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Abstract

Studies investigating risk factors associated with atrial
fibrillation (AF) have mostly focused on AF presence
and burden, disregarding the temporal distribution of AF
episodes although such information can be relevant. In the
present study, the alternating, bivariate Hawkes model was
used to characterize paroxysmal AF episode patterns. Two
parameters: the intensity ratio µ, describing the dominat-
ing rhythm (AF or non-AF) and the exponential decay β1,
providing information on clustering, were investigated in
relation to AF burden and atrial echocardiographic mea-
surements. Both µ and β1 were weakly correlated with
atrial volume (r=0.19 and r=0.34, respectively), whereas
µ was correlated with atrial strain (r=-0.74, p≤0.1) and
AF burden (r=0.68, p≤0.05). Weak correlation between
β1 and AF burden was found (r=0.29). Atrial structural
remodeling is associated with changes in AF characteris-
tics, often manifested as episodes of increasing duration,
thus µ may reflect the degree of atrial electrical and struc-
tural remodeling. Moreover, clustering information (β1) is
complementary information to AF burden, which may be
useful for understanding arrhythmia progression and risk
assessment of ischemic stroke.

1. Introduction

Atrial fibrillation (AF) is a heterogeneous disease. In
paroxysmal AF, episode duration varies substantially, last-
ing from less than 30 s to 7 days. When investigating risk
factors associated with AF, minimal episode duration has
been related to increased risk of thrombus formation [1].
The prognostic value of AF burden (the percentage of time
the patient is in AF relative to the total monitoring pe-
riod) for the risk of ischemic stroke has been established
in several studies [1–3]. However, little is known about the
role of temporal episode patterns in AF progression [4],

although such information can be relevant for a better un-
derstanding of disease progression as well as for risk as-
sessment of ischemic stroke.

A model-based approach to characterizing the pattern of
AF episodes using an alternating, bivariate Hawkes model
has been proposed in a recent study [5]. This model is a
variant of the bivariate Hawkes point process model [6, 7],
in which a transition increases the likelihood of observ-
ing additional transitions in the near future (self-excitation
property), accounting for clustered patterns. It provides
a history-dependent modeling of both non-AF to AF and
AF to non-AF transitions, being suitable for statistical
inference due to the few parameters. Using the maxi-
mum likelihood (ML) method for parameter estimation,
the goodness-of-fit analysis demonstrated that the pro-
posed model fitted the data in the vast majority of record-
ings, supporting that a wide range patterns can be modeled.
However, the clinical significance of the model parameters
remains to be investigated.

The present study uses the above-mentioned model for
characterizing AF episode patterns in long-term (1–7 days)
ECG recordings from patients with paroxysmal AF. There-
after, the clinical association between echocardiographic
measurements, accounting for atrial structural remodeling,
and model parameters, representing rhythm dominance
(AF or non-AF) and AF episode clustering, is investigated.

2. Materials

A database was acquired from patients with paroxysmal
AF at the State University of St. Petersburg, Russia. The
database consists of 37 three-lead ambulatory ECG record-
ings (sampling rate 257 Hz) lasting from 1 to 7 days, sum-
ming up to a total of 160 days of data. Additional clinical
information was collected at enrolment, including sex, age
and anthropometric measures together with an echocardio-
gram test in a subgroup of 14 patients. For those patients,
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several echo-derived measurements as left atrial volume
(LAV) and left atrial strain (LAS) were available (see Ta-
ble 1). The study was approved by the local ethical review
board.

Variable Overall population
(n=14)

Age (years) 62±4.9
Gender (males) 8 (57.1%)
Height (cm) 171±8
Weight (kg) 82±12.5
Left atrial volume (ml) 60±16
Left atrial strain (%) 27.8±12.3

Table 1. Characteristics of patients. Data are presented
as mean±standard deviation and as absolute frequencies
(percentages).

3. Methods

The statistical framework used in this study to charac-
terize AF episode patterns is described in detail in [5].

3.1. Preprocessing

After QRS detection using a wavelet-based approach
[8], AF detection was performed involving information on
ventricular rhythm, atrial rhythm, and f wave morphol-
ogy [9]. In brief, four parameters serve as input:
1. RR irregularity, quantified by an entropy-based metric
computed in an 8-beat sliding window [10].
2. P wave absence, quantified by computing the normal-
ized ratio of the rectified signal in the PQ interval to that
of the TQ interval.
3. f wave presence, quantified by the squared and summed
error between different PR intervals.
4. noise level, quantified by the spectral entropy ratio-
weighted root mean square value of the extracted f waves.
The latter three parameters are determined from an f wave
signal, extracted using an echo state network [9]. The clas-
sifier requires no prior training. The database was anno-
tated followed by manual review to find undetected AF
episodes and to discard false alarms. The review was done
by an expert on AF analysis, consulting other experts in
doubtful cases.

3.2. The alternating, bivariate Hawkes
model

The temporal pattern of AF episodes is modeled by two
counting (point) processes: N1(t), accounting for transi-
tions from non-AF to AF occurring at times t1,1, t1,2, . . .,
and N2(t) for transitions from AF to non-AF occurring
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Figure 1. A realization of the alternating, bivariate
Hawkes process: AF to non-AF sequence in (a); λ1(t) and
λ2(t) are presented in panels (b) and (c), respectively.

at times t2,1, t2,2, . . .. This bivariate point process is com-
pletely characterized by the two conditional intensity func-
tions λ1(t) and λ2(t), defined by [11]:

λm(t) = lim
∆t→0

Pr(Nm(t+ ∆t)−Nm(t) = 1|Ht)
∆t

, (1)

where the numerator is the conditional probability of a
transition occurring in the interval [t, t + ∆t], and Ht is
the history of the bivariate point process, i.e., the transi-
tion times t1,1, t2,1, t1,2, . . . that have occurred up to but
not including t.

Using the bivariate Hawkes model [6], these two condi-
tional intensity functions take the following expression:

λm(t) = µm +

2∑
n=1

∑
{k:t>tn,k}

αm,ne
−βm,n(t−tn,k), (2)

where µm > 0, αm,n ≥ 0, βm,n ≥ 0 for m,n = 1, 2 and
tm,n the occurrence times.

The principal characteristic of the Hawkes model is that
each time a new point arrives, the conditional intensity
λm(t) grows by a factor of αm,m (“self-excitation” prop-
erty) or αm,n (“cross-excitation” property), depending on
the nature of the transition, exponentially decreasing (de-
fined by the decay parameter βm,n) towards the base in-
tensity µm. Since a transition increases the probability of
getting other points immediately after, this is a model for
clustered patterns (groups of episodes appearing close in
time). A realization of the bivariate Hawkes point process
with the associated λ1(t) and λ2(t) is illustrated in Fig. 1.

A disadvantage of the bivariate Hawkes model in its
original form is that it does not impose alternation between
transitions, i.e., a transition from SR to AF (onset of the
episode) is not necessarily followed by a transition from
AF to SR (end of the episode). To overcome this limitation,
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both λ1(t) and λ2(t) are multiplied by the corresponding
“occurrence” function, defined as:

o1(t) =

{
1, N1(t) = N2(t− d2),

0, otherwise,
(3)

o2(t) =

{
1, N2(t) 6= N1(t− d1),

0, otherwise;
(4)

where d1 and d2 are the minimum duration of AF and non-
AF episodes, respectively, both set to 3 s.

Finally, the conditional intensity functions describing
the alternating, bivariate Hawkes process are given by

λ̃m(t) = λm(t)om(t), m = 1, 2. (5)

3.3. Model parameters

Assuming that β1,1 = β1,2 = β1 and β2,1 = β2,2 = β2 for
simplicity, the model is defined by a total of eight parame-
ters: µ1, α1,1, α1,2 and β1 describing λ̃1(t) and µ2, α2,1,
α2,2 and β2 describing λ̃2(t).

The parameter β1 may be related to episode clustering
since a slow exponential decay (i.e., low value of β1) in-
creases the likelihood that an episode is followed by addi-
tional episodes. On the contrary, as β1 increases, the de-
cay of the intensity function towards the base intensity is
faster, thus leading AF episodes appearing more spread in
time. This effect is illustrated in Fig. 2 (a) and (b). On the
other hand, due to the alternation between the two types of
transitions (onsets and ends), the cross-excitation param-
eters α1,2 and α2,1 are usually much larger than the self-
excitation parameters α1,1 and α2,2. Finally, the base in-
tensities µ1 and µ2 reflect the mean rates of non-AF to AF
and AF to non-AF transitions, respectively, in the absence
of self- and cross-excitation. We define the base intensity
ratio as

µ =
µ1

µ2
(6)

which, depending on whether µ > 1 or µ < 1, indi-
cates the dominance of AF or non-AF states, respectively
(Fig. 2(b) and (c)).

The ML estimator was derived to find the model param-
eters from real data (we refer the reader to [5] for details).
ML estimation is performed in ECG recordings with at
least 10 episodes, i.e., 20 transitions.

4. Results

Two model parameters, β1 and µ, were associated with
two echo measurements, LAV and LAS, reflecting me-
chanical atrial performance (Fig. 3). Unfortunately, this
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Figure 2. (a) Episode pattern dominated by non-AF and
clustered episode pattern. (b) Episode pattern dominated
by non-AF and increasing β1 from 0.003 to 0.03, leading
to less clustering. (c) Episode pattern dominated by AF,
increasing µ from 0.01 to 30.

analysis was limited to a small group of 8 patients for
which both echo data were available and at least 10 AF
episodes were recorded along with the ECG, being suit-
able for analysis. We found that both β1 and µ are weakly
correlated with atrial volume (r = 0.34 and r = 0.19, re-
spectively), whereas µ is correlated with atrial strain (r =
−0.74, p < 0.1) and AF burden (r = 0.68, p < 0.05).
Weak correlation between β1 and AF burden was found
(r = 0.29).

5. Discussion and conclusion

Identification of risk factors in paroxysmal AF patients
has been limited to AF burden and a few other simple mea-
sures, such as minimum episode duration, but little atten-
tion has been paid up to now to the temporal distribution
of AF episodes. The heterogeneity in AF progression is in
agreement with the diversity of temporal AF episode pat-
terns observed among patients. A model-based approach
using the alternating bivariate Hawkes model has been re-
cently proposed in an attempt to provide a more detailed
characterization of episode patterns [5].

The model has been successfully applied to real data us-
ing long-term ECG recordings from patients with parox-
ysmal AF. In this study, model parameters, accounting for
rhythm dominance, µ, (AF or non-AF) and the degree of
episode clustering, β1, were estimated and their associa-
tion with atrial volume and strain measurements investi-
gated. Although the results of this study are not conclu-
sive due to the small sample size, they still shed some light
on this research line. Atrial structural remodeling is as-
sociated with changes in AF characteristics, often mani-
fested as episodes of increasing duration (i.e., increasing
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Figure 3. Association between model parameters, β1 and µ, and atrial volume, strain, and AF burden.

µ). Therefore, µ may reflect the degree of atrial electrical
and structural remodeling. Moreover, the low correlation
between β1 and AF burden suggests that cluster informa-
tion provides information complementary to AF burden,
which may be useful for risk assessment of ischemic stroke
and as well as for better understanding of AF progression.

Nevertheless, further investigation in larger databases is
still required in order to confirm the clinical value of the
model parameters. A prospective study of the association
between cluster information and stroke would help in the
identification of potential risk factors in AF, one of the
main challenges that public health systems are facing to-
day, due to the ageing population and the increasing preva-
lence of this arrhythmia.
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