)), and more 
than 0.8 R-squared (substantial, according to [19]) values together with acceptable CoV 
values.

The subjects were informed to perform the same set of movements as uniformly as 
possible during the physical training session. The scatter plot of each KPI was plotted 
for first sub-session vs second sub-session as shown in Fig. 11. Good consistency of data 
requires that the values be located close to the identity line. To compare consistency, the 
coefficient of determination (R-squared) was calculated with respect to the identity line 
and is shown in Table 3.

The Bland–Altman Limit of Agreement (LoA) analysis was also performed and showed 
high correspondence between the measurements taken in the first and second halves of a 

(13)NMS =
Vmean

Vmax

(14)NSP =
Number of speed peaks

N

(15)CoV
σ(X)

µ(X)

(16)R2
=

(

CoV (rX1, rX2)

σ (rX1)σ (rX2)

)2

Table 3  Values of intra-session reliability of skeleton key KPIs obtained using three-Kinect 
system

NML normalized mean limb length, NMS normalized mean joint speed, NSP normalized speed peaks, SD standard deviation, 
ICC intra-class correlation coefficient, CoV coefficient of variation

KPI Mean ± SD ICC R-squared CoV

NML 0.953 ± 0.011 0.892 0.797 0.011

NMS 0.461 ± 0.079 0.767 0.8611 0.171

NSP 0.639 ± 0.025 0.903 0.802 0.038
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session (see Fig. 12). Given two data samples X1 , and X2 , the Bland–Altman plot represents 
each data value as a point in the 2D coordinate space with coordinates [1]:

here x1 ∈ X1 , and x1 ∈ X2 are data values.
LoA are expressed both in absolute terms and as a proportion of the group mean. The 

majority of samples for NML values are within the 95% confidence limits.

Discussion
The Kinect sensor technology for human body tracking has limitations. Low accuracy of 
single face-oriented Kinect camera prevents from using it as a serious tool for physio-
therapy, data collection and providing medical feedback about the patient’s performance 

(17)
(

x1 + x2

2
,X1 − X2

)

Fig. 11  Values of KPIs of physical subject performance measured in sub-session 1 vs. sub-session 2 of 
physical training exercise session (NML normalized mean limb length, NMS normalized mean joint speed)

Fig. 12  Bland–Altman plot for test–retest analysis of normalized mean limb length during physical exercise 
session
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during the therapy sessions. Accuracy of Kinect drops when it is used in cluttered areas 
and the camera is not placed directly in front of the user. Inadequate calibration of sen-
sors, overexposure or badly oriented calibration objects, specific properties of object 
surface, occlusions by other body parts or objects decrease the Kinect sensor’s accuracy, 
too. The analysis of complex and non-standard human postures and motions such as 
squatting, sitting and lying using a single Kinect sensor has low recognition accuracy. 
The reconstructed human joints are asymmetric and have unnatural lengths while rec-
ognition error exceeds the error of recognizing standard body positions. Therefore, 
using a single Kinect device lacks of reliability required in sports medicine and reha-
bilitation procedures. In order to achieve higher accuracy or usability one needs to use 
multiple Kinects simultaneously. Using multiple Kinect devices arranged to track a sub-
ject from all sides allows to solve joint occlusion problem (which does not allow correct 
estimation of poses), to obtain higher joint recognition accuracy comparable with that of 
other similar known multi Kinect systems (see, e.g., Jalal et al. [26], and to derive valu-
able performance measures, which could evaluate the state of subject’s skeletal systems 
and its evolution during physical training exercises.

We have achieved comparatively low error rates for poses, where one or several joints 
are concluded (e.g., standing on one leg—21%, lying face down—17%, squatting while 
holding legs—15%), which can not be recognized using a single subject-facing Kinect 
device due to low skeleton visibility. For example, in order to recognize a lying subject 
after the fall, Kepski and Kwolek [28] use an overhead mounted single Kinect device fac-
ing the floor, which obviously can not recognize other daily activity poses such as stand-
ing. Whereas in [16], the ratio of joint outliers (cases where the pose estimation fails), 
reaches up to 46%, depending upon orientation of the Kinect camera with respect to 
the subject. The comparison of results achieved using the proposed multi-Kinect system 
with a single Kinect system using reflective markers and the data captured by Vicon sys-
tem as ground truth showed that a multi-Kinect sensor system provides more accuracy 
than a single Kinect sensor system.

Capability to evaluate individual motions of specific joints using skeleton KPIs allows 
to track their progress, provide feedback on additional physical training effort required 
or detect situations where a subject doesn’t react well to the assigned training program. 
The physiotherapist can analyse evolution of physiological parameters such as angular 
amplitudes of limbs and movement speed of joints in a training session and across mul-
tiple sessions. For example, large decrease in joint speed and amplitudes of limb move-
ments suggests that the patient becomes tired too quickly. This information can help the 
trainer to adjust the training program. FWE can help a therapist track performance and/
or identify some specific mobility problems of a subject. A larger volume is likely to indi-
cate an increased functional ability, while a less wide FWE can indicate a joint dysfunc-
tion or increased fatigue [18]. The asymmetry of maximum amplitudes and velocities 
achieved for a left and a right arm or leg may indicate a health problem, and can assist 
physiotherapists in analysing and monitoring the training progress by providing a quan-
titative estimate for the quality of motion and balance. KPIs could be used as valuable 
measures for patient rehabilitation as well.

To assess reliability of the results, we used the descriptive statistics and test–retest 
method followed by Bland–Altman statistical analysis as suggested in [55] based on 
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the review of studies in the domain. Our results are in-line with the results achieved 
by other authors (see Springer & Yogev Seligmann [55]: the ICC values were excellent, 
R-squared values were substantial, and the CoV values were acceptable CoV, while the 
Limits of Agreement according to the Bland–Altman analysis were within 5%.

The proposed method contributed towards the solution of multi-sensor data fusion 
problems, which are relevant when applying low-cost sensor solutions such as Kinect. 
The limitations of the study include a comparatively small number of subjects partici-
pating in the study. Another limitation is that Kinect v2 sensors are gradually retired 
and replaced by Azure Kinect, which is a next version of the Kinect technology. How-
ever, since there are still few studies performed with Azure Kinect, we hope that our 
study will make a valuable contribution towards the development and analysis of 
cloud-connected multiple sensors operating in assisted living environments. Validat-
ing the results of this study using Azure Kinect will be a subject of further research.

Conclusions
We have presented a novel solution for fusing skeletal representation data from mul-
tiple Kinect devices to provide a more complete coverage of a user, especially for 
uncommon poses such as lying or squatting. By suitably deploying Kinect sensors 
in the desired room, we can solve the limited visibility angle problem and recognize 
human joints regardless of the orientation angle: if one sensor is unable to recognize 
the human skeleton correctly, another sensor can recognize and provide more accu-
rate information for the estimation of his/her physical performance during the physi-
cal training exercises.

By using a more accurate aggregated representation of human skeleton, the system can 
monitor the evolution of joints during motion tasks and calculate quantitative measures 
(KPIs), which provide a more accurate view on physical human performance while exer-
cising. The reliability of the obtained KPIs has been validated using test–retest reliabil-
ity metrics (ICC, R-squared, CoV). By monitoring the evolution of skeleton joints and 
calculating quantitative KPIs for the training sequence executed, such as the position 
of joints, speed of movement, functional working envelope, body asymmetry and the 
rate of fatigue (or reduced functional capability), the performance of a subject during 
in-home training can be evaluated by his/her therapist and/or trainer and the training 
programme can be adjusted accordingly.
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