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ABSTRACT Hemodialysis patients are susceptible to life-threatening arrhythmias whose incidence is
markedly higher during the long interdialytic interval due to electrolyte fluctuations. Noninvasive monitoring
of electrolyte fluctuations, particularly those of potassium, would enable restoring electrolyte balance
before the onset of arrhythmias. This study investigates the feasibility of continuous long-term monitoring
of potassium fluctuations using a single-lead electrocardiogram. We evaluate patient-specific T-wave
morphology changes in the electrocardiogram using two descriptors: (i) a model-based descriptor, \ X ,
developed to account for overallmorphology changes, and (ii) the currently available descriptor,)(�, sensitive
to potassium levels in single-lead electrocardiograms. Electrocardiograms of 15 hemodialysis patients with
pre-existent cardiac diseases were acquired continuously over the long interdialytic interval along with blood
samples at predetermined time instants. Results reveal that \ X and )(� respond concordantly with potassium
levels, and reacts to potassium lowering medication. The overlapping index of the daily distributions of \ X
and )(� are moderately correlated with changes in potassium levels (A= − 0.56 and A= − 0.57, respectively).
\ X exhibits circadian variation, peaking amidst morning and decreasing until evening. \ X appears to be
less affected by motion-induced noise, which is preferable for ambulatory monitoring. Although long-term
monitoring of potassium fluctuations is feasible even in complicated hemodialysis patients, the presence
of concomitant electrolyte (calcium and bicarbonate) imbalances should be accounted for since it can
hamper a reliable estimation. Considering that intradialytic T-wave morphologies may differ from the ones
manifested between hemodialysis sessions, future studies should also strive to collect blood samples outside
of hemodialysis to improve electrolyte estimation methods.

INDEX TERMS Chronic kidney disease, electrolyte imbalance, hemodialysis, hyperkalemia, hypocalcemia,
metabolic acidosis, sudden cardiac death, T-wave parametrization.

I. INTRODUCTION

HEMODIALYSIS (HD) patients have a considerably
higher risk of sudden death due to cardiac arrhythmias,

such as extreme bradycardia and ventricular tachycardia [1],
which are more frequent during the long interdialytic in-
terval [2]–[4]. Electrolyte fluctuations, particularly those of

potassium, are reckoned to be among the primary triggers
of these dangerous arrhythmias [2], [4]. Unfortunately, the
asymptomatic nature of electrolyte fluctuations, along with
the fact that blood testing is neither routinely requested, nor
can be performed at home, often engenders life-threatening
conditions [4]. Accordingly, long-term noninvasive moni-
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FIGURE 1: Data acquisition protocol. Lead-I ECG signals of hospitalized and ambulatory patients were acquired throughout the
long interdialytic interval using an ambulatory recorder. Blood samples of hospitalized patients were collected twice during each
HD (start and end) and at least once during the long interdialytic interval. Blood samples of ambulatory patients were collected
only through the course of each HD (start, mid, and end).

toring of electrolyte fluctuations could be of clinical im-
portance [5], [6] as it would allow a timely correction of
electrolyte imbalance by performing early HD.

Electrolyte fluctuations are often reflected in the electrocar-
diogram (ECG) since non-homeostatic serum electrolyte lev-
els perturb the resting membrane potential of heart cells [7],
[8]. For instance, an altered T-wave morphology, caused by
disturbances in ventricular repolarization, is a manifestation
of anomalous serum potassium [8], [9]. However, identifying
electrolyte fluctuations from an ECG is challenging [10], [11],
especially if no baseline ECG is available for comparison [12],
mainly due to confounding factors, such as cardiovascular
comorbidities, medications or concurrent electrolyte imbal-
ances, that mask ormimic the anticipated ECG alterations [9],
[12]. The ambiguity of the emblematic ECG features pro-
foundly contributes to the low ECG specificity, particularly
when cardiovascular comorbidities are present [10]. Thus,
exploring ECG-derived descriptors with higher specificity to
serum electrolyte levels is crucial for noninvasive monitoring
of electrolyte fluctuations.

A pioneering 12-lead ECG-based descriptor, )(�, was
proposed for the quantification of serum potassium during
HD [13]. Mayo Clinic researchers further enhanced the
descriptor for use in a single-lead ECG, first precordial [14],
[15], and later in lead-I acquired from a handheld device [16].
The descriptor was further compared to another descriptor,
which evaluates the complete T-wave morphology [17], and
studied under electrophysiological modeling [18]. Albeit with
encouraging results, these studies investigated the descriptors’
performance exclusively during HD procedures; thus, the
feasibility of long-term ambulatory monitoring of potassium
fluctuations remains unexplored. In interdialytic settings,
serum electrolyte levels may fluctuate more gradually than
during HD, where electrolyte levels usually are corrected in
approximately 4 h. Rapid fluctuations of serum electrolyte
levels induce cardiac instability [19], resulting in noticeable
T-wave morphology changes [20], [21], as typically seen
throughout HD. However, when electrolyte levels vary slowly,
such changes are less apparent and may not be distinctively

quantifiable, especially in HD patients who may develop
compensatory mechanisms or manifest antagonist electrolyte
levels that stabilize the cardiac membrane potential [19].
This study explores the feasibility of capturing potassium

fluctuations over the long interdialytic interval using a
single-lead ECG. The study aims to understand the current
challenges of long-term noninvasive monitoring of such fluc-
tuations during activities of daily living where: (i) potassium
may fluctuate slowly, (ii) concomitant electrolyte imbalance
may arise, and (iii) underlying cardiac diseases prevail.
Considering that potassium fluctuations may affect the overall
T-wave morphology and )(� relies on local T-wave features,
we developed a model-based descriptor to account for global
T-wavemorphology. In contrast to other studies, we tracked T-
wavemorphology changes continuously betweenHD sessions
in patients with several cardiac diseases as a realistic represen-
tation of the HD population. We investigate in detail patient-
specific responses of T-wave morphology changes to gradual
electrolyte fluctuations. In adition, we tested the performance
of the descriptors in different signal quality periods.
This paper is organized as follows. Firstly, we describe a

model-based descriptor to monitor serum potassium fluctua-
tions in a single-lead ECG. Secondly, we present results on a
database recorded during the long interdialytic interval. The
paper ends with considerations for future research, followed
by conclusions.

II. METHODS
A. DATA COLLECTION
Seventeen HD patients (9 females, age 57.4 ± 14.6 years),
hospitalized or ambulatory, from the Hospital of Lithuanian
University of Health Sciences Kaunas Clinics, were eligible
for this study. The study was approved and carried out follow-
ing the recommendations of the Kaunas Regional Biomedical
Research Ethics Committee (#BE-2-43), including written
informed consent from all patients per the Declaration of
Helsinki.
Hospitalized patients were not bedridden and were free to

move in hospital facilities. Lead-I ECG was acquired during
the long interdialytic interval (∼71 h for each patient, a total
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TABLE 1: Patient and recording characteristics.

Patient characteristics Recording characteristics

# /
Type1

Sex2/
Age Comorbidities3 Electrolyte imbalance3 Total duration /

High quality Other notes4

G
ro

up
I

#1/A F/69 Hypertension Hyperkalemia 73.2 h / Frequent PVCs
History of AF Hypermagnesemia 92.6%
Diabetes

#2/A F/68 Hypertension Hyperkalemia 73.4 h / Frequent PVCs
Ischemic heart disease: Hypocalcemia (severe) 93.2%
stable angina pectoris

#3/H F/52 Hypertension Hyperkalemia 75.6 h /
LVH Hypocalcemia (mild) 95.3%
Hyperparathyroidism

#4/A M/32 History of AF Metabolic acidosis 73.7 h /
LVH Hypermagnesemia 56.8%

#5/H F/70 Hypertension Hypocalcemia (severe) 55.8 h / IV iron infusions
Severe anemia Metabolic acidosis 77.2% Blood transfusion

Urgent start of HD
#6/A M/50 Hypertension Hypocalcemia (mild) 74.7 h /

LVH Hypermagnesemia 92.0%
Ischemic heart disease
Diabetes

#7/H F/65 Hypertension Hypocalcemia (mild) 73.8 h / Blood transfusion before Friday HD
Ischemic heart disease: 73.1%
stable angina pectoris
LVH
Severe anemia

G
r o

up
II

#8/H F/69 Hypertension Hyperkalemia 73.4 h / Paroxysmal AF
Hypocalcemia (mild) 65.1%

#9/H F/78 Ischemic heart disease Hyperkalemia 69.8 h / PACs; Tachycardia
Hypocalcemia (mild) 79.7% Use of sorbisterit

#10/H M/29 Hypertension Hyperkalemia 77.6 h / Tachycardia
LVH Hypocalcemia (mild) 44.9% Use of sorbisterit

Metabolic acidosis
#11/H M/51 Hypertension Hyperkalemia 75.2 h / Use of sorbisterit

Hypocalcemia (severe) 97.2%
Metabolic acidosis

#12/H M/64 Hypertension Hypocalcemia (severe) 75.9 h /
Diabetes Hypomagnesemia 79.8%

#13/H M/47 Hypertension Hyperkalemia 75.8 h / Concomitant electrolyte imbalance
Stroke Hypocalcemia (mild) 94.9% during the whole recording

Metabolic acidosis
#14/H F/54 None Hypocalcemia (mild) 54.7 h / Thrombosis during Friday HD

Hypomagnesemia 41.0% Taken to minor surgery
Tachycardia
Urgent start of HD

#15/A M/79 Hypertension Metabolic alkalosis 75.6 h /
Chronic heart failure Hypermagnesemia 96.2%
Ischemic heart disease
LVH
Diabetes

1 A: ambulatory; H: hospitalized.
2 F: female; M: male.
3 AF: atrial fibrillation; LVH: left ventricular hypertrophy; PVCs: premature ventricular contractions; PACs: premature atrial contractions;
IV: intravenous; Sorbisterit (calcium polystyrene sulphonate) is a potassium-lowering medication.
4 Imbalances displayed on the start of Monday HD. Hyperkalemia: [K+]> 5.5 mmol/L; Hypocalcemia (severe): [Ca]6 1.9 mmol/L;
Hypocalcemia (mild): 1.9<[Ca]<2.23 mmol/L; Hypermagnesemia: [Mg2+]> 1.03 mmol/L;
Hypomagnesemia: [Mg2+]6 0.74 mmol/L; Metabolic acidosis: [HCO−3 ]<22 mmol/L; Metabolic alkalosis: [HCO−3 ]≥26 mmol/L.

of ∼1078 h) using Bittium Faros (Bittium Corporation, Oulu,
Finland) ambulatory recorder at a sampling rate of 500 Hz.
Data acquisition started before the last HD of the week, either
Friday or Saturday, and ended after the following HD on
Monday or Tuesday (Fig. 1). From this point onwards, Friday
HD refers to the last HD of the week, whereas Monday HD
denotes the following HD.

Blood samples were drawn twice (start and end) during
each HD procedure from hospitalized patients, and thrice
(start, mid, and end) from ambulatory patients to assess serum
potassium ([K+]), magnesium ([Mg2+]), calcium ([Ca]) and
bicarbonate ([HCO−3 ]) levels. At least one additional blood

sample between HD sessions was collected from hospitalized
patients at a predetermined time instant, decided by the
physician on call. All patients were also asked to register
the time of meal and medication intake.

Out of 17 patients, two were excluded from the analysis.
One patient presented ventricular tachycardia episodes during
the recording and was taken to the intensive care unit, while
the other terminated recording just a few hours after Friday
HD due to discomfort. Two hospitalized patients required
urgent HD one day earlier. Patients were divided into two
groups:Group I comprises patients with regular sinus rhythm
and high signal quality over the whole recording period,
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FIGURE 2: Preprocessing of a single-lead ECG.

whereas Group II includes patients whose recordings were
noisy, with arrhythmias or affected by ingestion of potassium-
lowering medication (Sorbisterit). Patients in both groups
manifested concomitant electrolyte imbalances (calcium,
bicarbonate, and magnesium). Table 1 provides patient and
recording characteristics.

B. ECG PREPROCESSING
The recorded ECGs underwent preprocessing comprised of
filtering, signal quality assessment, heart rate-based cor-
rection of T-wave duration, beat averaging, and T-wave
rectification (Fig. 2).

1) Filtering
For a reliable assessment of electrolyte fluctuations, it is
crucial to avoid distortions in the ST-segment and T-wave.
Thus, the ECGs were filtered using a combination of high-
order finite impulse response filters. Baseline wandering was
removed by using an 836Cℎ order high-pass filter with a cut-off
frequency of 52=0.6 Hz, whereas high-frequency noise was
suppressed using a 16Cℎ order low-pass filter with 52=40 Hz.

2) Signal quality assessment
A 90-s sliding window with 10-s overlap was used to segment
the ECGs, discarding heartbeats that did not fulfill the signal
quality index (SQI) criteria proposed in [22]. Segments with
more than 50% poor-quality beats were considered non-
analyzable.

Each ECG was divided into three days: Day 0, covering
the remaining hours of the same day after Friday HD (until
22:00), Day 1, and Day 2 as the ensuing and last days of the
long interdialytic interval, respectively. Since lying positions
can considerably alter the ECG morphology [23], Day 1 and
Day 2 range from 07:00 till 22:00 as patients were usually
awake within this period and the likelihood of encountering
a lying position was reasonably low. ECG segments within
episodes of arrhythmogenic events were excluded from the
analysis.

3) Heart rate correction
T-wave morphology is sensitive to heart rate changes, which
must be rectified before evaluating the influence of serum
electrolyte levels. Thus, the ST-T complex duration was re-
sampled to fit the current RR interval, according to Fridercia’s
formula [24].

4) Beat averaging

The resampled heartbeats were aligned and averaged within
each 90-s segment, resulting in a single representative
heartbeat. QRS complex and T-wave onset were delineated
using ecg-kit toolbox [25], whereas T-wave offset as described
in [26]. Feature estimation was applied to the delineated T-
waves of each averaged heartbeat.

5) T-wave rectification

Each delineated T-wave, ) (=), was preprocessed through a
series of steps to transform different waveforms as closely
as possible to a positive T-wave. Accordingly, negative T-
waves were inverted, ) (=) = −) (=). In waveforms with
ST depression, the T-wave onset was amended to the local
minimum amplitude point. Once the onset and offset were
delineated, the T-wave baseline was corrected to begin and
end at zero amplitude. A baseline was estimated by linear
interpolation between T-wave onset and offset, and subtracted
from ) (=). Then, ) (=) was standardized to counteract
amplitude discrepancies caused by body position changes or
pre-existent cardiac diseases:

) I (=) = ) (=) − Ḡ
B

,∀=, (1)

where ) I (=) denotes the standardized T-wave, Ḡ and B are
the mean and standard deviation of ) (=), respectively. From
this point onwards, ) I (=) denotes the standardized T-wave,
whereas ) (=) the baseline-removed T-wave.

C. T-WAVE PARAMETRIZATION

Model-based parametrization was employed to quantify
electrolyte-induced changes in T-wave morphology. The T-
wave, composed of two asymmetrical slopes—upward and
downward—was modeled using a composite model of two
functions to characterize each slope separately. The model,
inspired by the one proposed in [27] and [28], and briefly
described in [29], consisted of one Gaussian and one lognor-
mal functions (Fig. 3). The Gaussian function construed the
upward slope and is defined by:

)D (=;fD , `D) =
1√

2cf2
D

4
− (=−`D )

2

2f2
D , (2)

where = represents sample number, `D andfD are the location
and scale parameters. The lognormal function,which depicted
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the downward slope, is defined by:

)3 (=;f3 , `3 , W3) =
1

(= − W3)f3
√

2c
4
− (ln(=−W3 )−`3 )

2

2f2
3 , (3)

where W3 , `3 and f3 stands for the location, scale, and
shape parameters, respectively. The time-shifting parameter
W3 ensures that )3 (=) always fits the downward slope without
modifying the shape and scale of the model. In this manner,
we ensured an unambiguous reaction of `3 and f3 to
morphological, but not temporal changes. ) (=) can then be
characterized by combining (2) and (3) as:

)2 (=) = FD)D (=) + F3)3 (=) + ℎ. (4)

The subscript 2 denotes the fitted composite model, whereas
D and 3 imply that the parameters represent the upward and
downward slopes. Both functions are weighted by parameters
FD and F3 , and balanced with an offset ℎ. The parameters are
merged into the vector 5 = [fD , f3 , `D , `3 , W3 , FD , F3 , ℎ],
which was estimated using the trust-region reflective least-
squares algorithm with a set of empirically determined lower
and upper boundaries to control the fitting process. Supple-
mentary table A1 briefly presents such boundaries, alongwith
values used to initialize 5. Before parameterization,) (=) was
resampled to 1000 samples, normalized to unit amplitude,
and mirrored in time, )̂ (=) = ) (−=). This step ensures
that )̂ (=) becomes right-skewed as a lognormal, increasing
the coefficient of determination R2 and improving goodness
of fit. Fitting is considered acceptable when R2 exceeds
the empirically chosen fixed threshold of 0.8. Otherwise,
waves were considered of poor quality and thereby discarded
from the analysis. Flat T-waves were excluded from the
analysis since parametrization of such waves is unavailing.
Figure 4 depicts T-wave rectification and parametrization for
several ECGmorphologies encountered in the data. Appendix
B presents pseudocodes for the T-wave rectification and
parametrization algorithms1.

D. T-WAVE FEATURE ESTIMATION
When serum [K+] starts to rise above normal levels, the
T-wave tends to become more peaked and decreases in
duration [7], [9]. To quantify variations in T-wave peakedness,
we estimated the angle \ between the upward and downward

1Note to readers: The code is available on GitHub. Repository name:
T-waveModelPotassiumFluctuations

slopes (Fig. 5a-b). Assuming that each slope is defined as a
line with gradient S, \ was calculated by:

\ = V − U ≡ arctan(S3) − arctan(SD), (5)

where V and U are the angles between the temporal axis
and the downward and upward slope, whereas SD and S3 are
the gradients of the correspondent slopes. SD and S3 were
estimated from ) I (=) in a similar way as in [30]: two lines
were computed in an 8 ms window centered at the maximum
gradient between T-onset and T-peak, and at the minimum
gradient between T-peak and T-offset (Fig. 5c). SD and S3 are
the yielded gradients of the fitted lines in a.u./s.
As the duration of repolarization shortens, the T-wave

becomes less elongated. Given that each function from
the composite model depicts a slope, changes in T-wave
elongation were characterized by a temporal displacement,
X, between the points of global maximum of )3 (=) and )D (=)
functions (Fig. 5d-e). Considering that the point of global
maximum of a probability distribution is its mode, X was
found by:

X̂ = <3 − <D , (6)

where <3 and <D are the modes of lognormal and Gaussian
functions. The mode of a Gaussian function is given by `D ,
whereas, for the three-parameter lognormal function, it was
calculated as follows:

<3 = W3 + 4 (`3−f
2
3
) . (7)

Given that X̂ was estimated from the resampled )̂ (=), X was
amended to the original time scale:

X = X̂
#

1000
, (8)

where # is the number of samples in ) (=). Conceptually, as
serum [K+] starts to rise slowly during the long interdialytic
interval, the T-wave becomes narrower and more peaked,
translating into lower values of X (s) and \ (◦). Since \ and
X vary concordantly with each other, both decreasing when
[K+] increases, we propose a newdescriptor, \ X , that amplifies
their response to serum [K+] fluctuations:

\ X = − log10 (\ · X). (9)

The logarithm expands the dynamic range and ensures that
\ X is positively correlated with [K+] levels.

E. PERFORMANCE EVALUATION
The performance of the proposed descriptor, \ X , was com-
pared to the descriptor introduced in [14]–[16], which was
estimated as:

)(� =
S3√
)�
. (10)

S3 (in a.u./s) is the downward slope and )� is the peak-to-
peak amplitude between theT-wave peak and offset.S3 and)�
were computed from the non-mirrored ) (=), normalized by
the signal energy of its correspondentQRS-wave, as described
in [15]. It should be noted that )(� is not applicable for
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negative T-waves [15]. Despite being often used by clinicians
to identify potassium abnormalities, the emblematic T-wave
amplitude was not included for comparison, since it shows
inferior performance to that of )(� [14].
To examine the daily variation of \ X and )(� relative to

the [K+] reference values of each individual, kernel density
estimations were used to obtain distributions of \ X − \ XC0 and
)(� − )(�C0 . The reference values were calculated at C0 by
finding the mean during the first 30 min following Friday HD
termination. Within this 30 min period, [K+] remains nearly
unchanged as none of the patients had a meal, thus avoiding
insulin spikes that drive serum [K+] intracellularly [31].

The overlapping index [ [32] was used to quantify simi-
larities between the daily distributions of \ X and )(�. The
index [ can take values between zero and one, where [=1
indicates that the two distributions are identical. Intuitively,
it is expected that higher [K+] fluctuations will translate into
smaller [ values. The relationship between [ and Δ[K+] was
assessed using Pearson’s correlation coefficient (A), where
Δ[K+] is expected to be negatively correlated with [. [ was
calculated between the days with assessed [K+], which, for
the majority of patients, is solely between Day 0 and Day 2.
Since blood was collected at the start of Monday HD, Day 2
distribution includes 2 h preceding Monday HD as well. The
subscript of [ specifies the days between which [ is evaluated,
whereas Δ[K+] denotes the difference of [K+] between two
days.

To investigate noise robustness of \ X and )(� in more
detail, we compared the coefficient of variation, 2E , of each
descriptor within periods during which [K+] levels remain
nearly unchanged, but the signal quality was expected to vary.
2E was estimated for each patient as follows:

2E =
B

Ḡ
, (11)

where B and Ḡ are the standard deviation and mean of either
\ X or)(�within a given period, respectively. Lower 2E values
within periods of low signal quality indicate higher descriptor
stability and, therefore, more robustness to noise.

Since ambulatory signals are recorded in an unsupervised
fashion, 2E wasmeasured in two different periods: C1=[21:00–
22:00] of Day 1 and C2=[00:00–01:00] of Day 2. During C1,
the patients were still awake, and the ECGs were expected
to have lower quality due to movement (e.g., walking around
the house). Conversely, during C2, patients were asleep and
physical activity was minimal, thereby increasing quality.
We confirmed this through accelerometer signals recorded
synchronously with the ECGs. The periods C1 and C2 were
chosen for two reasons: (i) intra- and intercellular [K+]
changes are likelymore stable duringDay 1 andDay 2, unlike
during the sameday afterHD [33]; (ii) the circadian variability
of serum [K+] in patients with impaired renal function
indicates that [K+] levels between 21:00 till 01:00 increase, on
average, only 0.06 mmol/L [34], which is minimal. Although
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FIGURE 5: T-wave feature estimation: (a) T-waves before
and after HD without normalization; (b) variation of ) in
normalized T-waves before and after HD; (c) finding of Su ,
Sd and ) . The change in %: (d) before HD ([K+]=5.5 mmol/L)
and (e) after HD ([K+]=3.2 mmol/L).

the circadian variability of serum [K+] in HD patients has not
been studied, we observed that \ X responded similarly to the
findings in [34] (see Fig. 9), thus implying that the circadian
rhythm is maintained.

III. RESULTS
Figure 6 depicts the variation of \ X and )(� in patients of
Group I. As expected, \ X and )(� rise with the increase of
[K+]. Note the low trendline steepness for patient #6 which
corresponds well with little change in [K+]. Interestingly,
)(� varies in the opposite direction in patient #4 who
displayed positive and negative T-waves, and occasional ST
depression. \ X appears to better deal with alternating T-wave
morphologies than )(�.
Figure 7 shows the feature variation in patients of Group

II of problematic recordings. Unsurprisingly, \ X and )(�
show trends discordant with [K+] levels in patients with:
atrial fibrillation (#8), premature atrial contractions (#9), and
tachycardia (#9, #10, #14). Nevertheless, in periods of sinus
rhythm, during which the T-wave morphology stabilizes, both
descriptors varies agreeably with [K+] levels.

Most of the time, flat or negative T-waves prevailed
in patients #5 and #12, who manifested severe isolated
hypocalcemia. )(� could only be computed during the short

time intervals in which the T-wave was positive. Curiously,
both patients displayed discrepantly high \ X values despite
the absence of hyperkalemia, likely due to T-wave narrowing
during ST-T complex resampling used for correction of heart-
rate induced T-wave changes.
In patients with hyperkalemia concomitant with metabolic

acidosis (#10, #11, #13), )(� showed a more prominent
trendline steepness, possibly due to the overlaying effects of
both electrolytes on the T-wave downward slope.
The daily distributions of \ X − \ XC0 and )(� − )(�C0

are given in Fig. 8. As anticipated, [ responds inversely
to [K+] variations, i.e., lower [ values (patients #1–4, #8,
and #12) indicate a higher increase in [K+] and, thus a
smaller overlap of distributions, and vice-versa (patients #6,
#10). The Pearson’s correlation coefficient shows that both
descriptors are moderately correlated with changes in [K+],
being A= − 0.56 (?<0.01) for \ X and A= − 0.57 (?<0.01)
for )(�. When calculated for each group separately, the
correlation is much stronger in Group I with A= − 0.81
(?>0.01) for \ X and A= − 0.79 (?>0.01) for )(�, with Group
II showing a weaker correlation of A= − 0.45 (?>0.01) for
\ X and A= − 0.44 (?>0.1) for )(�. It appears that \ X is more
stable than )(� except for #9, #14, and #15, for whom [0−2
show unexpected values compared to Δ[K+]0−2. In patients
who displayed both metabolic acidosis and hyperkalemia
(#10, #11, and #13), )(� shows lower [0−2 values for
Δ[K+]0−2. Broader distributions are observed in patients #4,
#5, #9, #12, and #15 who exhibited T-wave morphologies
across the long interdialytic interval different from those
used to estimate \ XC0 and )(�C0 . A decrease of \ X and )(�
during Day 0 is visible in the majority of patients, possibly
due to insulin spikes during meals which can drive [K+]
intracellularly.
Figure 9 shows the mean of \ X across all patients in non-

overlapping 10 min intervals from 07:00 till 22:00. During
Day 1 and Day 2, \ X shows higher values in the morning,
peaks around lunch time ([12:00-14:00]), and decreases
across the afternoon until the evening. Also \ X increases
during the night as \ X is higher at 07:00 of Day 2 compared
to 22:00 of Day 1.

Figure 10 shows the dispersion of 2E for \ X and )(�
within the periods of low (C1) and high (C2) signal quality.
As envisaged, both descriptors show higher 2E values during
C1. However, \ X displays lower dispersion of 2E during C1,
suggesting greater stability in noisy conditions than )(�.
While the median difference of )(� is minimal between C1
and C2, )(� exhibits a large dispersion during C2. In contrast,
\ X seems to bemore constant in less noisy conditions. Patients
#8 and #12 were excluded from this analysis as #12 displayed
T-wave inversion (for which )(� cannot be estimated) and #8
manifested atrial fibrillation during C1 and C2.
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IV. DISCUSSION
A. DESCRIPTORS RESPONSIVENESS TO POTASSIUM
FLUCTUATIONS
We quantified gradual electrolyte-induced T-wave changes
using model-based parametrization. The yielded parame-
ters of such models can act as surrogates of important
physiological traits that cannot be straightforwardly deter-
mined (e.g., T-wave duration) [35]. Additionally,model-based
parametrization enables a global evaluation of the T-wave
morphology andmay increase robustness to noise [36], which
is frequent in ambulatory ECG recordings. We tracked T-
wavemorphology changes using two descriptors: \ X , and)(�.
The progression of \ X and )(� during the long interdialytic
interval is promising, both showing an appealing potential
to become estimators of serum [K+]. Even in a group of
patients with various underlying cardiac diseases, \ X and )(�

are responsive to [K+] fluctuations, indicating that long-term
monitoring of such fluctuations is feasible. Furthermore, \ X
exhibited higher stability during noisy periods compared to
)(�, which is advantageous for ambulatory monitoring.

Interestingly, the descriptors showed increased variability
during Day 0 compared to Day 1 or Day 2. The presence
of such variability is plausible since the effects of HD-
induced hemodynamic stress could, presumably, still be felt
for hours after HD, thus affecting T-wave morphology. The
existence of such a transient period, during which the T-wave
morphology can differ from the one manifested during the
long interdialytic interval, may have substantial implications
on [K+] estimation. One approach for ECG-based estimation
of [K+] levels can be the use of a reference T-wave of each
individual at a known [K+] level. Indeed, previous studies have
shown a decrease in the error of [K+] estimation after patient-
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specific calibration [13], [15]. However, these studies focused
on assessing [K+] levels during HD exclusively, where the
same T-wave morphology—similar to that used to estimate
reference values—persists throughout HD. Using T-waves
acquired during or immediately after HD as a reference may
result in [K+] estimation errors when the morphology alters.
Thus, days between HD sessions should preferably be used
for reference T-wave assessment.

Another finding is the apparent circadian periodicity of \ X ,
suggesting that [K+] naturally fluctuates during the day in HD
patients similarly to healthy subjects [34]. Although there is
a lack of studies examining the circadian rhythm of serum
[K+] levels in HD patients, the existence of such circadian
variability in these patients is still plausible. With little to no
renal function left, as an attempt to maintain [K+] home-

ostasis, HD patients heavily rely on aldosterone-regulated
colonic [K+] secretion [37], [38]. While the circadian rhythm
of aldosterone is well understood in healthy subjects [39], it is
unclear whether HD patients maintain such circadian rhythm.

Our study showed that \ X and)(� started to decrease 2 h af-
ter the intake of potassium-lowering medication (Sorbisterit),
which is compatible with its onset of action. The decrease
of \ X and )(� lasted about 10 h and is within the range of
expected duration of the Sorbisterit effect. This observation
needs to be taken into account to understand better how
Sorbisterit, or other standard medications prescribed to HD
patients, alters the T-wave morphology.
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B. EVALUATION OF SERUM POTASSIUM WITH CONCURRENT
CALCIUM IMBALANCE
Compared to )(�, the range of \ X values is narrower and
more consistent across the dataset, except for patients with

isolated severe hypocalcemia (#5 and #12), both free from
any pre-existent cardiac issues. Intriguingly, these patients
exhibited high \ X values without hyperkalemia. We found
atypically low values of X in these patients, which indicate
T-wave narrowing as, conceptually, X mostly depends on T-
wave duration. Considering that the T-wave duration is not
affected by calcium imbalance with normal [K+] levels [9],
X should not have reacted in this manner. We suspect that
resampling of the ST-T complex, distinctively prolonged in
hypocalcemia [9], may have affected the T-wave duration.
While flattened or negative T-waves can be prominent

in isolated calcium abnormalities [9], [40], particularly in
severe levels, changes in ST-segment duration are the most
discernible marker of [Ca] levels [9]. Although this study
did not analyze in detail the effects of [Ca] on the ECG,
we observed a prolonged ST-segment in three patients
who displayed severe hypocalcemia. However, ambulatory
estimation of the ST-segment duration is challenging, partic-
ularly in pathological conditions of ST-segment deviations,
as frequently encountered in HD patients. For instance, in
patient #10 with ST-elevation characteristic of left ventricular
hypertrophy (LVH), the ST-elongation was not as blatant in
lead-I as in patients #5 and #12, both without ST-deviations.
Perhaps in cases of ST-segment deviations, relying on other
ECG leads can mitigate this problem.
Recognizing abnormal calcium levels may improve the

detection of dangerous serum [K+] levels for twofold reasons.
Firstly, isolated calcium imbalance can alter the T-wave
morphology [9], thus interfering with the assessment of
potassium-induced T-wave changes. Secondly, [Ca] and [K+]
have a complex relationship which affects the intra- and
atrioventricular conduction within the heart [9], meaning
that the harmfulness of [K+] levels, either in hypo- or
hyperkalemia, is tightly dependent on [Ca] levels [7]. For
instance, hypercalcemia antagonizes, whereas hypocalcemia
exacerbates the consequences of hyperkalemia [21]. De-
termining the presence of calcium imbalance can aid in
ascertaining whether the measured [K+] level is alarming or
not.

C. EVALUATION OF SERUM POTASSIUM WITH CONCURRENT
ACID-BASE IMBALANCE
Along with concurrent calcium imbalance, we also encoun-
tered difficulties in detecting [K+] fluctuations in the presence
of an acid-base disturbance (i.e., abnormal [HCO−3 ] levels).
When acidosis emerges, the electrophysiological effects of
hyperkalemia are, expectedly, aggravated [21]. Consequently,
one would anticipate \ X and )(� to respond with higher
values in such conditions, which was not entirely the case in
patients with hyperkalemia and acidosis. Curiously, though
rare, severe hyperkalemia with minimal T-wave changes
has been reported in patients who manifested acidosis
concurrently [41]. Although noisy recordings or LVH could
reasonably justify such an unexpected variation of \ X and
)(�, the impact of acidosis in [K+] estimation should not be
neglected. Acidosis can instigate T-wavemorphology changes
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resembling those of hyperkalemia [42]. Using solely T-wave-
derived features to evaluate [K+] levels when acidosis arises,
may, therefore, either under- or overestimate [K+] levels.

A compelling case to mention is patient #15, whose values
of \ X and)(� decreased during the long interdialytic interval.
Besides being the patient with the most complicated medical
history, including chronic heart failure, LVH, and ischemic
heart disease, he was the only patient who experienced
metabolic alkalosis. Even though alkalosis does not usually
cause hypokalemia in HD patients [43], it is peculiar to see
that \ X and )(� decreased. Such behavior of \ X and )(� is
something we would expect in case of [K+] depletion as in
hypokalemia. Since alkalosis-related ECG changes resemble
those of hypokalemia [44], one must pose the question of
whether this unusual descriptor variation results, inherently,
from the heart failure condition, or as a consequence of
alkalosis.

While blood pH imbalance is seldom life-threatening
in itself if not in severe levels [45], identifying acid-base
disturbances may not only improve [K+] monitoring but
also aid in assessing the arrhythmogenic potential of [K+].
In addition to being vastly prevalent in HD patients, acid-
base disequilibrium can encourage the onset of arrhythmias
by (i) impairing vascular and myocardial function [46], and
(ii) influencing the levels of various electrolytes, including
[K+], [Na], and [Ca] [42], [45]. For instance, metabolic
acidosis induces [K+] shifts from the intracellular to the
extracellular space, potentially leading to hyperkalemia [45].
Thus, identifying [HCO−3 ] imbalance could enable betterman-
agement of serum [K+]. Nevertheless, with [K+] and [HCO−3 ]
compounding their effects on the T-wave morphology, the
feasibility of utilizing a single-lead ECG to monitor [K+]
fluctuations in the presence of abnormal [HCO−3 ] levels is,
at the very least, contentious. Future studies should address
the confounding potential of [HCO−3 ] by exploring other
descriptors of [HCO−3 ] levels.

D. CHALLENGES AND LIMITATIONS
Even with encouraging results, deriving \ X and )(� in
ambulatory conditions still poses someobstacles to be tackled,
one of them being the inherent complexity of determining T-
wave boundaries in noisy conditions. When tachycardia or
an episode of premature atrial contractions (PACs) occur,
the P-wave can partially hide within the preceding T-wave,
resulting in either a disturbed T-wave morphology or a mis-
guided delineation of the T-wave. We experienced difficulties
in accurately locating T-waves during tachycardia or PAC
episodes. Even though employing a SQI detector should
have disregarded ECG segments with premature heartbeats,
the SQI used in this work failed to identify PAC episodes,
eliminating exclusively ventricular ectopic beats and noisy
segments. Premature heartbeats, atrial or ventricular, must be
detected not only to avoid erroneously locating the T-wave but
also because alterations in serum [K+] and [Mg2+] can trigger
ectopy and, consequently, arrhythmias [8]. The frequency
of ectopy occurrence might, therefore, be an indicator of

electrolyte fluctuations.
Alternating T-wave morphologies is another issue deserv-

ing further exploration. Independently of whether different
physiological conditions instigate morphology variations, the
disparity in observed T-wave morphologies, even in the same
patient, further demonstrates the importance of dealing with
various T-wave morphologies. With previous studies having
used, exclusively, intradialytic T-waves to seed models for
quantification of serum [K+], the performance of such models
is, arguably, fettered when encountering different interdialytic
morphologies. While estimating [K+] levels from T-waves
identical to the patient-specific reference is ideal, it may
not always be attainable to do so during activities of daily
living. Availability of multiple ECG leads and lead-reduction
techniques could ameliorate the problem of alternating T-
wave morphologies [47]; however, 12-lead ECG recorders
are often uncomfortable for wearing and hence unsuitable for
long-term monitoring. Handling various ECG morphologies
is, therefore, indispensable for noninvasive monitoring of
electrolyte fluctuations. Indeed, in a highly susceptible group
of HD patients, the discrepancy in T-wave morphologies can
stem from many sources, either psychological stress [48],
change in body position [23], physical activity [49], other
electrolyte imbalances [9], or due to pre-existent cardiac
comorbidities. Understanding the causes of morphology
changes in HD patients is pivotal to avoid misclassification of
other pathologies and electrolyte imbalance.
The small number of patients included in this study, albeit

being a realistic representation of theHDpopulation, certainly
restricts the generalization of our findings, especially to other
populations susceptible to [K+] imbalance. Furthermore, the
lack of patients with severe hypo- or hyperkalemia prevents
us from evaluating the descriptor response in such extreme
cases with distinct ECG morphology.
The exploration of additional electrolyte biomarkers is

needed. Having biomarkers of serum [K+], [Ca], and [HCO−3 ]
can facilitate routine electrolyte monitoring, aid in ascer-
taining the harmfulness of [K+] levels, and possibly avert
life-threatening conditions. Thus, our future studies will
focus on developing descriptors of [Ca] and [HCO−3 ] levels
and optimize [K+] estimation under concomitant electrolyte
imbalance. Future studies should also strive to collect blood
samples on days between HD sessions and extend to other
patient populations susceptible to [K+] imbalance (e.g., heart
failure).
To the best of our knowledge, this is the first study to

attempt to monitor gradual [K+] fluctuations throughout the
long interdialytic interval, thereby narrowing any possibility
to compare our findings. Nevertheless, we reveal the central
issues to be solved concerning the noninvasive monitoring of
electrolyte fluctuations in HD patients.

V. CONCLUSIONS
This study demonstrates that long-term noninvasive moni-
toring of [K+] fluctuations is feasible even in complicated
HD patients with underlying cardiac diseases. Given the
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preponderance of alternating T-wave morphologies that can
differ from the one exhibited during HD within the same
patient, reference T-waves should preferably be assessed in
days between HD sessions.

Gradual T-wave morphology changes induced by serum
[K+] can be quantified by model-based parametrization (\`)
and slope-to-amplitude ratio ()(�). \` appears to be less
affected by noise than )(�, and, therefore better suited for
long-term monitoring during daily activities. However, the
presence of concomitant electrolyte imbalance, primarily of
[Ca] and [HCO−3 ], can hamper a reliable estimation of [K+]
levels and should be accounted for.

.

APPENDIX A INITIALIZATION OF THE FITTING ALGORITHM

The lower and upper boundaries, and initial values of the
elements of vector 5 are presented in Table A1. These values
were determined empirically and are dependent on ) (=) and
)̂ (=). In the table, =? denotes the T-wave peak sample location
of )̂ (=), whereas 1 = #

1000 , where # is the number of samples
in ) (=).

0.25np 0.9np

FIGURE A1: Template for initialization of the fitting algo-
rithm.

The initial values of 5 can be modified as long as the
initial template is similar to the one shown in Fig. A1. The
composite )2 (=) must be beneath )̂ (=) peak. The location
parameter `D ensures that )D (=) always fits the upward slope,
thus the lower and upper boundaries of `D depend on the
peak location. The boundaries guarantee )D (=) is centered
within [25%—90%] of the upward portion of )̂ (=) as shown
in Fig A1. The scale parameter `3 evaluates how "shrunk" or
"stretched" the T-wave is. Accordingly, ln 1 is used to better
adapt the algorithm to different T-waves.

APPENDIX B PSEUCODE OF THE DEVELOPED ALGORITHM

T-wave rectification steps are described in Algorithm 1, T-
wave parametrization in Algorithm 2. Algorithm 3 explains
the procedure for feature estimation.

Algorithm 1 T-wave rectification
Input: Delineated T-wave ) (=)
Output: Rectified T-wave ) (=) , standardized T-wave ) I (=) , T-wave waverform

C H ?4

1: procedure TwaveRectification() (=))
2: ) (=) ← []
3: ) I (=) ← []
4: C H ?4← Check type of ) (=) . See Figure 4.
5: if C H ?4! = flat then
6: if C H ?4 == negative then
7: ) (=) ← −) (=) ⊲ Invert ) (=)
8: else if C H ?4 == ST depression then
9: 8$=B4C ← Find local minima index of ) (=) .
10: ) (=) ← ) (8$=B4C :=) ⊲ Amend T-wave onset
11: end if
12: ) (=) ←CorrectBaseline() (=))
13: ) I (=) ←TwaveStandardization() (=))
14: end if
15: return ) (=) , ) I (=) , C H ?4
16: end procedure

17: procedure CorrectBaseline() (=))
18: 10B4;8=4← Linear interpolation between ) (=) onset and offset.
19: ) (=) ← ) (=) − 10B4;8=4
20: return ) (=)
21: end procedure

22: procedure TwaveStandardization() (=))
23: Ḡ ← <40=() (=))
24: B ← BC3 () (=))
25: ) I (=) ← ) (=)−Ḡ

B
, ∀=. See (1).

26: return ) I (=)
27: end procedure

Algorithm 2 T-wave parametrization
Input: Baseline-removed T-wave ) (=)
Output: Parameters f3 , `D , `3 , W3 , and '2

1: procedure TwaveParametrization() (=))
2: ) (=) ← resample ) (=) to 1000 samples.
3: ) (=) ← normalize ) (=) to unit amplitude.
4: )̂ (=) ← ) (−=) ⊲ Mirroring
5: # ←length() (=))
6: ) 82 (=;5i ) ←GetIntitialTemplate()̂ (=) , # )
7: )2 (=;5) , '2 ←LScurveFit() 82 (=;5i ))
8: f3 , `D , `3 , W3 ← extract from 5
9: return f3 , `D , `3 , W3 , '2

10: end procedure

11: procedure GetInitialTemplate()̂ (=) , # )
12: 1 ← #

1000
13: =? ← find )̂ (=) peak sample location
14: Use 1, =? , and Table A1 to initialize 5i .
15: 5i ← [fD , f3 , `D , `3 , W3 , FD , F3 , ℎ].
16: =← [0:length()̂ (=))−1]
17: ) 8D (=; fD , `D) ← construe Gaussian as in (2).
18: ) 8

3
(=; f3 , `3 , W3) ← construe Lognormal as in (3).

19: ) 82 (=;5i ) ← FD)
8
D (G) + F3) 83 (G) + ℎ. See (4).

20: return ) 82 (=;5i )
21: end procedure

22: procedure LScurveFit() 82 (=;5i ))
23: 5low ← lower boundaries. See Table A1.
24: 5up ← upper boundaries. See Table A1.
25: )2 (=;5) ← Trust-region reflective least-squares algorithm with the given

boundaries.
26: '2 ← calculate coefficient of determination.
27: return )2 (=;5) , '2

28: end procedure
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TABLE A1: Initial values, lower and upper boundaries used to estimate the elements of 5.

Zu (n) Zd (n)

Elements of 5 fD `D FD f3 `3 W3 F3 ℎ

Initial value 10.9 =? 3.1 0.52 0.2(ln 1) =? 4.1 0.2
Lower boundary 7.71 0.25=? 25 0.01(1 ln 1) 0.4(ln 1) −90 142 −2.0
Upper boundary 9.71 0.9=? 129 0.035(1 ln 1) 8.8(ln 1) 900 286 3.0

Algorithm 3 Feature Estimation
Input: Delineated ) (=)
Output: \X , )(�
1: )> (=) ← ) (=)
2: ) (=) , ) I (=) , C H ?4←TwaveRectification) (=)
3: if C H ?4! = flat then
4: SD , S3 ← Estimate T-wave slopes from ) I (=) as in [30].
5: \X ←EstimateThetaDelta() (=) , SD , S3)
6: if C H ?4! = negative then
7: )(� ← Estimate )(� from )> (=) as described in [15].
8: else
9: )(� ← []
10: end if
11: end if

12: procedure EstimateThetaDelta() (=) , SD , S3)
13: \X ← []
14: # ←length() (=))
15: f3 , `D , `3 , W3 , '2 ←TwaveParametrization() (=))
16: if '2 ≥ 0.8 then
17: \ ← arctan(S3) − arctan(SD)
18: <D ← `D

19: <3 ← W3 + 4 (`3−f
2
3
)

20: X̂ ← <3 −<D
21: X ← X̂ #

1000
22: \X ← − log10 (\ · X)
23: end if
24: return \X
25: end procedure
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