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Abstract 
The paper presents a cloud server roundtrip time prediction approach for cloud 
datacenters using neuro-fuzzy network with eight probability distribution functions 
(Normal, Rayleigh, Weibull, Gamma, Birnbaum-Saunders, Extreme Value, and 
Generalized Pareto) used for fuzzification and defuzzification. We predict the 
Round-Trip Time (RTT), i.e., the time for a network packet to travel from a client to a 
server and back. The proposed approach can achieve significant reduction in the 
short-time RTT prediction error, achieving an accuracy of 79.36%. The approach could 
be useful for increasing the efficiency of client-cloud systems, for example, when 
taking effective decisions for computational offloading, and contribute to the 
development of smart cloud computing. 

Keywords 
Neuro-fuzzy network, probability distributions; round trip time; Quality of Service 
(QoS); smart cloud computing. 

1. Introduction 

Cloud computing provides a versatile and efficient computing environment to 
support on-demand online services to host client applications based on a principle 
of pay-on-demand [1]. Cloud is a collection of distributed computing systems 
consisting of a stack of virtualized and interconnected systems that are dynamically 
provisioned as computing resource based on a service level agreement (SLA) 
among the cloud service provider (CSP) and the cloud users [2]. Cloud computing 
represents an important advancement towards computer-supported cooperative 
work (CSCW) [3], providing an effective and trustworthy computing framework for 
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collaborative computation task executions [4] and infrastructure for collaborative 
enterprises [5] and establishing collaborative networked organizations [6]. The 
benefits of cloud computing stem from the fundamental idea that CSCW can be 
enabled by arranging and using distributed resources which may be controlled by 
different hosts. 
Cloud computing has fundamentally shifted the landscape of computing. Despite 
many advantages, it suffers from the problems of dynamic resource scaling [7]. 
These factors can make a client-cloud system to become inefficient. Prediction of 
network traffic parameters such as Round-Trip Time (RTT) can be used to improve 
the efficiency of client-cloud systems by enabling crucial decisions such as 
computational offloading or message forwarding [8]. The problem is still relevant 
as current approaches such as virtualization for sharing resources among users via 
virtual machines (VM), fall behind providing efficient results. Aiming to maximize 
the efficiency of sharing and maintaining the high level of the quality of services 
(QoS), one needs effective resource scaling policies based on analyzing historical 
data and predicting network congestion and workload of available cloud servers in 
the short-term future.  
Current trends show that the demands for cloud-based applications are expected to 
increase. Therefore, currently available cloud resources may become insufficient. 
This motivates the need for outsourcing virtual machines and storage capabilities to 
other cloud service providers. A Cloud Federation has emerged as platform for 
upgrading resource scaling strategies on clouds [9]. Interclouds address the 
limitations imposed by the single-provider policy such as the lack of 
interoperability between platforms, limited availability resources on peak time, and 
QoS degradation [10]. Such federated clouds, interclouds, or cloud-of-clouds, is a 
kind of System of Systems designed to fill the highly increasingly complex business 
needs for agility, dynamic adaptivity and resource scalability [11] to have higher, 
reliability, better QoS and flexibility. A smart cloud computing environment for just 
in time opportunities and scalable provisions of application services, and achieving 
QoS targets under variable workloads, resource and networks conditions is 
discussed in [12]. Resource scaling may depend on multiple factors such as the 
number of clients, network congestions, server usage patterns, and many others. 
Reactive scaling is not useful because of changing characteristics of network and 
cloud server workload. However, one can take the proactive approach where the 
performance limiting factors such as network traffic can be forecasted from 
historical data and the current state of the network connection.  
The inclusion of predictive analytics to interconnected cloud systems contributes to 
the achievement of the smart cloud computing vision [13], in which providing 
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autonomic adaptation services based on artificial intelligence (AI) methods is key 
for developing large-scale complex Cyber Physical Systems (CPS). The existing 
global cloud computing infrastructure must be managed intelligently in order to 
ensure its efficiency and sustainability [14], and robustness in case of technological 
failures or terrorist attacks. In Smart Cloud computing, services may require to be 
relocated to other cloud servers due to many reasons, which are difficult to foresee 
in order to ensure continuity of the provided services, dynamic scaling for 
unexpectedly high number of incoming requests to overcome restrictions on 
services availability imposed by unfriendly actors.   
The key challenges for accurate forecasting of cloud computing related resource 
utilization are communications with ever-changing number of clients and 
non-linearity of workload. Several methods can be applied to forecast resource 
utilization such as maximum or average values. However, when using the 
maximum workload forecasting model, the resources will stay underutilized for 
most of the time. If the average workload model is used, then the system will face 
the shortage of resources leading to performance degradation [15]. Machine 
learning methods which use historical data are commonly used for more accurate 
forecasting [16]. For example, Huang et al. [17] use Recurrent neural network 
(RNN) with long short-term memory (LSTM) units to forecast server performance 
and load. Lu et al. [18] use RVLBPNN (Rand Variable Learning Rate 
Backpropagation Neural Network), which allowed to achieve an accuracy of 61.71% 
in estimating memory-intensive workloads. Kumar et al. [15] use self-adaptive 
differential evolution for optimization of a neural network, which can forecast 
workloads. Ci et al. [19] used the Long Short-Term Memory Network (LSTM) to 
predict network traffic flow. Shen et al. [20] used temporal clustering analysis 
combined with deformable convolution neural network for network traffic speed 
prediction. Xu et al. [21] proposed wavelet neural network based on mind 
evolutionary algorithm (MEA-WNN) for a short-term traffic flow prediction. Tuli 
and Kumar [22] used artificial neural network (ANN) to forecast packet delay in a 
mobile ad hoc network (MANET). Aibin [23] used ANN to predict network traffic 
characteristics in elastic optical networks. Yasuda and Yoshida [24] proposed a 
two-state Markov process based method to predict the probability density function 
(PDF) of the round-trip time (RTT) in a mobile/wireless network.  
Recently, the hybrid methods were successfully adopted for handling time-series 
data and time-periodic events [25] as well as for supervised learning [26]. For 
example, a neuro-fuzzy machine learning was used for classifying medical data in 
the context of mobile cloud computing environment [27]. Xu et al. [28] applied a 
hybrid nonlinear auto-regressive with exogenous - random forest (NARX-RF) 
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model to predict traffic on a cellular network during holidays. 
In this paper we propose a neuro-fuzzy prediction framework for the near-time 
prediction of the cloud server response time. Our contribution is (1) the adoption of 
statistical probability distribution functions used for fuzzification of network 
response data, which has not been done before; (2) and the proposed of a hybrid 
neuro-fuzzy method, which can be used to effectively model and predict the 
round-trip time of network packets. 

2. Method 
2.1. Preliminaries 

Computational off-loading is a kind of opportunistic computing [29] that promises 
to provide performance-efficiency of client-cloud systems, especially for mobile 
applications. We adopt the opportunistic strategy for computation offloading as 
proposed in [30]. To efficiently manage the cloud off-loading, the system 
architecture has services implemented to perform the monitoring of off-loading and 
appropriately schedule the computation tasks. The Intelligent Offloading 
Management Module (see Figure 1) deployed on a resource stricken mobile device 
manages the CPU-hungry computations and performs the offloading of costly 
functions onto the cloud server. It consists of ANN that analyzes network speed and 
forecast the short time ahead network speed. Based on these results, the smart 
offloading decision is taken. 

 
Figure 1. Intelligent computation offloading management 

2.2. Neuro-fuzzy prediction 

We apply the neuro-fuzzy approach [31] for prediction. The integration of neural 
networks and fuzzy reasoning allows to utilize the advantages of both approaches 
simultaneously. The approach is summarized in Figure 2. The method uses 
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historical network traffic delay data to train an artificial neural network to predict 
the network delay (RTT) in the future. Finally, the results are evaluated. 

 
Figure 2. Summary of the neuro-fuzzy workload prediction 

2.2. Fuzzification of data 

Fuzzy Logic uses a "soft" linguistic system of variables and a continuous range of 
truth values introduced by Zadeh [32] to deal with uncertainty problems. Here we 
adopt a variant of fuzzy logic, called soft logic [33]. Let 𝑈𝑈 be an initial universe 
set and let 𝐸𝐸 be a set of parameters. Pair (𝐹𝐹,𝐸𝐸) is named a soft set over 𝑈𝑈 if and 
only if 𝐹𝐹 is a mapping of 𝐸𝐸 into the set of all subsets of the set 𝑈𝑈, i.e. 𝐹𝐹:𝐸𝐸 →
𝑃𝑃(𝑈𝑈), where 𝑃𝑃(𝑈𝑈) is the power set of  𝑈𝑈. Every set 𝐹𝐹(𝑒𝑒), for 𝑒𝑒 ∈ 𝐸𝐸, from this 
family may be considered as the set of e-elements of the soft set (𝐹𝐹,𝐸𝐸). 
For the fuzzification stage, we use the probability distribution functions (PDF) of 
the following statistical distributions: Normal, Rayleigh, Weibull, Gamma, 
Birnbaum-Saunders, Extreme Value, and Generalized Pareto, which are depicted 
visually in Figure 3. The normal (Gaussian) distribution is commonly used in 
natural sciences, and is described by the following PDF: 
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here 𝜇𝜇 is the mean and 𝜌𝜌 is standard deviation of values. 
The Rayleigh distribution is observed in the directional vector data, and its PDF is: 
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The Weibull distribution is used for survival and failure analysis with this PDF: 
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here 𝑘𝑘 > 07T is the shape parameter and 𝜂𝜂7T >0 is the scale parameter. 
The Gamma distribution is characterized by the following PDF: 
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here 𝑎𝑎 is the shape parameter and 𝑏𝑏 is the rate parameter. 
The Birnbaum-Saunders distribution is used to simulate the failure times in 
reliability applications, and is described by this PDF: 
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here 𝛼𝛼 is the shape parameter and 𝛽𝛽 is the scale parameter. 
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The extreme value distribution is often used for assessing various financial risks or 
various extreme climate events and has such PDF: 

𝑝𝑝(𝑥𝑥) = 𝑒𝑒−(1+𝜉𝜉(𝑥𝑥−𝜇𝜇) 𝜎𝜎⁄ )−1 𝜉𝜉⁄ .                               (6) 

here 𝜉𝜉 is the shape parameter. 
The Pareto distribution is characterized by the following PDF: 

𝑝𝑝(𝑥𝑥) = 𝛼𝛼(𝑥𝑥𝑚𝑚)𝛼𝛼

𝑥𝑥𝛼𝛼+1
,                              (7) 

here 𝑥𝑥𝑚𝑚 7T is the minimum possible value of 𝑥𝑥7T, and 𝛼𝛼7T is a positive parameter. 

 
Figure 3. Probability distribution functions of analyzed statistical distributions 

2.3. Neural network 

The neural network architecture processes the probability values from the network 
traffic for short term prediction. In the proposed architecture (Figure 4) we have 
used an idea of Radial Basis Functions (RBF) on the input composed with classic 
Sigmoid Bipolar Functions on other layers.  
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Figure 4. Architecture of the neural network 

The novelty of our solution is in the form of the input to the neural network. We 
have introduced fuzzy weights to all the input descriptors to diversify the 
importance of the input information on each input unit. On the input, the neurons 
apply the Radial Basis Function (RBF) as follows:  

 𝐹𝐹(⋅) = 𝑒𝑒𝑒𝑒𝑒𝑒 �||𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖||
𝜆𝜆2

�      (8) 
where 𝜆𝜆 is the distribution spread and ||𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖|| are the inputs. 
The signal received by neurons in the subsequent layers is computed as  

 𝑠𝑠𝑖𝑖𝑘𝑘 = ∑𝑁𝑁𝑘𝑘−1
𝑗𝑗=1 𝑦𝑦𝑗𝑗𝑘𝑘−1𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘 ,      (9) 

where 𝑁𝑁𝑘𝑘 is the count of neurons in layer 𝑘𝑘, 𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘  is weight of impulse between 

𝑘𝑘 and 𝑘𝑘 + 1 layers from unit 𝑗𝑗 to unit 𝑖𝑖 and 𝑦𝑦𝑗𝑗𝑘𝑘−1 is the impulse. Received 
signal is scaled on the neurons by applying the activation function  
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where 𝛽𝛽 is the correction coefficient for controlling the speed of convergence. 
The training procedure minimizes the mean square error function  
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for all items 𝑛𝑛 ∈ 𝑁𝑁𝑡𝑡 in the training set 𝑇𝑇, by calculating error gradient value  
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and used to scale weights 𝑤𝑤𝑖𝑖𝑖𝑖
𝑘𝑘  in each iteration according to  

 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘 ← 𝑤𝑤𝑖𝑖𝑖𝑖𝑘𝑘 |𝑑𝑑𝑖𝑖𝑘𝑘 − 𝑦𝑦𝑖𝑖𝑘𝑘| + 2𝜂𝜂𝛿𝛿𝑖𝑖𝑘𝑘𝑥𝑥𝑗𝑗𝑘𝑘,     (13) 

where 𝜂𝜂 is the training coefficient, 𝛿𝛿𝑖𝑖𝑘𝑘 = −1
2
∂𝐵𝐵(𝑇𝑇)
∂𝑠𝑠𝑖𝑖

𝑘𝑘  is error function change, and 
𝑥𝑥𝑗𝑗𝑘𝑘 is the input signal. 

2.4. Data preparation algorithm for network 

To prepare the data for the neural network, the following algorithm is applied: 
1. Perform time windowing of data by selecting an appropriate window size 𝑤𝑤. 
2. Perform the fitting of distribution of data in each window to eight 

probability distribution functions discussed in section 2.2. 
3. Perform logarithmical (basis 2) binning of data and calculate the number of 

data points falling to each bin from each of fitted probability distributions.  
4. Used the obtained values as a feature vector with the length of 8𝑏𝑏 (where 

𝑏𝑏 is the number of bins) for network training. 

3. Experiments and results 

3.1. Data acquisition 

The performance of the proposed method was evaluated using the real-world 
network traffic data collected during the cloud-based game sessions. The game is 
based on the use of virtual physics, therefore expensive computations are needed, 
which are offloaded to a game server (more details about the dataset can be 
found in [34]). The example values of data with its statistical distribution are 
shown in Figure 5 and analyzed in Figure 6. The distribution of data has a heavy 
tail as evidence by its cumulative distribution function (CDF), while the 
logarithmically transformed data shows that it has a bimodal nature. The 70% of 
data are used for training, 15% - for validation, and the remaining 15% - for 
testing. Processing of data, the neural network and visualization of results was 
implemented in MATLAB (R2019a) on ASUS computer with Intel i5-8265U 
1.60GHz CPU and 8GB RAM running Windows 10 64-bit operating system. 
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Figure 5. Example of roundtrip delay data (right) with its histogram (left) 

 
Figure 6. Violin plot showing the statistical distribution of RTT data after 
logarithmic transform (a), and the cumulative distribution function of RTT data (b) 

3.2. Results 

The logarithmic transform was applied to the network delay data before 
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commencing the training of the proposed neuro-fuzzy network. The training of 
the network model is fast (only 1.94 s). The network prediction power is 
evaluated in Figure 7, which presents a histogram of both training, validation and 
testing errors. The results show that most of errors have a value which is close to 
0 indicating that the network has learned the data well. 

 
Figure 7. Error histogram of neural network predictions 

The accuracy of the network was computed as the number of accurately 
predicted bins to which the RTT value was assigned. As a result of testing, we 
achieved an accuracy of 80.2% for the one-step look-ahead case. The confusion 
matrix of the prediction results is presented in Figure 8. 

In Figure 9 we present an example of 1-step look-ahead predicted bin values with 
respect to true bin values of RTT in the analyzed network dataset. The background 
of the figure shows the expected probability of the round-trip time, while the 
markers show the true and predicted bin of round-trip time, respectively. 

To test the performance of the hybrid network model of its ability to predict the 
values of RTT longer in the future, we trained a network to perform prediction of 
the L={2..20} steps in the future and repeated each experiment 10 times. The results 
are presented in Figure 10. Note that there is no noticeable downwards trend 
meaning that the network model has a good ability to generalize on data, while the 
grand mean of all experiments is 79.36%. 
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Figure 8. Confusion matrix of one-step look-ahead prediction results 

 
Figure 9. Example of 1-step look-ahead prediction values of rount-trip time bins 
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Figure 10. Results of multi-step look-ahead prediction  

3.3. Evaluation and comparison of results 

We compare our results with other authors, who also work on prediction the 
round-trip time in computer networks in Table 1. Note that Yasuda and Yoshida [24] 
predicted only the distribution characteristics of the RTT values rather than actual 
values. However, the different datasets used and the different methodologies for 
evaluation of results do not allow for direct comparison of results. Perhaps the most 
similar approach to the proposed in this paper is presented by Khatouni et al. in [35]. 
They also divided the values of the 4G network latency into the bins thus turning 
the latency forecasting problem to a multilabel classification problem.  

Table 1. Comparison of results with other methods 

Method Performance* Reference 
Random Forest 0.71 (F-score) Khatouni et al [35] 

Recurrent neural networks 1.534 (RMSE) Dong et al [36] 
Convolutional neural network 0.05 (RMSE) 

0.591(NPRE) 
Mohammed et al. [37] 

Two-state Markov process na Yasuda and Yoshida [24] 
Adaptive matrix completion 

algorithm 
na Tripathi and Rajawat [38] 

Three-layer ANN 0.2 (NMSE) Iqbal et al [39] 
Neural network with fuzzified 

inputs 
79.36% 

(accuracy) 
This paper 

* NPRE - ninetieth percentile relative error. RMSE – Root Mean Square Error. 
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NMSE - normalized mean square error. 

4. Conclusions 

In this paper we have presented a hybrid neuro-fuzzy approach for client-cloud 
server communication round-trip time (RTT) prediction. We used eight probability 
distribution functions (Normal, Rayleigh, Weibull, Gamma, Birnbaum-Saunders, 
Extreme Value, and Generalized Pareto) used for fuzzification of data. Thus we 
converted the regression problem into the classification problem, for which we used 
a Radial Basis Function Neural Network. We have tested the approach on our own 
dataset collected during the cloud-based game session using a cloud-based 
distributed infrastructure. The proposed approach achieved a grand mean accuracy 
of 79.36% in predicting the short-time RTT. The approach can be used to increase 
the efficiency of client-cloud communications, when taking effective decisions for 
increasing Quality of Service (QoS) and performing computational offloading, for 
example, in case of power-demanding mobile applications, and contribute to the 
development of smart cloud computing infrastructure. 
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