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Abstract: In this paper we present a cryptographic primitive based on non-commutative cryptography.
This primitive is used for key exchange protocol (KEP) construction. We prove that the security of
this primitive relies on a nondeterministic polynomial complete (NP-Complete) decisional problem.
Recently there are no known quantum cryptanalysis algorithms effectively solving NP-Complete
problems. So far, KEPs are widely used in secure communication channel creation, e.g., in hypertext
transfer protocol secure (https://) and are based on traditional cryptographic primitives representing
commutative cryptography. However, the security of these protocols does not rely on NP-Complete
problems and hence, according to P. W. Shorr, they are vulnerable to quantum cryptanalysis. We use
one of seven non-commuting groups of order 16 which is not isomorphic to any other group to define
a platform group for a key exchange protocol based on previously considered matrix power function
(MPF). By investigating basic properties on the group M16 and their implementation for our goals we
fix the order of actions in MPF from left to right. Furthermore, we define a special form of the base
matrix and separate templates for left and right power matrices. Using properties of the specified
templates and Schaeffer criteria we prove that the security of the proposed key exchange relies on an
NP-Complete decisional problem.

Keywords: non-commuting cryptography; matrix power function; key exchange protocol;
cryptographic security

1. Introduction

1.1. Early Days of Asymmetric Cryptography

The history of asymmetric cryptography starts in 1976 when W. Diffie and M. Hellman published
their groundbreaking work [1]. In that paper authors showed how two protocol parties, Alice and Bob,
can agree on a shared key using publicly known data and their private keys. This is what was later
called an asymmetric key exchange protocol (KEP). It is based on the discrete exponent function in the
cyclic algebraic group.

The security of this protocol relies on the Diffie–Hellman decisional problem, i.e., the problem of
distinguishing between a valid shared key algebraically linked to a public keys of both parties and
some randomly generated garbage value. To break this protocol, it is sufficient to solve a discrete
logarithm problem (DLP), i.e., to invert a discrete exponential function. The other popular and more
modern KEP, based on a similar method, called discrete exponent functions, in elliptic curve groups
was briefly mentioned in [2] where N. Koblitz discusses analogues based on elliptic curves of then
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known public key cryptosystems. In analogy with DLP in cyclic groups, to break this protocol it is
sufficient to solve a DLP problem in elliptic curve groups.

P. Shor proved that solving DLP in both cyclic and elliptic curve groups is efficient
using quantum cryptanalysis algorithms [3], i.e., the solution can be found in polynomial time.
Therefore, the traditional KEPs have no perspectives when sufficiently powerful computers appear.

Hence, the construction of post-quantum cryptographic primitives resistant to quantum
cryptanalysis is currently an important field in modern cryptography research.

1.2. NP-Complete Problems and Post-Quantum Cryptography

It is known that nondeterministic polynomial complete (NP-Complete) problems, such as the
three-satisfiability problem, is an uncrackable nut even for quantum computers since no quantum
algorithms solving such problems in polynomial time are known. Therefore, the perspective
trend in the construction post-quantum algorithms is cryptographic primitive creation based on
NP-Complete problems.

The theory of NP-Complete problems is covered in detail in [4]. The definition of NP-Complete
problem is the following [4]:

Definition 1. A decisional problem P is said to be NP-complete if P ∈ NP and any problem P ′ ∈ NP is
polynomially reducible to P , i.e., there exists a function f : DP ′ → DP computed in polynomial time such that
for all instances I ∈ DP ′ there exists a solution to I if and only if there exists a solution to f (I) ∈ DP .

It has been proven that neither the DLP nor RSA problem mentioned above (used in the
well-known Rivest–Shamir–Adleman cryptosystem [5]) are not in the NP-Complete complexity class.
Moreover, quantum algorithms to solve these problems in polynomial time are known due to P. Shor [3].

For this reason, the scientific community began to search for a cryptographic primitives whose
security relies on NP-Complete problems. In this connection the Hidden Field Equations (HFE)
cryptosystems were described in [6]. The security of this approach was studied in papers [7–9] and
several others. Another approach to build cryptographic primitives based on NP-Complete problems
is described in [10] where lattice-based cryptography is covered.

As major traditional cryptosystems, these belong to commutative cryptography since their
construction relies on commuting algebraic systems. Worth mentioning is the fact that successive
attacks (using convenient computers) were described by various authors. In [8], several examples
of successful subexponential attacks were presented. Authors of [7] discussed relinearization issue
of HFE cryptosystem. Moreover, in [9] a research of Grobner basis application to solve HFE was
proposed. Sensitivity of lattice-based signature schemes to fault attacks was considered in [11].
However, despite these facts, the investigation in this trend is continuing.

Together with the commutative approach, non-commutative cryptography is in developing phase.
One direction was to use non-commuting algebraic structure, such as Braid groups. The conjectured
hard problem with analogy to DLP was assumed to be a conjugacy search problem in non-commuting
Braid groups. Some of the more infamous examples of such protocols are presented in [12,13].
However, a conjugacy search problem was not proven to be NP-Complete. Furthermore, V. Shpilrain
proved that conjugacy search problem can be replaced by the other easier problem when dealing with
Ko-Lee KAP and hence it not guarantee conjectured security [14].

1.3. Our Previous Contributions and Novelty of This Paper

Our research in this field relies on the properties of the so-called matrix power function
(MPF). The idea behind the definition of MPF is somewhat similar to regular matrix multiplication.
Over the years, several cryptographic protocols based on this function have been proposed.
These include [15–18] and used commutative algebraic structures as a platform. In [15] the authors
introduced the first key exchange protocol based on MPF. There, an approach of the authors was
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similar to W. Diffie and M. Hellman. However, the security of their protocol relied on a completely
different problem as compared to [1]. Paper [16] focused on the application of MPF to the construction
ofa substitution-box (S-box). This was the first attempt to apply MPF in symmetric cryptography.
Later, the research of our team leaned to asymmetric cryptography and we published papers [17,18].
In those articles, we presented the asymmetric encryption algorithm and analysed its performance
in embedded systems. Furthermore, we improved the security of our protocol in [19] and evaluated
computational cost of protocol execution in elementary operations.

Consequently, protocols described in [15,17] were attacked using linear algebra in [20].
The authors of the latter paper showed that the system of matrix equations used to find the private key
of Alice (or Bob) can be transformed to a system of linear equations and hence mentioned protocols
can be broken in polynomial time. Eventually, we were able to evade this attack in our paper [21].
We also performed an investigation of public parameter generation issues in [22].

In their paper, [20] authors suggested interesting ideas to escape the linear algebra attack they
described. One of these ideas was the application of non-commuting algebraic structures to construct
the platform semigroup for MPF. Partly for this reason we turned our attention to exploring the realm
of this particular type of algebraic structures which suit our needs. The first attempt to perform a
successful key exchange using a non-commuting algebraic structure as a platform semigroup was
presented in [23]. Furthermore, in [24] we have an asymmetric encryption scheme and have shown
that it relies on an NP-Complete decisional problem. However, it is important to note that MPF defined
over the so-called modified medial group is associative.

In this paper we recall one of the possible non-commuting groups to be used as a platform for
MPF. Previous investigation of the properties of the MPF defined over the group M16 presented in [25]
has shown that we can construct cryptographic primitives using this group as a platform. Due to the
properties of M16 presented in that paper, we have to define templates for private session parameters.
The novelty of our article is covered by the following facts:

• By applying properties of M16 we construct a executable KEP despite the fact that in general MPF
defined over considered group is not associative;

• The constrains of private session parameters come naturally from predefined templates.
These constrains are used to limit the choice of private session parameters to non-invertible
matrices only, thus preventing any attempts of a linear algebra attack.

• The security of our proposed key exchange protocol is based on NP-Complete decisional
problem and satisfies the generalized decisional Diffie–Hellman assumption. The proof of
NP-Completeness of the considered problem is the main goal of this article.

1.4. Application of Our Protocol in Real Life

A clear example of application of key exchange protocol in our everyday life is the https://
protocol which uses Secure Socket Layer (SSL) or Transport Layer Secrity (TLS) protocols in the
transport layer. Particularly, these protocols are used in e-banking, e-government, e-business and
other confidential communication systems. They provide secure channel realization between two
parties, Alice and Bob. The main part of such a secure channel creation is KEP allowing to create
a common symmetric secret key between the parties. This key is used for communication data
encryption between Alice and Bob and is a secure channel itself. For KEP realization we use MPF
based on platform semigroup M16 which adds an additional security with respect to the traditional
KEPs based on classical Diffie–Hellman approach. We show that this protocol satisfies the decisional
Diffie–Helman assumption and the problem analogous to discrete logarithm problem relies on the
solution of the NP-Complete problem.
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1.5. Organization of the Paper

The rest of this paper is organized as follows: in Section 2 we present the non-commuting group to
be used as a platform for our cryptosystem and revise the main function to be used in our construction;
in Section 3 we define templates to be used for the construction and present a key exchange protocol
together with the proof of its validity; in Section 4 we present the proof that our protocol relies on an
NP-Complete problem. As usual, conclusions are presented in the last section.

2. Preliminaries

2.1. Description of the Modular Group of Order 16

Groups of order 16 were studied in detail mainly by H. Grundman, T. Smith and their co-authors.
In papers [26,27], authors considered realizability of each of the groups of order 16 as a Galois group
over a field of characteristics not 2. As authors pointed out in [26], the realizability of a 2-group G over
a field of characteristic 2 depends only on the minimal number of generators of G. In their paper [27]
authors examined, in total, fourteen distinct groups of order 16 and divided them into five commuting
groups, two decomposable groups obtained by taking a direct product of two non-commuting groups
of order 8 and seven indecomposable groups. One of the latter ones is the modular group of order
16, known by its notation as M16. Using two generators a and b the group M16 is defined by the
following relations:

M16 =
〈

a, b|a8 = 1, b2 = 1, bab−1 = a5
〉

. (1)

Worthy of note is the fact that we are not concerned with the nature of generators a and b. As M16

is a multiplicative group, our focus is on the powers of these generators and basic actions with the
elements of the considered group.

As pointed out above, the index 16 indicates, there are exactly 16 distinct elements in the defined
group. One of these is a neutral element 1 = a0 = b0. Note also that generators a and b do not
commute. In fact, relying on the definition of M16, we have that a5b = ba and ba5 = ab.

It also follows from the definition of M16 that each element can be represented in two distinct
forms: ak1 b or bak2 . Hence we have to define a normal form of the element w ∈ M16.

Definition 2. The representation of element w ∈ M16 in the form bak is called a normal form of w.

It is important to note that we defined the form bαak as normal and consider it throughout this
paper. Evidently, our results remain valid if we switch to the opposite form of the elements.

Proposition 1. Every element w ∈ M16 can be represented in a normal form.

Proof of Proposition 1. Let us consider an element w = akbα. If α = 0 then the element w is in its
normal form since obviously akb0 = b0ak. Furthermore, if k = 0, then w is in its normal form bαa0.
Obviously the normal form of element 1 is b0a0.

Consider the case α = 1 and k 6= 0. It follows from the definition of M16 that equivalent elements
can be written in the following way:

akb =

{
bak if k is even;

ba(k+4) mod 8 if k is odd;
(2)

This ends the proof as any element of the form akb has an equivalent represented in a normal
form regardless of the powers α and k.

We can now formulate as propositions the basic operations of M16. Since this group is
multiplicative, we focus on the multiplication, powering and calculation of an inverse element.
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Note, that we are going to use powers α, α1, α2 ∈ {0, 1} and k, k1, k2 ∈ {0, 1, 2, . . . , 7}. We also keep
in mind that powers of generator a are reduced modulo 8 and powers of generator b are reduced
modulo 2 and hence omit modules in our expressions.

Proposition 2. Given two elements bα1 ak1 and bα2 ak2 their product is calculated in the following way:

(
bα1 ak1

)
·
(

bα2 ak2
)
=


bα1+α2 ak1+k2 if k1 is even;

bα1 ak1+k2 if k1 is odd and α2 = 0;
bα1+1ak1+k2+4 if k1 is odd and α2 = 1;

(3)

Proof of Proposition 2. The case of α2 = 0 is trivial since we obtain the first case of Formula (3) if k1 is
even and the second case of the same formula if k1 is odd.

Let us assume that α2 = 1 and k1 is even. Then due to equality (2) we can rewrite the considered
product as follows:(

bα1 ak1
)
·
(

bak2
)
= bα1 ·

(
ak1 b

)
ak2 = bα1 ·

(
bak1

)
ak2 = bα1+1ak1+k2 ,

i.e., we obtained the first case of Formula (3).
Consider the last case, i.e., let α2 = 1 and let k1 be odd. Then similarly as before due to equality (2)

we get: (
bα1 ak1

)
·
(

bak2
)
= bα1 ·

(
ak1 b

)
ak2 = bα1 ·

(
bak1+4

)
ak2 = bα1+1ak1+k2+4.

Hence we have a third case of Formula (3).

Proposition 3. Given an element bαak its n-th power is calculated in the following way:

(
bαak

)n
=


akn, if α = 0;

bnakn, if α = 1 and k is even;

bnakn+4[ n
2 ], if α = 1 and k is odd,

(4)

where notation
[ n

2
]

stands for integer part of n
2 .

Proof of Proposition 3. The case of α = 0 is trivial and hence we omit it, since we clearly obtain the
first case of (4).

In the case of α = 1 we can rewrite the power n using its binary representation as follows:

n = n0 + 2n1 + 4n2,

where n0, n1, n2 ∈ {0, 1}. Then the n-th power of an element bak can be calculated in a following way:

(bak)n = (bak)n0 · (bak)2n1 · (bak)4n2 .

It is now clear that for an even value of k = 2l we can apply the so-called squaring algorithm
presented above together with the equality (2). It is easy to check that no extra summands appear in
this case. Hence we get second case of (4).

As for the latter case of Formula (4), let us assume that k = 2l + 1 and hence is odd. We consider
the squaring algorithm together with the equality (2). Second and fourth powers of the element bak

are calculated as follows: (
bak
)2

=
(

bak
) (

bak
)
= bbak+4ak = a2k+4;

(
bak
)4

=
(

a2k+4
)2

= a4k,
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since all the powers of the generator a are reduced modulo 8. Hence we can see, that an extra summand
of 4 appears when rising to either second or sixth power. For odd values of n we can now use the
squaring algorithm together with the second case of Formula (3) to obtain the extra summand of 4
when rising to third or seventh power.

Let us now consider the function f (n) = 4
[ n

2
]

mod 8.
We clearly see from Table 1, that the function f (n) indicates if the extra summand of 4 appears or

not. This proves validity of Formula (4).

Table 1. Values of function f (n).

n 0 1 2 3 4 5 6 7

f (n) 0 0 4 4 0 0 4 4

Proposition 4. Given an element bαak, its inverse is calculated in the following way:

(
bαak

)−1
=


a−k, if α = 0;

ba−k, if α = 1 and k is even;
ba4−k, if α = 1 and k is odd.

(5)

Proof of Proposition 4. This is a special case of Proposition 3 where n = 7 due to the following
trivial identity: (

bαak
)−1

=
(

bαak
)8−1

=
(

bαak
)7

.

This ends the proof.

Further in our paper we use this group to define the structure of the base matrix to be used for
key exchange based on the so-called matrix power function (MPF).

2.2. Description of MPF and Its Basic Properties

Over the last decade we presented several cryptographic primitives based on MPF. Formally this
function is defined in the following way:

Definition 3. Let entries of the base matrix W be chosen from a (semi)group S and let entries of matrices X
and Y be chosen from a ring Zτ , where τ is the maximum multiplicative order of the elements of S. MPF is a
mapping FW(X, Y) : Mat(Zτ)×Mat(S)×Mat(Zτ) 7→ Mat(S) denoted in the following way:

XWY = E, (6)

where Mat(·) is a set of matrices defined over the specified set and entries of the value matrix E are calculated
as follows:

eij =
m

∏
k=1

m

∏
l=1

w
xikyl j
kl

We also call the multiplicative (semi)group S a platform (semi)group and the ring Zτ-a power
ring. Furthermore, we refer to W as a base matrix and to X, Y as power matrices.

Previously in our research, we mainly used commutative algebraic structures to define a platform
(semi)group. Cryptographic security of such primitives as key exchange or asymmetric encryption
was based on a problem of private data recovery, which we defined as follows:

Definition 4. The MPF problem is to find matrices X and Y in (6) when given a base matrix W and an MPF
value matrix E.
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Furthermore, we apply constrains on power matrices X and Y to make this problem applicable
to our goals. Usually these constrains were constructed by defining two sets of matrices using linear
spans of publicly known matrices. Hence we demand that X and Y must be contained in appropriate
linear spans. The simplest form of this linear span is

X =
m−1

∑
k=0

δkLk,

where L ∈ Mat(Zτ) is some fixed publicly known matrix. Example with more complicated linear span
of matrices was presented in [21]. We also analyzed this linear span in greater detail in [22].

We can see, that this problem is based on the following property of MPF:(
XW

)Y
= X

(
WY

)
, (7)

i.e., the order of actions in (6) does not matter. This can be easily shown for any commuting platform
semigroup, which is used to define entries of matrices W and E. This result is also valid for the
so-called modified medial semigroup. We have previously used this semigroup to construct a key
exchange protocol. We have also shown, that obtaining a private key from Alice’s (or Bob’s) public key
in an NP-complete problem.

However, the identity (7) in general does not hold in case of non-commuting platform semigroup
as is in our case. Therefore we define the following functions:

Definition 5. If the actions in MPF are performed from left to right, then we call this function the left-to-right
MPF (LRMPF), i.e.,

ELR =
(

XW
)Y

. (8)

Definition 6. If the actions in MPF are performed from right to left, then we call this function the right-to-left
MPF (RLMPF), i.e.,

ERL = X
(

WY
)

. (9)

It is clear that in case of commuting platform semigroup ELR = ERL = E due to the property (7)
as was in our previous research.

Furthermore, MPF defined over a commuting platform semigroup has the following properties:

U
(

XW
)
= UXW; (10)

(
WY

)V
= WYV . (11)

However, these identities do not hold in the general case and hence the key exchange protocol,
defined previously in [15] cannot be executed between Alice and Bob if the platform semigroup is
non-commuting due to failure of properties (7), (10) and (11).

Nevertheless, we can use some facts from our previous research to establish a working key
exchange protocol between Alice and Bob. To achieve this goal, we have previously considered the
basic properties of the MPF defined over M16 in [25]. Relying on the obtained conclusions and a
specified form of the base matrix W we defined several possible templates for power matrices mainly
focusing on the left side of (8). In this paper we focus on LRMPF and consider the matrix W to define a
slightly different form of this matrix. We think that the new structure described in this paper makes an
important contribution to the complexity of the so-called LRMPF problem. Furthermore we define
an extra template for the right side power matrices, which cannot be ignored when executing the
proposed protocol.
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3. Key Exchange Protocol

3.1. Definition of Publicly Known Data

We start this section by defining the shared public parameter-a base matrix W to be used in the
key exchange execution. The structure of this matrix is as follows:

W =



ba2ω11+1 aω12 · · · bα1c aω1c · · · ba2ω1m+1

a2ω21 aω22 · · · bα2c aω2c · · · a2ω2m

· · · · · · · · · · · · · · · · · ·
a2ωi1 aωi2 · · · bαic aωic · · · a2ωim

· · · · · · · · · · · · · · · · · ·
a2ω(m−1)1 · · · · · · · · · · · · aω(m−1)m

ba2ωm1+1 aωm2 · · · bαmc aωmc · · · ba2ωmm+1


(12)

Note that entries of each column of matrix W aside from the c-th one commute, whereas, in
general, entries of matrix W do not commute. Note also that we fixed the parity of the powers of
generators a and b in the first and last columns of matrix W, whereas the parity of other entries of
this matrix is irrelevant. These facts are essential for defining the templates of the power matrices in
our protocol.

The idea we shall use for constructing a key exchange protocol is based on the properties of the
M16 previously discussed in [25]. Our goal is to remove the non-commuting entries of the matrix W by
calculating the public session parameter of the form (6), where X, Y are two power matrices defined
over Z8.

To achieve the desired result we fist define a template for the left side power matrices [25]:

Template 1. Choose matrix X in (6) so that xi1 + xim ≡ 0 mod 2.

By applying this template we guarantee that the non-commuting entries are removed in all
columns aside from the c-th one in the intermediate value H =X W, due to basic operations defined in
M16. Furthermore, to eliminate the non-commuting entries of the only remaining column we define a
template for the right side power matrices:

Template 2. Choose matrix Y in (6) so that ∀j = 1, 2, . . . , c− 1, c + 1, . . . m : ycj ≡ 0 mod 4 and ycc ≡
2 mod 4.

The latter template will play an important role when considering the complexity of the so-called
LRMPF problem, which is fundamental in the security analysis of our protocol.

3.2. Description of Our KEP

The setup of our protocol consists of random generation of the following publicly known data:

• Base matrix W defined over M16 and having the structure (12);
• Power matrix L defined over Z8 and satisfying Template 1;
• Power matrix R defined over Z8 and satisfying Template 2.

Alice calculates her session parameters by executing the following steps:

1. She chooses at random a vector of 2m entries~α = (α11, α12, . . ., α1m, α21, α22, . . ., α2m).
2. Alice uses vector of scalars~α to calculate two matrices as polynomials of L and R respectively:

X = α11L + α12L2 + . . . + α1mLm;
Y = α21R + α22R2 + . . . + α2mRm.
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3. She then uses the obtained values of X and Y to calculate matrix EA as follows:

EA =
(

XW
)Y

Alice keeps~α secret and makes her public session parameter EA visible online.
Bob calculates his session parameters in a similar way:

1. Bob generates a random vector of 2m coefficients ~β = (β11, β12, . . ., β2m).
2. He then uses these coefficients to calculate matrices U and V in a following way:

U = β11L + β12L2 + . . . + β1mLm;
V = β21R + β22R2 + . . . + β2mRm.

3. He calculates matrix EB as follows:

EB =
(

UW
)V

Bob keeps vector of coefficients ~β a secret and publishes online his public session parameter EB.
Alice and Bob can obtain a shared session key K by exchanging their public session keys and

calculating the following expressions:

• Alice calculates KA =X (EB)
Y;

• Bob calculates KB =U (EA)
V .

Let us denote the set of matrices defined over Z8 by Mat(Z8). Similarly we denote the
set of matrices defined over M16 by Mat(M16). Hence L, R ∈ Mat(Z8) and W ∈ Mat(M16).
Moreover, let us denote the linear span of the matrices L, L2, . . . Lm by Sp(L) = Span

(
L, L2, . . . Lm).

Analogously Sp(R) = Span
(

R, R2, . . . Rm). All these sets can be viewed as public parameters
pre-generated in advance. For more clarity we present a diagram of our protocol in Figure 1. We use
the blue colour to refer to public parameters L, R, W and the defined sets of matrices. We reserve the
red colour for parameters which are kept secret. Public session keys of both parties are visible to
everyone and hence we use green colour to denote this fact.

3.3. Proof of Validity of Our KEP

The validity of the proposed key exchange relies on several facts, presented here without proofs
to shorten the paper:

Fact 1. The polynomial structure of private matrices X and U preserves validity of Template 1.

Fact 2. The polynomial structure of private matrices Y and V preserves validity of Template 2 in the
following way:

• If α21 ≡ 0 mod 2 (or β21 ≡ 0 mod 2), then no extra terms are needed;
• If α21 ≡ 1 mod 2 (or β21 ≡ 1 mod 2), then an extra term 2I needs to be added.

Fact 3. The entries of matrix H in all the columns aside from the c-th one are various powers of the generator a.

Fact 4. The entries of matrix EA = HY, where matrix Y satisfies Template 2 are various powers of the
generator a.
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Figure 1. Diagram of the presented key exchange protocol.

Fact 5. Due to the defined templates and the latter two facts the consequent actions performed during the
protocol execution are no different from regular MPF and hence we have:((

XW
)Y
)V

=

((
XW

)V
)Y

. (13)

Fact 6. If the power matrices Y and V satisfy Template 2, then the following identity holds:

U
((

XW
)Y
)V

= X
((

UW
)Y
)V

. (14)

Upon executing the proposed key exchange protocol Alice and Bob obtain a shared key since

KA =
(

X(EB)
)Y

=

(
X
((

UW
)V
))Y

=

(
U
((

XW
)Y
))V

=
(

U(EA)
)V

= KB.

which is true due to identities (13) and (14).
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4. Complexity of LRMPF Problem

4.1. Definition of the LRMPF Decisional Problem

Algebraically breaking the presented key exchange is equivalent to solving at least one of the
following systems of equations: 

(XW
)Y

= EA
XL = LX
YR = RY

(15)


(UW

)V
= EB

UL = LU
VR = RV

(16)

with constrains specified by Templates 1 and 2. These templates cannot be ignored, since otherwise the
protocol falls apart due to failure of properties (13) and (14).

We can see that any knowledge about X and Y does not leak any information about U and V,
since they are generated independently. Hence, systems (15) and (16) are unrelated to each other and
can be considered separately. For this reason, we turn our attention to the recovery of Alice’s private
matrices X, Y in (15), keeping in mind that the all the obtained results in this section are also true for
Bob’s private matrices U and V.

In this section, we consider the complexity of solving the following problem, which is equivalent
to a system of Equation (15):

Definition 7. The decisional LRMPF problem is to determine if there is a pair of matrices X ∈ Sp(L) and
Y ∈ Sp(R) such that

(XW
)Y

= EA, where matrices W and EA are publicly known.

In other words, we wish to determine if the considered decisional problem can be solved in
polynomial time by a deterministic Turing machine. Furthermore, we desire to determine if this
problem can be reduced to any NP-Complete problem.

Let us define a reduction of this problem to its simplified form for a more convenient
analysis. To achieve this goal we define a homomorphism which maps elements of multiplicative
non-commuting group M16 to additive commuting group Z2.

4.2. Construction of an Homomorphism

To start with, we define a multiplicative commuting group G2 of order 2 in a following way:

G2 =
〈

g|g2 = 1
〉

,

where g is a generator of the group. We can now define the following mapping ϕ : M16 7→ G2:

ϕ(b) = 1, ϕ(a) = g, ϕ(bαak) = gk mod 2. (17)

Proposition 5. Denoting the multiplication operation in G2 by ∗ for two arbitrary elements w1, w2 ∈ M16

the following identity holds:
ϕ(w1w2) = ϕ(w1) ∗ ϕ(w2). (18)

Proof of Proposition 5. This fact follows directly from the definition of multiplication operation (3) in
M16. More precisely, for any two arbitrary elements w1 = bα1 ak1 and w2 = bα2 ak2 we have:

ϕ(w1w2) = ϕ(bα1 ak1 bα2 ak2) = ϕ(bα1+α2 ak1+k2+4γ),
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where γ = 0 for the first two cases of Formula (3) and γ = 1 for the last case of this formula. Hence

ϕ(w1w2) = ϕ(bα1+α2 ak1+k2+4γ) = g(k1+k2+4γ) mod 2 = g(k1+k2) mod 2.

However it is also true that

ϕ(w1) ∗ ϕ(w2) = ϕ(bα1 ak1) ∗ ϕ(bα2 ak2) = gk1 mod 2 ∗ gk2 mod 2 = g(k1+k2) mod 2.

Hence homomorphic property (18) of defined mapping ϕ is proven.

Moreover, we define the following trivial isomorphism ldg : G2 7→ Z2 which is called a discrete
logarithm base g:

ldg1 = 0, ldgg = 1.

Finally, we define a homomorphism π : M16 7→ Z2 for an arbitrary element w ∈ M16:

π(w) = ldg ϕ(w). (19)

The defined mapping is clearly an homomorphism based on Proposition 5 and basic properties of
a logarithm function. Furthermore, homomorphism π can be used to represent parity of the generator
a ∈ M16.

4.3. Reduction of LRMPF Problem to Binary Matrix Multivariate Quadratic Problem

We now apply the defined homomorphism π to matrices W =
{

wij
}

and EA =
{

eij
}

in (15)
entrywise. Hence we obtain binary matrices Qb =

{
qij
}

and Tb ==
{

tij
}

such that:

qij = π(wij);
tij = π(eij).

Here and onward, we use the lower index b to indicate binary matrices.
Keeping in mind, that Z2 is an additive group we now have, that multiplication operation in M16

switched to addition operation in Z2. Furthermore, denoting the multiplication operation in Z2 by ·
and due to basic property of the discrete logarithm function for an arbitrary w = bαak and an arbitrary
power n ∈ Z8 we have:

ldg ϕ(wn) = ldg(gk mod 2)n = (n mod 2) · (k mod 2).

Hence all powering operations in M16 have now been transformed to multiplications in Z2.
Formally, the value of MPF in (15) can be defined as an element in certain non-associative

semibimodule (SBM) [28]. It represents the left-right action of matrix semiring Mat(Zτ) to the matrix
semigroup Mat(S). The semibimodule properties can be verified directly.

Let Π be some morphism from our defined SBM to some SBM0, i.e., Π : SBM 7→ SBM0. Then for
any E1 =

(XW1
)Y and E2 =

(UW2
)V the following property should hold:

Π(E1 � E2) = Π(E1)⊕Π(E2) = ((X . W1) / Y)⊕ ((U . W2) / V), (20)

where � is a matrix Hadamard multiplication operation in SBM, ⊕ is certain matrix Hadamard
operation in SBM0 and ., / are right and left action operations of matrices X, Y and U, V on the
elements Π(W1) and Π(W2) respectively.

We define Π to be an m×m matrix defined by homomorphisms π in (19). Hence we have

Π(W) = π(wij). (21)
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Clearly, Π is acting on every element of W by homomorphism π.
It follows from the definition that Π : SBM 7→ SBM0 as we desired, where SBM0 be a bimodule

with action defined by matrices X, Y over the field Z2 = {0, 1} to the product of matrices Xb, Qb,
Yb ∈ Mat(Z2), represented in the following way

Π
(
(XW)Y

)
= XbQbYb = Tb, (22)

where matrices Xb = X mod 2, Yb = Y mod 2. Entries of matrices Qb, Tb are computed using (19)–(21).
The multiplication of matrices in (22) is computed in a regular way, reducing all the entries modulo 2.

Relying on the properties of homomorphism π, the newly-defined mapping Π satisfies
property (20), as desired. Note that operations ., / are somewhat similar to regular multiplication
of matrices with a non-standard addition action based on calculations of powers in expression (3)
whereas non-standard multiplication action is based on expression (4). Furthermore, operation ⊕ is a
non-standard matrix addition based on the expression (3).

It is also important to note, that due to reduction modulo 2 all the non-standard actions mentioned
above become standard, since the non-commuting nature of M16 is lost. Hence the property (20) is
transformed as follows:

Π(E1 � E2) = Π(E1) + Π(E2). (23)

Hence, we have proven that

Proposition 6. The mapping Π defined by (21) and (22) is a homomorphism.

The expression (22) corresponds to some binary matrix multivariate quadratic problem
(BMMQ) [24]. Consequently, by applying homomorphism π defined by (19) we have reduced the
initial decisional LRMPF problem to the following form:

Definition 8. The decisional BMMQ problem is to determine if there exists a pair of matrices Xb ∈ Sp(L) and
Y ∈ Sp(Rb) satisfying the following equation defined over Z2:

XbQbYb = Tb, (24)

where binary matrices Qb and Tb are publicly known.

4.4. Proof of NP-Completeness of the LRMPF Decisional Problem

The BMMQ problem is a subproblem of defined above LRMPF problem. Due to homorphism
Π mapping the LRMPF problem to the BMMQ problem, the answer “Yes” to the LRMPF problem
implies answer “Yes” to the BMMQ problem. Hence to prove the NP-Completeness of the LRMPF
problem it is sufficient to prove the NP-Completeness of the BMMQ problem [29].

Proposition 7. Decisional BMMQ problem is NP-Complete.

Rather than presenting explicit proof of Proposition 7 we focus only on the sketch of it as the full
proof is similar to the one presented in [24].

Sketch of proof of Proposition 7. Since matrices L and R have to be binary while also satisfying
Templates 1 and 2, we reduce these matrices to obtain matrices Lb and Rb respectively. We also reduce
the templates modulo 2. Hence Templates 1 and 2 are modified in the following way for the binary case,
see Templates 3 and 4.
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Hence neither of power matrices are invertible making the following transformations impossible:

(Xb)
−1T ≡ QbYb mod 2;

Tb(Yb)
−1 ≡ XbQb mod 2.

(25)

Previously, we have considered a problem similar to the one presented in Definition 8 in [24].
However, there we considered a circulant form of the power matrices X and Y. Using Schaeffer’s
criteria [30] in their modified form, we have proven that constrained singular BMMQ problem is
NP-Complete (see Theorem 2 of [24]). Similar observations can also be made for our case, i.e.,
decisional BMMQ problem does not satisfy any of the criteria specified in the Schaeffer’s dichotomy
theorem [30], which states that then the satisfiability problem GSAT is in P if at least one of the
following criteria is satisfied and is NP-Complete otherwise:

(a) Every relation in S is satisfied when all the variables are 0 (0-valid clause);
(b) Every relation in S is satisfied when all the variables are 1 (1-valid clause);
(c) Every relation in S is definable by a CNF formula in which each conjunct has at most one

negated variable (dual Horn clause);
(d) Every relation in S is definable by a CNF formula in which each conjunct has at most one

unnegated variable (Horn clause);
(e) Every relation in S is definable by a CNF formula having at most two literals in each conjunct

(bijunctive clause);
(f) Every relation in S is the set of solutions of a system of linear equation over the two element

field {0, 1} (affine clause).

Now all that remains is to check the inconsistency of each criterion explicitly. Note that the
vector of unknowns which is considered in decisional BMMQ problem is the polynomial coefficient
vector~α (or ~β in Bob’s case) resulting in a system of m2 multivariate quadratic (MQ) equations with
2m unknowns.

Template 3. Choose binary matrix Xb in (6) so that ∀i = 1, 2, . . . m : xi1 = xim.

Template 4. Choose binary matrix Yb in (6) so that ∀j = 1, 2, . . . m : ycj = 0.

It is now clear that we have obtained a certain NP-Complete problem which is also a subproblem
of the initial decisional LRMPF problem. Evidently we claim that:

Proposition 8. The decisional LRMPF problem is NP-Complete.

Hence, we see that the security of the presented key exchange relies on an NP-Complete problem.
Moreover, we think that the computational variant of this problem, i.e., finding at least one pair of
matrices (X, Y) satisfying (15) is actually harder than finding a pair (X, Y) satisfying Templates 3 and 4
while also satisfying equation (24). This is due to the non-commuting nature of the platform group
M16. However, intensive analysis of this assumption is needed thus far.

As mentioned previously, during the execution of this protocol, neither Alice nor Bob gain any
information about each others’ session secrets, namely Alice cannot recover matrices U and V, whereas
Bob is unable to determine matrices X and Y. Moreover, according to the proven result, it is now clear
that the compromise of session secrets corresponds to the solution of an NP-Complete problem, so
no adversary is able to compromise the agreed secret key if he is unable to solve the LRMPF decisional
problem, which was proven to be NP-Complete. It is strong evidence that this cannot be done, since
according to the current state-of-the-art, even quantum computers are unable to solve NP-Complete
problems in polynomial time. Hence, only information described in Section 3.1 is available to Alice,
Bob and adversaries.



Symmetry 2020, 12, 1389 15 of 16

5. Conclusions

In this paper, we defined a key exchange protocol using a non-commuting group M16 as a platform
group of MPF. However, since MPF in general is not associative if defined over a non-commuting
platform group, the proposed cryptographic primitive can be executed only if extra constrains are used
for the base and power matrices. The security of the presented key exchange is based on the complexity
of the decisional LRMPF problem that is analogue to the well-known decisional Diffie–Hellman
assumption.

Relying on the basic properties of the platform group and MPF, we defined a special form
of base matrix W and two templates for left and right power matrices which are private session
keys. Since, according to the derived templates, all power matrices have to be non-invertible, no
transformations of the LRMPF problem to a linear system of equations are possible to perform a linear
algebra attack. Hence, Templates 1 and 2 are the key factors to ensuring security of our KEP against
such an attack.

We defined decisional LRMPF and BMMQ problems. Using modified Schaeffer criteria [30] we
proved that BMMQ it is NP-Complete.

We found a homomorphic mapping of the LRMPF problem to the BMMQ problem, hence proving
that BMMQ is a subproblem of the LRMPF problem. Then, according to common principle, if the
BMMQ problem is NP-Complete, so is the LRMPF problem [29].

So, the security of our proposed key exchange protocol is based on the NP-Complete LRMPF
decisional problem and satisfies the generalized decisional Diffie–Hellman assumption. Therefore,
we can make a conjecture that, according to the recent development of quantum cryptanalysis, our
protocol is not vulnerable to such kinds of attacks.
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