Authors |
Al-Ashouri, Amran ; Köhnen, Eike ; Li, Bor ; Magomedov, Artiom ; Hempel, Hannes ; Caprioglio, Pietro ; Márquez, José A ; Vilches, Anna Belen Morales ; Kasparavicius, Ernestas ; Smith, Joel A ; Phung, Nga ; Menzel, Dorothee ; Grischek, Max ; Kegelmann, Lukas ; Skroblin, Dieter ; Gollwitzer, Christian ; Malinauskas, Tadas ; Jošt, Marko ; Matič, Gašper ; Rech, Bernd ; Schlatmann, Rutger ; Topič, Marko ; Korte, Lars ; Abate, Antonio ; Stannowski, Bernd ; Neher, Dieter ; Stolterfoht, Martin ; Unold, Thomas ; Getautis, Vytautas ; Albrecht, Steve |
Abstract [eng] |
Tandem solar cells that pair silicon with a metal halide perovskite are a promising option for surpassing the single-cell efficiency limit. We report a monolithic perovskite/silicon tandem with a certified power conversion efficiency of 29.15%. The perovskite absorber, with a bandgap of 1.68 electron volts, remained phase-stable under illumination through a combination of fast hole extraction and minimized nonradiative recombination at the hole-selective interface. These features were made possible by a self-assembled, methyl-substituted carbazole monolayer as the hole-selective layer in the perovskite cell. The accelerated hole extraction was linked to a low ideality factor of 1.26 and single-junction fill factors of up to 84%, while enabling a tandem open-circuit voltage of as high as 1.92 volts. In air, without encapsulation, a tandem retained 95% of its initial efficiency after 300 hours of operation. |