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Abstract. Recently genetic algorithms (GAs) are a great success in solving combinatorial optimization problems. In this
paper the performance issues related to the genetic search in the context of the grey pattern problem (GPP) are dis-
cussed. The main attention is paid to the investigation of the solution recombination, i.e. crossover operators, which
play an important role developing robust genetic algorithms. We implemented seven crossover operators within the
hybrid genetic algorithm (HGA) framework, and carried out the extensive experiments in order to test the influence of
the recombination operators on the genetic search process. The results obtained from the experimentation with GPP test
instances (benchmarks) demonstrate promising efficiency of so-called multiple parent crossover which is based on a

special type of recombination of several solutions-parents.
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lem.

1. Introduction

The grey pattern problem (GPP) [1] is based on a
rectangle (grid) of dimensions n, x n, containing n = n, x
n, points (square cases) with m black points and n — m
white points. By juxtaposing many of these rectangles, one
getsagrey pattern (frame) of density n/n. The objectiveis
to get the finest grey pattern, that is, the black points have
to be spread on the rectangle as regularly as possible. The
larger n, the more refined pattern is possible. The grey
pattern problemisaspecia case of amore general problem,
the quadratic assignment problem (QAP) [2]. QAP is
formulated inthefollowing way. L et two matricesA = (a”.)nxn
and B = (b)), and set IT of all possible permutations of
the integers from 1 to n be given. The goal is to find
permutation 7 = (n(1), 7(2), ..., @(n)) € I1 that minimizes

27) = D', D" 3ibeiyec- (1)

i=1 j=1

In the grey pattern problem matrix (a;),,, is defined as
a; = 1fori,j=1 2, .., mand a; = 0 otherwise. Matrix

(), i defined by the given values — the distances be-

tween every two of n points. More precisely,

bkI = bnz(r—l)+s ny(t-1)+u = frsu ’ Where
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fiqu = max > 7>
vWe{-10% (r —t+nV)° +(S—U+n,W)

r,t=1,..,n,s,u=1 .,n,f, maybethought of asan
electrical repulsion force between two electrons (to be put
onthegrid points) i andj (i,j =1, ..., n) located in positions
k = n(i) and | = n(j) with coordinates (r, s) and (t, u). The
ith (i < m) element of permutation 7, (i) = n,(r — 1) +s,
givesthelocation in the rectangle where a black point has
to be placed. The coordinates of the location (i) of the
black point are derived according to theformulas: r = ((n(i)
-1divn)+1,s=((n(i)—1)modn,) +1,i=1,2, .., m
(xdivy=xly; xmody=x— Xy xy, where x/y denotes
theinteger part of x/y whichisawayssmaller than (or equal
to) x/y.)

Many heuristic approaches can be applied for solving
both QAP and, at that time, its particular case - the grey
pattern problem (see, for example, [1, 3]). Recently, genetic
algorithms (GAs) are among the advanced heuristic tech-
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niques for the quadratic assignment like problems, among
them, GPP [4-8].

Very roughly, genetic algorithms may be characterized
asfollows[9]. Let P be a subset of IT; it is referred to as
population, and it iscomposed of individuals, i.e. solutions
(permutations), 7, 7, ... fipg - p- (Further, we also shall
call the solution (permutation), =, as a chromosome, the
single position, i, of the solution — asagene, and the value
at the given position (gene), (i) — asan alele.) Each indi-
vidual () isassociated with fitness, i.e. the corresponding
objectivefunction value (z(r)). Inthiscaseindividual = is
preferred toindividual 7 if z(m) < (7). Thefollowing are
the main steps of the genetic search. A pair of members of
P is selected to be parents. New solutions (i.e. offspring)
are created by combining the parents; this recombination
operator is known as a crossover. Afterwards, a replace-
ment scheme is applied to determine which individuals
surviveto form the next generation. In addition, someindi-
viduals may undergo mutations. Over many generations,
lessfit individuals (worse solutions) tend to die-off, while
better individual s (solutions) tend to predominate. The pro-
cessiscontinued until acertain termination criterion ismet.

In this paper the issues related namely to the genetic
search for thegrey pattern problem are concerned. Themain
attention is paid to the investigation of the recombination
operators which play an important role constructing effi-
cient GAs. The paper is organized as follows. A hybrid
genetic algorithm (HGA) framework and recombination
operatorsare discussed in Section 2. In Section 3 we present
theresults of testing several crossover operatorswithin the
improved HGA. Section 4 completes the paper with con-
clusions.

2. A hybrid genetic algorithm framework and recom-
bination operators

2.1. A hybrid genetic algorithm framework: the
state-of-the-art and extensions

The state-of -the-art genetic algorithmsare rather hybrid,
i.e. combined genetic local search algorithms which incor-
porate additional heuristic components[5, 6]. Theexample
of such component is a post-crossover pro-cedurewhichis
used as alocal improvement algorithm applied to the solu-
tion previously produced by the crossover. Heuristic algo-
rithms can al so be applied for the construction of high qual-
ity initial populations. Asaresult, the hybrid genetic search
isdonein an optimized search space where the populations
consist solely of local optima — this appears to be a more
effective processthan searching in arandom solution space.

Applying HGAs it does not necessary mean that near-
optimal solutions are reached in reasonable time. Indeed,
HGAs often usethe elaborated improvement heuristics (like
simulated annealing, tabu search) that, in general, are quite

time-consuming. This could bethought of asaserious short-
coming, especialy if wewish to create HGAsthat are com-
petitive with other optimization techniques. In this situa-
tion it isimportant to make some additional extensions of
HGAs. Thefollowing arethe basic principles of designing
the extended hybrid genetic algorithms (EHGAS): 1.
EHGASs should incorporate as robust local improvement
algorithms as possible. Here, we assume that algorithm A,
ismoreefficient than algorithm A,, if A, finds (in average)
the solution(s) with the average objective function value
(quality) f° inlesstimethan A,. Naturally, the long time
behaviour does not matter aslong aswe are speaking about
the fast algorithms within EHGAS. 2. In EHGASs the com-
pactness of the population is highly desirable. Aslong as
the efficient improvement procedures are used, the large
populations are not necessary: the small size of the popul a-
tion is compensated by the robustness of the improvement
algorithm. Obviousdly, the compact populationsallow to save
the computation timewhen comparing to HGAswhich deal
with larger populations. 3. EHGASs must maintain a suffi-
cient degree of diversity within the population. Thisises-
pecially truefor the small populations. Indeed, the smaller
the size of the population, the larger the probability that
diversity will be lost quickly. To overcome this difficulty,
so-called “ cold restarts’ may be proposed; here, asa* cold
restart” we call deep reconstruction of the population, for
example, the mutations applied to the members of popula-
tion with the subsequent local improvement. “ Cold restart”
takes place each timethe fact of premature convergence of
the algorithm is determined, i.e. the level of the diversity
within the current population is below a certain threshold.

The template of the extended hybrid genetic algorithm
is presented in Fig 1 (see aso [6, 10]). Note that in our

~__EHGA
Initial optimized population generation
Selectiﬂ

] Limiteld ims | |

| Population replacement l

Stagnation?

[YES

Restart

Fig 1. Basic flowchart of the extended hybrid genetic algorithm
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experimentswe applied alimited iterated tabu search (ITS)
procedure in the role of alocal improvement algorithm.
I TS procedure (but with theincreased number of iterations)
isalso used in both theinitial population construction and
the restart process. The details of ITS agorithm are omit-
ted for the sake of brevity. Thoseinterested in I TS approach
are addressed to [11].

2.2. Recombination operatorswithin hybrid
geneticalgorithms

As mentioned above, HGASs operate with high quality
optimized populations. Despite thisfact the recombination
of solutions still remains one of the critical things construc-
ting competitive genetic algorithms. Very likely, therole of
recombination operators within HGAs is more significant
than in ordinary GAs. In fact, we can think of HGA as a
process that combines intensification and diversification
(1&D) of the search [11, 12].

The intensification (local improvement) concentrates
the search in limited portions of the solution space, while
the diversification isresponsiblefor escaping from the cur-
rent local optimum and moving towards unvisited so far
solutions. From this point of view, the crossover is a spe-
cial sort diversification mechanism which guides the glo-
bal search, i.e. exploration of new regions of the solution
space. Thus, the proper exploration strategy is, in some
sense, even more severe than the intensification process.
In this situation we naturally make additional demands of
crossover operators. The crossover is highly desirable to
be“strong” enough to minimizethe possibility of possible
falling back into the previous local optima. On the other
hand, if the crossover istoo “disruptive’, the resulting al-
gorithm may besimilar toa“blind” random multistart which
isknown to be not avery efficient method.

We start our discussion of the recombination operators
with the crossover by Tateand Smith, 1995[13]. Itiscalled
a uniform like crossover (ULX). ULX works as follows.
First, all items assigned to the same position in both par-
ents are copied to this position in the child. Second, the
unassigned positions are scanned from left to right: for the
unassigned position, anitem ischosen randomly, uniformly
fromthosein the parents, if they arenot yet included in the
child. Third, remaining items are assigned at random.

One of the modificationsof ULX operator isaso-called
block uniform like crossover (or simply block crossover
(BX)). BX is distinguished for the fact that some blocks
(segments) of elementsare considered instead of thesingle
elements. Theblock sizeisintherange[1, n/2|]. Copying
blocksthe feasibility of permutation must be kept.

The other recombination operator is a cycle crossover
(CX) [14]. The key idea of this operator is that CX pre-
serves the information contained in both parents, that is,
all thealleles of the offspring are taken either from thefirst
or the second parent. The main steps of CX are asfollows.
1. All the alleles found at the same locations in both par-
entsare assigned to the corresponding locationsin the child.
2. Starting from the first (or randomly chosen) location,
provided that the corresponding element has not been in-
cluded in the offspring, an element is chosen in arandom
way from the parents. After this, one performs additional
assignments to ensure that no random assignment occurs.
Then, the next unassigned location is processed in the same
manner until al the locations have been considered.

Ahuja et al., 2000, proposed a swap path crossover
(SPX) [15]. Let #/, n”” be a pair of parents. In SPX one
starts at some random gene and the parents are examined
from left to right until all the genes have been considered.
If the aleles at the position being looked at are the same,
one moves to the next position; otherwise, one performsa
swap (interchange) of two alelesin 7’ or in n”” so that the
aleles at the current position become alike. (For example,
if the current geneisi, and a=7/'(i), b= 7’(i), then, after a
swap, either 7'(i) becomesb, or 7”(i) becomesa.) Ahujaet
al. suggeststo perform the swap for which the correspond-
ing solution has alower objective function value. The ele-
ments in the two resulting solutions are then considered,
starting at the next position, and so on. The best solution
obtained (thefittest child) servesasan off-spring. The swap
path crossover isillustrated in Fig 2.

One point crossover (OPX) operators are classical so-
[ution recombination procedureswidely used in early ver-
sions of genetic algorithms[9]. One of the variants of OPX
for QAPisduetoLimetal. [16]. Theideaof OPX isquite
simple. A crossing point (site) ischosen randomly between
1and n— 1inone of the parents. Asaresult, achild chro-

parent 1
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parent 2

child 1
child 2
better child

9 .
9 “>new pair of parents  offspring = the best child

child 3
child 4

Fig 2. Example of a swap path crossover
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mosome is obtained containing information partially de-
termined by each of parent chromosomes.

Recently, Drezner introduced an original recombina-
tion operator — a cohesive crossover (COHX) [4]. COHX
produces the offspring in several steps. At the beginning,
some mask — n, X n, matrix M —is created (n,, n, are GPP
dimensions). The initial mask position is fixed at (i, j,),
whereije {1,2, .., n},j,€ {1, 2, .., n}. Matrix M is
thenfilled in according to awave propagation fashion (see
Fig 3).

Fig 3. Filling in amask

Thereexist ndifferent masksM®, M@, .., M®, ., MO
K iy, andj,areinthefollowing relation: k=n(i - 1) +j,, i,
=1,2,..,N,j,=1 2, .., n,. kth recombined solution 7
(ke {1, 2, ..., n}) isgenerated in three steps:

my (i) if M (k=1) diviy)+1,
1y 78 (i) = ((k=1)modny)+1)<n,
0 otherwise

wherei =1, 2, ..., n, r, =argmin{«(x), Z(n")}, «’, n”" are
the solutions-parents, and 17 is the median of M®, i.e.

non,

> > M)
_ i .
n= mny

206y it n® @) >0
2) 1™ @y=1 m, () if ©°(i) =0 am, (i) not in 7P ;
0 otherwise

wherei =1, 2, ..., n, x, = argmax {Z(n'), Z(7")};
3) for every unassigned position i (z®(i) = 0), an item is

chosen randomly from those not yet included in the
offspring.

A visual example of generation of asolutionisgivenin
Fig 4. As aresult, n solutions are produced, but only the
best of them is regarded as an offspring, i.e.
m°=argminz(z®@).

k=1,2,...n

Multiple parent crossover (MPX) was described by
Misevicius in [7], although the idea of using combinations
of several solutions goes back to Boese et al al. [17]. MPX
is distinguished for the fact that the offspring derives the
information from many parents— thisisthe contrast and, at
that time, the advantage to the traditional operators where
two parents are used only. In MPX, theith element 7°(i) is
created by choosing a not yet chosen number j in such a
way that probability Pr(z°(i)=j) is maﬁimized. Here,
probability Pr(z°(i) = j) isequal to dj zdij , Whered,
is the entry of desirability matrix D = (d,),. The value of
d”. is determined by sum g, * & where q; is the number of
times that element i is assigned to position j = z(i) in u
parents (which participate in the creation of the child), and
€ is acorrection (noise). The process is to be continued
until all the genes of the offspring take on their values. An
example of producing the offspring in multiple parent
crossover (u=>5)isgiveninFig5.

3. Testing of the extended hybrid genetic algorithm for
the grey pattern problem

In this section we present the results of experimental
comparison of the crossovers outlined above. | nthe experi-
mentswe used theinstances of GPP generated according to
the method described in [1]. For the set of problems tested
the size of instances, n, equal to 256, and the frames (rect-
angles) are of dimensions 16 x 16, i.e. n, = n, = 16. The
instances are denoted by the name grey 16 _16_m, where
misthe number of black points. Remind that for these in-
stances data matrix B remains unchanged, while the data

10
matrix A isof theform [0 0} , where 1 isasub-matrix of

size mx m composed of 1sonly.

mask MY (k= 2) 3 ] 2 | 1] 4 .7 8 ] 9] 6 | 5 |parent] (better parent)
P 8 | 9 | 7 | 3 |2 | 1| 5|, 4 | 6 |parent2
B 3 2 1 "wrapping" parent 1
1 0 1 2 7 8
9 6 5 )
2 > 2 3 2 1 \ A these items are copied from parent 1
5 V4 6 these items are copied from parent 2
3123 8 these items are assigned randomly

9
(32197

[ 8 | 5 [ 4 | 6 ] recombined solution ¥ (k= 2)

Fig 4. Example of a cohesive crossover
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five parents

ntries of the desirability matrix
/mssume that the sequence of indices (is) is as follows:

o/ 7,3,1,8,2,6,5,4,9;

0  then, the offspring is created in the following way:

(l) 7(7) = arg max{Pr(ﬂ(7) = j)} = arg max {dU }: 9;

j j
3 7(3) = argmax{Pr(z(3) = j)} = 3; (1) = argmax{Pr(z(1) = j)} =4
Jj#9 Jj#3,9
0

(8) = 8; etc.

4 [ 3 [ 6 [ 7121097 8]s
4 [ 3 [ 6 | 7| 1] 9 5|82
4 [ 6 | 3 [ 17 5 9 2] s
4 [ 7 | 318 |5 | 9 6 | 2
5 | 6 | 3 | 1| 2] 4] 97| s
0 0 0 4 1 0 0 0
0 0 2 0 0 2 1 0
0 0 3 0 0 2 0 0
3 0 0 0 0 0 2 0
2 1 0 0 0 0 1 1
0 1 0 1 2 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 1 1 2
0 2 0 0 1 0 0 2

(4 [ 6 [ 37 [ 1[5 9 [ 8 2| offspring

Fig 5. Example of a multiple parent crossover

We used the extended hybrid genetic algorithm dis-
cussed in Section 2.1 asan experimental basisfor the cross-
over operators. The efficiency measure for the crossover
operatorsisthe average deviation of solutions obtained from
thebest known solution— § (& =100(z - 2)/z[%] , where

Z isthe average objective function value over 10 restarts
(single applications of EHGA to agiven instance), and z
isthe best known value (BKV) of the objective function).
In the experimental comparison equal conditions are cre-
ated: all the crossover variants use theidentical initial so-
Iutions and require approximately the same CPU time. The
following arethe valuesof the control parametersof EHGA:
population size — 8; number of generations — 25; number
of offsprings per generation — 1; number of iterations of
the post-crossover (ITS procedure) — 5n. The number of
parentsin MPX crossover is equal to the population size.

The results of the comparison of the crossover opera-
torsarepresented in Table 1. Theresultsfrom Table 1 dem-

onstrate that crossovers have considerableinfluence onthe
final solutions produced by the genetic algorithm. Thisis
true despite of the fact that the powerful post-crossover
procedure is used. This indicates that the recombination
operators, which are responsiblefor the expl oration of new
regions in the solution space hide high potential. The per-
formanceof different crossoversvariesin quitelargeranges,
neverthel ess, some regularities can be discovered. For ex-
ample, lessdisruptive crossovers (OPX, COHX) appear to
be more efficient than highly disruptive crossovers (UL X);
surprisingly, the cycle crossover (the minimally available
disruptive crossover) producesonly medium-quality results.
So, it could be concluded that agood crossover should bring
some randomness to the offspring, however this must be
donein asubtleway. It can a so be seen that the crossovers
that incorporate some a priori knowledge about the prob-
lem being solved (for example, SPX) seem to be better than
the “pure” operators (for example, BX). The preliminary

Table 1. Comparison of the crossover operators for GPP. The best results obtained are printed in bold face.
CPU time per restart is given in seconds. 3 GHz PENTIUM computer was used in the experiments

Instance BKV 5 CPU time
ULX BX CX SPX OPX COHX MPX
grey_16_16_50 11017342%  0.032 0.023 0.032 0.019 0.026 0.032 0.023 3.5
grey_16_16_55 13661614°  0.071 0.058 0.055 0.050 0.034 0.055 0.031 5.0
grey_16_16_60 16575644%  0.017 0.012 0.025 0.009 0.004 0.012 0.015 5.9
grey_16_16_65 19848790°  0.024 0.019 0.035 0.025 0.018 0.025 0.031 6.5
grey_16_16_70 23852796°  0.229 0.208 0.222 0.185 0.203 0.213 0.224 6.8
grey_16_16_75 28114952°  0.127 0.113 0.115 0.117 0.120 0.116 0.106 7.0
grey_16_16_80 32593088°  0.180 0.185 0.177 0.179 0.162 0.179 0.147 7.2
grey_16_16_85 37379304°  0.154 0.135 0.135 0.112 0.132 0.114 0.107 7.7
grey_16_16_90 42608826° 0.138 0.104 0.121 0.103 0.116 0.090 0.099 8.3
grey_16_16_95 480811124 0.176 0.161 0.169 0.153 0.141 0.160 0.152 8.5
grey_16_16_100 53838088*  0.129 0.110 0.113 0.108 0.108 0.105 0.111 9.0
Average: 0.116 0.103 0.109 0.096 0.097 0.100 0.095

acomes from [8]; © comes from [12]; ¢ comes from [5]; ¢ comes from [11].
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Fig 6. Examples of grey frames of densities 91/256 (a), 93/256 (b), 94/256 (c)

Table 2. New best known solutions of the grey pattern problem

Instance Previous best New best
name known value known value
grey_16_16_73 26382310" 26375828
grey_16_16_83 35444806" 35443938
grey_16_16_84 36397376" 36395172
grey_16_16_85 37379304 37378800
grey_16_16_90 42608826" 42597626
grey_16_16_91 43694968° 43676474
grey_16_16_93 45883642° 45870244
grey_16_16_94 46979436° 46975856

acomes from [12]; ® comes from [5]; © comes from [11].

ranking of the crossover operators (sorted according to the
decreasing quality of solutions) looks as follows: M PX-
SPX-OPX-COHX-BX-CX-ULX. (It was somewhat unex-
pected that OPX produced slightly better results than
COHX, which, in turn, was shown by Drezner [4] to be
very effective for QAP. Thus, some more experiments
would be useful in order to acknowledge the above rank-
ing as really fair.) To summarize, SPX, OPX, and espe-
cially MPX appear to be superior to the remaining cross-
overs and could be recommended as proper recombina-
tion operatorsfor the designers of new genetic algorithms
for GPP, QAP and similar problems.

After the additional extensive experimentation we man-
aged to solve many instances to pseudo-optimality. More-
over, we were successful in finding new record-breaking
solutions for several instances. These solutions are pre-
sented in Table 2. We also give the graphical illustrations
of three new solutionsin Fig 6.

4, Conclusions

In this paper we present the results of testing of the hy-
brid genetic algorithm applied to the grey pattern problem,
the special case of the quadratic assignment problem. The
main attention was paid to theinvestigation of the recombi-

nation, i.e. crossover operators, which play one of themain
rolesin the efficient genetic algorithms.

We implemented seven crossover procedures and car-
ried out several experimentsin order to find out what isthe
difference of the solutions produced by these cross-overs.
From the results obtained it can be seen that the crossover
operatorsinfluencethefinal resultsof GA considerably, even
in the cases when powerful post-crossover procedures are
applied. Theresultsof theexperimental computations show
relatively high performance of the crossoverswith alower
degree of disruption aswell asthe crossovers that incorpo-
rate the problem-oriented knowledge (COHX, OPX, SPX).
Another effective operator isthe multiple parent crossover
- MPX - which is based on a special type of recombination
of several solutions. The results demonstrate that MPX en-
ablesto achieve better solutions than the standard two-par-
ent operators. More precisely, the results of MPX are up to
22 % better than those of 2-parent crossovers. The power
of MPX isa so corroborated by thefact that new best known
solutions for eight GPP instances have been discovered.

Further elaboration of the multiple parent crossover
operator for GPP and similar combinatorial optimization
problems, like QAP, TSP, could be one of the promising
directionsfor future research.
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KRYZMINIMO (KROSOVERIO) OPERATORIU TYRIMAS SPRENDZIANT ,,PILKU SABLONU“ SUDARYMO
UZDAVIN]

A. Misevitius
Santrauka

Pastaraisiais metais pasiektas didelis progresas sprendziant kombinatorinio optimizavimo uzdavinius genetiniais algoritmais (GA).
Siame straipsnyje nagrinéjami GA efektyvumo klausimai ,,pilky $ablony“ sudarymo (formavimo) uzdavinio kontekste. Daugiausia
démesio skiriama sprendiniy kryZzminimo (krosoverio) operatoriams, atlieckantiems svarby vaidmeni genetiniuose algoritmuose, tirti.
Realizuoti septyni skirtingi kryzminimo algoritmai, kurie jtraukti { hibridinio genetinio algoritmo sudéti, iSbandyti sprendziant minéta
uzdavini. Eksperimentiniy tyrimy tikslas — nustatyti kryzminimo operatoriy jtaka GA gaunamiems sprendiniams. Eksperimentuy, atlikty
su jvairiais ,,pilky Sablony* sudarymo uzdavinio testiniais pavyzdziais (duomenimis), rezultatai liudija labai auksta kai kuriy kryzminimo
procediiry efektyvumo laipsni. Tai visy pirma pasakytina apie vadinamaji ,,daugelio tévy kryzminima, kuris pagristas netrivialaus keliy
sprendiniy-tévy pozymiy kombinavimu, naudojant algoritma.

Pagrindiniai ZodZiai: kombinatorinis optimizavimas, euristiniai algoritmai, genetiniai algoritmai, kryzminimo (krosoverio)
operatoriai, ,,pilky Sablony“ sudarymo uzdavinys.
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