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Abstract: With direct current (DC) power generation from renewable sources, as well as the current
relocation of loads from alternating current (AC) to DC, medium-voltage DC (MVDC) should fill
gaps in the areas of distribution and transmission, thereby improving energy efficiency. The MVDC
system is a platform that interconnects electric power generation renewables (solar, wind) with loads
such as data centers, industrial facilities and electric vehicle (EV) charging stations (also using MVDC
technology). DC–DC power converters are part of the rising technology for interconnecting future
DC grids, providing good controllability, reliability and bi-directional power flow. The contribution
of this work is a novel and efficient multi-port DC–DC converter topology having interconnections
between two converters, three-level neutral point clamping (NPC) on the high-voltage (HV) side and
two converters on the low-voltage (LV) side, providing two nominal low voltages of 400 V (constant)
and 500 V (variable), respectively. The design of this new and effective control strategy on the LV
side has taken into condition load disturbances, fluctuations and voltage dips. A double-closed-loop
control topology is suggested, where an outside voltage control loop (in which the capacitance
energies are analyzed as variable, and the inside current loop is decoupled without the precise value
of boost inductance) is used. The simulation results show the effectiveness of the proposed control
system. In the second part of this study, wide-bandgap SiC and Si devices are compared by using
comprehensive mathematical modeling and LT-spice software. Improving power loss efficiency and
overall cost comparisons are also discussed.

Keywords: bi-directional; medium-voltage DC–DC converter; silicon-carbide; neutral point clamping;
double-closed-loop

1. Introduction

Direct current (DC) network systems are being analyzed and explored for use in future
transmission and distribution technology due to advancements and maturity in the power electronic
devices. Medium-voltage DC (MVDC) systems fill the gap in transmission and distribution areas,
improving efficiency and energy delivery. In the future, MVDC grids would be the most flexible
technique to collect renewable energy (e.g., solar, wind farms) and within industrial and urban
area distribution networks. DC–DC high-power converters play a major role in the interconnection
to MVDC grids, which must be capable to deal with unidirectional or bi-directional power flows.
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Compared to the medium-voltage alternating current (MVAC) system, the MVDC system shown in
Figure 1 reduces cable weight, avoiding voltage dip problems at many points and easily parallels
generators [1–8]. Moreover, most equipment in use employs DC; therefore, conversion stage losses will
be reduced, and as a result the economy and efficiency could be improved [9]. However, MVDC acts
as a foundation for developing a smart transportation system, which includes all electric trains,
vehicles, planes and ships. Industrially, the first MVDC link between the UK and North Wales
has recently been announced. The DC ANGLE project connects to the island of Anglesey by the
Llanfair PG substation and to the North Wales mainland with Bangor operating at 27 kV DC along a
30.5 MW rating [10,11]. Due the recent development of new silicon carbide (SiC)-based semiconductor
power devices, their use in markets is increasing due to their effectiveness and useful properties,
such as significantly reducing conduction losses and switching losses in power converters, as well as
improving converter efficiency. Thus, in many applications they would considered as an alternative to
Si [12–18]. Currently, power semiconductor devices in the market (e.g., (SiC) silicon carbide MOSFET,
Insulated Gate Bipolar Transistors (IGBTs)) are still expensive as compared to traditional Si (silicon).
Consequently, this increases the cost of system, especially for higher-power converters that require
a large number of power semiconductor devices. However, reducing the number of wide-bandgap
(WBG) devices used in power converters will go a long way in the present industry in reducing
costs [19].

Figure 1. Applications of the medium-voltage DC (MVDC) system.

In MVDC systems, the DC–DC converter is a key element, which acts as a transformer in current
AC systems. The DC-based system performance depends on the DC converters because converters
are responsible for changing voltage levels between the DC-based systems and delivering power.
Therefore, the DC–DC converter has good reliability and performance, as needed for DC grids [10,20].
The DC–DC converter, which acts as the DC transformer, is one of the major key components in modern
DC power grids and is connected to DC lines with variable voltage levels to make a DC network [21,22].
The MVDC DC–DC converter has drawn much attention in recent years; however, there are a number
of major issues including protection and fault isolation, DC voltage regulation, output voltage control,
voltage dip control, maintaining reliability and interconnecting different power lines [22–26]. All these
DC–DC converters would have regulation capabilities, which provides balanced and stable voltage for
back-end converters, improving system reliability and over-current control ability. In the MVDC power
converters, Modular Multilevel Converter (MMC), flying capacitor, cascaded neutral point clamping
(NPC) or active NPC (ANPC) topologies are usually used [27,28]. With an auto-transformer controlling
two line-commutated current-sourced converters (LCCs), issues such as high-voltage DC (HVDC)
interconnections, unreliability and power flow control are presented in [29]. Interactions between the
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boost converter and disturbance rejection have been shown [30]. Bi-directional DC–DC high-efficiency
interconnections in MVDC and HVDC converters have been discussed in combination with two-level
MMCs [31–33]. Modeling of MVDC multidrive systems for power quality analysis and harmonic
injection is discussed in [34]. Robust voltage control and parametric uncertainties considering DC–DC
converters are shown in [35]. A practical DC fault ride-through method for MMC-based MVDC
distribution systems is proposed in [36]. For future distribution networks, a new, fast-acting backup
protection strategy for embedded MVDC links is suggested in [37]. Modeling of the power SiC MOSFET
module and predicting electromagnetic interference (EMI) of MVDC railway electrification system
are shown in [38]. A wide-bandgap heterogeneous power device for high-frequency applications was
discussed in [39]. Fault-tolerant operations for different modes of MVDC are suggested in [32,40].
In [41], a three-phase triple-active bridge converter interconnected with the MVDC grid along two
nominal voltages is described. However, comparisons of disturbance rejection, uncertainty and power
losses for MVDC-based converters are not addressed in these works.

In [14], the control variable is set as the square of the DC-bus voltage, and DC-bus voltage is set as
the control variable compared to the conventional method. In the present topology, the outside voltage
control loop (in which the capacitance energies are analyzed as variable) method is suggested because it
can minimize stress to the capacitance voltage and reduce capacitance voltage deviations. The current
topology is for industrial applications that work with step-down voltages of DC voltage 10 kV to
400 V and 500 V. The proposed study is composed of two parts. In the first part, the performance and
control scheme is articulated for multiport DC–DC, an interconnections between the two converters
are presented. A three-level neutral point clamping (NPC) is used on the high-voltage (HV) side, and a
two-level phase is used on the low-voltage (LV) side along a rectifier circuit using two high-frequency
transformers (HFT), including two nominal voltages as shown in the block diagram in Figure 2. The HV
side provides a nominal voltage of 10 kV, while the LV side provides a nominal voltage of 400 V DC
and 500 V DC, respectively (system overview is shown in Table 1). On the LV side, in designing the new
and effective control strategy, the conditions of load disturbance voltage fluctuations and non-serious
voltage dips are taken into consideration. In this study the double-closed-loop control topology is used
inside the current loop and outside the voltage loop control; the outer voltage loop control comprises
two parts: the inner current loop is decoupled without an exact boost inductance value, and the voltage
control loop is proposed in which the capacitance energy is analyzed as a variable. Provided a constant
400 V and allowing 2.3% variation during parallel load changing (according to the IEEE standard,
5% variation is acceptable [42]), the simulation results have shown that the proposed control topology
is effective. The focus of this study is mainly on the LV side.

In the second part of the paper, SiC and Si semiconductor power devices are compared, in which
the conduction loss and switching loss, wide range of switching frequencies, cost comparisons and
overall performance are evaluated. An accurate mathematical model was developed to represent the
DC–DC converter in which efficiency is measured by using the equations presented in Appendix A
under 75% and full-resistive load conditions. Simulations were carried out in LTSpice software.
Although SiC power devices have multiple benefits in several applications, this article is focused on
enhancing the efficiency of DC–DC bidirectional converters.

This study is organized as follows: in Section 2, the proposed control topology configuration on
the LV side is presented. In Section 3, the simulation results of the proposed converter are discussed.
In Section 4, the comparisons of power semiconductor devices and loss calculations in different load
conditions are presented. Finally, in Section 5 the efficiency and cost comparisons are discussed
in detail.
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Table 1. Converter parameter of the simulation.

Specifications Values

Power Electronic Devices IGBT/Diode
Port 1 nominal Input voltage 20 kV
Port 2 nominal output voltage 500 V
Maximum Power 15 kW
Port 3 nominal output voltage 400 V
Maximum Power 15 kW
Switching frequency f (sw) 20 kHz
Converter frequency 50 kHz
Sampling Frequency of the controller 20 kHz
Maximum Voltage Deviation ±10%
Filter capacitance (C) 30 µF
Filter Inductance (L) 0.8 mH
Kp1 Light-load 0.15
Ki1 Light-load 0.004
Kp2 Light-load 0.06
Ki2 Light-load 0.002
Kp1 Heavy-load 0.8
Ki1 Heavy-load 0.016
Kp2 Heavy-load 0.2
Ki2 Heavy-load 0.006
Cd1, Cd2 on LV side 4000 µF × 2
C1, C2 on HV side 13 × 10−3F × 2
Modulation Index 0.8
Load Resistance 100 Ω

Figure 2. Block diagram of the proposed DC/DC converter.

2. System Modeling and Control of DC–DC Three-Level MVDC Converter

Usually, in low-power and LV configurations, the two-level inverter topology is more attractive,
but in high-power and HV drive applications, the three-level NPC topology is better because it
generates very low harmonic distortion sinusoidal voltage waveforms by using the space vector pulse
width modulation (SVPWM) switching technique. In this study, on the HV side the three-level NPC
topology has been simulated using the SVPWM technique. The control scheme on the HV side inverter
is shown in Figure 3 by using MATLAB/Simulink. In this research the main focus is only on the
LV side.
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Figure 3. Proposed DC–DC MVDC converter.

3. Mathematical Model on the LV Side

Figure 4 [43] shows the power circuit of the three-phase voltage source rectifier topology.
When designing this mathematical model we assumed a balanced three-phase system.

Figure 4. Three-phase voltage sensitive relay (VSR) circuit.

In the above figure, ea, eb and ec are the source voltages; iA, iB and iC are the line current; va, vb and
vc are the input rectifier voltage; vdc is DC output voltage; r is the resistance of the filter reactor; L is
inductance of the filter reactor; RL is load resistance; iL is load current; VT1 - VT2 are IGBTs; sj (j = 1-6)
are switching functions,

The definition of switching function is

sj

{
1, sjopened

0, sjclosed
(1)

The three-phase model of the voltage-sourced Pulse Width Modulated (PWM) rectifier can be
expressed in the stationary a-b-c frame as (1), when the three-phase AC sources are balanced and the
resistance of the power circuit is ignored.
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
L diA

dt + riA = ea − (va + UNO)

L diB
dt + riB = eb − (vb + UNO)

L diC
dt + riC = ec − (vc + UNO)

C dvdc
dt + iASa + iBSb + iCSc − iL

(2)

The symmetry of the three-phase current and voltage is{
vj = vdc ∗ sj, (j = a, b, c)

UNO = −Udc
3 (sa, sb, sc)

(3)

Performing the park transformation, the mathematical model in the synchronous d− q rotating
frame can be expressed as 

L did
dt + rid = ed − vd + ωLiq

L diq
dt + riq = eq − vq + ωLid

C dvdc
dt = 1.5(idsd + iqsq)− iL

(4)

where vd, vq and sd, sq are input voltages and switching function of the rectifier in synchronous rotating
d− q coordinates, respectively.

3.1. LV Side Control Design and Mathematical Model

At present, advanced modern control theory is growing rapidly, which has led to new ideas
and thinking to solve complex problems. However, many of the control strategies are more difficult
to implement in the industrial applications. Relatively, in various control systems the conventional
proportional–integral (PI) controller is widely used due to its robustness and briefness. Based on
internal modern theory, Figure 5 shows the diagram of the controller. For sufficient and essential
conditions for zero-state error, the closed loop contains JR(s) as the input generation model. Therefore,
the open loop transfer function is JR(s) = F(s) C(s) and also must have the input generation model.

Figure 5. Internal model theory based controller.

Based on the internal model theory perspective, the zero steady-state error can be secured using
the conventional PI controller , while the integration part contains s domain in the 1/s step signal.
Therefore, to achieve the steady-state error the controller must contain a ω2/(s2 + ω2) part when the
input signal is a sinusoidal r(t), for example Asin(ωt), where the resonant controller is compulsory.

3.2. Design of Inner Current Loop

Figure 6 [44] shows the model of the three-phase voltage sourced rectifier d− q frame.
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Figure 6. d− q model of the three-phase voltage source rectifier.

Based on the synchronous d− q rotating frame, the three-phase voltage-sourced rectifier and
conventional control PI theory, the internal current loop is designed as follows:

vdre f − ed = −
(

KdP + Kdi
s

)
(idre f − id) + ωLiq

vqre f − eq = −
(

KqP + Kdi
s

)
(idre f − id) + ωLid

(5)

Figure 7 shows the obtained synchronous d− q rotating frame and decoupling control diagram
of the internal current loop. By using a conventional PI controller, the zero steady-state error can be
secured because in the synchronous d− q rotating frame the reference current is the constant DC signal.

Figure 7. Decoupling control in the synchronous d− q rotating frame.

where {
cd(s) =

Kdi
s + KdP

cq(s) =
Kqi
s + KqP

(6)

Therefore, to completely decouple the d − q axis, the exact value of inductance L is essential.
In some extreme conditions the value of inductance L will be changed; thus, part of the decoupling is
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often ignored. Hence, the enhanced coupling on the d− q axis will lead to bad performance when the
frequency increases.

With the model of the a-b-c three-phase rectifier, a two-phase αβ reference frame model is obtained.{
L diα

dt = eα − vα − riα
L

diβ

dt = eβ − vβ − riβ

(7)

Using the complex vector, the stationary reference frame model is shown in Equation (8).

L
diαβ

dt
= eαβ − vαβ − riαβ (8)

Thus, the model could be transformed into the rotating d− q synchronous frame by replacing
“d/dt” with “d/dt+jω” as shown in Equation (9).(

d
dt

+ jω

)
Lidq = edq − vdq − ridq (9)

The model can also be shown as

d
dt

Lidq = edq − vdq − (r + jωL)idq (10)

Transforming into the s domain, the model can be shown as

Idq = (Edq −Vdq)
1

(jωL + r) + sL
= (Edq −Vdq)

1

L

((
jω + r

L

)
+ s

) (11)

Equation (11), therefore in the synchronous reference frame, shows the plant has only one complex
pole found at -r/L - jω. Hence, by choosing the proper parameters, the PI conventional controller
would be zero, and approximately cancel the plant pole. In Equation (12) the controller is found as

Cdq(s) =
Kp

s

((
jω +

Ki
Kp

)
+ s

)
= Kp

1
s

((
jω +

Ki
Kp

)
+ 1

)
(12)

Based on the complex vector perspective, the rectifier model transforms the single-input
single-output (SISO) model as of the double-input double-output (DIDO) model. Figure 8 shows the
block diagram of the obtained decoupling control.

Figure 8. Complex vector decoupling control diagram.

It can be observed in Figure 8, without an exact and accurate value of inductance, that good
performance could be attained. The Ki and Kp parameters can be selected by following the conventional
PI controller.

jω +
Ki
Kp

= jω +
r
L

(13)
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Hence, Ki
Kp

= r
L by selecting proper value of Kp, and a proper cutoff frequency can be chosen,

as mentioned in Table 1.

3.3. Design Outer Voltage Loop

In consonance with the power-balancing principle, avoiding the losses in the rectifier, we take

Pac = Pdc (14)

The active input power is

Pac = vsaisa + vsbisb + vscisc (15)

The equation in the synchronous d− q reference frame turns into

Pac = 1.5(vsdisd + vsqisq) (16)

where vsk, isk (k = d, q) are reactive and active elements of the input current and voltage in the d− q
synchronous frame. The DC side power can be described as

Pdc = vdcidc = vdcC
dvdc
dt

+
v2

dc
RL

(17)

Equation (16) is equal to Equation (17), then

vdcC
dvdc
dt

+
v2

dc
RL

= 1.5(vsdisd + vsqisq) (18)

From Equation (18), it can be seen that there are nonlinear items (i.e., the output voltage is squared,
and it becomes a differential when multiplying the output voltage), which shows nonlinear relations
among vdc and isq, isd.

The d-axis is commonly put in the same direction as the voltage vector in the synchronous d− q
reference frame. If the maximum value of three-phase voltage is vm, its symmetrical phase will be{

vsd = Vm

vsq = 0
(19)

where vsq = 0. Thus, the vdc output voltage is calculated with only the variable isd, and there is nonlinear
relation among them.

In this study, the outer voltage control loop, a control scheme in which the capacitor energy is
treated as a variable, is discussed. As there is a linear relation between the active current and capacitor
energy, the system has great control characteristics with a simple PI controller. First, we analyze and
transform the rectifier voltage, as shown in Equation (18).

dv2
dc

dt
= 2vdc

dvdc
dt

(20)

The equation will be

dv2
dc

dt
= − 2

RLC
v2

dc +
3
c

vsdisd +
3
c

vsqisq (21)

where

wc =
1
2

Cv2
dc (22)
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v2
dc =

2Wc

C
(23)

Equation (21) will be

d
dt

wc = −
2

RLC
wc + 1.5Vsdisd + 1.5Vsqisq (24)

If Equation (19) is put into Equation (24), then we obtain

d
dt

wc = 1.5Vmisd −
2

RLC
wc (25)

Equations (22) and (23) define the capacitor output energy. If wc, the capacitor energy,
is considered as a new control variable, a linear relation will exist between isd and wc, which is
presented in Equation (25). The transformer function between the active current and capacitor current
can be defined as

Wc(s)
Isd(s)

=
1.5Vm(

s + 2
RLC

) (26)

Capacitor energy is considered as a variable, and in the outer loop a linear PI regulator is
used. If the capacitor energy is defined as Wcre f = 1/2CV2

dcre f and the DC voltage reference is vdcre f ,
the control system structure will be as shown in Figure 9.

Figure 9. Capacitor energy as a variable control system.

The PI regulator transform function is described as

GP I(s) =
KIv
S

+ Kpv (27)

While selecting the controller in the double-closed-loop control system, it can be assured that the
bandwidth of the internal current loop is wider than that of the outer voltage loop when examining
the outer voltage control loop. In addition, the responding behavior of the current is quick enough to
ignore the delay.

The closed-transform function system is defined as

Wc(s)
Wcre f (s)

= 1.5VmKPv
S + KIv

KPv

s2 +

(
2

RLC + 3
2 VmKIu

)
s + 1.5VmKIv

(28)

It is observable that the closed-loop transform function of capacitor energy is a second-order linear
system. When S→0, the gain function will be W(s)/Wre f (s)→1, with a step response, which shows
that the capacitor’s steady-state error and the steady-state error of the voltage are zero.
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4. Simulation Results

To demonstrate the effectiveness and accuracy of the suggested control system for the DC–DC
converter, simulations are carried out in MATLAB/Simulink software (MathWorks Inc, Natick, MA,
USA), and parameters are specified in Table 1. First, on the HV side, the port (I) input DC voltage is a
20 kV waveform. Using the SVPWM technique, the line voltage modulation index is 0.8. After passing
through the passive LC filter by reducing harmonics, the sinusoidal AC output of the 10 kV waveform
is as shown in Figure 10. On the LV side, the port (III) input AC is 10 kV, and the line voltage,
phase voltage and output constant 400 V are as shown in Figure 11. Figure 12 shows the different
effects of loads when the load changes in parallel, and only 2.3% load variations will be accepted
(according to IEEE standard, 5% variation is acceptable [44]). The output from port (II) 500 V variable
output is shown in Figure 13, which changes according to load variation. Three-phase voltage and
PQ are shown in Figure 14. The DC voltage waveform results are compared with [45]. We notice that
the load changed from 50 Ω to 100 Ω at 0.14 s and is shown in Figure 15. The DC voltage reduced,
there was a slight voltage dip, and then it tracked back to its original condition. It can be examined
that the proposed topology is effective in conditions of uncertain load disturbances. The robustness of
the suggested control system is proved, and the bidirectional power flow waveform for the current
and voltage are clearly seen Figure 16. In Figure 17, the capacitor energy is shown as a variable.
The simulation results show that the overshoot of the output voltage is reduced more than 70 V, so the
control system has a superior performance.

(a) (b)

(c) (d)

Figure 10. HV side: (a) Input DC voltage, (b) line voltage, (c) output AC and (d) modulation index 0.8.
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(a) (b)

(c) (d)

Figure 11. Port II: (a) input AC 10 kV, (b) line voltage (c), phase voltage and (d) output constant 400 V.

Figure 12. Effects of load variations.
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Figure 13. Port (II) 500 V variable output, which changes according to load variation.

(a)

(b)

Figure 14. (a) Three-phase voltage and (b) PQ.



Electronics 2020, 9, 1878 14 of 25

Figure 15. Response of the control system during load changes.

Figure 16. Bidirectional power flow waveform of the current and voltage.
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(a) (b)

Figure 17. (a) Output voltage wave with conventional strategy and (b) output voltage with the
presented control strategy.

5. DC–DC Converter Comparison Analysis

5.1. Devices Comparison and Analysis

A comparison study of semiconductor devices is shown in Table 2. The ratings are chosen
according to how close the performances of the converters are to each other during operation at 400 V,
20 A and 150 ◦C, and key parameters are obtained from their respective datasheets.

Table 2. Parameters of Power Devices.

Device Parameters SiC MOSFET Si IGBT

Part number C2M0080120D NGTB20N120LWG
Manufacturer Cree On semi
Maximum rating 1200 V, 31.6 A 1200 V, 20 A
Maximum junction temperature 150 150
Thermal resistance 0.60 0.65
Voltage fall time 2.35 × 10−8 1.2 × 10−7

Voltage rise time 3.5 × 10−8 4.0 × 10−8

Drain current 36 A 20 A

Because of the higher breakdown voltage, low state resistance, much lower parasitic capacitance
and higher switching frequency compared to Si, SiC technology minimizes losses and volume. In this
section the semiconductor devices are compared, and conduction loss and switching loss, efficiency,
wide range of switching frequencies, costs and overall performances are evaluated. The process life
cycle is shown in Figure 18. An accurate mathematical model was developed to represent the DC–DC
converter’s overall performance, and loss was calculated using the equations in Appendix A under
75% and full-resistive load conditions. Datasheet extrapolations were used, and simulations were
carried out in LTSpice software (Analog Devices, Norwood, Massachusetts, USA), where the SiC
MOSFET model was created according to datasheet and manufacturer specifications.
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Figure 18. Performance evaluation chart.

5.2. Converter Performance at Variable Switching Frequencies

The total power loss (PL) of the converter is acquired by the sum of switching losses (Psw),
conduction losses (Pconduction) and the capacitor inductor loss (Pic). It can be obtained by the
following equation:

PL = Psw + Pconduction + Pic (29)

Specifications of the DC–DC converter are presented in Table 3. The conduction and switching
losses were calculated for Vdc = 400 V, Pout = 15 kW and Rgate = 10 Ω.

Table 3. Comparison between Si and WBG materials.

Properties Si 4H-SiC

Band gap Eg [eV] 1.12 3.26
Breakdown electric field Ec [MV·cm−1] 0.2 2.5
Intrinsic carrier concentration ni cm−3 1.5 × 1010 8.2 × 10−9

Holes mobility µP [cm2·V−1·s−1] 420 115
Saturation velocity Vs [cm·s−1] 1 × 107 2 × 107

Thermal conductivity λ [W·K cm·s−1] 1.5 4.9

Conduction losses for every switching cycle were calculated, and loss created by the transistor
junction temperature, on-resistance and transistor current were evaluated. The switching losses
were determined based on turn-off and turn-on energy, transistor voltage, gate resistor, transistor
current and junction temperature. According to the SiC MOSFET and Si IGBT transistor datasheets,
reverse recovery energy is included during turn-off and turn-on phases. Hence, it is not compulsory to
consider these losses independently. Energy stored in the output capacitance of the transistor was also
included in the turn-off and turn-on energy states.

The total power losses are shown in Figures 19 and 20 at three junction temperatures of 25 ◦C,
100 ◦C and 150 ◦C when the switching frequency was increased from 10 to 100 kHz. The results reveal
that SiC had lower losses in the considered switching frequency range at low junction temperatures.
At high junction temperature, it is clearly seen in the diagrams that the total SiC losses were below
total Si losses; hence, it is noteworthy that the influence of increased junction temperature on the total
power losses in the SiC MOSFET-based converter was lower than that of Si IGBT due to the higher
thermal conductivity of SiC materials.
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(a) (b)

(c)

Figure 19. SiC and Si losses at (a) T = 25 ◦C, (b) T = 100 ◦C and (c) T= 150 ◦C.

(a) (b)

Figure 20. Switching and conduction losses at (a) Fsw = 10 kHz and (b) Fsw = 100 kHz.

5.3. Simulation and Analysis

Some specifications of the DC–DC converter are shown in Table 4. The specifications are chosen
according to converter model.

Simulations were carried out in LTSpice software. The SiC MOSFET model from CREE (Research
Triangle Park, North Carolina, United States) was created according to datasheet and manufacturer
specifications. A mathematical model was developed to represent the converter’s overall performance
and loss calculations and by using the equations in Appendix A under 75% and full-resistive load
conditions. The calculation results are shown in Figure 21 and Table 5.
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Table 4. Converter specifications.

Specifications Values

Low side voltage (V) 400 V
Power rating P (kW) 15
Switching frequency f (kHz) 20
Choke inductance (mH) 2
Junction temperature Tj (◦C) 135
Equivalent series resistance for capacitor (mΩ) 4.5
Series resistance for inductor (Ω) 0.02
Load resistance (Ω) 100

(a) (b)

(c) (d)

(e)

Figure 21. Key waveforms of SiC MOSFET (top to bottom: gate command signal,
inductor ripple current, SiC drain current and voltage, and capacitor ripple current). (a) Gate signal,
(b) inductor ripple current, (c) SiC MOSFET drain current, (d) drain voltage and (e) capacitor
ripple current.
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As it can be seen in Figure 21, the output voltage of the DC–DC converter was 397 V,
with peak-to-peak ripple less than that 5 V. The average inductor current was 60 A, with 3 A
peak-to-peak ripple current, which meets the low ripple current requirement. Since SiC MOSFET has
small input capacitance, the gate driver is able to fully turn off and turn on the device faster than the Si
MOSFET, as shown in Figure 22.

(a) (b)

Figure 22. Switching transients of the SiC converter simulation: (a) switching voltage and (b) current.

Table 5. Calculated efficiency and loss.

Si IGBT SiC MOSFET

Full Load
Conduction Loss (Pconduction) 186.32 113.05
Switching Loss (Psw) 214.5 33.17
Inductor + Capacitor Loss (Pic) 31.175 30.78
Total Loss (PL) 432 117
Converter Efficiency η (%) 97.12 98.82

75% Load
Conduction Loss (Pconduction) 178.08 92.825
Switching Loss (Psw) 220.8 33.325
Inductor + Capacitor Loss (Pic) 19.625 17.85
Total Loss (PL) 418 141
Converter Efficiency η (%) 97.21 99.06

The above mathematical results show that by using SiC devices, both switching and conduction
losses decreased, which is expected according our prediction. It is notable that SiC MOSFET had a
total switching loss (Psw) of only 33 W at full and 30 W at 75% load, respectively, which is almost
one-fifth of the total switching losses of Si IGBT. The conduction loss (Pconduction) of SiC MOSFET was
also reduced 40–45% as compared to the Si design and capacitor and inductor losses (Pic) are nearly the
same because the component ESRs and root mean square (RMS) current values are same). The overall
efficiency of the SiC design was 99.06% at full load and 98.82 for 75% load; it is 1.85% higher than
that for all Si design models. From Figure 23 it is clearly seen that all three SiC portions (switching
loss, conduction loss and capacitor loss) were superior; hence, for higher-frequency operations the SiC
converter has a better potential for use than the Si.
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(a) (b)

Figure 23. Loss comparisons at (a) 100% and (b) 75%.

In Figure 24, at 75% load the efficiency of the converter was slightly better than at full load; this is
due to the current squared relationship, and the resistive loss components will drop down to 1/4
of the original value, while the resistance value will not change. In Table 5, capacitor and inductor
loss (Pic) exactly followed this rule, but conduction loss (Pconduction) did not. In the Si IGBT case,
conduction losses were not purely resistive, but in the MOSFET case, conduction losses were resistive.
Thus, conduction loss in the SiC MOSFET case were smaller compared to Si as the load decreased.
Furthermore, the switching losses were also reduced as compared to full load. Other losses (gate driver
power consumption) were not included, as efficiency would be affected if these losses were included.

Figure 24. Efficiency comparison at 100% and 75% load.
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6. Cost Comparison

In order to compare SiC and Si costs, running and initial prices were taken into account. The initial
prices of SiC MOSFET (C2M0080120D) and Si IGBT (NGTB20N120LWG) devices, which are used in
the converters, have been summarized in Table 6. All prices were taken from the Farnell (Leeds, UK)
website on 29 Jan 2020, at 100 pieces. The heat sinks were also found on the Farnell website and chosen
on the basis of temperature increases for the given power loss.

Table 6. Cost comparison.

SiC MOSFET C2M0080120D Si IGBT NGTB20N120LWG

Semiconductors £ 436.00 £ 212.00
Heat sink £ 223.11 £ 459.48
Drivers £ 3640 £ 353.89

The costs of semiconductors are compared in Figure 25. It can be seen in Table 6 that the cost
of SiC MOSFET was more than double that of Si IGBT because of the drivers cost. The drivers of
SiC are expensive because a special driving scheme is needed to support the SiC. On the other hand,
the cooling requirements for Si are much greater than for SiC; thus, the cost difference is not as big a
barrier as one may have expected.

Figure 25. Cost comparison of Si and SiC devices.

7. Conclusions

A comprehensive performance study of a proposed MVDC DC–DC three-level converter has
been presented. The suggested multi-port converter on the LV side provides two nominal voltages of
400 V (constant) and 500 V (variable), respectively. A novel and effective double-closed-loop control
strategy on the LV side was analyzed in two scenarios. In a voltage control scheme, according to the
investigation, the capacitor energy is analyzed as a variable, and the dynamic response of the output
voltage is improved. An inner current loop control was also analyzed without an exact inductance
value in complex vector frame. When designing the controllers, uncertain load disturbances during
voltage dips were taken into account. The simulation results demonstrate that the fluctuations and
voltage dips can be controlled effectively by applying the proposed control topology. Consequently,
this topology is effective and applicable to enhance the robustness and energy conversation of a system.
In the second portion, a comparison study between new SiC and Si semiconductor power devices
is given. Test simulations for both devices were built and verified. The performance and operation
of semiconductors were compared at different specifications, and conduction loss switching loss,
wide range of switching frequencies, cost comparisons and overall performances were evaluated.
The efficiency of the SiC-based converter was found above 99% under two resistive load conditions,
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which shows the efficiency of the SiC-based converter is 1.85% higher than that of Si. SiC MOSFET
can also operate at higher temperatures, and less cooling is required because of the decrease in device
losses. Costs of both devices were compared. SiC drivers are expensive, but the cooling requirement
for Si is much greater than that of SiC; thus, the cost difference is not a big barrier. The outcomes of
this study are valid for all kinds of DC–DC converters used in numerous other applications. Therefore,
this study is helpful to enhance the reliability, and improve the overall efficiency, of converters that can
be derived in the future.
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Appendix A

Table 1: Devices loss calculation model.
Conduction losses—two-level converter
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Conduction losses—three-level NPC
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L

2

[
4

3π
sin4

(
ϕ

2

)]
(A8)

Pc−D5,D6 =
Vo,D ÎL
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Switching losses—three-level NPC
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