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Abstract: Technology-assisted clinical diagnosis has gained tremendous importance in modern day
healthcare systems. To this end, multimodal medical image fusion has gained great attention from the
research community. There are several fusion algorithms that merge Computed Tomography (CT)
and Magnetic Resonance Images (MRI) to extract detailed information, which is used to enhance
clinical diagnosis. However, these algorithms exhibit several limitations, such as blurred edges during
decomposition, excessive information loss that gives rise to false structural artifacts, and high spatial
distortion due to inadequate contrast. To resolve these issues, this paper proposes a novel algorithm,
namely Convolutional Sparse Image Decomposition (CSID), that fuses CT and MR images. CSID
uses contrast stretching and the spatial gradient method to identify edges in source images and
employs cartoon-texture decomposition, which creates an overcomplete dictionary. Moreover, this
work proposes a modified convolutional sparse coding method and employs improved decision maps
and the fusion rule to obtain the final fused image. Simulation results using six datasets of multimodal
images demonstrate that CSID achieves superior performance, in terms of visual quality and enriched
information extraction, in comparison with eminent image fusion algorithms.

Keywords: medical image processing; image fusion; multimodal medical image; image decomposition;
sparse representation

1. Introduction

Image processing manipulates input source images to extract the maximum possible information.
The information obtained is exploited for several applications, including remote sensing, malware
analysis, clinical diagnosis, etc. [1–5]. However, the latter requires greater attention as enhanced clinical
diagnosis remains the top priority around the world [6]. In this regard, clinical imaging plays a vital
role in modern day health care systems, where Computed Tomography (CT) and Magnetic Resonance
Imaging (MRI) are among the most extensively used imaging modalities [7–9]. This allows radiologists
to analyze the human body and generate different patterns, which are used in clinical analysis [10].
These images provide anatomical statistics [7]; however, the extraction of purposeful functional details
from an individual image remains a critical issue. This demands multimodal image fusion, which
integrates the complementary information of images from different modalities to produce an enhanced
fused image through simulation, thereby providing enriched anatomical and functional information
[6,7,11–13].

There are several multimodal image fusion algorithms [7,14,15], which are divided into two
major classes, namely the spatial and transform domains [2]. The spatial domain produces fused
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images based on the coefficient deduced from pixels, sections, or blocks without transformation [14,16],
which produces false structural artifacts in the resulting fused images. Conversely, the transform
domain merges the respective transform coefficients and employs the inverse transformation to yield
better fused images. To this end, MultiScale Transformation (MST) includes contourlet transform [17],
discrete wavelet transform [18], non-subsampled contourlet transform [19], and curvelet transform [20],
which are used for multimodal image fusion.

There are a number of the MST-based algorithms. For example, the authors in [18] proposed
a novel Discrete Wavelet Transform-based (DWT) algorithm. The proposed algorithm selects the
low frequency domain coefficients by employing the maximum sharpness focus measure method,
whereas the high frequency sub-band coefficients are chosen on the basis of maximum neighboring
energy-based fusion. Similarly, Non-Subsampled Contourlet Transform (NSCT) [19] decomposes
the input source images into a series of high frequency sub-bands and one low frequency sub-band.
The work in [19] also proposed activity measures for low-pass and high-pass sub-bands to enhance
fusion. The sub-bands obtained from the aforementioned process are merged based on the
corresponding activity measure. Finally, the inverse NSCT is applied on the merged sub-bands
to build a fused image. Furthermore, the Laplacian Pyramid (LP) [21] decomposes the source images
into different low-pass filtered images and produces a pyramid structure, where the visual quality of
the resulting image remains proportional to the pyramid levels. Moreover, Guided Filtering-based
Fusion (GFF) [22] and Convolutional Sparse Representation (CSR) [23] decompose the images into
base and detail layers. GFF aims to enhance the spatial consistency of fused images, whereas
CSR preserves the detailed information from the input source images. Additionally, Convolutional
Sparsity-based Morphological Component Analysis (CSMCA) [24] integrates MCA and CSR into
a a novel optimization framework to enhance the fusion process. Another algorithm, namely
Convolutional Neural Network (CNN) [25] adopts the Siamese convolutional network to create
weight maps. These weight maps integrate pixel activity information from the input source images
and employ the local similarity-based strategy to adapt fusion modes for the decomposed coefficients.
However, the aforementioned algorithms exhibit several limitations, such as the blurring effect near
strong edges during image decomposition and increased information loss, which impact the originality
of the fused images, thereby producing high spatial distortion.

To resolve the aforementioned issues, we propose a novel algorithm for multimodal image fusion,
namely Convolutional Sparse Image Decomposition (CSID), having the following contributions.

1. We employ contrast stretching and the spatial gradient method to extract edges from the input
source images.

2. We propose the use of the cartoon-texture decomposition that creates an over-complete dictionary.
3. We propose a modified Convolutional Sparse Coding (CSC) method.
4. Finally, our proposed algorithm uses enhanced decision maps and a fusion rule to obtain the

fused image.
5. Additionally, this simulation study reveals that the CSID algorithm achieves superior performance,

in terms of visual quality and enriched information extraction, in comparison with other image
fusion algorithms, as it will be discussed in Section 5.

The rest of the paper is organized as follows. Section 2 critically reviews the eminent related work
on multimodal image fusion. Section 3 details the proposed algorithm. Section 4 presents the objective
evaluation metrics. Section 5 evaluates the performance of the suggested algorithm in comparison
with the state-of-the-art eminent algorithms. Finally, Section 6 concludes the paper with discussion on
future research aims.

2. Related Work

Modern healthcare systems actively use multimodal image fusion for diagnosis [10]. This section
critically reviews the eminent work on multimodal clinical image fusion.
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Recently, the MST and Sparse Representation (SR) techniques have gained significant popularity in
the transform domain and have produced positive results in medical image analysis [26]. However, these
methods have shortcomings, such as (i) the “max-l1” rule induces spatial inconsistency in a fused image
when different modalities are captured from the source images [27], (ii) the MST-based filters used for
the SR-based image fusion [28] are time-dependent due to the training of dictionary and its optimization,
and (iii) these algorithms are also unable to decompose several types of images [12]. Another challenge
is the complicated oriented shape of source images that cannot be precisely categorized through an
already trained dictionary [28]. To address these issues, the authors in [29] propose a training model that
employs the well-known K-means algorithm [30]. Research in the domain of multimodal image fusion
have produced promising outcomes; however, there are several drawbacks. The authors in [15,25]
propose neural network-based fusion algorithms that efficiently adjust and fit the training parameters,
but these algorithms are not capable of representing information from multiple sources [31].

Moreover, learning-based algorithms are also found to be useful in multimodal image fusion [32].
To this end, SR in combination with learning-based multimodal medical image fusion strategies
are gaining interest of the research community [32]. The works in [23,27,33] employ the SR-based
algorithms for image fusion. Similarly, the authors in [34] propose enhanced sparse representation
orthogonal matching pursuit (SR-OMP) algorithms. Furthermore, the work in [24] presents another
SR-based morphological component analysis model for pixel level image fusion. However, the blurring
effect during decomposition restricts the performance of the proposed model. The authors in [35]
present a multimodal image fusion algorithm that employs the SR-based cartoon-texture decomposition.
However, it also faces the blurring issue during decomposition that results in considerable information
loss. Additionally, the pyramid transformation [36] algorithm exhibits limited performance due to
inaccuracy in information capturing and path details. Arif et al. [37] present a multimodal image fusion
algorithm based on the curvelet transform and genetic algorithm (GA). Here, GA solves the suspicions
and evaluates an optimized fused image. Kaur et al. [38] propose another image fusion algorithm that
employs deep belief networks. Maqsood et al. [2] present a two scale image decomposition technique,
where the spatial gradient-based edge detection method is used to acquire the detail layer and the SR
rule is used to construct a fused image. This method produces improved image fusion results, however,
it still experiences false structured artifacts in the fused image. Shahdoosti et al. [39] propose a sparse
representation in the tetrolet domain for medical image fusion; however, this approach falls a victim of
overlapping artifacts in the fused images.

From the literature survey, it is found that the SR-based image fusion algorithms have the advantage
of better information extraction in comparison with other fusion algorithms. However, there are
several issues that require urgent attention, such as (i) blurring effect near strong edges during image
decomposition, (ii) appearance of false structured artifacts in fused image, and (iii) reduced contrast that
results in high spatial distortion. To resolve these issues, we propose a novel image fusion algorithm
that is detailed in the following section.

3. The Proposed Convolutional Sparse Image Decomposition (CSID) Algorithm

This section presents our proposed novel algorithm for multimodal image fusion, namely,
Convolutional Sparse Image Decomposition (CSID). CSID comprises six phases that include contrast
enhancement, edge detection, cartoon and texture decomposition, enhanced CSC-based sparse coding,
sparse coefficient maps fusion, and fused image reconstruction, as depicted in Figure 1. These phases
are detailed in the following subsections.

We take a source image (Ii) having P × Q dimensions, where P = 1, 2, 3, . . . , p, Q = 1, 2, 3, . . . , q,
and i ∈ [1, 2] that represents the CT and MRI images, respectively. CSID starts with contrast enhancement,
which is detailed in the following subsection.
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Figure 1. Procedural flowchart of the proposed CSID algorithm.

3.1. Contrast Enhancement

Contrast enhancement is a major preprocessing step in image fusion for diagnostics processes [40].
No-Reference Image Quality Assessment (NR-IQA) and Non-Parametric Histogram Equalization
(NPHE) are commonly used for contrast enhancement [41,42]. NR-IQA employs histogram equalization
and uses structural-similarity index metric to generate images with enhanced contrast, whereas
NPHE employs modified spatial transformation-based adaptive contrast enhancement. However,
these techniques require manual parameter tuning that limits their performance in accurately reflecting
the image contrast with respect to an input image. To resolve the aforementioned issues, CSID employs
the Bio Inspired Multi Exposure Fusion (BIMEF) framework [40] that improves contrast and preserves
mean brightness of the source images. BIMEF uses illumination estimation for the construction of a
weighted matrix. Thus, we start with the detection of optimal exposures using a camera response model,
thereby, producing synthetic images that are better exposed in the regions in comparison with source
images. Furthermore, we apply the weight matrix, with an appropriate exposure, upon the synthetic
image, which is then merged with the source image for contrast enhancement. Here, to conserve the
contrast of an image, a weighted matrix is associated with the scene brightness that is computed as
follows [40],

Í = Aφ, (1)

where A denotes the scene brightness map and φ is a parameter managing the degree of enhancement.
Moreover, since the highest regional maxima is better identified using a max function in comparison
with a min function [43,44], CSID computes the dark regions (R), based upon initial estimation of
brightness for each pixel (x), as [40],

R(p, q) = max Í. (2)

Since absolute brightness has local consistency for the boundaries with same structures, A eliminates
the textural edges and builds a significant structure of an image. CSID optimizes A as [40],

X(p, q) = min
A
||A− R||22 + ϕ||W ◦ 5A||1, (3)

where || ? ||1 and || ? ||2 represent the l1 and l2 norms, respectively,5 is the first order derivative filter
consisting5h A and5v A as horizontal and vertical components, respectively. ϕ denotes the coefficient
and W refers to the weighted matrix. The weighted matrix is further refined to obtain significant edges
in an image as [40],

Zd(p, q) =
1

|∑yεd(p,q)5 f X(p, q)|+ κ
, j ∈ (h, v), (4)

where | ? | denotes the positive value operator, d(p, q) is the neighborhood window pointed at pixels p
and q, and κ represents the constant to evade zero denominator. Moreover, we use (5) to evaluate Ai
that minimizes complexity. Ai is then applied upon the source image to generate the final outcome of
this phase, i.e., an image with enhanced contrast.
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Ai = min
A

∑
p,q

(
(A(p, q)− d(p, q))2 + ϕ ∑

jε(h,v)

Zd(p, q)(5 f (A(p, q))2

| 5 f X(p, q)|+ ε

)
. (5)

The results of contract enhancement are illustrated in Figure 2. After contrast enhancement, CSID
enters the second phase, which is detailed in the following subsection.

(a) (b) (c) (d)

Figure 2. Contrast enhancement results, where (a,b) represent the source images and (c,d) show images
with enhanced contrast using BIMEF.

3.2. Edge Detection

Edge detection finds the boundaries of objects in an image through identification of brightness
discontinuities [45]. To this end, CSID performs edge detection in the image, obtained after contrast
enhancement, by employing the Sobel operator [45]. Edge detection yields better performance when
applied upon the images with enhanced contrast in comparison with original source images, as it is
demonstrated in Figure 3.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Edge detection results, where (a,b) are the original source images, (c,d) represent the gradients
of (a,b) using the Sobel method, (e,f) shows the images with enhanced contrast using BIMEF, and (g,h)
represent the gradients of (e,f) using the Sobel method.

For edge detection, CSID includes the image gradient approximation, where each location is
either the corresponding gradient vector or the norm of this vector. The image is convoluted with the
first kernel from left to right and the gradient for the X coordinate is obtained as,
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Bp =

1 0 −1
2 0 −2
1 0 −1

 . (6)

Similarly, the gradient for the Y coordinate is obtained by convoluting the first kernel from top to
bottom as,

Bq =

 1 2 1
0 0 0
−1 −2 −1

 . (7)

Furthermore, the image gradient vectors, obtained using (6) and (7), are used to find edges as,

Bi =
√
(Bp)2 + (Bq)2. (8)

Figure 3 depicts a comparison of edge information in the source and enhanced images obtained
after completion of the first two phases of our proposed CSID algorithm. Figure 3a,b present the source
CT and MRI images, respectively, while their edge maps are demonstrated in Figure 3c,d, respectively.
Furthermore, Figure 3e,f include the improved CT and MRI images obtained after contrast enhancement
(as detailed in Section 3.1) and their respective gradient maps are shown in Figure 3g,h. Here, improved
edge detection is observed in the image with an enhanced contrast in comparison with edge detection
in the original source image. On completion of this phase, CSID proceeds to the third phase, which is
discussed in the following subsection.

3.3. Cartoon and Texture Decomposition

Cartoon-texture decomposition divides an image into the geometric cartoon and texture
components, which removes the background interference. To this end, we propose a modification to
the legacy Convolutional Sparse Coding (CSC) [46]. In our proposed modified CSC model, a similarity
threshold is maintained to compute residual correlation similarity between the selected sparsest
coefficients and the other coefficients in the sparse coding phase, which is discussed in Section 3.4.
This expands the coefficients set, thereby, obtaining more suitable coefficients for SR. Furthermore, it
also accelerates the process of sparse coding, and the residual correlation similarity easily minimizes
the target error for each image patch signal. Moreover, multiple similar patches are used to represent a
single image patch that further enhances the fused image by avoiding the blurring effect. An optimized
solution of the CSC problem using (9) is generated as,

δc,t =δc,u, δt,u = min
ϕc,u ,ϕt,u

1
2

∥∥∥∥∥Bi −
Uc

∑
u=1

hc,u ∗ ϕc,u −
Ut

∑
u=1

ht,u ∗ ϕt,u

∥∥∥∥∥
2

2

+ νc

Uc

∑
u=1
||ϕc,u||1 + νt

Ut

∑
u=1
||ϕt,u||1,

(9)

where qc = {hc,u}Uc
u=1 and qt = {ht,u}Ut

u=1 represent the sets of dictionary filters for SR of the cartoon and
texture components. ϕc,u and ϕt,u are the sparse coefficients that estimate qc and qt when convolved
with filters {hc,u} and {ht,u}, respectively, and νc andνt are the positive regularization parameters.
The optimization problem is solved iteratively over ϕc,u and ϕt,u. As, ϕt,u, ht,u, and hc,u are fixed, the
accompanying issue is settled for the updated ϕc,u as,

δc,u = min
ϕc,u

1
2

∥∥∥∥∥Ai −
Ut

∑
u=1

ht,u ∗ ϕt,u −
Uc

∑
u=1

hc,u ∗ ϕc,u

∥∥∥∥∥
2

2

+ νc

Uc

∑
u=1
||ϕc,u||1. (10)
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Similarly, for the updated ϕt,u, keeping ϕc,u fixed, the accompanying issue is settled as,

δt,u = min
ϕt,u

1
2

∥∥∥∥∥Bi −
Uc

∑
u=1

hc,u ∗ ϕc,u −
Ut

∑
u=1

ht,u ∗ ϕt,u

∥∥∥∥∥
2

2

+ νt

Ut

∑
u=1
||ϕc,t||1. (11)

Alternating Direction Method of Multipliers (ADMM)-based CSC [47] is used to address the
aforementioned two issues in (10) and (11). This completes the cartoon and texture decomposition
phase and allows CSID to proceed to the next phase, which is detailed in the following subsection.

3.4. Enhanced CSC-Based Sparse Coding

CSID employs our modified CSC model for cartoon and texture layer decomposition using
{ϕc,u}Uc

u=1 and {ϕt,u}Ut
u=1, which represent the sparse coefficient vectors of the cartoon and texture

components, respectively. Moreover, the same coefficient vectors are used to evaluate sparse coefficient
maps in the next phase of our proposed CSID algorithm, as detailed in the following subsection.

3.5. Sparse Coefficient Maps Fusion

CSID applies the l1-norm of the sparse coefficient maps as the activity level measurement of
the enhanced images, which remains a common approach adopted in several SR-based image fusion
techniques [2,48,49]. Sparse coefficient maps fusion uses an attribute j (j ∈ {c, t}) that refers to the
cartoon and the texture components and ϕn

j,1:Uj(p, q) that uses the Uj dimensional vector consisting
coefficients of ϕn

j,u at points (p, q). Hence, the initial activity level map ζn
j (p, q) map is obtained as,

ζn
j (p, q) = ||ϕn

j,1:Uj
(p, q)||1, j ∈ {c, t}. (12)

A window-based averaging scheme is then applied for noise removal and enhancement of
robustness to misregistration. Thus, the activity level map ζ̃n

j (p, q) is computed as,

ζ̃n
j (p, q) =

∑mn
x=−mj ∑

mj
y=−mj

ζn
j (p + x, q + y)

(2mj + 1)2 , j ∈ {c, t}, (13)

where mc and mt refer to the window size for cartoon and texture components, respectively. Finally,

CSID employs the “choose-max” rule to obtain the fused coefficient maps {ϕ
f
j,u}

Uj

u=1
with j ∈ {c, t} as,

ϕ
f
j,1:Uj

(p, q) = ϕn�
j,1:Uj

(p, q), n� = arg max
n

(ζ̃n
j (p, q)). (14)

This completes the sparse coding phase that leads CSID to the final phase, which is detailed in
the following subsection.

3.6. Fused Image Reconstruction

This phase is responsible to fuse enhanced CT and MRI images obtained from the aforementioned

phases of CSID. The final fused image A f is obtained through the linear combination of {ϕ
f
c,u}

Uc

u=1 and

{ϕ
f
t,u}

Ut

u=1 as,

A f =
Uc

∑
u=1

hc,u ∗ ϕ
f
c,u +

Ut

∑
u=1

ht,u ∗ ϕ
f
t,u. (15)

This phase completes the multimodal fusion process through our proposed CSID algorithm.
The cartoon component includes edges, round and anisotropic structure parts, whereas the texture
component contains detailed texture information, periodic behaviors and several levels of noise data.
This enables the proposed CSID algorithm to surpass the limitations of the existing fusion techniques
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(as detailed in Section 2) by allowing the reconstruction of lost information in the CT and MRI images.
The reconstruction process results in sharper images with enriched information. The fusion of such
enhanced images improves accuracy during clinical diagnosis. The next section discusses the objective
evaluation metrics used for the performance evaluation of our proposed CSID algorithm.

4. Objective Evaluation Metrics

The objective performance evaluation metrics include mutual information, entropy, feature
mutual information, spatial structural similarity, and visual information fidelity, which are used by
state-of-the-art works [27,50–53]. These metrics are defined in the following subsections.

4.1. Mutual Information (MI)

MI [50] computes the common information among two discrete variables as follows:

MI =
n

∑
l=1

n

∑
m=1

Hij(l, m) log2
Hij(l, m)

Hi(l)Hj(m)
, (16)

where Hij (l, m) denotes the combined probability density distribution of the grayscale image in i
and j. Hi(l) and Hj(m) refer to the probability density distribution of the grayscale image in i and j,
respectively. MI expresses the sum of mutual information between each source image and the fused
image. A larger value of MI refers to increased information extracted from the input source images.

4.2. Entropy (EN)

EN [27] refers to the measure of information randomness in a sample, which is expressed as,

EN(x) = −
N−1

∑
l=0

Hi(l) log2 Hi(l), (17)

where N is the number of gray levels, which is taken as 256 in this work, and Hi(l) is the normalized
histogram of the fused image i.

4.3. Feature Mutual Information (FMI)

FMI [51] computes the feature mutual information. A non-reference performance metric for fusion
methods is determined as,

FMIi,j
m =

1
N

N

∑
l=1

Il(m, i)
Sl(m)Sl(i)

+
Il(m, j)

Sl(m) + Sl(j)
, (18)

where N represents the number of sliding windows, Sl(m) is the entropy of the nth window in an
image m, Il(m, i) refers to the regional common information between the nth window of images m and i.
Similarly, Il(m, j) is the regional MI between the nth window of images m and j. FMIi,j

m indicates the
amount of edge information transmitted into the fused image from the source images. Here, FMIi,j

m

remains proportional to the image quality, i.e., a greater value of FMIi,j
m yields better quality fused image.

4.4. Spatial Structural Similarity (SSS) QAB/F

QAB/F SSS [52] is an edge-based fusion quality evaluation metric, which determines the quantity
of transmitted edge information into the fused image from input images. QAB/F for a set of source
images is computed as,

QAB/F =
∑m

l=1 ∑n
j=1(Q

AB(i, j)WA(i, j) + QBF(i, j)WB(i, j))

∑m
l=1 ∑n

j=1(WA(i, j) + WB(i, j))
, (19)
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where QAB/F (i, j) denotes the information transferred from a source image into the fused image for
the pixel location (i, j) and WB(i, j) is the weight for a pixel location (i, j). Here, pixels with a higher
gradient value influence QAB/F more in comparison with pixels having a lower gradient value. Thus,
WA(i, j) = [Grad(x, y)]T : T remains constant.

4.5. Visual Information Fidelity (VIF)

VIF [53], being a perceptual distortion metric, stands as an important index for image quality
assessment. In the context of image fusion, VIF evaluates the performance by calculating common data
between a source image and its corresponding fused image. Since VIF provides accurate distortions
identification, this work takes average VIF value for the performance evaluation of the given set of
algorithms, as shall be discussed in Section 5.

5. Performance Evaluation

We evaluate and compare the proposed CSID algorithm to Discrete Wavelet Transform (DWT) [18],
Dual Tree Complex Wavelet Transform (DTCWT) [54], Laplacian Pyramid (LP) [21], Guided Filtering
based Fusion (GFF) [22], Non-Subsampled Contourlet Transform (NSCT) [19], Non-Subsampled
Shearlet Transform domain-Parameter Adaptive Pulse Coupled Neural Network (NSST-PAPCNN) [55],
Convolutional Sparse Representation (CSR) [23], Convolutional Sparsity based Morphological
Component Analysis (CSMCA) [24], and Convolutional Neural Network (CNN) [25]. The following
subsection details the simulation parameters used in this paper.

5.1. Simulation Setup

Simulation results are derived using MATLAB R2020b (MathWorks Inc., MA, USA), which is
used by state-of-the-art methods for multimodal image fusion due to its extensive built-in libraries
support [2,23–25]. The hardware platform includes Intel Core i7− 9750H 2.59 Giga Hertz processor
with 16 GB memory running Microsoft Windows 10 (Microsoft, WA, USA). The multimodal brain
image datasets (Data-1 through Data-6) are obtained from [56], which are composed of the CT and
MR images. For performance evaluation, selected 500 grayscale images are taken from each of
the aforementioned datasets. Input images dimensions are standardized as 256 × 256 pixels. Both
qualitative and quantitative analysis are performed for the performance evaluation that are detailed in
the following subsections.

5.2. Results and Discussion

Six different datasets of multimodal images, referred as Data-1 through Data-6, are used in the
simulations. Figure 4 depicts sample images from the aforementioned datasets. The fusion results,
generated by our proposed CSID algorithm and the aforementioned eminent fusion algorithms, are
shown in Figures 5–10. Each result presented is averaged over 20 replicated simulation runs by keeping
all the parameters fixed and changing the random seed values. The following subsections demonstrate
and discuss the obtained results.

5.2.1. Qualitative Analysis of the Given Set of Algorithms for Multimodal Fusion

This subsection presents the results based on visual observations of the images generated through
our proposed CSID algorithm in comparison with the aforementioned algorithms using different datasets,
i.e., Data-1 through Data-6. Visual quality comparison of the Data-1 dataset using different fusion
methods, i.e., DWT, DTCWT, LP, GFF, NSCT, NSST-PAPCNN, CSR, CSMCA, CNN, and the proposed
algorithm are shown in Figure 5a through Figure 5j, respectively. A CT image gives information about
hard tissues and their structures, whereas an MRI image indicates information regarding soft tissues.
For better diagnosis, it is essential to merge critical information of the aforementioned images into one
fused image [12]. In this regard, the aforementioned set of algorithms perform multimodal image fusion.
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The qualitative results shown in Figure 5 depict inferior performance, in terms of contrast and visual
effect, for DWT (Figure 5a), DTCWT (Figure 5b), NSCT (Figure 5e), and CSR (Figure 5g). Note that these
algorithms are not capable of preserving information in the fused image, which relates to the objective
evaluation metric MI that remains proportional to the level of information extraction. Additionally,
Section 5.2.2 further validates this claim through quantitative analysis, where DWT, DTCWT, NSCT,
and CSR exhibit lower MI score in comparison with other algorithms. Moreover, GFF (Figure 5d) and
NSST-PAPCNN (Figure 5f), yield better results, when compared with DWT, DTCWT, NSCT, and CSR
algorithms, by avoiding information loss. However, the lack of noise removal results in over enhancement
of the structural features in these algorithms. CSMCA (Figure 5h) and CNN (Figure 5i) further improve
the visual quality, where enhanced visualization remains an outcome of lesser information loss. Finally,
our proposed CSID algorithm (Figure 5j) yields clear, high contrast and superior visual quality and
preserves the salient features, which include considerably enhanced bone structure and soft tissues
information in comparison with other given algorithms.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 4. Sample source images from the given datasets (Data-1 through Data-6), where (a,b) ∈ Data-1,
(c,d) ∈ Data-2, (e,f) ∈ Data-3, (g,h) ∈ Data-4, (i,j) ∈ Data-5, and (k,l) ∈ Data-6.
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(a) DWT (b) DTCWT (c) LP (d) GFF

(e) NSCT (f)
NSST-PAPCNN

(g) CSR (h) CSMCA

(i) CNN (j) CSID
(proposed)

Figure 5. Comparative analysis, based upon visual observation, of the resultant fused images generated
by the given set of algorithms using Data-1 dataset.

Similarly, Figure 6 shows the qualitative visual analysis for the Data-2 dataset. As a result of
the smaller MI score, DWT (Figure 6a), NSCT (Figure 6e), and CSR (Figure 6g) show the highest
information loss, among the selected algorithms, for the overlapping areas in MRI and CT images that
result in visual deformations of the fused images. Similarly, CNN (Figure 6i) also does not remain
effective in transferring information from the source images. The following section (Section 5.2.2)
provides quantitative analysis with respect to the given objective evaluation metrics (as discussed in
Section 4) that affirms the aforementioned statements. Moreover, in addition to MI, FMIx,y

m and QAB/F

evaluation metrics also remain critical that relates to accuracy in the resultant fused images. Although,
GFF, NSST-PAPCNN, and CSMCA provide better results in comparison with DWT, NSCT and CSR by
conveying complementary information into the fused image, but these algorithms lack accuracy (as shall
be discussed in Section 5.2.2 through quantitative analysis). In the end, note that our proposed algorithm
(Figure 6j) provides better visual effects in comparison with the other aforementioned algorithms, due
to its improved information extraction and edge detection abilities.
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(a) DWT (b) DTCWT (c) LP (d) GFF

(e) NSCT (f)
NSST-PAPCNN

(g) CSR (h) CSMCA

(i) CNN (j) CSID
(proposed)

Figure 6. Comparative analysis, based upon visual observation, of the resultant fused images generated
by the given set of algorithms using Data-2 dataset.

Moreover, the qualitative results for the Data-3 dataset are demonstrated in Figure 7. Visual results
of DWT (Figure 7a), DTCWT (Figure 7b), LP (Figure 7c), CSR (Figure 7g), and CSMCA (Figure 7h),
face issues in edge regions, as these algorithms do not effectively preserve information from the source
images. The visual quality of GFF (Figure 7d), NSCT (Figure 7e), NSST-PAPCNN (Figure 7f), and
CNN (Figure 7i) remain slightly better, however, these algorithms still remain ineffective to reduce the
information loss considerably. Furthermore, the results of our proposed CSID algorithm (Figure 7j)
are found the best among all the aforementioned algorithms, as it efficiently preserves edges and
texture details.
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(a) DWT (b) DTCWT (c) LP (d) GFF

(e) NSCT (f)
NSST-PAPCNN

(g) CSR (h) CSMCA

(i) CNN (j) CSID
(proposed)

Figure 7. Comparative analysis, based upon visual observation, of the resultant fused images generated
by the given set of algorithms using Data-3 dataset.

Image fusion performance is further evaluated using the Data-4 dataset for all the aforementioned
algorithms and the corresponding qualitative results are shown in Figure 8. Some image fusion
algorithms, such as DWT (Figure 8a), DTCWT (Figure 8b), GFF (Figure 8d), NSST-PAPCNN (Figure 8f),
and CSMCA (Figure 8h), show smaller QAB/F scores that impact sharpness of the resultant fused
images. Moreover, these algorithms also experience distorted regions due to lower VIF scores in
comparison with other algorithms, as shall be discussed in the quantitative analysis performed
in Section 5.2.2. Additionally, LP (Figure 8c) and CSR (Figure 8g) are also found incapable of
retaining originality due to increased information loss. NSCT (Figure 8e) and CNN (Figure 8i) provide
comparatively improved results, as these algorithms provide effective information integration. Here
again, CSID accomplishes the best performance in comparison with the aforementioned algorithms, as
it remains capable of transferring more details and provides better contrast.



Diagnostics 2020, 10, 904 14 of 22

(a) DWT (b) DTCWT (c) LP (d) GFF

(e) NSCT (f)
NSST-PAPCNN

(g) CSR (h) CSMCA

(i) CNN (j) CSID
(proposed)

Figure 8. Comparative analysis, based upon visual observation, of the resultant fused images generated
by the given set of algorithms using Data-4 dataset.

Furthermore, the aforementioned set of algorithms is evaluated using the Data-5 dataset and the
corresponding qualitative results are shown in Figure 9.

Here, DWT (Figure 9a), DTCWT (Figure 9b), NSCT (Figure 9e), NSST-PAPCNN (Figure 9f), and
CSR (Figure 9g) provide limited structural information. Moreover, LP (Figure 9c), GFF (Figure 9d),
CSMCA (Figure 9h), and CNN (Figure 9i) experience faded edges. However, our proposed CSID
algorithm (Figure 9j) shows the superior performance, in comparison with the other aforementioned
algorithms, due to its enhanced energy information preservation.
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(a) DWT (b) DTCWT (c) LP (d) GFF

(e) NSCT (f)
NSST-PAPCNN

(g) CSR (h) CSMCA

(i) CNN (j) CSID
(proposed)

Figure 9. Comparative analysis, based upon visual observation, of the resultant fused images generated
by the given set of algorithms using Data-5 dataset.

Finally, CSID and the aforementioned set of algorithms are evaluated using the Data-6 dataset,
where Figure 10 demonstrates the corresponding qualitative results. All the algorithms, other than
CSID, are unable of extracting detailed information that results in blurred fused images. To this end,
our proposed CSID algorithm shows improved edge detection and provides enhanced contrast, in
comparison with all the aforementioned algorithms that yield better visualization.
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(a) DWT (b) DTCWT (c) LP (d) GFF

(e) NSCT (f)
NSST-PAPCNN

(g) CSR (h) CSMCA

(i) CNN (j) CSID
(proposed)

Figure 10. Comparative analysis, based upon visual observation, of the resultant fused images generated
by the given set of algorithms using Data-6 dataset.

5.2.2. Quantitative Analysis of the Given Set of Algorithms for Multimodal Fusion

Tables 1 and 2 show the results obtained from DWT, DTCWT, LP, GFF, NSCT, NSST-PAPCNN,
CSR, CSMCA, CNN, and CSID against the objective metrics, such as MI, EN, FMI, QAB/F, and VIF
(as detailed in Section 4). Scores obtained for these metrics remain proportional to the quality of the
resultant fused image. Therefore, a smaller score indicates missing information and false structured
artifacts during fusion process, whereas a higher score results in enhanced fused images. To this end,
all the highest scores obtained are highlighted in bold in Tables 1 and 2. These results demonstrate
that our proposed CSID achieves higher MI, EN, FMI, QAB/F, and VIF scores in comparison with all
the other image fusion algorithms using different datasets, i.e., Data-1 through Data-6. This indicates
improved performance for CSID, as it remain capable of extracting enriched information from the
input source images, thereby, preserving enhanced edges details and yields enhanced visual quality.
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Table 1. The quantitative comparison of fusion methods. Best values are shown in bold.

Images Fusion Methods MI [50] EN [27] FMIx,y
m [51] QAB/F [52] VIF [53] Time (s)

Data-1
DWT [18] 2.1141 6.1512 0.7654 0.6656 0.4065 3.644
DTCWT [54] 2.1044 6.2074 0.8341 0.6454 0.3976 6.645
LP [21] 2.5508 6.2724 0.7412 0.6321 0.4141 1.699
GFF [22] 3.4313 6.7971 0.9032 0.7849 0.4864 3.004
NSCT [19] 2.2087 6.1488 0.7612 0.6872 0.3864 2.100
NSST-PAPCNN [55] 2.4665 6.9551 0.4559 0.6968 0.9015 5.083
CSR [23] 2.087 6.4871 0.3712 0.6327 0.8041 24.037
CSMCA [24] 2.5863 6.3274 0.4751 0.7373 0.9088 76.700
CNN [25] 3.5248 6.7541 0.7712 0.7992 0.8991 10.696
Proposed CSID 3.9649 6.9971 0.9781 0.8021 0.9897 4.065

Data-2
DWT [18] 3.5472 5.5481 0.8493 0.6922 0.5593 3.649
DTCWT [54] 3.5201 6.2074 0.8341 0.6756 0.5521 6.544
LP [21] 3.5908 5.6692 0.8568 0.6571 0.4352 1.783
GFF [22] 3.8595 5.8459 0.8596 0.5919 0.4295 3.024
NSCT [19] 3.5110 5.5703 0.8498 0.6837 0.5435 2.112
NSST-PAPCNN [55] 3.5462 7.7278 0.5597 0.5136 0.8393 5.144
CSR [23] 3.8744 6.0867 0.5614 0.6667 0.4715 23.441
CSMCA [24] 3.5008 7.6182 0.5728 0.5772 0.8615 74.994
CNN [25] 4.2014 7.8421 0.7458 0.6969 0.8015 10.447
Proposed CSID 4.8821 8.0142 0.8850 0.7199 0.8715 4.051

Data-3
DWT [18] 3.0523 7.1581 0.9438 0.7542 0.5369 3.702
DTCWT [54] 3.0871 7.1287 0.9361 0.7414 0.5348 6.414
LP [21] 3.1847 7.0536 0.8914 0.7499 0.4832 1.955
GFF [22] 4.0609 5.2463 0.9013 0.6788 0.4486 3.287
NSCT [19] 3.7394 7.1873 0.9197 0.7101 0.5132 2.089
NSST-PAPCNN [55] 3.7147 5.3329 0.5536 0.5956 0.8825 5.090
CSR [23] 3.9478 5.0398 0.8657 0.6342 0.7226 23.339
CSMCA [24] 3.3098 5.0064 0.4679 0.6397 0.9048 76.018
CNN [25] 4.0183 6.9420 0.9224 0.7301 0.9755 9.581
Proposed CSID 4.4388 7.5970 0.9744 0.7842 0.9891 4.049
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Table 2. The quantitative comparison of fusion methods. Best values are shown in bold.

Images Fusion Methods MI [50] EN [27] FMIx,y
m [51] QAB/F [52] VIF [53] Time (s)

Data-4
DWT [18] 3.5962 4.7393 0.3823 0.5835 0.9027 3.645
DTCWT [54] 3.6632 4.8551 0.8339 0.6921 0.6679 6.643
LP [21] 3.4733 4.6547 0.7690 0.6391 0.9255 1.774
GFF [22] 3.4514 4.4081 0.9047 0.6470 0.4961 3.132
NSCT [19] 3.8544 4.5360 0.8395 0.7093 0.7769 2.143
NSST-PAPCNN [55] 3.3372 5.0598 0.5401 0.6076 0.8960 5.232
CSR [23] 3.6584 4.7695 0.8471 0.6655 0.8467 22.998
CSMCA [24] 3.4007 4.3896 0.4939 0.6601 0.9027 75.802
CNN [25] 4.2540 5.1748 0.8421 0.7441 0.9408 10.113
Proposed CSID 4.6987 5.9459 0.9814 0.8023 0.9947 4.122

Data-5
DWT [18] 4.0214 4.6386 0.4777 0.5782 0.7592 3.650
DTCWT [54] 4.2985 4.7687 0.4885 0.6257 0.5573 6.625
LP [21] 4.4128 4.8825 0.5241 0.6825 0.5826 1.874
GFF [22] 4.7093 5.2982 0.7849 0.7259 0.7928 3.332
NSCT [19] 3.9309 4.9304 0.6908 0.6827 0.7469 2.139
NSST-PAPCNN [55] 4.1937 4.9809 0.7360 0.6887 0.6993 5.403
CSR [23] 4.5094 5.0297 0.6997 0.6259 0.5067 23.422
CSMCA [24] 5.0924 5.9330 0.7485 0.7759 0.8257 76.112
CNN [25] 5.1118 5.9989 0.8697 0.8267 0.8881 10.691
Proposed CSID 5.2471 6.2874 0.8847 0.8728 0.8971 4.041

Data-6
DWT [18] 3.6877 4.8474 0.5570 0.4938 0.5551 3.647
DTCWT [54] 3.6439 4.8839 0.5683 0.5097 0.6086 6.245
LP [21] 3.9482 4.9029 0.6019 0.6287 0.6239 1.963
GFF [22] 4.1675 5.0098 0.7829 0.6876 0.7452 3.504
NSCT [19] 3.8888 4.8729 0.7067 0.6431 0.7884 2.146
NSST-PAPCNN [55] 4.0671 4.9038 0.7149 0.6835 0.7763 5.113
CSR [23] 3.7432 4.4597 0.6839 0.5334 0.6720 23.483
CSMCA [24] 4.5810 4.9997 0.8097 0.7482 0.8027 76.772
CNN [25] 4.6744 5.2779 0.8527 0.7983 0.8341 10.834
Proposed CSID 4.8887 5.8209 0.8817 0.8497 0.8748 4.047

In the past few decades, non-invasive applications (like multimodal fusion) have gained
tremendous popularity among the healthcare professionals that adds ease and accuracy to the
diagnostic process [57,58]. CSID aims to enhance clinical diagnostics by improving the multimodal
fusion. We acquired the expert opinion of two healthcare professionals (one radiologist and one
physician, whose help we kindly acknowledge) based upon the visual observation of the resultant
fused images generated through the given set of algorithms. These experts appreciated the enhanced
results generated by CSID in comparison with other state-of-the-art algorithms. Furthermore, it
was added by the experts that CSID enables detailed information extraction along with clearer edge
detection to yield enhanced fused images, which remain promising for better clinical diagnosis.

5.2.3. Statistical Analysis of the Results

We used the non-parametric Friedman’s test and the post-hoc Nemenyi test to analyze how the
analyzed methods differ from each other. The Nemenyi test calculates a Critical Difference (CD) using
the Tukey’s distribution, and any difference in the ranks between method ranks that is greater than
the CD is considered as significantly different [59]. In Figure 11, we used the values from Tables 1
and 2 to calculate average data fusion method ranks. The results of the Nemenyi test show that the
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proposed CSID method achieved better values than all other methods when evaluated in terms of MI,
EN, FMIx,y

m , QAB/F, and VIF scores for six datasets (from Data-1 to Data-6), however the advantage
over the next best method CNN [25] was not statistically significant (difference between mean ranks
< 2.4734, Friedman’s p < 0.001).

Figure 11. Results of Nemenyi test on different scores evaluating data fusion methods while using six
datasets (Data-1 through Data-6). CSID is the proposed method.

5.2.4. Computational Efficiency

This subsection evaluates the computational efficiency of our proposed CSID algorithm in
comparison with DWT, DTCWT, LP, GFF, NSCT, NSST-PAPCNN, CSR, CSMCA, and CNN. Tables 1
and 2 show the execution time (in seconds) for each of the aforementioned algorithms when applied
on the given datasets, i.e., Data-1 through Data-6. The results shown in Tables 1 and 2 demonstrate
that LP exhibits the smallest execution time among the aforementioned algorithms, whereas CSMCA
bears the highest execution time. Considering our proposed CSID algorithm, it has smaller execution
time in comparison with DTCWT, NSST-PAPCNN, CSR, and CSMCA, and higher execution time than
DWT, LP, GFF and NSCT. This is because CSID employs the cartoon-texture component gradient-based
feature extraction that enhances image visualization, as shown in Section 5.2.1. Since the main aim of
this work is to enhance visualization, a tradeoff in terms of slight increase in execution time remains
affordable. Moreover, execution time minimization will be taken as future extension of this work.

6. Conclusions

Multimodal medical image fusion has gained a firm stature in modern day healthcare systems.
There are several fusion algorithms, which merge multiple input source images to extract detailed
information that is exploited to enhance the clinical diagnosis. However, these algorithms have several
limitations, such as blurring edges during decomposition, excessive information loss that results in false
structured artifacts, and high spatial distortion due to inadequate contrast. This work aims to resolve
the aforementioned issues and proposes a novel CSID algorithm that performs contrast stretching and
identifies edges by using spatial gradient. CSID proposes the use of cartoon-texture decomposition
that creates an overcomplete dictionary. Moreover, this work proposes a modification to the legacy
convolutional sparse coding method, and employs enhanced decision maps and fusion rule to obtain
the final fused image. Simulation results demonstrate that CSID attains improved performance, in
terms of visual quality and enriched information extraction, as compared with other known fusion
algorithms. Future work will aim on reducing the execution time of CSID to enable rapid image
fusion. Furthermore, the extension of CSID to provide applications, such as visible-infrared image,
multi-exposure image, and multi-focus image fusions, can also be taken as a future research direction.
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