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Summary

Electroencephalography (EEG) is a non-invasive electrophysiological technique to record and
monitor the electrical activity of the brain from electrodes placed along the scalp. In last two
decades, a wide range applications of EEG signals have been proposed such as, not limit to,
epilepsy detection and prediction, diagnosis of sleep disorders, depth of anesthesia and coma,
Brain Computer Interfaces (BCI) applications, etc.

The utilization of recorded EEG signals might be hindered due to artifacts and noise of physio-
logical and non-physiological sources, e.g., eye blinks (EB), eye movements, muscle contractions,
cardiac activity, electrical shift and linear trend (ESLT), power line interference, etc. The influ-
ence of these artifacts might lead to the wrong statistical and physiological analysis of the brain
activity. In particular for long-term EEG recordings or autonomous BCI systems, where the noise
contribution is random and cannot be supervised by the human expert, the automatic elimination
of EEG artifacts is a necessary step before further processing and analysis. Amongst artifacts with
the physiological origin, EB, due to its large amplitude and inevitable frequent appearance, is con-
sidered to have the most adverse influence on the EEG analysis. ESLT artifacts may emerge in
EEG signals due to the temporary shift or lose of electrodes during the recording.

In this thesis, low complexity approaches based on the Stationary Wavelet Transform (SWT)
for the elimination of EB and ESLT artifacts from EEG signals are proposed. The main novelty
of this research is to employ skewness and kurtosis to stop the decomposition level of SWT once
it reaches the artifact components. It is shown that the skewness and kurtosis could be suitable
artifact markers for EB and ESLT, respectively. The proposed methods are compared against the
Automatic Wavelet Independent Components Analysis (AWICA) and Enhanced AWICA (EAW-
ICA) which were presented for automatic EEG denoising. The performance of all algorithms have
been tested on simulated and real contaminated EEG signals. Normalized Root Mean Square Error
(NRMSE), Peak Signal-to-Noise Ratio (PSNR), and correlation coefficient (CC) between filtered
and pure EEG signals are utilized to quantify artifact removal performance. The proposed ap-
proaches show smaller NRMSE and larger PSNR, and CC values compared to the other methods.
Furthermore, the speed of execution for the proposed algorithms are considerably shorter than the
algorithms for comparison, which makes them more suitable for the real-time processing.
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Terms and Definitions

EEG - Electroencephalography
BCI - Brain Computer Interface
EB - Eye Blink
ESLT - Electrical Shift and Linear Trend
SWT - Stationary Wavelet Transform
AWICA - Automatic Wavelet Independent Components Analysis
EAWICA - Enhanced AWICA
NRMSE - Normalized Root Mean Square Error
PSNR - Peak Signal-to-Noise Ratio
CC - Correlation Coefficient
PSD - Power Spectral Density
MSC - Magnitude Squared Coherence
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Introduction

Recording of the electrical activity from the surface of scalp is called Electroencephalography
(EEG). It is a non-invasive technique which is also considered as the cheapest strategy to study the
brain’s activity. The most prominent advantage of EEG is the capability of observing the brain’s
scheme in real time with milliseconds resolution. Environmental flexibility to be used in indoors
not only clinics, is another benefit of EEG compared to other techniques for studying the brain.

EEG signals recorded from the scalp are extensively used in the medical practice to analyze
the brain activity for the diagnosis, the management and the investigation of neurological problems
such as, but not limited to, epilepsy [1, 2], neurodegenerative diseases [3, 4] and sleep disorders
[5, 6]. Another important application for the scalp EEG can be found in Brain Computer Interface
(BCI), which has yielded significant advances in neurorehabilitation and assistive technologies,
while also targeting the improvement of life’s quality for disabled people [7]. BCI systems can
substitute or refurbish purposeful function to people who deal with neurological disorders such
as, not limit to, amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injury. The
emergence of low-cost electroencephalography (EEG) headbands with a few number of channels
has yielded a significant leap in the healthcare monitoring and BCI systems. These recorded EEG
signals are, however, corrupted by non-cerebral activity originating from physiological and non-
physiological sources such as eye blink (EB), cardiac activity, muscle contraction, power line
noise, electrical shift and linear trend (ESLT), etc. [8]. These sources distort the EEG signal and
may affect the final detection or classification results. The artifact removal is, therefore, a critical
and necessary step in the EEG signal processing.

In order to filter artifacts from EEG signals, a wide ranges of approaches have been proposed in
literature. The main drawbacks of such methods are the necessity of an artifact channel recording
for those based on adaptive filters, requirement of prior knowledge of the collected EEG signals
for wiener filters and regression based methods, the lack of performance of linear filtering when
the EEG signal and artifacts overlap in the same frequency band, the computational expensiveness
of Blind Source Separation (BSS) methods, and the manual setting of the level of decomposition
for source decomposition methods.

The aim of this work is to propose automatic algorithms for the filtering of artifacts from EEG
signals.

The objectives of this research are as follow:
1. To develop low computational algorithms for eye blink, electrical shift and linear trend re-

moval from EEG signal, without demanding the artifact reference or prior knowledge of the
collected EEG signals.

2. To implement the proposed algorithms on simulated and real contaminated EEG signals.
3. To compare the performance and execution time of the proposed approaches with Automatic

Wavelet Independent Component Analysis (AWICA) and Enhanced AWICA (EAWICA) al-
gorithms.
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1. Background

This chapter presents the background information regarding the generation of EEG signals in
the brain, collecting EEG signals from the scalp, fluctuation of EEG rhythms, artifacts in EEG
signals and literature review for the EEG denoising.

1.1. Physiology of EEG

There are billions of cells in the brain which half of them are neurons and half of them are to
facilitate the neuron’s activities. The neurons are tightly linked to synapses that operate as gate-
ways of the inhibitory or excitatory activity. Any synaptic activity produces an elusive electrical
pulse known as the postsynaptic potential. When thousands of the neurons act synchronously, an
electrical filed is generated which is capable to be spread through skull and could be collected
from the scalp which is known as EEG. In general terms, EEG signals are related to the discharge
of thousands of nerve cells in the cortex (synaptic excitation), principally the pyramidal cells and
their corresponding dendrites [9].

1.2. Acquisition of EEG

Collected EEG signals can be interpreted according to the four areas of the cortex (lobes):
O-occipital lobe (primarily responsible for processing visual information), P-parietal lobe (pri-
marily responsible for motor functions), T-temporal lobe (responsible for F-frontal lobe (basically
responsible for executive functions) [10]. Fig 1.1 demonstrates the lobes of the brain.

According to this interpretation, Jasper [11] proposed 10/20 system to record EEG signals,
which is the relationship between sites of the electrodes and the brain lobes. Numbers 10 and
20 are to specify the distance between the adjust electrodes which is either 10% or 20% of the
whole front-back or right-left distance of the skull. Each electrode is named based on the lobe and
hemisphere location. It should be noted that C-central lobe does not exist and is just to identify
the purposes. Letter Z refers to the electrode place on the mid line. Even and odd numbers refer to
the location of electrodes on the right and left hemisphere, respectively. Fig 1.2 shows the 10/20
international system to record EEG signals from the scalp.

The amplitude of the recorded EEG signals from scalp varies from 1 to 200 µvolts and the
frequency range of them oscillates between 0.5 to 50 Hz. Brain oscillatory has been classified into
five rhythms called Delta (0.5 to 3.5 Hz), which has the slowest oscillation with highest amplitude
(up to 200 µVolts), Theta (3.5 to 7 Hz) which has relatively slow oscillation and high amplitude
(up to 100 µvolts), Alpha (7 to 14 Hz) that has smaller amplitude then Theta but faster fluctuation,
Beta (14 to 30 Hz) which has irregular small amplitude and Gamma (30 to 50 Hz) which has the
fastest fluctuation. It should be noted the during an ongoing EEG signal, proportions of all rhythms
might be included and these proportions can be changed in association with cognitive and sensory
processes [9, 10]. Fig 1.3 shows an example of EEG signal and the corresponding rhythms.
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Figure 1.1 The lobes of the brain.
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period. In fact, the ongoing EEG may consist of proportions of all frequency bands and 
that the proportions may vary with changes in cognitive and sensory processes.

A few seconds of recorded ongoing EEG can be analyzed with a Fourier transform algo-
rithm to reveal the energy or power associated with each bandwidth. Figure 21.4 illustrates 
the spectral EEG distribution and the relative amounts of power for each frequency band; 
total area in each bandwidth. Two measures can be made for each band, absolute power: 
which is the actual area under the curve within the band limits or relative power which is 
the normalized area under the curve (total power) divided by the total area (Total power 
density μV2/Hz). EEG rhythms can be associated with cortico–cortico neuron interactions 
(emergent) or could also be driven by thalamic excitatory cells (pacemaker). This process 
is illustrated in Figure 21.2b. 

TABLE 21.1

Normal Frequency Range of Ongoing EEG Subdivided into Five Bands (in Hertz, Cycles 
per Second)

Band Symbol Lower (Hz) Upper (Hz) Amplitude Range (μV)

Delta (δ) 0.5 4 20–200
Theta (θ) 5 7 20–100
Alpha (α) 8 14 20–60
Beta (β) 15 30 2–20
Gamma (γ) 30 50a 5–10

Source: Hughes JR, Epilepsy Behav 13, 1, 25–31, 2008.
a 40 Hz is typically used, although some have reported that gamma can range up to 100 Hz.
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FIGURE 21.3
The 10–20 International Electrode System for determining positioning of electrodes on scalp (A1–2 mastoid* ref-
erence sites). Note division of the left–right ear distance and nasion–inion distance into 10% and 20% segments. 
Circumferential spacing uses a combination of both distances for example P3 is 30% of nasion–inion distance 
from inion and 20% of left–right ear distance.* Bony prominence of the temporal bone (behind the ear).

Figure 1.2 The location of EEG electrodes according to 10/20 system; adapted from [9].
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Figure 1.3 An EEG signal and the corresponding bands.

1.3. Artifacts in EEG signals

Unfortunately, EEG signals are extremely vulnerable to artifacts. According to the physiologi-
cal literature, the artifacts in EEG signals might be categorized into those which has physiological
sources such as EOG, ECG and EMG signals, and those which has non-physiological origins, for
instance, power line noise and ESLT artifacts [8]. The influence of artifacts on EEG signals might
be relatively proportional to the location of EEG channel and frequency range of the artifacts. For
example, eye blink has a larger amplitude in frontal electrodes rather than temporal and it overlaps
the Delta band of EEG, whereas, jaw muscle movement or verbalization has a stronger influence
on temporal electrodes and overlaps the Beta band of EEG [9].

In this project, we just investigate the elimination of EB and ESLT artifacts from EEG signals.
Amongst physiological artifacts, eye blink is considered to have the most impact on the EEG

signal analysis, due to its high amplitude and overlapping frequency components. The cornea
(positive) and the retina (negative) of the human eye form an electrical dipole. Movements and
blinks of the eye modify this dipole and generate an electrical signal known as EOG, inducing
strong ocular artifacts in EEG recordings [12]. Eye blinks are characterized by low frequency
components (<4 Hz) with a high amplitude which have a symmetrical activity mainly located on
the front lobe electrodes with low propagation to other EEG channels. Eye movements are also
identified as a low frequency signal (<4 Hz) with lower amplitude but higher propagation to other
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electrode positions [13].
The occurrence of eye blinks is more frequent than eye movements, therefore, the elimina-

tion of eye blinks from EEG has gained more attention than the elimination of eye movements.
Examples of clean and contaminated EEG signal with eye blinks is shown in Fig 1.4.
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Figure 1.4 Examples of the contaminated (a) and the pure (b) EEG signals.

Unfortunately, the elimination of artifacts with non-physiological origin from EEG signals has
not gained enough attention in the recent literature [14-16]. Apart form the power line interference,
electrical shift (discontinuities) and linear trend could be considered as the most common artifacts
with the non-physiological origin. The occurrence of ESLT artifact might be due to the electrode
shifts or a temporary loss of the skin-electrode contact, transient recording-induced current drifts
and electrical pop [17, 18]. Fig 1.5 illustrates examples of pure EEG and EEG contaminated to the
ESLT artifact.
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Figure 1.5 Examples of the contaminated (a) and the pure (b) EEG signals.

1.4. Analysis of EEG denoising methods

In order to have clean EEG signals, three main strategies can be considered. First of all, we can
ignore all EEG segments which are contaminated to the artifacts and just use the free-of-artifact
segments. Using such a strategy yield the loss of EEG of interest and might not leave enough
data for further analysis. Second strategy is to ask subjects not generate any artifacts, however, the
generation of some of artifacts such as eye blinks and cardiac activity are spontaneous. The third
strategy is to filter the noisy artifacts while maintaining the EEG component for the segment of
EEG that is filtered [19].

Obviously, the third strategy seems more effective, thus, an extensive range of methods have
been employed based on this methodology. In this section, a comprehensive discussion over the
most common methods for the EEG filtering is presented.

To remove artifacts from EEG signals, a wide range of techniques have been used such as,
not limit to, linear and adaptive filters, Blind Source Separation (BSS) and Source decomposition
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algorithms.
Linear filters are widely applied for EEG filtering in clinical practices, however, suppression of

the artifact components without affecting the representation of underlying cognitive brain process
is not possible, e.g, language [20] and decision making [21], thus, it cannot be a reliable approach
for neuroscience applications.

Conventional adaptive filters are considered as the most common method for the on-line re-
moval of the artifacts from EEG signals [22]. Nevertheless, the recording of artifact reference
might increase the complexity for wearable applications, e.g., long-term EEG monitoring [23, 24].
Additionally, the recording of the reference pattern of some artifacts such as the electrical shift and
linear trend is unfeasible.

In order to overcome the requirement of an extra channel to record the artifact reference,
Wiener filters have been proposed to de-noise EEG signals [25, 26]. The goal of Wiener filter
is to minimize the Mean Square Error (MSE) between the desired and estimated signals. To this
aim, estimation of power spectral densities (PSD) between the signal and the artifact is used. De-
spite this method does not need to the artifact reference, initial calibration is necessary.

Blind Source Separation (BSS) algorithms have gained lots of attentions for the EEG signals
pre-processing as they do not require the reference artifact and prior knowledge of the collected
EEG signals[27]. BSS approaches identify equivalent principal or independent components of the
EEG signals and then apply the processing in the transformed domain. The most popular BSS
algorithms for EEG signal processing are Principal Component Analysis (PCA) and Independent
Component Analysis (ICA). Some studies suggested that PCA fails when EEG signals and the
corresponding artifacts have the resembling amplitude [28, 29]. The assumption of ICA is based on
the statistical independence of the EEG signals and the artifact sources, as a result, large number of
data are required to achieve reliable results [22]. The other drawback of ICA is high computational
demand [25].

Source decomposition algorithms have been widely employed for the artifact reduction in EEG
signals, e.g, Empirical Mode Decomposition (EMD) [30, 31], Variational Mode Decomposition
(VMD) [32 ,33] and Wavelet Transforms (WT) [34–37].

EMD has been recognized as a suitable method to analyze nonlinear and non-stationary signals.
As a result, it has been widely employed for the EEG signal preprocessing. The aim of EMD is to
decompose a signal into series of basis functions called Intrinsic Mode Functions (IMF), and one
residue [38]. The main drawback of EMD is its poor robustness to noise as its performance might
be influenced by white noise. To overcome this limitation, Ensemble EMD [39] and VMD [32 ,33]
methods have been introduced, however, as a cost of the significant increase of the computational
complexity.

Discrete Wavelet Transform (DWT) and Stationary Wavelet Transform (SWT) have been widely
applied for EEG signal processing. The critical disadvantage of DWT lies in its time-variance
property, which yields the number of coefficients decreasing by a factor 2 for each level of decom-
position. SWT overcomes translation-variance of DWT by upsampling the components instead of
downsampling. As a result, SWT components have the same length as the original signal [19].
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Some studies suggested that SWT is more effective for the preprocessing of EEG signals since it
provides better time resolution for the artifact characterization, as well as a smoother estimation of
the EEG signal after the thresholding in the wavelet domain [40, 41].

Recently, hybrid algorithms based on BSS and source decomposition methods has received a
lot of attention for the EEG signal pre-processing [17, 42-44]. Despite the adequate performance
of these algorithms for EEG denoising, the computational time is still a problem.

Nadia et al [17, 42] presented two fully automatic algorithms based on the wavelet trans-
form and ICA for the elimination of the eye blink, EMG, electrical shift and linear trend artifacts
from EEG signals, called Automatic Wavelet Independent Component Analysis (AWICA) and
Enhanced AWICA (EAWICA). Despite the fully automatic operation, the performance of these
methods relies on the accurate setting of five parameters before the processing. Table 1.1 shows
the information about different methods.
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2. Materials and Methods

In this chapter, the proposed methods for the elimination of EB and ESLT artifacts from EEG
signals using SWT, algorithms for comparison, the procedure of simulated data generation, real
data and performance metrics are described.

2.1. Stationary Wavelet Transform

Discrete Wavelet Transform (DWT) have been extensively employed for biomedical researches
as it represents a signal in both time and frequency domains, synchronously. Let x(n) be a signal
with N number of samples. DWT decomposes x(n) into low and high frequency components
called approximation components a(n) and detail components d(n) by passing it through a series
of the filter banks. To this end, x(n) is filtered by a low-pass filter G(n) and high-pass filter H(n)

which gives a1(n) and d1(n) with N/2 samples. This procedure continues over approximation
components by increasing number of decomposition level. Fig2.1 shows the DWT block diagram.

x(n) H(n)

G(n)  2 

 2 

H(n)

G(n)  2 

 2 

H(n)

G(n)  2 

 2 a1 

d1 

a2 

d2 

an 

dn 

Figure 2.1 Block diagram of DWT algorithms.

The main disadvantage of DWT algorithm is its translational variant property which is resulted
from the decimation operators with factor of two at each level. In order to over come this problem,
SWT algorithm has been proposed. SWT solves translation-invariance of DWT, which is achieved
by removing down-samplers. As a result, the approximation and detail components of SWT con-
tain at each level have the same number of the samples as the original signal. Compared to DWT,
SWT can achieve a better resolution by a factor of two up-sampling the components of the low
pass and high pass filters at each level of decomposition. Redundant property of SWT makes it
more suitable algorithm for signal de-noising. Fig2.2 shows the SWT block diagram.

Two parameters are required to be determined before conventional SWT processing: the mother
wavelet and the number of decomposition levels. The selection of the mother wavelet is generally
based on similarities between the mother wavelet and the desired signal.
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Figure 2.2 Block diagram of SWT algorithms.

The regulation of the decomposition level to reach artifact components for SWT is directly
proportional to the sampling frequency of the recorded EEG signals. Hence, it may be changed
for EEG signals sampled at different rates. In this thesis, new strategies which are independent of
sampling frequency, for the automatic termination of SWT decomposition process when it achieves
the artifact components are presented. As a result, the further decomposition is not required which
may speed up the execution of the SWT filtering.

2.1.1. Proposed method for eye blink elimination

Daubechies wavelet ‘db4’ is commonly used as the mother wavelet for EEG signal processing
[19, 40, 42, 44] as its morphology resembles eye blink signal. The spectrum of eye blink artifact
varies between 0.01 to 3 Hz [13 ,19, 40]. Therefore, it is expected to increase the power of the
frequencies in the lower end of the EEG spectrum, and as a result, the eye blink components lie in
the last several levels of the SWT.

Since blinking is a low frequency phenomenon, it is expected to appear in approximation co-
efficients of SWT. Hence, the proposed criterion should be enforced on those coefficients. The
presence of eye blinks may be indicated by a higher absolute value of skewness as it has a consid-
erably larger amplitude compared to uncontaminated EEG signal [45, 46]. Fig 2.3 illustrates the
examples of the signals and their histograms for pure EEG, blink artifact and blink contaminated
EEG signal.

Skewness, S, for the signal x is defined as follows:

S = m3−3m2
2, (2.1)

mn = E
[
(x− x)n], (2.2)

where mn indicates nth order central moment of the variable. E and x are the expectation
function and the mean of the signal, respectively.

For automatic stoppage of SWT when it reaches the blink artifact components, we have applied
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Figure 2.3 Examples of signals and histograms for clean EEG (a), blink artifact (b) and
contaminated EEG (c). S is the skewness value.

a criterion based on the absolute difference of the absolute skewness values of two consecutive
approximation coefficients levels. The block diagram of the proposed algorithm is shown in Fig
2.4.

z(n)
Approx. coeff. 
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Approx. coeff. 

aj(k)

aj-1(k), Sj-1

aj(k), Sj

ISWT of aj-1(k), 
aj-1(n)x1(n)

NO
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+ 

-

  𝑆𝑗−1 −  𝑆𝑗   > 𝑇 

Figure 2.4 The block diagram of the proposed method for elimination of eye blinks from EEG
signals.

The proposed criterion is defined as absolute difference of absolute skewness values of two
consecutive approximation coefficients in SWT domain, which is expressed as follows:

δ =
∣∣|S j|− |S j−1|

∣∣, (2.3)

where S is the skewness and j is the level of decomposition of SWT. If δ > T , we can as-
sume that SWT has reached the blink components. The approach to extract and remove eye blink
components from the contaminated EEG is presented as follows:
1. Apply j level SWT to EEG signal contaminated with eye blinks, z(n), and extract the approx-

imation a j−1(n) and a j(n) coefficients, where j = 2,3, ...,J (wavelet domain).
2. Compute the absolute difference of absolute skewness values of a j−1(n) and a j(n) as δ .
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3. If δ > T , inverse SWT (ISWT ) of a j−1(n) in order to get a j−1(n) which is considered as
the eye blink artifact. Subtract a j−1(n) from the contaminated EEG signal z(n) to obtain the
filtered EEG signal. Otherwise, go back to step 1 and proceed to j = j+1.

In this paper, six T values ranging from 0.05 to 0.3 with a step of 0.05 have been applied. The
optimal value of T was selected based on lowest mean of error between pure and filtered EEG
signals.

2.1.2. Proposed method for electrical shift and linear trend elimination

Despite EB, ESLT artifacts consist of both low and high frequency components, thus, the
appearance of these artifacts can be observed in both detail and approximation coefficients levels
(Fig 2.5.

0 1280 2560
Sample (n)

Figure 2.5 An example of the decomposed contaminated EEG signal.

Several studies showed that kurtosis may be applied as the criterion to detect artifacts in EEG
signals [17, 18, 47-50]. The kurtosis is usually indicated by a high negative value due to either
consistent sample values or the abrupt alteration of them between extremes. As EEG signals are
quite dynamic, such activities cannot represent brain schemes. Therefore, it can be expected that
the ESLT artifacts in EEG signals be indicated by the flat distribution with negative kurtosis [17,
48].
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According to this discourse, we use the kurtosis to select the certain approximation coefficients
level to remove low frequency components of ESLT and then filter the obtained detail coefficients
levels to denoise high frequency components of ESLT artifact, to reconstruct EEG signals.

Kurtosis of the signal x is defined as follows:

k = m4−3m2
2, (2.4)

mn = E
[
(x− x)n], (2.5)

where mn indicates nth order central moment of the variable. E and x are the expectation function
and the mean of the signal, respectively.

In order to stop the SWT decomposition process, the threshold is expressed based on the abso-
lute difference of the kurtosis values calculated for approximation coefficients of two consecutive
levels as follows:

λ =
∣∣K j−K j−1

∣∣, (2.6)

where K is the kurtosis and j is the level of decomposition of SWT.
Filtering of the detail components is performed based on the following threshold [50]:

dθ (n) =

d(n) if |d(n)| ≤ θ

0 otherwise
, (2.7)

θ =
median(|l|)

0.6745

√
2LogN (2.8)

where d(n) is the detail component and N is the signal length in samples.
Fig 2.6 shows the examples of clean and contaminated EEG signals, and the corresponding

distributions.
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Figure 2.6 Examples of pure EEG (a), contaminated EEG (b) and the corresponding distributions
(c). K is the kurtosis value.

The block diagram of the proposed method is shown in Fig 2.7.
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Figure 2.7 The block diagram of the proposed method for elimination of ESLT artifacts from
EEG signals.

If λ > T , it is assumed that SWT has reached the optimal decomposition level for filtering of
the ESLT artifacts. The following procedure has been applied to eliminate ESLT artifacts from
EEG signals:

1. Apply j level SWT to the contaminated EEG signal, z(n), and extract the approximation
a j−1(n) and a j(n) coefficients, where j = 2,3, ...,J (wavelet domain).

2. Compute the absolute difference of the kurtosis values of a j−1(n) and a j(n) as λ .
3. If λ > T , denoise all extracted detail coefficients levels based on equation (2.7) and (2.8) and

reconstruct the filtered EEG signal by (ISWT ). Otherwise, go back to step 1 and proceed
with j = j+1.

In order to achieve the optimal threshold value, four values ranged from 0.05 to 0.2 with step
value of 0.05 have been applied. The optimal threshold value is selected based on lowest mean of
the error between the pure and the filtered EEG signals.
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2.2. Algorithms for comparison

The performance of the proposed algorithms is compared with AWICA and EAWICA algo-
rithms which are available from the authors upon request. The principle of these algorithms are
based on joint of DWT and ICA, where DWT decomposes the EEG signal into its rhythms and
then ICA is applied for the denoising. The main idea of these algorithms is to apply a two-step
procedure relying on the concepts of kurtosis and Renyi’s entropy to detect and eliminate artifacts
from EEG signals. More details about these algorithms can be found in [17, 42]. There are five
parameters required to be set before processing for AWICA and EAWICA algorithms. Optimal
parameters were set as described in [42]. Fig 2.8 shows the block diagram of the algorithms for
comparison.

(a) 

 

(b) 

 

(a)

(b)

Figure 2.8 Block diagram of Algorithms for comparison. AWICA (a) adapted from [17] and
EAWICA (b) adapted from [42].
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2.3. Data

2.3.1. Generation of simulated data

Simulated EEG signals contaminated with artifacts are generated by an additive model as fol-
lows:

z(n) = x(n)+ar(n), (2.9)

where z(n) is the EEG signal contaminated with the artifact, x(n) is the pure EEG and r(n) is the
artifact. Since propagation of artifacts is not equal in different lobes of the brain, the term a with
four different values is applied to put emphasis on this fact that artifact magnitude is not equally
distributed for all EEG channels [51].

2.3.2. Simulated data for EEG contaminated to eye blinks

Twenty four EEG signals from the CHB-MIT Scalp EEG database [52] (sampling rate Fs=256
Hz) have been selected to develop the proposed algorithm. We manually cut out 10 s long artifact-
free EEG epochs, and in this way, we were able to collect pure EEG signals. 30 EEG signals
collected during mental arithmetic tasks (EEG-MAT) ( Fs = 500 Hz) [53] have been selected to
test the performance of the proposed algorithm. EEG-MAT database had already been filtered
and the data was clean. To generate simulated EEG signals contaminated with eye blinks, 54
real eye blink signals from the BCI experiment for motor imagery movement of the left and right
hand [54], and the BCI Competition 2008 (Graz Data Sets 2a) [55] have been used. The eye
blink signals were band-pass filtered between 0.1 and 3 Hz and resampled to 256 and 500 Hz.
Therefore, the developing set of the algorithm includes a total of 24*4=96 and test set contains
30*4=120 of simulated signals. Fig 2.9 demonstrates examples of pure EEG, eye blink artifact,
and blink contaminated EEG signals with different values of a for CHB-MIT database.

2.3.3. Simulated data for EEG contaminated to electrical shift and linear trend

In order to produce simulated EEG signals contaminated to the ESLT artifact, pure EEG signals
from CHB-MIT database [52] have been added to twenty-four triangular and rectangular waves
with four different bandwidths and amplitudes. Thus, 96 simulated data have been generated. Fig
2.10 shows examples of the contaminated EEG signals with different amplitudes.

2.3.4. Real data for EEG contaminated to eye blink

In order to assess the performance of the proposed method on real EEG signals contaminated
with eye blinks, 8 EEG signals from the BCI experiment for motor imagery movement of the left
and right hand ( f s = 512Hz) [54] and 8 EEG signals from the BCI Competition 2008 (Graz Data
Sets 2a) ( f s = 250Hz) [55] with length of 60 seconds have been used. Each signal was divided into
6 windows of 10 seconds and then the denoising methods were applied. An eye blink reference
channel was recorded simultaneously to EEG data for both databases. All raw EEG signals were
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Figure 2.9 Examples of simulated data from CHB-MIT database. Pure EEG x(n), eye blink
artifact r(n), contaminated EEG z1(n) - a = 0.75, z2(n) - a = 1.0, z3(n) - a = 1.5, and z4(n) -

a = 2.0.

band pass filtered between 0.01 to 40 Hz and then the algorithms were performed to denoise the
EEG signals.

2.3.5. Real data for EEG contaminated to electrical shift and linear trend

In order to assess the performance of the proposed method on real contaminated EEG signals,
EEG-LAB [56] database that contains several artifacts has been applied. The signals were sampled
at 128 Hz with length of 238 seconds. We manually selected epochs which contain ESLT artifacts
to test the efficiency of the proposed method.
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Figure 2.10 Examples of simulated data from CHB-MIT database: pure EEG x(n), artificial
ESLT artifact r(n), contaminated EEG z1(n) - a = 0.75, z2(n) - a = 1.0, z3(n) - a = 1.5, and z4(n)

- a = 2.0.

2.4. Denoising performance criteria

Normalized root mean square error (NRMSE), peak signal-to-noise ratio (PSNR) and correla-
tion coefficient (ρ) between pure and filtered EEG signals are the principal performance measures
in time domain. NRMSE and PSNR evaluate the magnitude distortion and ρ investigates phase
distortion of the filtered EEG signals, respectively. NRMSE is defined as follows:

NRMSE =

√
1
N

∑
N
i=1 (x(n)− x1(n))

2

maxx(n)−minx(n)
×100, (2.10)

where x(n) is pure EEG signal and x1(n) is filtered EEG signal.
PSNR is the peak error measurement which is expressed in decibels [40]:
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PSNR = 20log10

 maxx(n)√
1
N

∑
N
i=1 (x(n)− x1(n))

2

. (2.11)

Correlation coefficient is a value between 0 to 1 which is expressed as:

ρ =
cov(x(n),x1(n))

σx(n)σx1(n)
, (2.12)

where cov is covariance and σ is standard deviation.
The algorithms have been executed on a computer with 3.2 GHz core i7 CPU, 16 GB RAM and

with widely used computing software MATLAB R2018a (Mathworks Inc., Natick, Massachusetts,
USA).
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3. Results

3.1. Results for eye blink elimination

Fig 3.1 shows the Mean±SD of NRMSE between pure and filtered EEG signals per different
values of T for CHB-MIT database. As observed below, the T value of 0.15, has the lowest
NRMSE.

T=0.05 T=0.1 T=0.15 T=0.2 T=0.25 T=0.3
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Figure 3.1 Mean±SD of NRMSEs per different T values.

Fig 3.2 shows an example of a decomposed contaminated EEG signal into approximation co-
efficients from CHB-MIT database in SWT domain. According to the proposed method, inverse
SWT of a5(k) is considered as the eye blink artifact and is removed from the contaminated EEG.
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Figure 3.2 Examples of approximation coefficients and corresponding skewness values for a con-
taminated EEG signal from CHB-MIT database in SWT domain.

Quantitative analysis, computation of NRMSE, PSNR and correlation coefficient between pure
and filtered EEG signals were solely performed for simulated data. For real EEG signals contam-
inated with eye blinks, performances are evaluated visually. Fig 3.3 illustrates the box plots of

23



NRMSE and correlation coefficient values between pure and filtered EEG signals for different
databases and algorithms. The obtained results show that proposed algorithm, on average, per-
formed better than the algorithms for comparison,
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Figure 3.3 Box plots of NRMSE and correlation coefficient between pure and filtered EEG for sim-
ulated data by all methods. (a) and (b) are for CHB-MIT, (c) and (d) are for EEG-MAT databases.

Fig 3.4 shows examples of the contaminated, pure, and filtered EEG signals from both databases
with all methods. while AWICA and EAWICA modified some clean segments of EEG, proposed
method could preserve non-contaminated segments.

An example of Power Spectral Density (PSD) for the pure and the filtered EEG signals from
both databases are shown in Fig 3.5. Table 3.1 displays Mean±SD of MSE and CC between PSDs
of the pure and filtered EEG signals for both simulated databases. As it may be observed, ASWT
could preserve EEG components better than methods under comparison.

Fig 3.6 shows PSNR curves as the function of NRMSE for the filtered EEG signals using all
methods. As it can be seen, the proposed method gives higher PSNR and lower NRMSE for most
of signals than methods under comparison.

Ten seconds fragments of the real and filtered EEG signals resulting from all methods are
illustrated in Fig 3.7. Considering that both EEGs and eye blinks were unknown in the original
EEG signals, NRMSE, PSNR, and correlation coefficient are not regarded as evaluation criteria of
the artifact removal, therefore we have to confine ourselves to visual assessment.

Computational time for the implementation of the algorithm is of great importance for on-line
applications. Fig. 3.8 shows the mean±SD of the computational time expressed in seconds for
different algorithms and databases per 20 times run.
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Figure 3.4 Examples of eye blink cancellation in simulated EEG signals from: CHB-MIT (a), and
EEG-MAT (b) databases. Each with contaminated EEG z(n) , real eye blink artifact z(n), pure
EEG x(n), filtered EEG by the proposed method x1(n), filtered EEG by the AWICA x2(n) and
filtered EEG by the EAWICA x3(n).
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Figure 3.5 Examples of the PSDs for the pure and the filtered EEG signals by all methods for
simulated data using CHB-MIT (a) and EEG-MAT (b) databases.

3.2. Results for electrical shift and linear trend elimination

The the mean±SD of NRMSE between the pure and the filtered EEG signals per different
values of threshold (T) is shown in Fig 3.9 As it may be seen, the lowest mean NRMSE has been
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Table 3.1. Comparison of MSE and CC between the PSDs of the pure and filtered EEG signals for
eye blink elimination.

Algorithms Proposed Method AWICA EAWICA

CHB-MIT Database
MSE 1.76 ± 0.23 3.26 ± 0.56 2.2 ± 0.65
CC 0.85 ± 0.13 0.73 ± 0.21 0.79 ± 0.15

EEG-MAT Database
MSE 1.96 ± 0.43 4.21 ± 0.74 3.2 ± 0.81
CC 0.83 ± 0.16 0.69 ± 0.28 0.76 ± 0.11
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Figure 3.6 PSNR curves as the function of NRMSE for filtered EEG signals CHB-MIT: (a) and
EEG-MAT (b) databases. ASWT outperformed the other algorithms because in each subplot, the
points associated with the largest PSNR and the smallest NRMSE were achieved by ASWT.
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Figure 3.7 Examples of eye blink cancellation in real EEG signals from: BCI Competition 2008
– Graz Data Sets 2a (a), and BCI 2011 left/right motor imagery (b). Each with EEG contaminated
with eye blink z(n) ,filtered EEG by the proposed method x1(n), filtered EEG by AWICA x2(n)
and filtered EEG by EAWICA x3(n).
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Figure 3.8 The required time for implementation of all algorithms. CHB-MIT (a) and EEG-MAT
(b) databases for different EEG channel settings.

achieved by T=0.1. In order to compare the performance of the proposed method with AWICA and
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Fig. 2. The block diagram of the proposed method.

NRMSE =

√
1

N

∑N
i=1 (x(n)− x1(n))

2

maxx(n) −minx(n)
× 100, (4)

where x(n) is the pure EEG signal and x1(n) is the filtered
EEG signal.

PSNR (decibels) is used to measure the peak error and
defined as follows:

PSNR = 20 ∗ log10

 maxx(n)√
1

N

∑N
i=1 (x(n)− x1(n))

2

. (5)

Correlation coefficient is a value between 0 to 1 which is
expressed as:

ρ =
cov(x(n), x1(n))

σx(n)σx1(n)
, (6)

where cov is covariance and σ is variance.

C. Simulated Data

In order to collect pure EEG signals for simulated data, the
CHB-MIT Scalp EEG database [24] (sampling rate Fs =256
Hz) has been used. Twenty-four artifact-free EEG epochs with
length of 10 seconds have been manually chosen from different
electrodes. This way we were able to collect pure EEG signals.

To produce simulated linear trends and electrical shifts
contaminated EEG signals, twenty-four triangular and rect-
angular waves with different bandwidth and amplitude have
been added to pure EEG signals as follows:

z(n) = x(n) + ar(n), (7)

where z(n) is the EEG signal contaminated with linear
trends and electrical shifts artifacts, x(n) is the pure EEG
and r(n) is the artifact. The term a with four different values
is to indicate artifact’s amplitude may be not equal for all
EEG electrodes. Therefore, the developing set of the algorithm
includes a total of 24*4=96 contaminated EEG signals.

D. Real Data

In order to assess the performance of the proposed method
on real contaminated EEG signals, EEG-LAB [25] database
has been applied which contains several artifacts. The signals
were sampled at 128 Hz with length of 238 seconds. We
manually selected epochs which contain electrical shifts and
linear trends to test the efficiency of the proposed method.

III. RESULTS

The mean±std of NRMSE between the pure and the filtered
EEG signals per different values of T has been shown in Figure
3. As it may be seen, the lowest NRMSE has been achieved
by T=0.1.
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Fig. 3. Mean±std of NRMSEs per different T values.

In order to compare the performance of the proposed
methods with AWICA and EAWICA, the filtered signals are
analyzed in terms of visual inspection, metrics criteria and
spectral response.

Figure 3.9 Mean±SD of NRMSEs per different T values.

EAWICA, the filtered signals are analyzed in terms of the visual inspection, quantitative metrics
and the spectral response. Since the linear trend and electrical shift artifacts in EEG signals are
vividly detectable, the performance of all algorithms was visually assessed. Examples of the pure,
contaminated and filtered EEG signals using all algorithms are shown in Fig 3.10. As it can be
observed, the proposed method performs better in the removal the artifacts components than the
methods under comparison; whereas the EEG signals filtered with AWICA and EAWICA still
contain some artifacts components.
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Figure 3.10 Two examples (a) and (b) for visual comparison each with contaminated EEG z(n),
pure EEG x(n), filtered EEG by the proposed method x1(n), filtered EEG by the AWICA x2(n)
and filtered EEG by the EAWICA x3(n).

NRMSE, PSNR and correlation coefficient are three performance metrics which have been
computed for quantitative analysis of this experiment. It should be noted that these metrics were
solely computed for the EEG signals contaminated with the simulated artifacts. For the real data,
due to lack of the clean EEG data, the performance of the proposed method is evaluated only
visually. Fig 3.11 displays the boxplots of the correlation coefficient, NRMSE and PSNR values
between the pure and the filtered EEG signals.

The PSNR curves for the reconstructed EEG signals using all algorithms as a function of corre-
lation coefficient are illustrated in Fig 3.12. It is clear that higher PSNR and correlation coefficient
have been achieved by the proposed method.

Magnitude Squared Coherence (MSC) and Power Spectral Density (PSD) have been employed
to analyze the influence of all algorithms on the frequency components of the filtered EEG signals.
The PSD computed with the Welch algorithm and MSC between the pure and the corresponding
filtered EEG signals by all methods are shown in Fig 3.13.
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Figure 3.11 Box plots of correlation coefficient (a), NRMSE (b) and PSNR (c) between the pure
and filtered EEG for simulated data by all methods. (PM indicates the proposed method).
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Figure 3.12 The PSNR curves as a the function of correlation coefficient between the pure and the
reconstructed EEG signals for the proposed method (a), AWICA (b) and EAWICA (c).

Table 3.2 shows mean±sd of MSE and correlation coefficient for PSDs between the pure and
the filtered EEG signals using all algorithms. As it is displayed, the lowest MSE and the highest
correlation coefficient have been achieved by the proposed method.

Table 3.2. Comparison of MSE and CC between the PSDs of the pure and filtered EEG signals for
ESLT elimination.

Algorithms Proposed Method AWICA EAWICA

MSE 1.66 ± 0.23 3.99 ± 0.67 3.53 ± 0.59
CC 0.87 ± 0.16 0.75 ± 0.38 0.78 ± 0.23

From PSD and MSC point of view, the proposed algorithm better preserved the low frequency
components of the EEG signal.
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Figure 3.13 An example of MSC and PSD between the pure and filtered EEG signal by the pro-
posed method (a), AWICA (b) and EAWICA (c).

Five-second fragment of the real and filtered EEG signals resulting from the proposed method
are illustrated in Fig 3.14. According to the visual assessment of the EEG expert, the proposed
method could successfully remove the artifacts components and the result of the filtering is satis-
factory.
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Figure 3.14 Filtering results of real contaminated EEG signals by the proposed SWT-kurtosis (a)
and EAWICA (b) algorithms.

Fig. 3.15 shows the required time for denoising CHB-MIT database per different channel
settings. As it can seen, the proposed method require much shorter time than algorithms for com-
parison for all channel settings.
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Figure 3.15 The required time for implementation of all algorithms for different EEG channel
settings of CHB-MIT database.
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4. Discussion

Many approaches for elimination of artifacts from EEG signals have been already described in
literature. The main drawbacks of such methods are the necessity of an extra reference channel
recording for those based on adaptive filter, the lack of performance of linear filtering when the
target signal and artifacts overlap in the same frequency band, the computational expensiveness
of BSS methods, and the manual setting of the level of decomposition for source decomposition
methods [57].

In this project, we proposed two low-complexity algorithms for elimination of EB an ESLT
artifacts from EEG signals. The performance and implementation of the proposed method was
compared against AWICA and EAWICA algorithms [17, 42] which were proposed for automatic
artifact reduction from EEG signals.

The main motivation behind the selection of SWT over other source decomposition algorithms
such as BSS or EMD is its steadiness to decompose EEG signals into several frequency bands with
high temporal resolution, which can yield the simpler denoising method as lower computational
complexity is required compared to those methods [58]. Moreover, translation-invariance property
of SWT compared to DWT is the reason to select SWT over DWT [59].

The objective performance evaluation of the artifact removal techniques is of great importance
for a fair justification of the algorithm’s effectiveness. It might be influenced by the lack of pure
data, insufficient amount of data, casual choice of performance metrics etc. Thus, additionally to
the qualitative evaluation such as the time domain plot of the signals or the comparison of PSD
between the pure and filtered signals in the spectral domain, reliable quantitative criteria are also
required. In order to fulfill this objective, the correlation coefficient, PSNR and NRMSE between
the pure and the filtered EEG signals in time domain have been computed. Correlation coefficient
was applied to evaluate the degree of linear dependence (phase distortion) between the pure and
filtered signals. PSNR was used to compute the peak error of the filtered signals obtained using
all algorithms. Indeed, it was applied to calculate the quality of the lossy reconstruction. The
higher the PSNR, the better the quality of the reconstructed signal is. NRMSE shows the average
difference of the amplitudes between the pure signal and the filtered signal. The smaller NRMSE,
the better quality of the filtered signal is.

4.1. Eye blink elimination

The innovation of the method presented for EB elimination in this research resides in combin-
ing SWT based decomposition with skewness analysis for automatic selection of a final wavelet
decomposition level to extract and subtract eye blink components from the EEG signals. The
main assumption for selection of skewness based criteria is a pronounced asymmetry of amplitude
values of the EEG signal at the eye blinks dominated episodes.

In total, 216 simulated eye blink contaminated EEG signals from two databases have been
processed. Fig. 3.3 shows the box plots of the correlation coefficient and NRMSE between pure
and filtered EEG signals of both simulated databases for all algorithms. It can be seen, in most
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of the cases, ASWT outperforms the other algorithms. Indeed, in 52 out 216 simulated signals
AWICA and EAWICA performed better than ASWT. Examples of visual evaluation of eye blink
filtering by all algorithms and corresponding pure EEG signals for both databases are shown in
Fig. 3.4. Fig. 3.5 shows the examples of the corresponding PSD for the pure and the filtered EEG
signals for both simulated databases. It could be observed that lesser attenuation and distortion of
the filtered EEG was achieved by ASWT. Moreover, PSNR curve as the function of NRMSE for
both databases are shown in Fig 3.6 (each PSNR was normalized in regard to the highest PSNR
value and multiplied by 100) [42]. It is clear that ASWT performed superior for the majority of the
simulated data. In order to investigate the performance of the proposed method for real life EEG
signals, 16 real eye blink contaminated EEG signals from two databases have been used. Fig. 3.7
demonstrates the examples of the real noisy and filtered EEG signals for both databases. It might
be seen that the proposed method could eliminate eye blinks with lower distortion of EEG signals.

Computational complexity is another important factor for the usability of the artifact removal
approaches. The comparison of algorithms execution for different databases is shown in Fig 3.8.
For a single channel setting of simulated signals from CHB-MIT database with Fs = 256Hz the
proposed method was 12x faster than AWICA and 10x faster than EAWICA. As the sampling
frequency increases, the algorithms require a longer time to be executed. ASWT was 27x and
25x faster than AWICA and EAWICA, respectively, for a single channel of simulated signals from
EEG-MAT database with Fs = 500Hz. Additionally, as the length of signals increased for real eye
blinks contaminated EEG signals, execution of the AWICA and EAWICA required a considerably
longer time than ASWT. The computational time needed for the algorithms for comparison was
considerably higher than for the proposed method, thus, they can not be applied for real-time
processing.

4.2. Electrical shift and linear trend elimination

The novelty of the proposed method consists of combining SWT based decomposition with
kurtosis analysis in order to automate the selection of a final wavelet decomposition level, suitable
to detect electrical shift and linear trend artifacts components and then eliminate them from the
contaminated EEG signals. The kurtosis has already been introduced as the proper index for
the detection of artifact components since artifacts may be typically characterized by the peaky
distribution [42].

In total, 96 EEG signals contaminated with simulated electrical shift and linear trend artifacts
been applied for the quantitative analysis of difference between all algorithms. Fig. 3.10 shows
two examples of the pure, contaminated and filtered EEG signals using all methods. Boxplots
of correlation coefficient, NRMSE and PSNR values between the pure and filtered EEG signals
for all algorithms are illustrated in Fig. 3.11. The graphs of PSNR as the function of correlation
coefficient using all the techniques are shown in Fig. 3.12. Fig. 3.13. shows MSC and PSD
between a pure and filtered EEG signals by all techniques. The value of MSC will always fall
between 0 to 1. The ideal case is the value of one for all frequencies. As a result, when the value
of the MSC is higher, the quality of the filtering is better. According to the obtained results from
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Table 3.2, the proposed method performed more effectively for the simulated data.
Fig. 3.14 shows examples of the contaminated and filtered real EEG signals by the proposed

method. The obtained results suggests that the proposed method could detect and eliminate epochs
contaminated with the artifacts efficiently.

Apart from the performance of the algorithms, another important factor has been considered for
the usability of the artifact removal approaches is the computational complexity. The time needed
for the proposed method to filter EEG signals were approximately 12 times and 10 times shorter
than the AWICA and EAWICA for a single channel setting of EEG (Fig 3.15).
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Conclusions and Future work

In this research, two algorithms for the elimination of EB and ESLT artifacts from EEG signals
were proposed. The obtained results acknowledge that following objectives have been accom-
plished:

1. The proposed methods are low-complexity algorithms for filtering of EB and ESLT artifacts,
which require neither the artifact reference nor prior knowledge for the recorded EEG signals. In
comparison with AWICA and EAWICA algorithms, the required time by the proposed methods for
the denoising a single EEG channel is approximately 12 times shorter. Additionally, while the pro-
posed methods only require one parameter to be set before processing, algorithms for comparison
require five.

2. The performance of proposed algorithm for the majority of the EB contaminated EEG
signals outperformed the algorithms for comparison. Indeed, in 52 out 216 simulated signals,
AWICA and EAWICA performed better than the proposed method. In regard to ESLT artifact
elimination, the proposed method outperformed the AWICA and EAWICA for all signals. A
plausible explanation for this could be because AWICA and EAWICA algorithms erroneously set
the artifacts markers, thereby eliminating desirable EEG parts instead of artifacts.

While it requires more investigation, the execution times for the denoising EEG signals with
different channel settings show that the proposed algorithms may have a potential to be integrated
for portable single-to-few EEG channel systems. It should also be noted that the proposed algo-
rithms were developed on non-epileptic EEG segments. Therefore, the future work of this research
is to consider epileptic EEG signals for the denoising.
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List of Dissemination Activities:
1. M. Shahbakhti, A. Rodrigues, P. Augustyniak, A. Broniec-Wojcik, A. Solosenko, M. Beiram-

vand, and Vaidotas Marozas, SWT-Kurtosis Based Algorithm for Elimination of Electrical Shift
and Linear Trend Artifacts from EEG Signals, Under Review at IEEE Journal of Biomedical
and Health Informatics.

2. M. Shahbakhti, M. Maugeon, M. Beiramvand and V. Marozas, Low Complexity Automatic
Stationary Wavelet Transform for Elimination of Eye Blinks from EEG , Brain Sci. 2019, 9,
352; doi:10.3390/brainsci9120352
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