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Rimantas ŠEINAUSKAS
Software Engineering Department, Kaunas University of Technology
Student ↪u 50-406, LT-51368 Kaunas, Lithuania
e-mail: kestas@soften.ktu.lt

Received: December 2005

Abstract. The aim of this paper is to explore some features of the functional test generation prob-
lem, and on the basis of the gained experience, to propose a practical method for functional test
generation. In the paper presented analysis of random search methods and adjacent stimuli gener-
ation allowed formulating a practical method for generating functional tests. This method incor-
porates the analyzed termination conditions of generation, exploits the advantages of random and
deterministic search, as well as the feature that the sets of the selected input stimuli can be merged
easily in order to obtain a better set of test patterns.
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1. Introduction

The objective of test generation is to find a test sequence that, when applied to a circuit,
can be used to distinguish between a good circuit response and a faulty circuit response.
The goal is to detect defects, to achieve a given fault coverage and to assure product
quality and reliability. The test effectiveness is measured by the achieved fault coverage
and by the cost of performing the test.

Test generation is a complex problem with many interacting aspects e.g. the cost of
test generation, test length and the quality of generated test. Test generation can be ac-
complished at different levels: micro-level, gate-level, and functional level (Breuer and
Friedman, 1976; Cheng and Agrawal, 1989; Bareisa et al., 2003).

The aim of this paper is to explore the features of one of test generation sub problems,
namely the functional test generation sub problem, and on the basis of the gained expe-
rience, to propose a practical method for functional test generation. When dealing with
the development of test generation methods one usually faces various random and deter-
ministic search problems. Specific methods, based on algebraic formulae manipulations,
were developed and being used (Srinivasan et al.,1993; Stanion et al., 1995). Functional
test generation is usually based on simulation during which output values are computed
for given input stimuli. In the general case, the functional test generation problem can be
formulated in the following way.
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The input stimulus to the functional module M having n input and m output variables
is described by the vector X =< x1, x2, x3, . . . , xi, . . . , xn>, and the output response
is described by the vector Z =< z1, z2, z3, . . . , zj , . . . , zm >, where Z values directly
depend on the X values, xi ∈ {0, 1} and zj ∈ {0, 1}. In general, 2n input stimuli may
occur. The collection of all possible sets of input stimuli is denoted by XD. A set of input
stimuli is denoted by X�, where X� ∈ XD, and its cardinality (the number of stimuli)
– by |X�|. Suppose there is given a set S of conditions that have to be fulfilled by input
stimuli of the set X�. An input stimulus X ∈ X� may fulfil several conditions s ∈ S.
A condition s may be fulfilled by many input stimuli X ∈ X�. In order to assess the
fulfilment of the conditions s ∈ S by the set of input stimuli X�, the estimate function
F s is defined. If at least one input stimulus X ∈ X� fulfils the condition s, then the
estimate function F s has the value 1, i.e., F s(X�) = 1, otherwise F s(X�) = 0. The
number of conditions fulfilled by an input stimuli set X� is equal to the sum of values
F s(X�) taken over all conditions s ∈ S. On the base of the estimate function F s, the
objective function Ψ is defined as follows:

Ψ = α
∑
s∈S

F s(X�) − β|X�|, where α, β are positive coefficients.

The test generation problem asks for a set of input stimuli at which the function Ψ is
maximized:

Max
X�∈XD

(
α

∑
s∈S

F s(X�) − β|X�|
)
.

Specific test generation problems may be obtained and solved by changing conditions
that have to be fulfilled. When the number of fulfilled conditions is more important factor
than the number of input stimuli, we can take the coefficient β = 0. An important aspect
of functional test generation is that the fulfilment of the conditions cannot be evaluated
analytically, and instead it has to be estimated using simulation techniques only.

Next we discuss some specific problems in the area of functional test generation. One
of them is determining the relationship between input and output variables of a given
module M .

The problem can be stated as follows. Given a description of the behaviour of a mod-
ule M with n input variables and m output variables, determine the relationships of inputs
and outputs. The only input stimulus can reveal the existing relationship between the in-
put xi and the output zj . That is, when the transition occurs on the input xi, the transition
is observed on the output zj also. The results can be presented using the relationship ma-
trix M = mi,j , where mi,j = 1 if the input i is connected to the output j, and mi,j = 0
otherwise. Each nonzero entry of this matrix corresponds to the fulfilled condition s ∈ S.
The condition is fulfilled if the matrix entry is nonzero, and the condition is not fulfilled
if the matrix entry is equal to zero. Let’s call this problem of matrix identification the
relationship determination problem No. 1. The relationship matrix can be constructed an-
alytically from the description of the behaviour of a module. Various software tools for
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solving this problem can be used. Finding a solution gets more complicated if the descrip-
tion of the behaviour is not applicable for finding the solution analytically, i.e., when the
description is changed or there are no software tools for analysis of the description of the
behaviour, and only simulation tools can be used, which calculate output signal values
for every input stimulus. This is typical for descriptions of behaviour at a high level of
abstraction. In this case, the solution has to be found using methods based on simulation.

The determination of the relationship matrix using methods based on simulation re-
quires analyzing all possible input stimuli. This is practically impossible to accomplish
for real modules. Consequently, one may search for a solution using random search for
maximizing the objective function Ψ. When β = 0 and α = 1, the value of the objective
function Ψ is equal to the number of nonzero entries in the matrix M .

Let us define the following basic terms used in the rest of the paper.

DEFINITION 1. The relationship between input xi and output zj is called even if a tran-
sition 1 → 0 (0 → 1) on the input xi causes the same transition 1 → 0 (0 → 1) on the
output zj .

DEFINITION 2. The relationship between input xi and output zj is called uneven if a
transition 1 → 0 (0 → 1) on the input xi causes the opposite transition 0 → 1 (1 → 0)
on the output zj .

The test generation problem for functional delay faults (Michael and Tragoudas,
2002) may be formulated as a problem of determining even and uneven relationships
among inputs and outputs of the module. The results can be presented using the rela-
tionship parity matrix L, where li,j = 0, if the relationship between input xi and output
zj doesn’t exist, li,j = 1, if there exists either even or uneven relationship, and li,j = 2
when both relationships exist. The set of input stimuli has to be found; this set determines
all relationships among inputs and outputs of the module. Nonzero entries of the matrix
correspond to relationship conditions s ∈ S. Let’s call this problem of matrix L iden-
tification the relationship determination problem No. 2. In the case of this relationship
problem the fulfilled conditions s ∈ S are determined differently than in the case of the
relationship problem No. 1. When β = 0 and α = 1, the value of the objective function
Ψ is equal to the sum of entries of the matrix L.

Functional test generation can also be related to the problem where the input stimuli
set has to be found that would determine the parity of the relationship among all input
pairs and outputs of the module. The results can be presented using the three-dimensional
matrix D, where di,h,j = 1, if there exists at least one input stimulus that determines un-
even relationship between the input xi and the output zj , and the same input stimulus
determines uneven relationship between the input xh and the output zj also. Similarly,
di,h,j = 1 if there exists at least one input stimulus that determines even relationship
between the input xi and the output zj , and the same input stimulus determines even re-
lationship between the input xh and the output zj also. Whereas, di,h,j = 2 if there exists
at least one input stimulus that determines either even or uneven relationship between the
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input xi and the output zj , and the same input stimulus determines the opposite parity of
the relationship between the input xh and the output zj . In all other cases di,h,j = 0. We
are asked to find a set of input stimuli that would determine maximum values for every
entry of the three-dimensional matrix D. The sum of entries in the matrix D is propor-
tional to the number of the fulfilled conditions s ∈ S divided by two, as the matrix D is
symmetrical according to its definition. Thus, when β = 0 and α = 1, the value of the
objective function Ψ is equal to a half of the sum of entries in the matrix D. Let’s call
this problem of matrix identification the relationship determination problem No. 3. We
are also interested in various modifications to this problem. We are unaware of analytical
methods of solving this three-dimensional relationship problem even in the case when
detailed module descriptions are at hands (Bareisa et al., 2005).

It is typical for all these problems that the maximum number of the fulfilled condi-
tions s is not known in advance. The result of the unlimited random search nears to the
maximum number of the fulfilled conditions. Therefore it is important to evaluate the pro-
cess convergence during the random search and to make a decision about a termination
of search on this basis.

The more complex is verification of the fulfilled conditions, the more difficult is the
development of analytical methods for solving the problems. Therefore methods based
on simulation and random and deterministic search have to be used.

2. A Brief Review of Random Search Methods

Pure random search consists of sampling a stream of independent and identically dis-
tributed random vectors and then selecting the best one as a solution. Pure random search
is very easy to implement. Unfortunately, the convergence is extremely slow in most cases
of interest. Much attention has been devoted to modifying pure random search to improve
its convergence rate. There are approaches involving adaptive construction of distribution,
which assign more mass to promising regions of the search space or shrink the domain by
some factor. The rigorous mathematical comparisons of different approaches are reported
in (Appel and Radulovic, 2000).

The adaptive random search methods differ in several respects. In particular, they dif-
fer in the choice of the neighbourhood structure, in the mode of selecting a candidate
for solution, in the way the next point is determined and in the way the estimate of the
best solution is defined (Andradottir, 1999; Holland, 1975). Random search methods that
require only a small number of attempts per iteration can move more rapidly towards
the best solution than random search methods for which each iteration involves a sub-
stantial amount of computer effort. Most (adaptive) random search methods choose the
current estimate as the best solution after m iterations have been completed with the same
solution.

To characterize problems arising in functional test generation we analyzed the nature
of the random search process by applying this technique to the most complex problem
among those formulated above, namely, the three-dimensional relationship determination
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Fig. 1. The values of the objective function obtained during random search.

problem No. 3. For one instance of the problem the values of the objective function
obtained during random search are plotted in Fig. 1. The number of generated stimuli is
shown on the X axis, and the value of the objective function Ψ, when the coefficient β is
zero, is shown on the Y axis.

A test generation task formulated as the objective function Ψ maximization problem
can be solved using various methods (Spall, 2003). However the most convenient strategy
and criteria have to be chosen for every problem being solved. The attempts to apply
methods based on search area restrictions, which strive to perform the search only in the
most promising areas (Kushner and Yin, 2003).), were not shown to be successful for
the test generation problem. Also, we failed to develop effective methods based on the
ideas of genetic algorithms. The created methods had no considerable advantages over
using a pure random search to solve the problem. The results of these experiments will
not be presented here due to their huge scope. Only the below described approach based
on generation of input stimuli adjacent to the already selected ones had a perceptible
effect. Therefore, the main attention will be paid to criteria for search termination, to the
generation of adjacent stimuli and to the development of a practical search procedure that
would use the solution merge effect.

3. Defining Random Search Termination Conditions

As it is well known, random search requires some termination condition to be defined.
The simplest termination condition is the number of randomly generated input stimuli;
the best solution is chosen from these stimuli. The number of randomly generated input
stimuli for finding the best solution depends in large part on an instance of the problem
being solved.

Having a solution obtained after performing a fixed number of random search iter-
ations nothing can be said about its quality. In practice, frequently it is not possible to
obtain the best solution; often one has no such purpose. First of all, one faces limited
time and computer resources. However, in practice it is always worth to evaluate how
much the solution could be improved, and how much time and computer resources it
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would take. Usually such an evaluation is considerably more expensive than finding the
solution. When looking for random search termination conditions one has to evaluate
both aspects – cost of solution finding and its quality estimation.

More information about the solution quality is gained when a sequence of solutions
is constructed. Comparing the distribution of objective function values of these solutions
one can decide whether the time allotted for random search is enough. Wide scattering
of objective function values shows that termination of random search is premature. The-
oretically, when the time allotted for random search is long enough, best or close to best
solutions are to be found.

Suppose we have N solutions with objective function values Ψ1, Ψ2, Ψ3, . . . ,Ψi, . . . ,

ΨN . Let Ψmax denote the maximum of these values. The distribution of objective func-
tion values is characterized by the following quantity expressed in percents:

D =
((( N∑

i=1

(Ψmax − Ψi)
)
/N

)
/Ψmax

)
∗ 100.

For the experiments, we have used the benchmark circuits ISCAS’85. The best val-
ues of the objective function Ψ solving the relationship determination problem No. 2 for
these circuits were obtained analytically in (Michael and Tragoudas, 2002) for the case
α = 1 and β = 0. For each of these circuits million input stimuli were generated ten
times and input stimuli that fulfil the conditions s ∈ S were selected. During every run
of the search procedure we recorded the number “|X�|“ of the selected input stimuli and
current number of the last selected stimulus “Last“. The analytically obtained best values
of the objective function Ψ (for α = 1 and β = 0) (Michael and Tragoudas, 2002) are
listed in column “Best“ of Table 1. The sum of entries of relationship matrix was used as

Table 1

1000000 random stimuli

Circuit Last (Min) Last (Max)
Last (Max)/
Last (Min)

|X�|
D% Ψ Best

Min Max

C432 2862 4899 1.7 55 67 0 540 540

C499 82877 102442 1.2 485 522 0 5184 5184

C880 80123 192373 2.4 171 218 0 1326 1326

C1355 70645 88129 1.2 470 511 0 5184 5184

C1908 96861 124203 1.3 282 329 0 3004 3004

C2670 965000 984508 1.0 184 194 3.73 3016 3320

20 million 16550550 16550550 1.0 257 257 ? 3320 3320

C3540 90093 438846 4.9 227 263 0 2588 2588

C5315 83650 205820 2.5 552 605 0 10540 10540

C6288 81668 649648 7.9 115 131 0 3068 3068

C7552 958935 981376 1.0 633 686 2.65 9334 12188

90 million 82999170 82999170 1.0 851 851 ? 10564 12188
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the value of the objective function. In order to unify the values of the objective function
with (Michael and Tragoudas, 2002), the sums were doubled. These sums, which are the
values of the objective function with the coefficients α = 1 and β = 0, are listed in the
penultimate column. As we see, generation of a million random stimuli was sufficient
to obtain best solutions for all the circuits except c2670 and c7552. The procedure was
able to produce the best solution for the circuit c2670 when generating 20 million in-
put stimuli; whereas no best solution was obtained for the circuit c7552 even generating
90 million random stimuli. The results of these generations are presented in Table 1 in
an additional line under the circuit’s results. For each circuit Table 1 shows the largest
and the smallest amount of the selected stimuli (Columns 5 and 6), the largest and the
smallest number of the last selected stimulus (Columns 2 and 3) taken over all 10 random
generations. As we see, in order to find the best solution the procedure generated a very
different number of input stimuli (from several thousands to nearly a million) for differ-
ent circuits. The value that defines the scattering of the results is presented in the column
under the heading “D%”. The number 0 indicates that the same objective function value
was obtained for all 10 random searches. This result testifies that a million of input stim-
uli randomly generated for these circuits are sufficient for obtaining the best result. Ten
random searches in turn achieving a solution with the same objective function value sig-
nify that there is a high possibility for this solution to be the best. If different solutions
were obtained from ten random searches in turn, a possibility to find the best solution
from them is low. The values 3.73% and 2.65% of D were obtained for the circuits c2670
and c7552 respectively. The best solution for the circuit c2670 was obtained when the
random search size was enlarged 20 times; whereas there was no success in finding the
best solution for the circuit c7552 even after enlarging the random search size 90 times.
For the circuits with no best solution, the process of input stimuli selection was continued
till the end of generation. The ratio between the maximal and the minimal number of last
selected stimulus random stimuli is nearly eight for the circuit c6288 (the fourth Column
in Table 1). Whereas, the number of the selected stimuli varies between the maximum
and the minimum only little.

In total, 100 million input stimuli were generated for all the circuits in Table 1, ten
generations up to one million for each one (except a separate generation of 20 and 90
million input stimuli for the circuits c2670 and c7552 respectively). There was no need
in generating a million input stimuli for 8 circuits. The number of the last selected stim-
ulus is presented in the third column of the table. It indicates how many random stimuli
were generated for obtaining the best solution in the worst case out of ten trials. As it
can be seen from this column, there was no need in generating a million input stimuli
randomly for some circuits. Therefore, it may be worth to perform random search several
times enlarging the number of generated random stimuli for those circuits for which the
technique failed to get the solution of the same quality in ten runs. In order to explore this
prediction, the random search procedure was applied for each circuit ten times, generat-
ing 100 000 random stimuli in each case. The results are presented in Table 2, which has
the same structure as Table 1. In this experiment, the best solutions were obtained only
for three circuits. In general, ten million random stimuli in total were generated for all the
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Table 2

100000 random stimuli

Circuit Last (Min) Last (Max)
|X�|

D% Ψ Best
Min Max

C432 2708 5251 56 76 0 540 540

C499 79255 89611 478 519 0 5184 5184

C880 84411 99638 173 200 >0 1326 1326

C1355 71877 82246 452 521 0 5184 5184

C1908 92973 99951 284 340 >0 3002 3004

C2670 63253 98654 130 144 >0 2788 3320

C3540 79747 99995 233 275 >0 2588 2588

C5315 84272 99651 548 593 >0 10540 10540

C6288 56950 96385 105 134 >0 3068 3068

C7552 98259 99468 494 560 >0 10564 12188

circuits. Therefore, by generating a million input stimuli for every circuit for which the
best solution was not achieved, the same result as in the first experiment will be obtained
after generating 80 million input stimuli in total. The results might be better if the number
of generated stimuli in the first random search was enlarged slightly, say, to 300 000 or if
more than two random search iterations with different number of generated stimuli were
used. It is not easy to predict what generation steps are to be included in order to obtain
the same result under the minimum amount of generated input stimuli. The question how
to solve a problem using a sequence of several algorithms was analyzed in (Abraitis and
Sheinauskas, 1969) and will not be discussed in this paper.

It is worth to relate the condition of the termination of random search dynamically
to the number of the already selected input stimuli. The generation can be terminated
when the total number of the generated input stimuli exceeds the number of the selected
input stimuli multiplied by a coefficient K. The results of the experiment are presented in
Table 3. The random search procedure was run ten times for every circuit. The left part of
Table 3 contains the minimum and the maximum numbers of the generated input stimuli,
the values of the parameter D, and the values of the objective function Ψ for the case of
K = 1000. The random search procedure was rerun with K = 5000 for the circuits for
which no success in obtaining the same solution ten times was observed (the right part of
Table 3). Note that to achieve the same best solutions or even better ones (as in Tables 1
and 2), less than 78 million of input stimuli had to be generated in total. Termination
of random search generation based on the number of the selected input stimuli allows
adjusting of the whole solution process to meet to resource requirements necessary for
the generation more flexibly and effectively.

When the same value of the objective function was reported during several runs of
the random search procedure, it could be expected that the best solution was obtained.
The more times the same value of the objective function is achieved during several inde-
pendent runs of the random search procedure, the more is a probability that the obtained
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Table 3

Generation according to the number of selected stimuli

K = 1000 K = 5000
Circuit Best

Min gen. Max gen. D% Ψ Min gen. Max gen. D% Ψ

C432 58000 65000 0 540 540

C499 458000 503000 0 5184 5184

C880 146000 206000 0.15 1326 181084 1060000 0 1326 1326

C1355 492000 514000 0 5184 5184

C1908 278000 338000 0 3004 3004

C2670 108000 147000 6.13 2676 988263 1015000 5.77 3072 3320

C3540 240000 263000 0.15 2588 486098 1375000 0 2588 2588

C5315 559000 597000 0 10540 10540

C6288 109000 130000 0.65 3068 181084 1060000 0 3068 3068

C7552 623000 651000 3.43 8970 2523409 2530000 2.69 9872 12188

Total 3414000 4359938

solution is the best one. However, the random search size is increased also. If the best so-
lution was not obtained in all the cases, then it remains unclear what the next size of the
random search has to be used. The dependence of D on the random search size and the
possibilities to predict this size when the value of D will become 0 were analyzed also.
It was noticed that the convergence is very slow and, therefore, any prediction would be
very imprecise.

Let’s analyze how the duration time of random search can be estimated during ran-
dom search itself. This would allow making decision reasonably regarding the moment
when the random search has to be terminated. In the process of random search, a big
amount of input stimuli is selected in the beginning, and then more and more random

Fig. 2. The dependence of the number of stimuli required for selecting a new testing stimulus.
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stimuli have to be generated for selecting a new stimulus. The trade-off between the se-
lected current number of input stimuli and the number of generated random stimuli for
relationship determination problem No. 3 is shown in Fig. 2. The current number of the
selected stimulus is shown on the X axis, and the number of random stimuli that had to
be generated till a new stimulus was selected is shown on the Y axis.

Note that the initial 4000 input stimuli were selected very fast. Later, the number of
generated stimuli, required for selecting a new stimulus, increased considerably and this
number is quite different.

The completeness of search can be defined by the ratio of how many the last input
stimuli selections are rarer than in the beginning of search. Let Ri be the number of se-
lected stimuli at the moment when i random stimuli have been generated. The percent
P = ((Ri − Ri/c)/Ri) ∗ 100, where C > 1, has a tendency to decrease during random
search. Ri/c denotes the number of selected stimuli when i/C random stimuli have been
generated. The difference Ri − Ri/c shows how many input stimuli were selected after
generating C times more random stimuli. As the random search size increases, P de-
creases to zero. The rate of decrease depends on the coefficient C. The bigger coefficient
means the slower convergence to zero. The value P can be calculated for every random
input stimulus which has an index larger than C. If we assume that the termination condi-
tion of generation is P = 0, this termination condition will be more demanding when the
value of the coefficient C is larger. The dependence of P on the increase of the number
of generated random stimuli can be determined and on the basis of this dependence one
can evaluate how many random stimuli are required till P would get zero value. If the
required number of random stimuli cannot be generated due to the limited calculation
resources, there is a possibility using the value of P to evaluate how far the obtained
solution is from the best one. The values of P obtained during one run of random search
are plotted in Fig. 3. The number of selected stimuli is shown on the X axis, and the
coefficient P is shown on the Y axis.

However, the analysis of values of P (Fig. 3) shows that the forecasting when the
value of P becomes zero is quite problematic.

Fig. 3. Values of P versus the number of selected stimuli.
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Table 4

Generation according to the number of selected stimuli

C = 2 C = 3
Circuit Best

Min Max K Worst Ψ Min Max K

C432 5744 8930 10 540 8622 11757 10 540

C499 163880 181774 10 5184 252240 291060 10 5184

C880 193948 355604 9 1324 302022 551604 10 1326

C1355 143778 164968 10 5184 222822 256842 10 5184

C1908 194186 242276 10 3004 282540 371805 10 3004

C2670 22760 29965284 4 2488 28043244 42046896 10 3320

C3540 177504 526998 9 2586 275688 1040529 10 2588

C5315 171400 466498 10 10540 294960 573948 10 10540

C6288 183186 710416 7 3060 375942 1679799 10 3068

C7552 * * * * * * * 12188

Total 1256386 32622748 34754 30058080 46824240 34754

Table 4 reports the results of ten random generations when termination condition of
generation was based on the number of selected stimuli. In the case of coefficients C = 2
and C = 3, random generation reached zero value of P for all the circuits, except circuit
c7552 (the computer used for experiments was to slow). Nevertheless, the generation did
not achieve the best solution for the circuits c880, c2670, c3540 and c6288 when coeffi-
cient C was 2, though the difference from the best value was marginal (except the circuit
c2670). The worst obtained solution is shown in the column under heading “Worst Ψ”.
The number of experiments (out of ten) we succeeded to obtain the best solution is shown
in the columns under heading “K“. The smallest and the largest number of input stimuli
till the termination condition was fulfilled (P = 0) are presented in columns “Min“ and
“Max“, respectively. The increase of the coefficient C from 2 to 3 allowed obtaining the
best solutions for all the circuits in all ten runs. On this basis, we recommend to use the
value 3 of the coefficient C while solving such problems in practice, and to invoke the
random search procedure only once thereby reducing the need for computer resources.
The total number of the analyzed random stimuli for the worst cases was approximately
47 millions only. The generation which fails in fulfilling the termination condition has
to be stopped when it runs out of resources. In such case the closeness of the obtained
solution to the best one could be evaluated using P .

The relationship determination problem No. 3 was solved also, when the termination
condition of the generation was P = 0 and the coefficient C = 3. In the rest of this paper
we will take C = 3 in the formula for P . The results are presented in Table 5. The second
column “Gen.” shows the number of randomly generated stimuli, and the third column
“Last. Sel.” shows the number of the last selected stimulus. The best known value of
objective function Ψ which we have derived during various experiments is presented in
the last column under heading “Best”.



14 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Table 5

Stimuli selection for the relationship determination problem No. 3

Circuit Gen. Last Sel. Ψ |X�| P Best

C432 62568 20856 15254 1125 0 15254

C499 137397 45799 412736 3352 0 412736

C880 100000000 47290644 55280 4904 0.17 55282

C1355 151473 50491 412736 3365 0 412736

C1908 11485245 3828415 154284 2491 0 154284

C2670 100000000 99337376 182366 2849 4.38 188082

C3540 100000000 81215067 123322 7018 0.05 123338

C5315 22650798 7550266 269726 4637 0 269726

C6288 100000000 99531738 152678 2140 0.04 152814

C7552 100000000 99807091 548563 8869 9.61 810040

The random search termination condition P = 0 was fulfilled for 5 circuits and the
best-known solution was obtained in all the cases. 100 million input stimuli were gener-
ated for each of the remained five circuits, but there was a failure in fulfilling the termi-
nation condition. One can judge about the quality of obtained solution according to the
value P . The value P is very small for three circuits, so we can expect that the solution is
not far from the best one and the termination condition would be fulfilled after increasing
the number of input stimuli. The results on other two circuits indicate that the search for
the best-known solution would be long enough.

Next we will discuss the possibilities of predicting the best solution as well as the
search duration. The analysis is based on the generation of input stimuli for five circuits,
where the termination condition of the generation was fulfilled. The break points were
determined for the following values of P : 10, 5, 3, and 1. The results are presented in
Table 6.

The columns under heading “Gen.%” show us how much percents of input stimuli
were generated until the specified value of P was reached, comparing with the number of

Table 6

The break points based on P value

Circuit
P = 10 P = 5 P = 3 P = 1

Gen.% Ψ%. Gen.% Ψ% Gen.% Ψ% Gen. % Ψ%

C432 23 98.36 33 99.58 48 99.86 81 99.99

C499 44 99.77 59 99.95 72 99.98 99 99.99

C1355 40 99.75 53 99.95 59 99.89 82 99.99

C1908 1 98.73 2 99.13 3 99.35 5 99.64

C5315 0.5 96.4 1 97.91 2 99.26 4 99.70

Min 0.5 96.4 1 97.91 2 99.26 4 99.70

Max 44 97.77 59 99.95 72 99.98 99 99.99
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stimuli, which were generated until zero value of P was reached. For the considered cir-
cuits these values are very different. The columns under heading “Ψ” express in percents
how the found solution is close to the best one. The last two rows present the minimum
and maximum values of the corresponding column. The minimum and the maximum
values differ a lot in Columns “Gen.%”, therefore, the expected limits of the number of
random stimuli to be generated till value P reaches zero are large. This result leads to a
conclusion that it is meaningful to estimate the number of random stimuli to be generated
till the termination condition is fulfilled for every problem individually. Nevertheless, the
results in Table 6 indicate that the input stimuli are selected mainly in the beginning of
the generation and afterwards the solution improves very slowly. Even for the value of
P equal to ten the found solution differs from the best one less than by four percents.
Also, we can see that when P decreases the difference between the maximal and the min-
imal search sizes expressed in percents increases, but the difference between maximal
and minimal values of Ψ that characterize the solutions quality decreases. Based on these
findings we can conclude that the estimation of solution precision should be more reliable
than the estimation of the search size of random generation till P reaches zero value.

4. Deterministic Search Procedure for Adjacent Input Stimuli

The methods based on the generation of input stimuli adjacent to the selected ones (Hol-
land, 1975) improve convergence of the random generation process. Two input stimuli are
adjacent if they differ in the value of a single input. There could be defined a procedure for
generation of adjacent input stimuli based on already selected ones. The procedure could
iterate the process of generation of adjacent stimuli. The procedure would terminate a
generation when no new adjacent input stimuli were formed from the selected ones.

Let the set of stimuli adjacent to an input stimulus X be denoted by Θ(X). The set
of stimuli adjacent to a subset X� of the input stimuli is Θ(X�) =

⋃
Θ(X)|X ∈ X�.

The procedure PG for generating and selecting adjacent stimuli can be formally defined
in the following way:

REPEAT
FOR X ∈ Θ(X�)

X� ← X� ⋃
{X}|Ψ(X�) < Ψ(X� ⋃

{X})
ENDFOR

UNTIL Ψ(X�) �= Ψ(X� ⋃
Θ(X�))

RETURN X�

Let’s analyze the capabilities of the procedure PG. Firstly, the solutions provided by
the procedure PG, which starts with a single random input stimulus (Table 7), will be
analyzed and then will be compared with the results of generating random input stimuli
(Table 8), the number of which is the same as the number of generated adjacent stimuli.

We express the solution quality in percent as the ratio between the obtained value of
the objective function and the value of the best-known solution.



16 E. Bareiša, V. Jusas, K. Motiejūnas, R. Šeinauskas

Table 7

Adjacent stimuli generation starting with a single random stimulus

Circuit
Number of

generated stimuli
Value of the objective

function Ψ

Solution quality
(%)

Number of selected
stimuli (|X�|)

C432 2116 528 97.77 209

C499 77175 5184 100 2100

C880 24107 1262 95.17 603

C1355 77591 5184 100 2121

C1908 29652 2998 98.80 1108

C2670 35360 1564 47.10 559

C3540 26403 2578 99.61 901

C5315 214764 10252 97.26 2619

C6288 18753 3068 100 586

C7552 231977 10978 90.07 2854

Table 8

Random stimuli generation

Circuit
Number of

generated stimuli
Value of the

objective function Ψ
Solution quality

(%)
Number of selected

stimuli (|X�|)

C432 2116 540 100 124

C499 77175 5184 100 1011

C880 24107 1318 99.40 365

Adjacent 38393 1326 100 374

C1355 77591 5184 100 1106

C1908 29652 3004 100 619

C2670 35360 2512 75.66 247

Adjacent 63165 3196 96.26 444

C3540 26403 2584 99.85 509

Adjacent 41281 2588 100 514

C5315 214764 10540 100 1176

C6288 18753 3042 99.15 225

C7552 231977 8494 69.69 1420

Adjacent 395733 11738 96.30 1843

The second column in Table 7 lists the number of adjacent stimuli generated for all
circuits starting with a single random stimulus. Table 8 has the same structure as Table 7,
but the same number of stimuli was generated randomly. One can observe that the ran-
dom generation produced better results except for the largest circuits c6288 and C7552.
The number of the selected input stimuli is nearly two times smaller also. The adjacent
stimuli for four circuits with no best solution were generated after the random generation
has been completed. The four rows “Adjacent” (Table 8) provide the total number of gen-



Functional Test Generation Based on Combined Random and Deterministic Search Methods 17

erated input stimuli, the value of the objective function and the number of selected input
stimuli for the circuits C880, C2670, C3540 and C7552, respectively. The best solutions
were not obtained for the circuits C2670 and C7552 even after extending the generation.
However, the solution quality is over 96%.

Generally, the final result depends on the size of the random search. The objective
function Ψ increases by enlarging the random search size and then using the adjacent
stimuli generation. It is not clear what size of the random search has to be chosen in
order to obtain the best solution after adjacent stimuli generation. To this end the ex-
periments with the circuits c2670 and c7552 were performed changing the size of the
random search. During the experiments we have noticed that the better solution was ob-
tained after the random search, the less relatively the solution was improved by adjacent
stimuli generation. We increased the random search size by a fixed value and examined
the solution obtained after adjacent stimuli generation. The random search size for the
circuit c2670 was increased up to 310274 input stimuli in such a way, the generation of
adjacent stimuli afterwards increased the volume of the search up to 339373 input stimuli
and then the best solution with 459 selected input stimuli was obtained. Experimenting
by analogy with the circuit c7552 the random search size was increased up to 8364882
(after adjacent stimuli generation up to 8542976) and it enabled to obtain the value of the
objective function 11738; the latter value is less than the value of the best-known solution
12188. However, it has to be mentioned that after generating 90 million of input stimuli
randomly a rather less value of the objective function Ψ = 10564 was reached (Table 1).
This demonstrates the benefit of adjacent stimuli generation once again.

In summary, it is quite problematic to estimate the size of the random generation for
obtaining the best solution. It has to be mentioned that the random generation for the
circuit c2670 was terminated after reaching the value P = 8.87% (when C = 2) and
the generation of adjacent stimuli afterwards enabled to obtain the maximum value of the
objective function. Whereas the random generation for the circuit c7552 was terminated
at the less P value P = 3.9% (when C = 2), however the generation of adjacent stimuli
afterwards did not ensure the obtaining of the maximum value of the objective function.

The strategy of generating adjacent input stimuli allowed improving solutions for
the relationship determination problem No. 3 also. Table 9 presents the results of adja-
cent stimuli generation and random stimuli generation. Adjacent stimuli generation was
started with a single random stimulus. Note that the random generation achieved better
results in seven cases out of ten.

Table 10 presents the results of adjacent stimuli generation following random stim-
uli generation, the search size of which was equal to the number presented in column
(Table 9) under heading “Number of random stimuli” for each circuit. Observe that the
generation of adjacent stimuli improved the solution considerably for three circuits where
the initial solution was quite far from the best one (C880, C2670, C7552). When the initial
solution is close to the best one, the generation of adjacent stimuli improves the solution
only slightly, and there is no guarantee of obtaining the best solution even in the case
it is quite near. Thus, we can conclude that if the generation of adjacent stimuli did not
improve the initial solution, we could expect that the solution can be close to the best
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Table 9

Stimuli generation for the relationship determination problem No. 3

Circuit
Number of

adjacent
stimuli

Value of the
objective

function Ψ

Solution
quality (%)

Number of
random
stimuli

Value of the
objective

function Ψ

Solution
quality (%)

C432 21064 14518 95.17 21064 15222 99.79

C499 406365 360618 87.41 406365 412736 100

C880 225314 40078 72.49 225314 49474 89.49

C1355 442934 363828 88.15 442934 412736 100

C1908 231089 149242 96.73 231089 153868 99.73

C2670 429085 121538 64.90 429085 128384 68.56

C3540 362985 121428 98.45 362985 121298 98.34

C5315 1905000 264508 98.06 1905000 269646 99.97

C6288 325345 152614 99.87 325345 151529 99.17

C7552 3631863 690928 85.30 3631863 419534 51.79

Table 10

Adjacent stimuli generation following random generation

Circuit
The last

column of
Table 9

Number of
adjacent
stimuli

Value of the
objective

function Ψ

Solution
quality (%)

Improvement
(%)

C432 99.79 10395 15222 99.79 0

C499 100 120320 412736 100 0

C880 89.49 192716 55156 99.77 10.28

C1355 100 122186 412736 100 0

C1908 99.73 64430 154080 99.86 0.13

C2670 68.56 188514 174722 93.29 24.73

C3540 98.34 194186 122856 99.60 1.26

C5315 99.97 423183 269706 99.99 0.02

C6288 99.17 64655 152712 99.94 0.77

C7552 51.79 1103895 744878 91.96 40.17

one. Information that the generation of adjacent stimuli does not improve the solution is
certain information about solution quality as well.

Recall that after generating 100 million input stimuli the termination condition P = 0
was not reached for five circuits (Table 5). We made attempt to improve this outcome
using adjacent input stimuli generation. The obtained results are presented in Table 11.
First, we generated 100 million random stimuli for each circuit. The achieved value of
objective function and the number of selected stimuli after generation of 100 million ran-
dom stimuli are given in the columns 2 and 3, respectively. Next, we used the selected
stimuli for the adjacent input stimuli generation. The results of this generation are pre-
sented in the columns 4, 5 and 6. The adjacent input stimuli generation improved the
solution for all the circuits except C880.
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Table 11

100 000 000 input stimuli

Circuit

Value of
objective
function

Ψ

Number
of

selected
stimuli

Number
of

adjacent
stimuli

Value of
objective
function

Ψ

Number
of

selected
stimuli

Increase of
the objective

function
value

Best

C880 55280 4904 194030 55280 4904 0 55282

C2670 182366 2849 205511 187270 3259 4904 188082

C3540 123322 7018 197128 123332 7022 10 123338

C6288 152678 2140 69632 152802 2176 124 152814

C7552 548563 8869 1103223 805932 12880 257369 810040

Fig. 4. The alternation of objective function using the generation of adjacent stimuli after random generation.

The largest improvement of the solution is observed for the circuits c2670 and c7552.
However, there was no case that the adjacent stimuli generation would yield the best
solution. This effect confirms once more the fact that the generation of adjacent stimuli
after random generation allows improving the solution though does not assure obtaining
of the best solution. The values of the objective function when the generation of adjacent
stimuli is applied after random generation for the relationship determination problem
No. 3 are plotted in Fig. 4. The number of the analyzed input stimuli is shown on the
X axis, and the values of the objective function are shown on the Y axis. Note that the
selection from the adjacent input stimuli at the termination leads to a significant increase
of the value of the objective function.

However, the termination condition P , which was applied during the random gener-
ation, cannot be applied in the case of adjacent stimuli. We can calculate the value P

during the random stimuli generation till the moment the generation of adjacent stimuli
starts up. A possible way to terminate the generation in this case will be discussed in the
next section.
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5. Practical Functional Test Generation Method

The presented analysis of methods of random search and adjacent stimuli generation for
solving functional input and output relationship problem allows formulating a practical
method for generating functional tests. This method incorporates the analyzed termina-
tion conditions of generation, exploits the advantages of random and deterministic search,
as well as the feature that the sets of the selected input stimuli can be merged easily in
order to obtain a better set of test patterns.

Firstly, a predefined number K of random stimuli are generated and the stimuli that
increase the value of the objective function are selected. Then the procedure PG of gener-
ating adjacent stimuli is applied to the selected stimuli. These two steps are combined and
form the procedure G(K), which finds the initial set of the test stimuli (G(K) → X�).
Next, the generation of random and adjacent stimuli is repeated from scratch and genera-
tion procedure G(K) finds a new set of stimuli X�

1 (G(K) → X�
1 ). During the next step,

the stimuli from the set X�
1 that increase the value of the objective function are included

into the set X�. The iterations of generation and inclusion of stimuli into the set X� are
repeated till we arrive at the state when the stimuli from a set X�

1 do not increase the
value of the objective function. Then the K, which value denotes the number of randomly
generated stimuli, is increased by some parameter ΔK, and the iterations proceed again.
The test generation procedure stops when the predefined random search size limit L is
reached. The test generation (TG) procedure can be defined formally as follows:

G(K) → X�

REPEAT
REPEAT
G(K) → X�

1

FOR X ∈ X�
1

X� ← X� ⋃
{X}|Ψ(X�) < Ψ(X� ⋃

{X})
ENDFOR
UNTIL Ψ(X�) = Ψ(X� ⋃

X�
1 )

K ← K + ΔK

UNTIL K > L

RETURN X�

The use of the procedure in practice is strongly influenced by the runtime and memory
limits of the computer. To overcome this difficulty, the procedure can be modified using
heuristic simplifications and improvements. Various experiments were performed before
we have implemented the procedure. The results will not be presented here due to a large
size of tables; only the conclusions based on them will be given here.

Adjacent stimuli generation starting with a single random stimulus was presented in
Table 7. In general, 0s and 1s distribute nearly equally in randomly generated stimuli.
Therefore, the possibility of starting the generation of adjacent stimuli with boundary
stimuli, which have only 0s or 1s, was analyzed. After long-lasting experiments we have
concluded that the best point to start generating adjacent stimuli is to take two stimuli
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Fig. 5. Functional test generation procedure (FTGP).

where one stimulus has only 0s, and the other one has only 1s. In this case, the generation
process converges after analyzing nearly two times less stimuli and the value of the objec-
tive function increases by several percents. Furthermore, the application of the adjacent
stimuli generation procedure before the random search allows evaluating the search size
of random generation more reasonably. Two initial stimuli are included into the stimuli
set V. The functional test generation procedure is presented in Fig. 5.

Let’s analyze the presented functional test generation procedure. The adjacent stimuli
generation for stimuli of the initial set V begins the overall test generation. The value of
the objective function Ψ is calculated upon termination of the adjacent stimuli generation.
Then the iterative process starts. A new set V1 of selected stimuli is formed. The sets
V and V1 are merged. The stimuli that increase the value of the objective function are
included into the resulting set V. The new value Ψ1 of the objective function is calculated.
In order to evaluate the increase of the value of the objective function, the values Ψ
and Ψ1 are compared, and the outcome of the comparison is expressed in percents. If
the increase of the value is more than PP percents, the generation is repeated using the
same random search size PK. Otherwise, the random search size PK is increased by PD
times, and the generation is repeated. The iterations are terminated when the value of the
objective function has not increased more than PP percents after enlarging the size of the
random search by PD times. When iterations are completed the set V of selected stimuli
can be minimized. However, the procedure of minimization will not be discussed here.
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The iterations can be repeated according to the presented algorithm by taking the set V
of selected stimuli as the initial set and enlarging the size PK of the random search.

We should mention that the adjacent stimuli generation allows improving the search
efficiency. The better solution obtained after the random generation allows the achieve-
ment of the better final solution after the generation of adjacent input stimuli. However,
this finding does not suggest what generation strategy is the most effective. The experi-
ments allowed us conclude that it is worth to use the adjacent stimuli generation procedure
as intensively as possible.

The obtained results of the procedure FTGP solving the relationship determination
problem No. 3 for two largest circuits c2670 and c7552 are presented in Tables 12 and
13, respectively.

During the initial iteration, the adjacent stimuli for two initial stimuli, one of which
consists of 0s only and the other – of 1s only, were generated. Such a generation strategy
allows revealing the search size for the next iterations. Note that 324932 adjacent input
stimuli were generated for two initial stimuli; 5245 input stimuli were selected and the
obtained value of the objective function 113068 reached 60.1% of the best-known solu-
tion. Then 324932 input stimuli were generated randomly during the first iteration, 2273
were selected and the obtained value of the objective function was 128378. Whereupon
510297 − 324932 = 185365 adjacent stimuli were generated for the selected stimuli
and the total number of the analyzed stimuli reached 510297. 2943 input stimuli were
selected and the obtained value of the objective function 172608 reached 91.7% of the
best-known solution. The obtained 2943 input stimuli were merged with 5245 input stim-

Table 12

Intermediate results obtained for circuit C2670

It
er
ati
on

Random generation Adjacent generation Merge Solution
quality

(%)
Number

of
stimuli

Ψ Select.
stimuli

Total
number of

stimuli

Ψ Select.
stimuli

Stimuli Ψ Select.
stimuli

0 324932 113068 5245 60.1

1 324932 128378 2273 510297 172608 2943 8188 172614 2946 91.7

2 324932 128256 2273 514759 173826 3001 5947 181452 3224 96.4

3 324932 125230 2255 492841 165830 2679 5903 182424 3285 96.9

4 649862 128184 2308 836747 173164 2955 6240 184950 3393 98.3

5 649862 126140 2330 840837 178264 3011 6404 186506 3518 99.1

6 1299724 132990 2407 1490335 177718 3006 6524 187130 3547 99.4

R 5049936 150993 2503 5248351 183218 3135 97.4

7 1299724 141602 2406 1604131 178964 2954 6501 187506 3508 99.6

8 1299724 138340 2419 1499219 180406 3146 6654 187906 3616 99.9

9 1299724 137380 2393 1487683 178740 2961 6577 187990 3577 99.9

R 8968840 160488 2502 9169456 185100 3177 98.4

6754 188082 3457 100

100000000 182366 2614 100205511 187270 3152 99.6
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uli that were selected during the initial iteration. Thus, 8188 input stimuli were obtained
in total. After stimuli merge operation there were selected 2946 and the obtained value of
the objective function was 172614. Then 324932 input stimuli were generated randomly
again and 3001 input stimuli were selected at the end of the generation of adjacent stim-
uli (the obtained value of the objective function was 173826). The selected stimuli were
merged with 2946 stimuli, which were selected before, and the value 181452 (96.4% of
the best-known solution, i.e., solution improvement – 4.88%) of the objective function
was obtained. Consequently, the iterations have to be continued because the coefficient
PP of solution improvement was set to 1. However, after the repetition of the genera-
tion of 324932 input stimuli again, the solution improvement (0.52%) was less than one
percent. This outcome indicated that the size of random search has to be increased, and
it was doubled to 649862. During the next two iterations the obtained value of the ob-
jective function 186506 reached 99.1% of the best-known solution. However, after the
second iteration the solution improvement was less than one percent, what indicated that
the size of random search has to be increased. Having doubled the search size once more
to 1299724, the solution improvement was less than one percent and the procedure FTPG
terminated its work. 5049936 input stimuli were analyzed in total and the obtained value
of the objective function 187130 reached 99.4% of the best-known solution. The results of
generation 5049936 input stimuli randomly and supplementing the selected stimuli with
the adajcent ones are presented in the row under heading “R”. The solution quality com-
paring with derived using procedure FTPG is less in two percents. Further results were
obtained after reducing the PP value to 0.1 and performing an additional number of iter-
ations. In this case, the process converged when obtained value of the objective function
187990 reached 99.9% of the best-known solution. 8968840 input stimuli were analyzed
in total. The random generation of such number of stimuli allows obtaining 1.5% worse
solution quality comparing with derived using procedure FTPG. The merging of selected
stimuli after 9th iteration and after random 8968840 input stimuli generation produced the
value of the objective function 188082 that reached the value of the best-known solution.
The results, which are presented in the last row, are obtained after generating one hun-
dred million input stimuli randomly. Note that even in this case after generating adjacent
stimuli the best-known value of the objective function was not obtained.

The same experiment was carried out for the circuit c7552 also (Table 13). Hav-
ing set PP = 1, the solution quality 98.68% was got. Continuing the iterations with
PP = 0.1, the value 809850 of the objective function was obtained (solution qual-
ity 99.98%; 19080784 input stimuli were analyzed in total). The results of generation
one and, respectively, two hundred million input stimuli are presented in the rows under
heading “R”, however the value 809850 of the objective function was not reached.

Afterwards three additional iterations were carried out generating randomly 19080784
input stimuli and merging results with input stimuli derived after sixth iteration. The
results presented in the last three rows of Table 13 show that then the best known value
of objective function was got.

The proposed procedure FTGP uses a reasonable search termination condition. The
termination condition of the procedure is based on the rate of solution improvement.
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Table 13

Intermediate results obtained for circuit C7552

It
er
ati
on

Random generation Adjacent generation Merge Solution
quality

(%)
Number

of
stimuli

Ψ Select.
stimuli

Total
number of

stimuli

Ψ Select.
stimuli

Stimuli Ψ Select.
stimuli

0 1604131 714928 17116 88.26

1 1604131 391719 6288 2865462 792948 14583 31699 793506 14597 97.96

2 1604131 391032 6292 2731445 745250 13511 28108 793778 14628 97.99

3 3208262 418960 6722 4384683 779076 13717 28345 799358 14142 98.68

R 9370138 457753 7425 10424180 745708 12623 92.06

4 3208262 418472 6741 4468857 797230 14262 28404 806784 14476 99.60

5 3208262 424200 6833 4440450 795774 14103 28579 809504 14396 99.93

6 3208262 417547 6755 4457685 797030 14481 28877 809850 14705 99.98

R 100000000 548563 9320 101103223 805932 13625 99.49

R 200000000 596086 10468 201108397 809742 12414 99.96

Additional three iterations

1 19080784 480323 7963 20261816 795894 13634 28339 809956 14130 99.99

2 19080784 484000 7911 20269258 793870 13790 27920 809998 14062 99.995

3 19080784 491469 7915 202644657 797202 13581 27643 810040 13953 100

Additionally, the procedure FTGP uses solutions’ merge operation successfully in order
to improve its performance results.

The adjacent stimuli generation is limited by the selected stimuli, as the adjacent
stimuli generation uses the selected stimuli only. This restriction ensures the convergence
of the procedure of adjacent stimuli generation, and only a small part of input stimuli
are available for analyzing during the procedure. Therefore, when the initial set of the
selected stimuli is changed, the set of stimuli, which are got during the generation of
adjacent stimuli, changes also. Thus, various sets of stimuli, which may increase the value
of the objective function, are available during the adjacent stimuli generation. This fact
allows explaining the usefulness of generating new adjacent stimuli in order to increase
the solution quality.

6. Conclusions

In practice besides the deterministic algorithms of test generation the heuristic algorithms
are used quite widely. The latter algorithms find the input stimuli that detect the fault but
they cannot ensure that the fault is undetectable. And such are random search algorithms.
In the paper the problem of test generation is formulated as a maximization problem. That
enabled to use the random and deterministic search methods for solving it. This is espe-
cially relevant for generating black-box functional tests. In this case the test generation is
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based mostly on simulation and the use of only deterministic algorithms is very limited
practically.

The random search may last very long. The quality of the solution depends on the
tackled task. The random search that spans too short may produce not qualitative solu-
tion, however, a long random search may be inefficient and waste computer resources.
It is especially relevant when the task is solved for the first time. Therefore, the defin-
ing of random search termination conditions is an essential problem. In many cases the
termination condition determines the quality of the solution. It is demonstrated that dur-
ing functional test generation various random search termination conditions may be used
and the quality of the obtained solution may be evaluated. The presented research re-
sults enable to choose the appropriate termination conditions for a proper search size and
precision of the solution reasonably.

A deterministic procedure of adjacent stimuli generation was suggested. It is based
on the assumption that input stimuli that are similar to test patterns have good testing fea-
tures. The search among such input stimuli improves the overall efficiency and the con-
vergence speed of the search. It is evaluated that the adjacent stimuli generation allowed
improving the efficiency of random search up to 31.9%. Consequently, it is recommended
the integrated use of random and adjacent stimuli generation during functional test design
process.

The nature of the task of functional test generation allows to select the test patterns
from two independent test sets and to obtain a solution of no worse quality. That en-
abled to construct an iterative procedure for generating functional tests. The proposed
procedure evaluates the rate of solution convergence, chooses the search size and uses
solutions’ merge operation. The proposed technique enabled to reduce the search space
up to 10.5 times in comparison to pure random search.
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Kombinuotas atsitiktinės paieškos ir deterministini ↪u metod ↪u
taikymas funkcini ↪u test ↪u generavime

Eduardas BAREIŠA, Vacius JUSAS, K ↪estutis MOTIEJŪNAS, Rimantas ŠEINAUSKAS

Straipsnyje nagrinėjamos funkcini ↪u test ↪u generavimo ypatybės. Remiantis atsitiktinės paieškos
metod ↪u ir gretim ↪u testini ↪u rinkini ↪u generavimo analize suformuluotas praktinis funkcini ↪u test ↪u
sudarymo metodas. Pasiūlytas metodas apima straipsnyje tyrinėtas atsitiktinės paieškos pabaigos
nustatymo s ↪alygas ir galimyb ↪e apjungti kelis nepriklausomus sprendinius siekiat pagerinti projek-
tuojamo testo kokyb ↪e.


