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composite materials. Using CIVA software, the test sample was designed and inspected virtually with 
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“OLYMPUS OMNISCANMX” flaw detector was used for the verification of the results 

experimentally. It provided an opportunity to examine the propagation of ultrasonic waves in the 

sample and the interaction with the defects. Studies have shown that using the ultrasonic measurement 

method, more accurate results are obtained in the presence of a defect inside the carbon fiber 

reinforced polymer, compared to the results when the defects are relatively close to the surface of the 

object under study. However, after estimating the absolute errors, deviations from the actual defect 

sizes are minimal and justify the use of the chosen method. The more accurate determination of the 

depth of the defect and its lateral size in the composite using a phased array compared to the single-

element transducer, obtained in the experimental studies, allowed to conclude that the phased array 

probe is one of the best of non-destructive test methods for evaluation quality of aerospace structures 

of polymer composites for in-service application.
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Santrauka 

Polimerinės kompozitinės medžiagos vis plačiau naudojamos aviacijoje, daugiausia dėl santykinai 

didelio savitojo stiprio ir standumo bei santykinai mažo tankio ir masės. Saugumui aviacijoje 

užtikrinti reikalingos patikimos kontrolės sistemos, leidžiančios laiku nustatyti defektus atskirose 

detalėse ar surinkimo vienetuose. Magistro baigiamajame projekte išnagrinėti galimi pasitaikantys 

defektai kompozitinėse medžiagose ir defektų nustatymui naudojami neardantys kontrolės metodai. 

Šio darbo tikslas - palyginti skirtingų ultragarsinių metodų, taikomų defektų dydžiui / defektų gyliui 

nustatyti kompozitinėse medžiagose, tikslumą. Naudojant CIVA programinę įrangą, suprojektuotas 

tiriamasis bandinys buvo patikrintas dviem būdais taikant ultragarsinį matavimą, t.y., naudojant vieno 

elemento pjezokeitiklį ir fazuotą keitiklių gardelę. Eksperimentinių tyrimų rezultatams patikrinti 

buvo panaudota „OLYMPUS OMNISCANMX” defektoskopas. Tai padėjo išanalizuoti ultragarsinių 

bangų sklidimą realiame bandinyje ir sąveiką su defektais. Tyrimai parodė, kad naudojant ultragarsinį 

matavimo metodą tikslesni rezultatai gaunami esant defektui anglies pluoštu sustiprinto polimero 

viduje, lyginant su rezultatais, kai defektai yra sąlyginai arti tiriamojo objekto paviršiaus. Tačiau 

įvertinus absoliutines paklaidas, nukrypimai nuo realių defektų dydžių yra minimalūs ir pateisina 

pasirinkto metodo panaudojimą. Eksperimentinių tyrimų metu gautas tikslesnis defekto gylio ir jo 

matmens kompozite nustatymas panaudojant fazuotą gardelę, lyginant su vienu ultragarsiniu 

keitikliu,  leido padaryti galutinę išvadą, kad  fazuotos keitiklių gardelės naudojimas yra vienas iš 

tinkamiausių neardomųjų kontrolės metodų, skirtų polimerinių kompozitinių medžiagų 

eksploatuojamų aviacijoje, kokybės įvertinimui.  
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1. Introduction 

Carbon fiber composite materials have gained popularity in recent years in high-quality products 

which need to be light but strong enough to withstand high loads, such as aerospace structures 

(ailerons, fuselages, tails, wings, panels), car parts, bicycle frames, boat bodies, storage vessels, the 

sporting goods industry (oars, poles, outdoor tennis rackets, fishing rods, ice hockey sticks, etc.). This 

can be explained by the fact that these materials are characterized by low density, high energy 

absorption on impact, high strength and fracture toughness, good thermal conductivity, relatively low 

thermal expansion, high creep and corrosion resistance and acceptable cost. 

Composites are different from traditional materials because they consist of two distinctly different 

components - fiber and matrix material (usually polymer resin), which, in combination, remain 

discreet, but interactively create a new material whose properties cannot be predicted by simply 

adding its components properties.  

Carbon fiber is made of thin (about 5-6 µm in diameter), strong crystalline filaments of carbon. 

Carbon fibers are combined with a polymer matrix to form a new material - composite. Currently, in 

the world approximately 90% of the carbon fibers produced are manufactured from polyacrylonitrile 

or PAN. The rest 10% are made from petroleum pitch or rayon. The matrix can be thermosetting (i.e. 

polyester, epoxy, phenolic, and polyimide resin) or thermoplastic (polypropylene, Nylon 6.6, poly 

(methyl methacrylate) and polyether ether ketone) [1]. 

Hypothesis: by applying a non-destructive ultrasonic testing method, defects, which may occur 

during fabrication and operation, can be detected in carbon fiber composite materials.   

Aim of the Project: to compare accuracy of different ultrasonic techniques for the sizing of 

defects/determination of depth of defects in composite materials. 

Tasks of the Project: 

– to analyze the type of defects and their causes in composite materials; 

– to analyze the scope of application of ultrasonic method and suitability for estimation of 

defects size/depth 

– to determine the most appropriate parameters (transducers’ parameters, positioning) so that 

defects can be detected in the carbon fiber composite materials; 

– to create a computer model for the investigation of the influence of the defect size/ depth on 

detectability and correct sizing 

– to verify the results experimentally 
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2. Carbon Fiber Composite Materials: Structure, Properties, Defects, Inspection Methods 

The structure and fabrication of carbon fiber composite materials requires understanding and 

knowledge of the strength and stiffness of the basic component parts – fibers and matrix. Due to the 

high composite stiffness and strength resulting from the prepreg technology, combined with the low 

component density, the fabricated components are suitable for the aforementioned products. 

Composite materials are increasingly used in aeronautical parts production, so it is important to detect 

potential defects in a timely manner, as they can have severe consequences. Therefore, composite 

materials testing methods, which must be reliable, non-destructive to the composite material, quick, 

convenient, and relatively inexpensive, are becoming a very important factor.   

2.1. Properties of Carbon Fiber Composite Materials 

Let’s briefly look at the key features of carbon fiber composites that make it possible to say that these 

polymers are a specific substance with exceptional properties. 

• Carbon fiber has a relatively high strength to weight ratio, called a specific strength. 

• Low density compared to other materials (Table 2.1). This is one of the key factors for easy weight 

of structures and parts.  

• Carbon fiber has relatively rigidity (stiffness). This property is evaluated by Young’s modulus and 

measures deflection under stress. Compared to other materials, carbon fiber reinforced composite is 

over 4 times stiffer than glass-reinforced composite, almost 20 times more than pine, and 2.5 times 

greater compared to aluminum [2]. 

• Carbon fiber is sufficiently chemically stable and has high corrosion resistance.  

• Although carbon fiber itself does not deteriorate, the epoxy matrix is sensitive to sunlight and 

needs protection. Other matrices, irrespective of carbon fiber mixing, may also be reactive. 

• Carbon fiber is known as an electrically conductive material. Depending on the field of use, this 

property may or may not be desirable.  

• Good fatigue resistance. While resistance to fatigue greatly depends on the orientation of the fibers, 

this is especially true when cyclic stresses match with the orientation of the fiber.  

• Carbon fiber has good tensile strength. Tensile strength, also known as ultimate strength, is the 

stress maximum at which material can safely withstand while being pulled or stretched before failing 

or necking.  

• Low thermal expansion coefficient. This is a parameter of how much a material expands and 

contracts under heating or cooling respectively. Low coefficient of thermal expansion makes carbon 

fiber to be adaptable for purposes where slight movements can be very important.  

• Chemical stability. This ensures the durability of structures and parts in aggressive environments, 

particularly in strong acids. 

• Good fire resistance. Depending on the manufacturing path and the precursor material, carbon 

fiber can be quite soft and can be manufactured or more often integrated into protective clothing for 

fighting a fire [3]. A typical example could be nickel coated fiber.  
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• Carbon fiber is nonpoisonous and X-ray permeable. Both features make it possible to use in 

medicine. 

In the case of disadvantages of carbon fibers, first of all, anisotropy and low strain to failure is to be 

mentioned. Furthermore, compressive strength is relatively low compared to tensile strength. 

Table 2.1 presents the materials properties of carbon fibers along with their rival materials [4-5]. 

Table 2.1. Properties of carbon fiber and its rival materials 

Property Unit Carbon Fibers Steel Aluminum 

Tensile strength MPa 3530-6370 276-1882 230-570 

Density g/cm3 1.75-1.8 7.7-7.85 2.6-2.8 

Elongation at break % 0.7-2.1 10-32 10-25 

Melting point Co 3650 1500 477-660 

Thermal conductivity W/m·K 10-150 24-65 237 

Specific heat J/Co·g 0.71-0.75 0.45-2.1 0.9-0.96 

Young’s modulus GPa 80-680 190-214 69-73 

Poisson’s ratio T 0.1-0.34 0.27-0.3 0.32-0.35 

 

The review of the literature showed that the properties of carbon fibers vary greatly depending on the 

fibers structure. For example, for the same precursor material (polyacrylonitrile or mesophase pitch), 

Young’s modulus, tensile strength, and strain to failure vary greatly. 

2.2. Faults and Defects in Carbon Fiber Composites 

Defects in structures and parts of carbon fiber composite materials may occur in two circumstances: 

during the manufacturing process and during the exploitation, i.e. in-service life. 

Let us observe the composites’ damage situations in-service life. During the exploitation, the parts 

and structures of the composite material are subjected to impact loads, tensile forces, bending, 

compression, fatigue, etc. Composites can also be affected by high temperatures, humidity, and 

various chemicals. This results in various defects in carbon fiber composite materials.  

Compression damage in carbon fiber composites occurs when the material is subjected to axial 

compression. Due to this effect, the composite losses elastic stability. Due to axial compression, the 

part takes an undulatory shape. The compressive stress values that cause such buckling are determined 

by the stiffness of fiber bending and the stiffness of the matrix compression. If the compression load 

is increased, the buckling is further exacerbated. As a result, local failure occurs in the form named 

kink-bands [6] (Fig.2.1). 
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a b 

Fig. 2.1. Kink-band due to compression damage of carbon fiber composite: a- micrograph of kink-band 

formation, b – schematic kink-band local failure (α – fibre angle, β – band angle, w – band width) [7] 

Tension damage in composites occurs when the material is under the axial tension. The most common 

defects are matrix cracking in the transverse lamina, splitting of the longitudinal lamina and the 

delamination between two L and T plies when the material is under axial tension (Fig.2.2) [1].  It is 

known that the strength of the fibers is much higher than the strength of the polymeric matrix [8].  

 

Fig. 2.2. Defects due to axial tension of a composite laminate 

As a result, the along strength of the fiber of the lamina (L direction) is much higher than the across 

strength of the fiber of the lamina (T direction). Consequesntly, at the early stage in the loading cycle, 

matrix cracking of the 90o ply occurs. When the axial tension load increases, further damage in the 

form of delamination between the 0o and 90o lamina with extreme different properties occurs. If the 

load continues to gradually increase, the 0o plies will finally fail because of the fracture of the fiber, 

as the load can no longer be supported. 
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Impact damage in composites occurs due to impact onto composite part. The impact can cause these 

defects, named as delamination, crater, cracks, spalling, fiber breakage, surface buckling (Fig.2.3). 

Impact defects can be visually observed (surface buckling, craters), however, in some cases, the 

impact can damage the composite without any significant visible marks on the material surface, e.g. 

the delamination in the composite layup. The stronger impact can also indicate spalling on the 

backside of the part, although there may be no visible damage on the front side. Delamination in the 

composite layups can drastically reduce the composite compression strength.  

 

Fig. 2.3. Schematic representation of impact damage effects on carbon fiber composites [9] 

Other types of defects appear under the impact load on the structures of sandwich composites. The 

sandwich composite construction comprises of rigid thin strength faces of the composite which are 

adhesively jointed on the bottom and top of low density core as shown in figure 2.4a.  

 

 

a b 

Fig. 2.4. Impact damage in sandwich composites: a- sandwich composite construction, b -  possible damage 

types [10] 

Figure 2.4b illustrates possible damage types in sandwich composites. Fiber breaking, skin cracking, 

resin crushing, or delamination can occur under impact in the top layer skin indentation. The 

appearance of such damages is highly dependent on the nature of the material of the skin. In parallel 

with outer skin damage, the core can be damaged by cracking and crushing. There is a risk that both 

skin-core interfaces may be damaged by debonding.     
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Fatigue damage of composites causes these effects: delamination, matrix cracking, composite 

fracture, fiber breaking, crack coupling (Fig. 2.5).  

 

Fig. 2.5. Fatigue crack growth in a cross-ply laminated composite [11] 

In the first stage when cycling loading starts, there is a relatively negligible drop in stiffness related 

to the formation of damage. During the second stage, the stiffness reduces progressively and damage 

increases relatively slowly and linearly. In the third stage, more noticeable processes are associated 

with fiber breakage and unstable delamination growth. During the fourth stage an intensive increasing 

amount of damage is observed, and, finally, as the fifth stage is reached, catastrophic failure takes 

place. Because of this growing damage under cycling loading, the parts of composites affected by 

high fatigue loads should be checked regularly for progressive damage.   

It is very important to evaluate the state of riveted or other types of joints during the operation of 

constructions from composite materials. It is, therefore, important to consider the fastener hole 

damage in composites. A typical example of failure modes in bolted composite plates under tension 

is shown in figure 2.6. There are four typical modes of failure in composite joints: net-tension, shear-

out, bearing, and cleavage [7].   

 

Fig. 2.6. Modes of failure in bolted composite parts under tension [12] 
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Net-tension mode is observed at the location between the side edge of the part and hole and usually 

occurring when the parts’ cross-sectional area is relatively small and due to exaggerated tensile stress.  

The shear-out failure takes place when the distance between the edge of the part and hole is 

particularly small. Bearing mode occurs in the area near the edge of the hole caused by pressure stress 

acting on the boundary of the hole. Net-tension, shear-out, and cleavage failures may be partially 

avoided due to improved geometrical parameters of the joint, while the bearing failure cannot be 

eliminated by any part design.  

Under compression the damage composite joints are divided into three types, names as buckling of 

the part, local buckling of the area weakened by the hole, and micro buckling in the area close to hole 

names as a zone of highest compression strength (Fig. 2.7). 

 

Fig. 2.7. Compression failure types [1] 

Overall, practically buckling can be avoided by proper geometrical modification of the joined parts, 

unfortunately, damage caused by cycling loading would finally weaken the part. It comes up with the 

thought that composite joints should be done using adhesive joining techniques instead of mechanical 

fasteners. But the reliability of adhesive joints may not be always guaranteed, especially in tensile 

loads.  

Because of the variety of techniques used for composite materials manufacturing, the variety of 

defects that occur during manufacturing is also very wide.  The main task during the manufacturing 

of composite material is a combination of the fiber and resin into a well consolidated product. The 

resin and fiber can be separated before the manufacturing process, or they both can be combined in 

the form of a pre-preg product. For aerospace parts, where it is essential to reduce the mass, higher 

quality polymers are usually required, so more modern techniques, such as hot pressing or autoclaving 

are used.   

The manufacturing defects. The manufacturing process of composites can cause a variety of defects. 

The misalignment of the fiber may occur when the fibers are laid up. Fibers in the same layer may be 

misaligned for one another or may be misalignment between layers. During manufacturing, the 

sequence of the layers might be incorrect or a layer could be completely missed. If the layers are 

omitted or dislocated at the wrong angle, the reduction in composite mechanical characteristics or 

possible deformation of the structure may occur. Resin rich zones is a result of local divergence in 

the volume of fiber fraction and the ability of reduced performance. Composites must be properly 

cured. Improper curing cycles with incorrect temperature, heating rate, or pressure will cause cracking 

or delamination.   
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The manufacturing defects of carbon fiber composites usually divided into three categories: matrix, 

fiber, and interface defects. Matrix defects can be voids/blisters and pores, and incomplete curing. 

Voids are the most common defects (Fig 2.8). Too little resin causes an inadequate bonding between 

layers. Thus results the formation of voids and pores. A void is a pore that is not filled in a composite 

material. Voids’ formation is the outcome of imperfection from the manufacturing of the composite.   

 
 

Fig. 2.8. Voids in a matrix of carbon fiber composite (highlighted by a white arrow) [13] 

The voids can be found in different sizes, shape and spatial location. Voids/blisters weaken the 

material and they also stimulate the formation of other types of defects.  

The formation of voids can be controlled to a certain extent by parameters of the manufacturing 

process.  Such parameters could include vacuum pressure, curing temperature, viscosity of the resin, 

etc. Incompletely cured matrix could be as the result of improper curing cycle or faulty material.  

Fibre defects can be broken fibres, waviness (wrinkles) and fibre misalignment. Deviations due to 

fibres misalignment (Fig. 2.9.) can reduce mechanical properties of the composite, first of all, stiffness 

and compression strength.    

 

Fig. 2.9. Level of fibre misalignment of a carbon fiber composite [14] 

  



22 

Wrinkles and waviness (Fig. 2.10) are among the most common defects meet in the manufacturing 

process when adding new layers. This is mostly influenced by pressure from other layers or when 

different layers of composite are cured in different configurations. Fibre waviness along fiber length 

causes delamination and subsequent failure of the material.   

 

Fig. 2.10. Cross-sectional view of the fiber composite illustrating the waviness [15]  

Broken fiber defects more often occur in-service life of material, but some authors [1] attribute them 

to defects arising in manufacturing route as well, due to inadequate conditions of technological 

process. Too much resin during manufacturing lowers the volume fraction of carbon fibers and this 

fact increases the risk of fiber breakage (Fig. 2.11). 

 

Fig. 2.11. An example of broken carbon fibres [16] 

Figure 2.12. presents typical delamination and debonding defects of carbon fiber composite.   

 

 

 

Fig. 2.12. Delamination and debonding defects of carbon fiber composite [17-18] 

Foreign objects (Fig. 2.13) also appear in the material during manufacturing process. The most 

common foreign objects are grease, dust, hair and other impurities. Around foreign inclusions, 

stresses can develop and cause delamination and other damage.   
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Common defects (arised during manufacturing process and during exploitation) of carbon fiber 

composite are nicely shown in figure 2.13. 

   

Fig. 2.13. Typical types of defects of carbon fiber composites [19] 

It is important to note that in order to avoid the painful consequences due to defects in composite 

materials, it is necessary to check carbon fiber structures both at the time of service and while in 

manufacturing. 

2.3. Testing Methods of Damage in Carbon Fiber Composites 

Like for other materials as well as for carbon fiber composites, all testing methods can be divided 

into two groups. The first includes techniques that damage the test material itself during the testing, 

i.e. destructive methods. The second group consists of techniques without causing damage to the 

material during the testing, i.e. non-destructive testing (NDT) methods. This chapter provides a 

review of techniques for non-destructive methods. 

One of the simplest and cheapest non-destructive testing methods is a visual inspection.  The 

accuracy and reliability of this method is highly dependent on the operator’s experience. This method 

can be used to determine surface damage, surface porosity, resin rich zones, delamination, some types 

of wives [20]. The most important advantages of this method is quick testing procedure and 

accessibility of the method. In some cases, additional measures such as a microscope may be used 

during visual inspection. 

Another very simple NDT method is coin tapping [1, 21]. This method is used for testing laminated 

structures to detect delamination and voids. The method requires the operator to touch the coin every 

point of the inspected structure and listen to the sound generated by the structure. The sound of 

defective points changes and defective regions can therefore be identified. 

Thermography testing. Thermography or infrared testing is based on registration of the thermal 

radiation emitted by a sample surface by means of an infrared (IR) camera (Fig 2.14). The thermal 

conductivity of the composite material may change due to the presence of defects [20]. Using this 

method, testing surface is heated in some manner. After that such a surface will emit infrared 

radiation. Since the heat is partially reduced inside the material, the surface emissions will change in 

time. If the internal defect exists, it will disorder the heat flow. This fact will result in a change of 

infrared emission from the surface.  This phenomenon can be captured by the IR camera. The 

thermography method is used for thin carbon fiber composite parts when the defect is in a relatively 
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non-deep layer from the surface. If the defects are deployed deeper from the surface of the part, they 

tend to produce fewer heat fluctuations than the defects visible closer to the surface.  

 

 

a b 

 

Fig. 2.14. Thermography carbon fiber composites inspection: a – experimental setup of thermographic 

testing, b – sample from carbon fiber composite material with the defect [22] 

Infrared thermography is divided into passive and active approach [23]. The passive method mostly 

is used for predictive maintenance. Thermography testing is very useful for the detection of composite 

structures and parts in-service damage. An example could be the situation, when an aircraft coming 

down from a high altitude warms, thermographic views of the structure can be used to visualize some 

subsurface state (Fig. 2.15) [23]. This method is relatively rare in the manufacturing level of carbon 

fiber composites.  

 

Fig. 2.15. Passive thermography for predictive maintenance in aerospace industry [23] 

One of the advantages of thermography testing is that it can test a relatively large area of a part without 

much time for procedure. Moreover, it is possible to inspect the parts where only one side of the 

object is accessible to testing.  

The drawback to this type of testing includes the requirement for sensitive and relatively expensive 

equipment, the demand for highly qualified inspectors and the shortage of clearness about defects if 

they are located too deep from the surface of the part. 

Acoustic emission. The acoustic emission (AE) method is different from other NDT methods. Firstly, 

there is the origin of the signal. When microstructural changes take place in composite materials, 
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transient stress waves are excited by the influence of energy generation.  Secondary, the AE performs 

with the dynamic processes in the composite. The ability to distinguish between developing and 

stagnant defects is significant [20]. These stress waves, generated by material defects such as 

delamination, matrix cracking, debonding, fiber breakage, or fiber pull-out, are called AE (Fig. 2.16).  

The stress waves are detected by using highly sensitive piezo transducers [24] or fiber optics sensors 

[25].  

 

Fig. 2.16. Frequency distribution depending on type of defect in carbon fiber composite using AE method 

[26] 

AE signal is also generated under loading because of the different properties of the fibers and matrix 

materials. Typical signal of stress wave as the result of the initial impact recorded by piezo transducer 

is presented in figure 2.17.   

 

Fig. 2.17. Impact response registered by a piezo transducer on a carbon fiber reinforced plate [24] 

The main advantages of AE method are high sensitivity, use of multiple sensors for fast and global 

testing, and no need to clean and prepare the inspecting part. The disadvantages of AE include the 

need for highly qualified staff, who would be able to correlate AE inspection results to specific types 

of failures of carbon fiber composites. 

By measuring AE signals, it is possible to obtain and monitor structural changes in the composites. 

Due to phenomenon that micro damage in composites generates AE, the acoustic emission method is 

useful for obtaining damages and monitoring them long before they become serious. Also these data 
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could be used for predicting the service life of the structures and parts of composites and eliminate 

the risk of unexpected failure thus extending the service life of the part. 

Radiographic testing. With radiography it possible to detect cracks, delamination and foreign 

inclusions as well as to evaluate composites for changes in density and thickness. There many types 

of radiographic testing: conventional radiography, gamma rays’ radiography, low voltage 

radiography, penetrant enhanced radiography [20]. Each of these testing has specific applications. 

For example, for thin parts (1-5 mm) low voltage radiography is used, for thick – gamma rays’ 

radiography method, for small matrix cracks and delamination -  penetrant enhanced method. One of 

the most effective radiographic methods is X-ray computed tomography. This method allows to 

monitor 3D visualized imagines of the structure while the projection radiology allows to see only 2D 

visualization. 

Figure 2.18 presents a typical radiographic set-up.  

 

Fig. 2.18. Schematic presentation of set-up for X-ray radiography inspection [21] 

Figure 2.19 shows how X-ray passing through the specimen changes its intensity due to an internal 

void in the material. The X-ray intensity is recorded by radiation sensitive target, usually film or a 

digital imaging system.  

 

Fig. 2.19. Transmission of X-ray though the part for obtaining voids in composite [1] 

The main advantage of radiographic inspection is that it can test thicker parts than other NDT methods 

and to inspect closed hollow parts. The major disadvantages of radiographic testing are relatively 

high cost and specific strict health requirements. Also, X-rays are not useful for inspecting in-service 

damage in composites and cannot detect delamination without penetrant.  
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Shearography. Shearography is a laser optical technique commonly used for composites. Figure 2.20 

shows the principle of shearography inspection.  

 

Fig. 2.20. Configuration of shearography inspection system [27]  

Composite failure usually occurs at stress concentrations. Defects emergency is easily evaluated from 

the degree of strain concentrations close to the defect [27]. The essence of the method consists of 

interferometric comparison of the inspected part in two states - unloaded and loaded one (Fig. 2.21). 

This interference phenomenon is named as a shearogram. 

 
 

 

a b c 

Fig. 2.21. Shearography operation principle: a – unloaded part, b – loaded part, c – shearogram [28] 

This method is well used for showing disbands in the composite. The advantage of shearography 

method is that this method is less sensitive to noise in comparing with other NDT methods. Another 

advantage of the method is relatively rapid inspection with a high degree of sensitivity.  

The method’s wide applicability has limited that the technique can only be used for the parts in which 

the roughness of the surface is of the order of one wavelength of light or more. Parts with smoother 

surfaces will give random interference. Moreover, the method requires considerable experience for 

the interpretation of the results and influence of lighting has significant importance on the resultant 

image.  

Electromagnetic testing. Electromagnetic methods are not typical testing methods for carbon fiber 

composites, but they can be applied in some cases [29]. Electromagnetic methods include eddy 

current inspection, magnetic flux leakage, remote field testing, and alternating current field 
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measurement [20]. Electromagnetic inspection is used to find and evaluate fractures, faults, and some 

other conditions of materials. Eddy current technique may be used to determine defects for carbon 

fiber reinforced composites because carbon fibers are electrically conductive [30]. Eddy current based 

inspection techniques are sensitive to the volume fraction of fibers, broken fibers or waviness (Fig. 

2.22) due to impact damage [30,31]. 

 

 
a b 

Fig. 2.22. Eddy current method for waviness detection in carbon fiber composites: a- an experimental setup 

for eddy current imaging, b – results of eddy current testing obtained from scanning part [32] 

The greatest limitation of the use of this testing for carbon fiber reinforced composites is that these 

composites are mildly conductive and they are only useful for sensing very near the surface. 

Moreover, damages which are located parallel to the scan direction are undetectable. 

Ultrasonic testing. Ultrasonic testing (UT) is probably the most commonly used NDT method for 

the testing of composite materials. There are many ultrasonic testing variants, but several of them 

have the greatest applicability for the inspection of carbon fiber composites: pulse echo, through 

transmission ultrasound, acoustic-ultrasonic, back scattering and ultrasonic spectroscopy [33]. UT 

uses waves which are generated by a mechanical vibration due to transducer that transforms an 

electrical signal into a mechanical movement and vice versa. Ultrasound for composite testing is most 

widely generated by piezo electric transducers [1]. UT is useful for defecting wide variety of defects 

such as porosity, inclusions, voids, delamination, broken fibres, and some other flaws [34].   

Pulse echo method uses the single transducer which serves as the transmitter and the receiver (Fig. 

2.23).  

 

 

a b 

Fig. 2.23. Configuration of pulse echo method: a - typical pulse echo inspection setup, b- delamination 

image from an amplitude C scan [35] 

When ultrasonic waves smash into impact damage, the reflective energy in the form of pulse-echo 

amplitude differs from the normal situation when there is the absence of damage. The method can be 

used in cases when it is possible to get access only from one side of the object.  
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Advantages of the pulse echo method: large objects can be investigated, can be adapted to the 

complex form of the research object, relatively simple equipment. 

Disadvantages of the pulse echo method: hard to detect defects close to the surface, slow testing, 

limited detection and characterization of heterogeneity, bad signal-to-noise ratio in strongly inhibiting 

materials. 

The through-transmission ultrasound method is also one of the most often used methods of ultrasonic 

testing for composite structures. By applying the through-transmission ultrasound method, the 

transducers are mounted on both sides of the test object (Fig. 2.24). The act of one transducer is 

sending (transmitter) and the other – receiving (receiver).  

 

Fig. 2.24. Location of transducers in through-transmission ultrasound technique [36] 

Advantages of the through-transmission ultrasound method: easy to use for thickness measurement, 

for heterogeneity determining, for material composition changes. 

Disadvantages of the through-transmission ultrasound method: the transducers must be exactly 

opposite, the characteristics of the transducers must be the same, they must be calibrated, the surfaces 

of the test object must be flat and parallel, both sides of the object must be accessed, the depth of 

heterogeneity cannot be determined, only the transverse coordinates can be determined. 

The pitch catches variant uses two different but in one body transducers – transmitter and receiver 

(Fig. 2.25). In this case, the emitted pulse will not be visible on the monitor screen, only reflection 

from the defect or bottom with different signal amplitudes will be visible.   

 

Fig. 2.25. Ultrasonic testing using pitch catch variant [37] 

Advantages of the pitch catch method: defects can be found close to the surface, measurements can 

be made in thin objects, each piezoelectric transducer can be combined separately, different 

piezoelectric elements can be used. 
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Disadvantages of the pitch catch method: part of the signal goes directly from the transmitter to the 

receiver and an interference echo occurs, so it is difficult to detect low heterogeneity near the surface. 

Polymer structures have significant anisotropy of layers that makes shear waves more problematic to 

use effectively. In this situation where composite testing is carried out, it is better to use guided waves 

which include Lamb waves. In addition, Lamb waves are easy to use for thin parts and for 

measurements over long distances [33]. Typical Lamb waves use scheme is shown in figure 2.26.  

 

Fig. 2.26. Configuration of Lamb waves variant for inspection [38]  

Advantages of the guided waves which include Lamb waves method: it is possible to study thin 

structures, especially composite materials, convenient measurements at long distances, various 

configurations of measurements. 

Disadvantages of the guided waves method: a high qualification of staff is needed because of the 

requirement of considerable interpretation.  

When the ultrasonic waves are incident with an oblique angle, the ultrasonic testing variant is named 

as back scattering technique (Fig. 2.27). 

 

Fig. 2.27. Back scattering measurement configuration [38] 

The signal used to find defects is reflected from the bottom. This method can be used to find 

heterogeneous areas close to the surface of the part and which are not parallel to the surface of the 

part. For example, a perpendicular transducer may not detect perpendicular to the surface defects, 

while the use of an angular transducer can easily detect such defects. The back scattering 

measurement is applicable for detecting matrix cracks. 

Advantages of the back scattering method: it is possible to find heterogeneities that are not parallel 

to the surface of the object, there are no problems with the “dead zone”. 

Disadvantages of the back scattering method: it is difficult to determine the size and location of 

heterogeneity, it is difficult to distinguish between short and deep heterogeneity from long and 

shallow. 
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For traditional ultrasound examination, the coupling medium (water or gel) is always required for 

transmitting the ultrasound. However, contact fluids are not always suitable for the part’s geometry 

or when the properties of the object may change due to immersion in the medium. Recently with 

advanced signal processing techniques, it is possible using air-coupled ultrasonic measurement (Fig. 

2.28) to determine the location of defects in ultrasonic systems for composite testing.  

 

Fig. 2.28. Air coupled transducers for inspection of delamination [38] 

Advantages of the air-coupled measurement: it is easy to find heterogeneities that are not parallel to 

the surface of the object, convenient to use for perpendicular heterogeneities to the surface. 

Disadvantages of the air-coupled method: it is necessary to accurately position the transducers in one 

line. 

The experimental setup of ultrasonic spectroscopy technique with laser ultrasound source and time 

profile of ultrasound pulse are shown in Fig. 2.29. 

 

 
a b 

Fig. 2.29. Ultrasonic spectroscopy technique: a - block diagram of ultrasonic spectroscopy with laser 

ultrasound source, b – time profile of an ultrasound pulse in acoustic spectrometer [39] 

This method is widely used to determine porosity and delamination because it is possible to study 

parts of different forms, higher measuring speed.  
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Advantages of the ultrasonic spectroscopy method: it is possible to study objects of different forms, 

higher measurement speed compared to contact method, no loss of contact due to surface roughness 

of the object under investigation. 

Disadvantages of the ultrasonic spectroscopy method: stationary sophisticated apparatus, not suitable 

for corrosive objects, expensive equipment, problematic positioning of the transducer in relation to 

the object. 

Time of flight diffraction method is used to estimate defect sizes in the composites and other 

materials. This method uses tandem transducers. As shown in figure 2.30, firstly the surface wave 1 

comes from the transmitter to the receiver, then diffuses from the upper defect edge wave 2, after that 

the wave 3 has been diffractioned from the bottom edge of the defect and finally the reflection from 

the rear wall of the tested object 4 [33]. 

 

 

 
a b c 

Fig. 2.30. Time of flight diffraction method: a – typical setup, b – signals of waves, c – imagine projection of 

defect [40] 

The duration of the spread of the signal from the edge of the defect can be measured during the study. 

Knowing the duration, it is possible to find the depth that contains the defect. Knowing the duration 

of diffractioned signals from both edges of defects, it is possible to determine the depth of the upper 

and lower defect edge and determine the height of the defect. 

The main advantage of this method is that it is possible to determine not only the place of 

heterogeneity but also its size. 

Disadvantages of the flight diffraction method: need to put the transducers in one line, it is difficult 

to determine the lower edge of the defect due to the weak reflected signal. 

2.4. Determination of Defects in Polymer Composites using Ultrasonic Phased Arrays 

Multichannel ultrasonic phased array method is designed for ultrasonic non-destructive testing and 

measurements by analyzing the internal structure of various metals and their alloys, carbon and glass 

fiber reinforced composites, plastics and their alloys, in the search for internal defects. 
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Typically, the ultrasound transducers used for non-destructive inspection consists of either a single 

piezoelectric element, which can transmit and receive reflected waves or of two paired piezoelectric 

elements, one of them serves for transmitting and the other for receiving waves.  Piezoelectric element 

is the main component of the phased array probe (Fig. 2.31). 

 

 

a b 

Fig. 2.31. Phased array probes: a – general view of phased array probes; b – cross-section of phased array 

probe [41] 

In the production of phased array probe, the piezoelectric element is cut into many small individual 

elements (Fig. 2.32), usually between 16 and 256 [41]. More elements increase the capability of 

focusing and steering by increasing area under inspection but requires higher cost of the equipment.  

 

 

a b 

Fig. 2.32. Phased array probe: a - typical multi-element view; b- dimensions of a phased array probe, where 

A – total aperture, H – height of individual element, p – pitch between elements, e – width of individual 

element, g – spacing between elements [41] 
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Each of these elements has its own connector, circuit of time delay and A/D converter. All elements 

are acoustically insulated from each other. Individual elements are pulsed in groups, have calculated 

time delays for each element. This phenomenon is called phasing. Pulsers are usually multiplexed.  

The more elements, the better distinction can be obtained by measuring.  The types of arrays can be 

linear (a), circular, ring (b), and 2D matrix (c), as shown in figure 2.33 [33]. The frequency used for 

the transducer is between 2 MHz and 10 MHz.  

 

 

 

 

a b c 

 

Fig. 2.33. Types of arrays: a – circular; b – ring; c – 2D matrix [33] 

The simplest manner is to locate the phased array parallel to the surface of the material that has been 

inspected and either couple it directly or through a specific intervening coupling medium (Fig. 2.34) 

[42]. The aperture is then electronically transferred along the array to create an image.  Angular 

sweeps are more commonly used with the angle wedge (Fig. 2.34, d), but also can be performed with 

directly coupled arrays (Fig. 2.34, c).  

 

 

 

 

 

 
 

a b c d 

Fig. 2.34. Array test modes: a – simple scanning; b – focused scanning; c – angular sweep; d – angular 

sweep with angle wedge [42] 

In most cases, the angular sweep is more informative as defects that are perpendicular to the surface 

can be detected (Fig. 2.35).  

 
a                     b 

Fig. 2.35. Detection of the defects: a – with limited beam angle; b – with angular sweeping beam [43] 
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As we can see from figure 2.35, a, using limited beam angle, the defects oriented in the material 

perpendicular to the surface can’t be noticed.  

The principle of ultrasonic phased arrays is to excite all or group individual piezo elements of the 

transducer. The result is beam forming which requires precise pulsing and time delays. Receiving 

process is the reverse of pulsing (Fig. 2.36) [43].  As shown in figure 2.36, the echo reaches various 

transducer elements from a desired focal point with a calculated time offset. The echo signals from 

each transducer element are shifted over time before summation. The amount received is an A-scan, 

which highlights the response from the flaw and weakens various other echoes from other material 

points. 

In the emitting stage the acquisition unit (Fig. 2.36) sends a trigger signal to the phased array. The 

phased array tool turns the signal into a high-voltage pulse whose pre-programmed width and time 

delay is defined in the focal laws. Each piezo element receives only one pulse. This creates a beam 

of a certain angle, oriented to a certain depth. The beam impacts a defect and returns back. 

Received signals then are shifted in time taking into account the receiving focal law. Then they unite 

to form one ultrasonic pulse, which is sent to the acquisition unit. 

 

Fig. 2.36. Transmitter and receiver components for ultrasonic phased array beam forming [43] 

 

Using phased array technique, focalization, deflection (also called angular scanning) or electronic 

linear scanning are possible. 
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Illustration of beam generation and focusing is shown in figure 2.37 [44]. There the elements are 

pulsed with different time delays. Applied delay to each element is in green color and elements in the 

array are marked in yellow.  

 
 

Fig. 2.37. Beam generation and focusing [44] 

Beam focalization is a convergation of the acoustic energy into a relatively small focal spot. In 

practice, focalization technique scanning process is fulfilling with different focal depths. Using 

focalization only one transmitted pulse is used, and refocusing is performed at all programmable 

depths. 

Using deflection technique, the beam is shifted through a sweep range in a specific direction for a 

certain focal depth. This allows the single transducer to perform testing at various angles (Fig. 2.38). 

 

Fig. 2.38. Angled beam generation [44] 

Steering diapason can be changed using an angle wedge which is usually made of plastic. Using this 

method, it is possible to inspect multiple angle with a single probe. 

Electronic linear scanning. This method allows to move the acoustic beam along the axis of the 

array without mechanical movement (Fig. 2.39). The beam movement is performed by active 
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elements multiplexing in time. Scanning is limited by number of array elements and number of 

channels in the system.  

 

 

Fig. 2.39. Electronic linear scanning [44] 

 

Figure 2.40 presents examples of linear scanning to detect defects in the material. 

  

  

a b 

Fig. 2.40. Imagines of electronic linear scanning: a – normal beam linear scanning; b -  angle beam scanning 

[41] 
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There is also a possible combined beam processing because the phased array method can be used in 

almost any combination of testing, for example, focalization and steering or linear scanning and 

steering.  

 

2.5. Summing-up 

After reviewing the NDT methods and after examining the possibilities of the inspection methods for 

carbon fiber composites, the appropriateness of the methods to determine the defects is summarised 

in table 2.2.   

Table 2.2. Applicability of NDT methods depending on defect 

Defect Inspection Method 

Visual Coin 

tapping 

Ultrasonic Thermo-

graphy 

Acoustic 

emission 

Radio-

graphy 

Shearo-

graphy 

Electro-

magnetic 

Porosity □  ○      
Fibre 

breakage 
  ○  ○ □  ○ 

Delamination ○ ○ ○ ○ ○ □ ○  
Matrix 

cracks 
  □ □ ○ □   

Fibre-matrix 

bond 
□    □   □ 

Foreign 

inclusions 
  ○ ○  ○ □  

Voids  ○ ○      
Wrinkles       ○ □ 
Resin rich ○  □      
Blisters  ○ ○      
Impact 

damage 
○   ○   ○  

Note: NDT research is a continuous process and can change the status of different inspection methods  

○ the method has proven the ability to detect specified defect 

□ limited application 

 

As shown by the results of the analysis, the most appropriate NDT method for carbon fiber composite 

materials is ultrasonic testing.  

The main advantages of the ultrasonic testing methods compared to other NDT methods would be 

the following:  

 high sensitivity of the method to both surface and subsurface discontinuities 

 equipment for the inspection can be very portable or at a high level of automatization  

 depth of penetration for defects inspection or measurement is superior to other NDT methods 

 only a minimal sample preparation for inspection is required 

 only one-sided access is required to use pulse echo method for inspection 
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 method is highly accurate in determining the position of the defect and evaluating the shape 

and size 

 method provides instantaneous results 

 comprehensive imagines can be obtained using automated systems 

 equipment is not a health hazard to operators or staff nearby and does not affect the substance 

being inspected 

 in addition to defect inspection, the method has other uses, such as thickness measurement. 

However, like all inspection methods, ultrasound testing also has some drawbacks: 

 staff skill and training is more extensive than with some other NDT methods 

 material should be accessible to transmit ultrasound waves  

 a coupling medium is usually required to promote the transfer of sound energy to an inspected 

sample 

 it is problematic to test objects that are rough, relatively very small, irregular in shape, 

exceptionally thin or not homogeneous 

 it may be difficult to make measurements due to the undesirable internal structure of the 

materials, impurities and so on 

 standards need to be followed for both equipment calibration and defect specification. 

The main advantage of the phased arrays is the inspection speed. An analysis of the literature review 

suggests that it is several times faster than conventional ultrasound tests. So, that is a useful and 

effective way to detect defects in polymer composites. 
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3. Computer Simulation 

The aim of this part of the project is to develop a model that can determine the most appropriate 

parameters (transducers’ parameters, positioning) so that defects can be detected in the real specimen. 

The results obtained will also allow to evaluate whether the chosen research method will be suitable 

for real measurements. In order to select the most suitable defect detection method in carbon fiber 

composite material, and to select the most suitable parameters for this study, a computer model was 

developed in CIVA environment. With the CIVA program it is possible to perform a full simulation 

of the study, i.e. create a sample CAD model, select the sample material, the ultrasonic transducer, 

its frequency, and compare the results for determining the most appropriate parameters. 

3.1. Description of the Sample Model 

The real specimen is composed of carbon fiber layers. The image of a real specimen is shown in Fig. 

3.1. This is a specimen of COTESA with flat bottom holes (FBH). 

 

Fig.3.1. Image of a real specimen 

The length, width and height of the test piece are 110 mm, 90 mm and 5.4 mm respectively (Fig. 3.1).  

The most important elements in this sample are artificial defects – boreholes. The sample has flat 

bottom boreholes with a diameter of 3 mm; 4 mm; 5 mm and 6 mm. The depths for each diameter 

hole are 0.4 mm, 2.7 mm and 5.0 mm. All artificial defects could be easily measured in their position 

with a caliper gauge.  

The sample has a porosity volume content of less 0.5 vol. -%, according to standard EN2564 [45]. 

The porosity (void fraction), is a measure of voids, i.e., "empty” spaces in the material and is a fraction 

of the voids volume over the total volume, from 0 to 1, or as a percentage from 0 to 100%. 

The real specimen shown in Fig. 3.1 is made of 10 carbon fiber reinforced polymer (CFRP) layers.  
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The CAD model of the sample is designed in CIVA environment as shown in Fig. 3.2. Technical 

parameters of the materials used for model description in the program are presented in table 3.1. 

 

Fig.3.2. Model of the sample 

Table 3.1. Basic materials’ parameters 

Parameter material Water CFRP Air 

Density 1000 kg/m3 1494 kg/m3 0,0012 kg/m3 

Velocity of longitudinal 

waves 

1483 m/s 2400 m/s [46] 333 m/s 

 

The object under investigation is described below. The geometry of the object and the characteristics 

of the material are listed. Also, the number of layers of the composite specimen, the total thickness 

of the composite (5.4 mm), their angle of rotation, and the type of composite part are presented. The 

material type chosen is multilayer homogeneous composite (figure 3.3). This characteristic is derived 

from the compliance of the sample with the program specification. 

 

Fig. 3.3. Example of a multilayer homogeneous composite 
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Because tests will be performed perpendicular to the generation of ultrasonic waves, the most 

important parameter will be the velocity of acoustic longitudinal waves which in the case of water is 

1483 m/s and in the composite is 2400 m/s. 

Figure 3.4 shows a model with artificial defects and their numbers. Each defect has an assigned 

number that will not change throughout the study. 

 

Fig. 3.4. Defects numbering and positioning in the sample 

Defects of different sizes will give an idea of what defects can be detected during the actual 

experiment and which transducers and equipment will be best used. Table 3.2 gives a complete list 

of defects, their diameter and depth. 

Table 3.2. Geometrical parameters of defects 

 

Number of the defect 

Geometrical parameters of defects in mm 

Diameter Depth 

1 3.0 0.4 

2 3.0 2.7 

3 3.0 5.0 

4 4.0 0.4 

5 4.0 2.7 

6 4.0 5.0 

7 5.0 0.4 

8 5.0 2.7 

9 5.0 5.0 

10 6.0 0.4 

11 6.0 2.7 

11 

 
12 

 
10 

 

7 

 

8 

 

9 

 

6 

 

3 

 

4 

 

5 

 

1 

 

2 
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12 6.0 5.0 

In modelling, all defects are circular. 

3.2. Selection of Transducer and Method 

The literature analysis, the evaluation of the sample and the parameters of transducers used in practice 

revealed that high frequency transducers are used for similar objects. This is due to the relatively 

small specimen thickness and the higher resolution required to detect defects, which is why 5 MHz 

single-element perpendicular flat transducer, which has diameter of active element of 12,7 mm is 

used. Transducers of this frequency are commonly used to study aviation components. After 

evaluating the structure of the sample it was decided to use immersion method (also known as the 

immersion pulse–echo method). It is probably the most popular and widely used method, which is 

perfect to determine depth and diameter of the defect in various forms of objects. Defects are detected 

by the occurring reflection of a transmitted ultrasonic pulse [47]. Water makes it possible to improve 

the transmission of the ultrasonic wave from the ultrasonic transducer to the test object. Details of the 

transducer used provided in Table 3.3 and an experimental set-up is shown in figure 3.5 

Table 3.3. Parameters of transducers used in computer simulation 

Parameter Transducer:  Olympus V109 (serial No 919732) 

Frequency 5 MHz 

Diameter of active element  12.7 mm 

Shape of element Round 

 

 

Fig.3.5. Experimental set-up 

3.3. Investigation using Single-Element Transducer 

Single-element ultrasonic transducer consists of an active element (piezoelectric or single crystal 

material) housed in a casing. A single active element transmits and receives sound energy. Single-

element ultrasonic transducers are used for flaw detection, material research, detecting and sizing 

delaminations, inspecting plates, bars, billets, and other metallic and nonmetallic components.  
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3.3.1. Investigation of Fields of Ultrasonic Transducer 

A very important parameter of an ultrasonic transducer is its emitted acoustic field. The positioning 

of the transducer is selected taking into account its nature, the circumstances of the study and the 

research materials. In this case, a flat ultrasonic transducer is used. It generates longitudinal waves 

emitted perpendicularly to the test material. During the test, it will be positioned at a certain distance 

from the test object. The transducer generates an ultrasonic wave not from one point but from a 

number of adjacent points on the transducer surface. Generated waves in space interact with each 

other. Two main fields can be distinguished in the acoustic field of the ultrasonic transducer: near 

field and far field [48]. At a given point in space, called a far field, the amplitude of the acoustic 

pressure will reach its maximum and will be equal to the sum of all the individual wave amplitudes. 

The near field is the space near the transducer surface. In the near field, ultrasound wave irregularities 

and oscillations are quite strong. This field is located between the transducer surface and the field 

amplitude and the location of the last and maximum peaks. 

The length N of the near field depends on diameter D of the transducer and on ultrasonic wavelength 

𝜆 in the test environment. Formula 3.1 is used to calculate the near field [48,49] 

𝑁 =
𝐷2

4𝜆
=

𝐷2𝑓

4𝑉
                        3.1 

where: D is the diameter of the transducer; 𝜆 - ultrasonic wavelength in the test environment; f - wave 

frequency; V – velocity of sound in the material. 

Knowing the transducer and ultrasonic parameters (D = 12.7 mm, f = 5 MHz, V = 1483 m/s) in the 

material theoretically calculates the near field. 

𝑁 =
𝐷2

4𝜆
=

𝐷2𝑓

4𝑉
= 0.1359 𝑚 = 135.9 𝑚𝑚 

Finding defects in the near field and accurately estimating their size is extremely difficult due to 

ultrasonic pressure fluctuations. Therefore, defect detection should be carried out in the far field. The 

field is called the far field if it is at a distance N from the transducer. In the far field, the field pressure 

generated by the transducer decreases with increasing distance and the strongest signal is received in 

the acoustic axis (Fig. 3.7).  

In the far field, the ultrasound wave is reflected at an angle β. 

𝛽 = arcsin (𝑘
𝜆

𝐷
)                      3.2 

where: k - constant depending on the edge of the beam indicating the limit of the beam beyond which 

the acoustic pressure does not exceed a certain level (dotted line in figure 3.6), the shape of the 

transducer, and method used to determine the angle of expansion of the beam. 
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Fig. 3.6. Eradiation of the wave 

 

As can be seen from the formula 3.1, increasing the diameter of the transducer increases the length 

of the near field without changing the frequency of the transducer. Thus, a small diameter transducer 

has a shorter near field than a large diameter transducer. In the far field, the beam of the small-

diameter transducer extends more than that of the large-diameter transducer. In addition, the near 

field increases with increasing frequency of the transducer when the transducer has the same diameter. 

In computer simulation and changing the transducer distance parameters, a close field is obtained in 

the CIVA environment. slightly different from theoretical calculations. The simulation uses the near 

field size obtained by the CIVA program. From the figure 3.7a it can be seen that the amplitude curve 

to a distance of 138.67 mm is practically without any significant fluctuation. As mentioned above, 

defects in the near field can be inaccurately sized or located. Therefore, far-field study is necessary. 

Curve 2 (in CFRP) gradually decreases with increasing distance and behaves predictably. 

The curve decreases as the amplitude of the ultrasound signal decreases as the propagation distance 

of the waves increases. 

 

a 

Transducer 

In the water 1 

In CFRP 2 Point of maximum 

Near field 
Far field 
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b 

 

c 

Fig. 3.7. Received near field in CIVA environment: a - near and far fields, b - maximum of acoustic pressure 

amplitude, c - transducer and its emitted fields, near field – red colour, far field – yellow colour 

In this case, a simulation of the reflection immersion method with a non-focused transducer is 

performed. Therefore, the sample is allegedly immersed in water and the waves emitted by the 

transducer propagate through the water and then enter the test object. The calculated near field 

distance N from formula 3.1 means that the transducer must be 135.9 ~ 138.0 mm away from the 

specimen in order to correctly detect the defects and their size. 

3.3.2. Simulation Results 

Having a sample model and knowing the distance to place the transducer, calculations and simulation 

results are obtained in a CIVA environment. As mentioned in section 3.3.1, the distance between the 

transducer and the specimen is 138 mm. Scans are performed through artificial defects (boreholes of 

different diameter and depth). For this reason, the "Sensitivity zone" parameter is used, which allows 

to set only a specific zone where the calculation will take place. Using the sensitivity zone (15x15x6 

Transducer 

Acoustic axis transducer 
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15 mm 
15 mm 

6 mm  

2
0
 m

m
  

mm) reduces the computation time. In this case, the sensitivity zone parameters are given below (Fig. 

3.8). 

 

 

 

 

 

Fig. 3.8. Sensitivity zone: a – size of sensitivity area, b – schematic of scan with 5 MHz transducer 

Scanning step was 0.5 mm. 150 steps in y- axis direction and 200 steps in x-axis direction were 

performed during scanning. Scanning steps scheme along x and y axies is presented in figure 3.9. 

 

Fig.3.9. Scanning scheme 

Scanning prodecure along the test sample for inspecting defects along y axis is shown in figure 3.10. 

As we can observe, the single-element transducer is moved towards the defects to obtain indications 

of the defects.  

 

Fig. 3.10. 3D image view of the test sample and single-element transducer using in the scanning procedure 

along y axis 

Transducer  

Specimen 

Sensitivity zone 

a 
b  

15 mm   
6 mm  



48 

Simulation results in type A and B scan views of ultrasound scans are presented in table 3.4. 

Table 3.4. Images of field views and amplitude vs. time graphs  

Image of field view (B scan view) Amplitude vs. time graph (A scan view) 

 

a 

 

 

Fig.3.11. Scanning of defect no 8 (a – B-scan of  Ø5 mm  FBH (flat bottom holes), b- A-scan of Ø5 mm 

FBH) at depth of 2.7 mm  

 

a 

 

 

 

b 

Fig. 3.12. Scanning of defect no 5 (a – B-scan of  Ø4 mm  FBH, b- A-scan of Ø4 mm FBH) at depth of  

2.7 mm  

a 

b 

c 

Scan line 

 a 

 

                c                 

         

               b 

b 

 a                        

                 

                               c 

8 

 

5 

 

5 

 

a 

b 
c 8 

 

Scan line 

b 
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a 

 

 

  

 

 

 

 

 

 

 

 

 

 b 

Fig. 3.13. Scanning of defect no 5 (a – B-scan of Ø3 mm FBH, b- A-scan of Ø3 mm FBH) at depth of  2.7 

mm  

 

 

                                    a 

 

 

 

                                    b 

Fig. 3.14. Scan line and amplitudes in the absence of defects (scan line does not cross the defect) 

a 
b 

a 

b 

Scan line 

c 

a 
b 

a 

b 

c 

2 

 

2 

 Scan line 
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                                      a 

 

 

 

 

 

 

 

 

 

                                   b 

Fig. 3.15.  Scanning of defect no 11 (a – B-scan of  Ø6 mm FBH,  b- A-scan of Ø6 mm FBH)  at depth of 

2.7 mm 

 

a 

 

 

 

 

 

 

 

 

 

b 

Fig.3.16. Scanning of defect no 10,11,12 (a – B-scan of  Ø6 mm FBH, b- A-scan of Ø6 mm FBH)  at 0.4; 

2.7 and 5.0 mm depths 

 

Defects 

Scan line 

11 

 
10 

 

12 
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a b 

12 

 

11 

 

10 

 

Scan line 

11 
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c 
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c 
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Fig. 3.17. Comparison of amplitudes: black curve – without defects, red – with the defect of 0.4 mm 

depth, and blue – with the defect of 5.0 mm depth (diameter of the boreholes – 6 mm) 

  

Fig. 3.18. Comparison of amplitudes obtained from the defects with different diameters and the same 

depth: red curve – 6 mm diameter, blue – 5 mm, green – 4 mm, black – 3 mm 

 

  

a 
b 
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The dependence of the amplitude, measured in logarithmic units called decibels, on the diameter of 

the defect is given in Fig. 3.19. This graph shows the measurement results of defects no. 2, 5, 8 and 

11 with different diameters but the same depth (2.7 mm). 

 

Fig. 3.19. Comparison of amplitudes in dB obtained from the defects with different diameters  

The Fig. 3.19 shows that the smaller the defect size, the smaller the signal amplitude, measured in 

decibels. 

From the information in table 3.4 it could be seen that the detected defects are only in the scanning 

plane. The simulator uses a perpendicular transducer so the waves propagate perpendicular to the 

transducer along the specimen. The left column of the table represents image of field views (B scan 

views). The right column of the table represents amplitude vs. time graphs (A scan views). In all 

figures in the table 3.4 the scan lines are shown (in red) and the numbering means: a – reflection from 

the surface; b – reflection from the bottom; c – reflection from defect. In addition, the defect 

numbering in the sample is from 1 to 12 (number of defect is shown in a circle). 

Fig. 3.15 presents the scanning results of the defect no 11, but scanning image also allows us to see 

the defects no 8, 5 and 2, which are with the same depth (2.7 mm), but with different diameters (Ø6, 

Ø5, Ø4 and Ø3 mm respectively). To determine the amplitude dependence of the defect depth, three 

defects (no. 10, 11, and 12) with different depths but the same diameter are compared after scanning 

(Fig. 3.16). The defect no 10 has 0.4 mm of depth, while the defect no 11 has 2.7 mm of depth, and 

defect no 12 has 5 mm of depth. In the right column (Fig. 3.16, b), red colour curve shows the defect 

no 12, blue – the defect no 11, and black – the defect no 10. The graph clearly shows the differences 

in these amplitudes.  

The amplitudes of scanned boreholes with different diameters and the same depth (2.7 mm) are shown 

in figures 3.11, b – 3.13, b. The apparent difference in amplitudes shows the differences in the 

diameter of the boreholes at the same depth of the defects. 
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Figure 3.14 a shows the scan line and figure 3.14, b amplitudes in the absence of defects in the 

material (scan line does not cross the defect). In this case only reflections from the surface and from 

the bottom are visible. 

Figure 3.17 shows the comparison of amplitudes without defects - black curve, with the defect of 0.4 

mm depth – red, and with the defect of 5.0 mm depth – blue (diameter of the boreholes – 6 mm). 

Figure 3.18 represents comparison of amplitudes obtained from the defects with different diameters 

and the same depth: red curve – 6 mm diameter, blue – 5 mm, green – 4 mm, black – 3 mm. It is 

obvious that the height of the amplitude depends on the diameter of the borehole at the same depth 

of the boreholes.  

Obviously, using a single transducer is not easy to detect all defects. Occasionally, defects of a similar 

size located in the same plane are "invisible." Also, a mechanical scan is required to examine the 

entire specimen, i.e. moving the transducer along and across the specimen, which is not convenient. 

3.3.3. Estimation of Defects Depth using Single Element Transducer 

As was mentioned before, pulse-echo method is widely used to determine the depth and transverse 

dimensions of the defects. The thickness of the sample or the depth of the defect is calculated by 

measuring the propagation time of the wave according to the formula [49]: 

𝐻 =
𝑉 ∙ 𝑡

2
                                    3.3 

where: H is the depth of the defect; V – velocity of ultrasound in the material; t – time of propagation 

of the signal to the defect of the sample. 

As example are given depth calculation of the defects no.8 and no.12. 

Defect no.8. V = 1483 m/s; t = 1.85 · 2 = 3.7 µs (28.86 – 27.01 = 1.85 µs) data from figure 3.20. 

When measuring by the pulse-echo method, the wawe propagation is a distance equal twice the 

thickness of the test object [49].  

𝐻 =
𝑉 ∙ 𝑡

2
=

1483 ∙ 0.0000037

2
= 0.00274 𝑚 = 2.74 𝑚𝑚 
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Fig. 3.20.  Signals in the time domain: signal’s reflection from the surface, signal’s reflection from the defect 

no.8 and signal’s reflection from the bottom 

The measured depth of the defect no. 8 is 2.7 mm.  

Defect no.12. V = 1483 m/s; t = 0.19 · 2 = 0.38 µs (27.19 – 27.00 = 0.19 µs), data from figure 3.21.  

𝐻 =
𝑉 ∙ 𝑡

2
=

1483 ∙ 0.00000038

2
= 0.00028 𝑚 = 0.28 𝑚𝑚 
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a 

 

c b 

Fig. 3.21.  Scanning of the defect no. 12: a - B scan view, b - amplitude vs. time graph (A scan view), c - 

image of scan line along y axis 

The real depth of the defect no. 12 is 5.0 mm. The distance measured from the sample surface to the 

defect with ultrasound is 0.28 mm. Knowing that the specimen thickness is 5.4 mm, the result of 

ultrasound measurements to determine the defect depth is 5.12 mm (5.4 – 0.28 = 5.12 mm).  

Depths of other defects are calculated analogously. The results are presented in table 3.5. 

Table 3.5. Estimated and real depths of the defects in the specimen  

Number 

of defect 

Theoretical 

velocity of 

ultrasound, m/s  

Time interval 

between adjacent 

reflections, µs 

Estimated depth 

of the defect, 

mm 

Real depth of 

the defect, mm 

Absolute error, 

mm 

1 1483 0.60 0.45 0.40 0.05 

2 1483 3.72 2.76 2.70 0.06 

3 1483 0.40 5.10 5.00 0.1 

4 1483 0.59 0.44 0.40 0.04 

5 1483 3.72 2.76 2.70 0.06 

6 1483 0.40 5.10 5.00 0.1 

7 1483 0.64 0.48 0.40 0.08 

8 1483 3.70 2.74 2.70 0.04 

9 1483 0.38 5.12 5.00 0.12 

10 1483 0.63 0.47 0.40 0.07 

11 1483 3.72 2.75 2.70 0.05 

12 1483 0.38 5.12 5.00 0.12 

 0.19 µs 

12 

 

12 

 

Scan line 

b 

a 
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The curves in Figure 3.22. show the dependence of the absolute error variation on the defect depth at 

various defect diameter. The yellow curve shows the change in absolute error at a defect depth of 0.4 

mm at different defect diameters, green at a defect depth of 5.0 mm and blue at a defect depth of 2.7 

mm. This data is obtained using single transducer for testing.  

 

Fig. 3.22. Curves of the absolute error of depth using single-element transducer 

As we can see from the graphs, the differences of absolute error are very negligible. However, it can 

be stated that when measuring the defects close to the surface of the sample, i.e.  at a depth of 5.0 

mm, when the diameters of the defects are larger (Ø5 mm and Ø6 mm), a slight difference in the 

magnitude of the absolute error is observed. For other defect diameters, no change in absolute error 

magnitude was observed at 5.0 mm depth. The same can be said for defects with the depths of 0.4 

and 2.7 mm.  

3.3.4. Estimation of Defects Diameter using Single Element Transducer 

The CIVA modeling software is convenient to use not only for modeling defect depth determination, 

but for modeling defect size estimation as well. Simulation can be performed with both single-element 

transducer and phased array. As an automatic tool of CIVA platform the segmentation algorithm was 

used for modeling. The purpose of the segmentation algorithm is to group signals received from the 

same defect or part thereof. This grouping is based on an algorithm that provides more efficient 

coupling than geometric, which is based only on geometrical closeness. The grouping is based on a 

physical behavior of the ultrasonic wave and reduces the grouping of false signals, for example, noise. 

Segmentation is the process of using simulated or experimental data to calculate segments that reflect 

different echoes [50]. Segmentation algorithm assumes that the locally wavefront is planar. The 

parameters used to identify segments can also be determined using a physical method that increases 

the reliability level of the grouping based on the band-width, frequency and other technical parameters 

of the transducer. The band-width defines the frequency spectrum of pulses or receivers that can 
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absorb them. The band-width is usually expressed at the level of 6 db from the maximum amplitude 

[49]. The selection of a particular band-width is important to achieve the desired research results. The 

band-width is determined by many factors, such as the test material, the contact fluid, the pulse 

emitted by the transmitter, the receiving transducer, and so on. 6db drop technique is a reliable method 

for determining the width of defects and is widely used for this purpose [51]. 

After selecting the region of interest (ROI) in the B-scan image, as presented in figure 3.23, the results 

of ΔX show the size of the defect in mm in the indication table in the CIVA environment. 

 

Fig. 3.23. Display of the groups after segmentation using CIVA software for the modeling   

Results of the estimated defect diameter using single-element transducer are presented in the table 

3.6. 

Table 3.6. Estimated and real diameters of the defects in the specimen using single-element transducer 

Number of 

defect 

Depth of the 

defect, mm 

Estimated 

diameter (ΔX) of 

the defect, mm 

Real diameter of 

the defect, mm 

Absolute 

error, mm 

1 0.4 6 3 3 

2 2.7 9.5 3 6.5 

3 5.0 6.5 3 3.5 

4 0.4 8.5 4 4.5 

5 2.7 11 4 7 

6 5.0 8.5 4 4.5 

7 0.4 9.5 5 4.5 

8 2.7 11 5 6 

9 5.0 10.5 5 5.5 

10 0.4 9 6 3 

11 2.7 10 6 4 

12 5.0 11 6 5 

 

Estimated diameter 

of the defect in mm 
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The calculated absolute error results for determining the size of the defect using single-element 

transducer are shown in Fig. 3.24.  

 

Fig. 3.24. Curves of the absolute error of diameter using single- element transducer 

Analysis of the obtained graphs showed that defects with a larger lateral size are detected with a 

slightly higher accuracy (abosolute error did not exceed 5 mm). In addition, when measuring a large 

diameter, less dispersion of the measurement results is observed (did not exceed 1 mm). It can also 

be said that the lateral size of the defects was measured slightly more accurately when the defects are 

closer to the upper surface of the sample.  

  

3.4. Investigation using Ultrasonic Phased Arrays 

After making measurements with a single transducer, it was decided to use ultrasonic phased arrays. 

Focused ultrasonic phased arrays provide a very convenient and fast ultrasound inspection. Arrays 

consist of many small transducers. An array can consist of a different number of elements. The 

measurement principle can be used to flat parts using a linear phased array probe or to rods or tubes 

using a circular phased array probe. Linear arrays are the most commonly used probes in industry. 

One of the most important features defining phased array probes is the active probe aperture. 

Piezoelectric elements can be excited either together or in a sequence [48]. In this case, an Olympus 

linear array probe 5L 128-128x7-NW3-P-2.5-OM will be used. 

If the array covers the entire required surface of the specimen, then we can see all defects in the array 

area on the scanning equipment screen. 

In this study, ultrasonic phased arrays probe type contact with wedge, with the frequency of 5 MHz. 

Technical characteristics of the 5 MHz arrays are presented in table 3.7. 

Table 3.7. Technical characteristics of the 5 MHz ultrasonic phased arrays 

Parameter Transducer 
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Type Linear   

Frequency, MHz 5  

Number of elements 128 

Pitch, mm 1.0 

Active aperture,  mm 128 

Passive aperture, mm 21 

Elevation, mm 7 

External dimensions, mm L= 130, W=21, H=35 

Gap between elements, mm 0.1 

Element width, mm 0.9 

 

The main parameters of linear array presented in table 3.7 are shown in figure 3.25. 

 

Fig. 3.25. Parameters of linear array: A – active aperture, W – passive aperture, e – width of element, g- 

interval between elements, p - distance between centres of two adjacent elements [49] 

3.4.1. Simulation Results 

Scanning prodecure of the sample using linear array for inspecting defects is shown in figure 3.26. 

As we can see, the phased array completely covers all defects in one axis, so when scanning it is 

shifted by only one selected coordinate axis to obtain indications of the defects.  

 

Fig. 3.26. 3D image view of the test sample and linear array using in the scanning procedure along y axis 
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As in the section 3.3.2, simulation results in type A and B scan views of ultrasound scans using phased 

linear array are presented in table 3.8. 

Table 3.8. Images of field views and amplitude vs. time graphs  

Image of field view (B scan view) Amplitude vs. time graph (A scan view) 

 

a 

  

 

b 

Fig. 3.27. Scanning of defect no. 2 (a – B-scan of  Ø3 mm FBH,  b- A-scan of Ø3 mm FBH) at depth of 

2.7 mm  

 

a 

 

 

 

b 

Fig. 3.28.  Scanning of defect no. 3 (a – B-scan of  Ø3 mm FBH,  b- A-scan of Ø3 mm FBH)  at depth of 

5.0 mm 

a 

b 

a 

b 

a 

b 

Scan line 

a 

b 

2 

 
1 

 

3 

 

3 

 

2 

 Defect 

3 

 

Scan line 
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a 

 

 

  

b 

Fig. 3.29. Scanning of defect no. 10 (a – B-scan of  Ø6 mm FBH,  b- A-scan of Ø6 mm FBH)  at depth of 

0.4 mm 

 

The left column of the table 3.8 represents image of field views (B scan views). The right column -

amplitude vs. time graphs (A scan views). In all figures in the table 3.8 the scan lines are shown (in 

black) and the numbering means: a – reflection from the surface; b – reflection from the bottom. The 

numbers of defects are shown in the circles. The table 3.8 shows the scan results for three defects of 

different depths: 0.4 mm, 2.7 mm and 5.0 mm. 

3.4.2. Estimation of Defects Depth using Phased Array 

As in section 3.3.3, the signal dependence on the depth of the defect is analysed. Defects no 10, 11 

and 12, which are at the same diameter but differ in depth, are investigated. The depth of the defects 

is calculated according to formula 3.3. Time of signals reflection from the surface of the specimen 

and from the defect are taken from A scan views (figures 3.30 - 3.32).  

a b 

a 

b 10 

 

10 

 

Scan line 
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3  

Fig. 3.30. Amplitude vs time graph (defect no 10, depth of the defect 0.4 mm)   

 

 

Fig. 3.31. Amplitude vs time graph (defect no 11, depth of the defect 2.7 mm)    

signal’s reflection 

from the defect 

 

signal’s reflection 

from the defect 

signal’s reflection 
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signal’s reflection 
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signal’s reflection 
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Fig. 3.32. Amplitude vs time graph (defect no 12, depth of the defect 5.0 mm)   

 

The results of estimated depths using ultrasonic phased array probe and real depths of the defects are 

listed in table 3.9. 

Table 3.9. Estimated and real depths of the defects in the specimen  

Number of 

defect 

Theoretical 

velocity of 

ultrasound, m/s  

Time interval 

between adjacent 

reflections, µs 

Estimated depth 

of the defect, 

mm 

Real depth of 

the defect, mm 

Absolute 

error, mm 

1 1483 0.72 0.53 0.40 0.13 

2 1483 3.71 2.75 2.70 0.05 

3 1483 0.60 4.96 5.00 0.04 

4 1483 0.72 0.53 0.40 0.13 

5 1483 3.68 2.73 2.70 0.03 

6 1483 0.58 4.97 5.00 0.03 

7 1483 0.74 0.55 0.40 0.15 

8 1483 3.68 2.73 2.70 0.03 

9 1483 0.46 5.06 5.00 0.06 

10 1483 0.76 0.56 0.40 0.16 

11 1483 3.70 2.74 2.70 0.04 

12 1483 0.48 5.04 5.00 0.04 

 

The curves in figure 3.33. show the dependence of the absolute error variation on the defect depth at 

various defect diameters. The yellow curve shows the change in absolute error at a defect depth of 

signal’s reflection 

from the defect 

signal’s reflection 

from the surface 

signal’s reflection 

from the bottom 

0.24 µs 
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0.4 mm at different defect diameters, green at a defect depth of 5.0 mm and blue at a defect depth of 

2.7 mm. This data is obtained using linear phased array for testing.  

 

Fig. 3.33. Curves of the absolute error of depth using phased array 

As we can see from the graphs, the differences of absolute error are also very negligible. Using phased 

array probe for testing, the values of absolute errors are even lower than with the single-element 

transducer. This is especially true for detecting defects in the middle of a specimen. The absolute 

value of the error is slightly higher when the defect is further from the measuring surface, but the 

magnitude of the error itself is practically unchanged.  

3.4.3. Estimation of Defects Diameter using Phased Array 

As in section 3.3.4. CIVA software segmentation tool was used to estimate defects diameter. 

Results of the estimated defect diameter using phased arrays are presented in the table 3.10. 

Table 3.10. Estimated and real diameters of the defects in the specimen using phased arrays 

Number of 

defect 

Depth of the 

defect, mm 

Estimated 

diameter (ΔX) of 

the defect, mm 

Real diameter of 

the defect, mm 

Absolute 

error, mm 

1 0.4 3 3 0 

2 2.7 3 3 0 

3 5.0 3 3 0 

4 0.4 3 4 1 

5 2.7 3 4 1 
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6 5.0 3 4 1 

7 0.4 5 5 0 

8 2.7 5 5 0 

9 5.0 5 5 0 

10 0.4 5 6 1 

11 2.7 5 6 1 

12 5.0 5 6 1 

 

As can be seen from the curves presented in figures 3.24 and 3.34 and the data presented in tables 3.6 

and 3.10, the defect sizes are determined much more accurately using phased array. When using 

phased array, the value of the absolute error does not exceed 1 mm, while using a single-element 

transducer for measurements, the value of the absolute error can be up to 7 mm in individual cases.  

 

Fig. 3.34. Curves of the absolute error of diameter using phased array 

3.5. Comparison of Single-Element Transducer and Phased Arrays Results 

Comparing the calculations results of defect depth in tables 3.5 and 3.9 , it can be stated that a little 

more accurate results are obtained using ultrasonic phased array probe. This statement can be 

confirmed by comparing graphs (Fig. 3.35, 3.36) showing the results of defects depth measurements 

using single-element transducer and phased array. Fig. 3.35 shows comparison of absolute error of 

same diameter but different depth FBH using single-element transducer and Fig. 3.36 shows 

comparison of absolute error of same diameter but different depth FBH using phased array. It is 

interesting to note that with the single-element transducer, higher errors were obtained for defects 

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

3

4

5

6

7

8

3 4 5 6

A
b

so
lu

te
 e

rr
o

r
o

f 
d

ia
m

et
er

, m
m

Diameter of flat bottom hole, mm

Absolute error (diameter) using phased arrays 

Hole depth 0,4 mm Hole depth 2,7 mm Hole depth 5 mm



66 

closer to the upper surface, and with the phased array, higher defect errors were obtained for defects 

closer to the lower surface of the sample. 

 

Fig. 3.35.  Comparison of absolute error of same diameter but different depth FBH using single-element 

transducer 

 

Fig. 3.36.  Comparison of absolute error of same diameter but different depth FBH using phased array 
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In any case the defect depth results obtained with both the single-element transducer and the 

ultrasonic phased array probe are very close to the real defects depth results. However, it can be seen 

from the obtained experimental results, which are presented in tables 3.5 and 3.9 and figures 3.22, 

3.33, 3.35, and 3.36, that using the ultrasonic measurement method, defects in the material are more 

accurately detected in the deeper part of the material that closer to the surface. Examining our specific 

sample, we see that for defects with depths of 2.7 mm, i.e. in the deeper layer both from the upper 

surface and from the lower surface of the sample, the absolute measurement errors are slightly smaller 

than for the measured defects close to the upper surface of the sample or lower surface of the sample 

(i.e. with depths of 0.4 mm and 5 mm).  

After examining the influence of the size of the defect on the accuracy of determining the depth of 

the defect, it can be concluded from the obtained results using phased array probe, that the size of the 

defect practically does no affect the accuracy of defect depth determination (e.g., for defects Ø3 mm 

and Ø4 mm at a depth of 2.7 mm, the absolute error for determining the depth is 0.05 mm, and 0.03 

mm respectively, and for larger defects Ø5 mm and Ø6 mm, the absolute errors for determining the 

defect of the same depth are 0.03 mm and 0.04 mm. respectively). 

However, it can be concluded that in all cases the defects in the material are determined with relatively 

very small errors and the obtained values of absolute errors have no influence on the practical 

inspection of defects that may occur in the material, parts or products from carbon fiber composite 

materials during its fabrication or exploitation. 

Comparing the results of absolute error of defects diameter using single element transducer and 

phased array bigger variance can be seen. This is especially evident in the comparison of the curves 

of the obtained results with the phased array and single-element transducer in one graph (Fig. 3.37). 

Here, solid lines show the results of measurements with a single-element transducer, and dotted lines 

with a phased array. 

 

Fig. 3.37. Curves of the absolute error variation versus defect diameter at various defect depths using phased 

arrays and single transducer 
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With a single-element transducer, in some cases, an absolute error of up to 7 mm may be unacceptable 

when it is necessary to identify the size of the defect in parts and components that perform important 

functions in the product. The relatively low accuracy of defect sizing can have severe consequences 

for the operation of responsible units. Therefore, the obtained results and their comparison allow us 

to state that it is recommended to use phased array for determining the lateral size of defects. 
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4. Experimental Analysis 

The purpose of the experimental analysis is to verify whether or not the phased arrays method is 

suitable for quality control of carbon fiber composite. 

The computer simulation model made in chapter 3, theoretically allows us to detect the defects. 

Further task is to apply the developed model to detect defects in the sample by making real 

experimental analysis. The main problem of this part is that the measurement model is based on ideal 

laws, while in the experimental measurements, the quality of the analysis depends on many ambient 

influences, which complicates the process of measurement and affects the final result. After 

evaluating the results of computer simulations, a 5 MHz phased array probe was selected for 

experimental studies, which were connected to the OmniScan system shown in figure 4.1. 

 

 

Fig. 4.1. Olympus OmniScan measurement system 

OLYMPUS OMNISCANMX ultrasonic measurement system was used in this experimental analysis. 

OLYMPUS OMNISCANMX ultrasonic measurement system can be easily combined with other 

components to form a complete inspection system. The system be expanded by including phased 

arrays, probes, scanners, software for analysis and other accessories that can be easily integrated into 

application for specific solutions. 
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The experimental equipment used for testing is shown in Fig. 4.2. 

 

 

Fig. 4.2 Experimental setup 

Phased array probe Olympus 5L 128-NW3 was used for the testing (Fig. 4.3). The measurement 

scheme is relatively simple so it is easy to carry out such an experiment under industrial conditions 

and get quick evaluations of the quality of the parts or construction. 

 

Fig.4.3. Common view of phased array probe Olympus 5L 128–NW3 with the specimen 

Phased array probes typically have between 16 and 128 elements, some with as many 256, and 

frequency ranging from 1 MHz to 17 MHz. More elements increase focusing and steering capabilities 

and area coverage as well. Each of these 128 elements is pulsed individually to create a wavefront of 

interest.  

Description of the phased array probe Olympus 5L 128-NW3 presented in table 4.1:  

Table 4.1. Technical parameters of phased array probe Olympus 5L 128-NW3 

Parameter Mark/Value 

Identification mark 5L 128-NW3 

Frequency, MHz 5 

Type Linear (L) 

Number of elements  128 

Specimen 

Phased 

array probe 

Wedge 

Wedge 

Specimen 

Phased 

array probe 

OmniSCAN 
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Probe type NW – near wall probe 

Casing type 3 

Active aperture, mm 128 

Pitch, mm 1 

Elevation, mm 7 

External dimensions LxWxH, mm 130x21x35 

 

Probe type NW is designed for near-wall and close accessed applications. The advantages of using 

the near-wall probes could be shortened dead zone at both ends (1.5 mm between the center of first 

or last element and housing edge), well suited for composite channel inspections and possibility to 

use for C-scan inspections of composites.  

After measurements, the images of the results with signal reflections are shown in figures 4.4 – 4.7. 

With the 5 MHz phased array probe, images from the surface, bottom, and defects can be seen in the 

resulting images. Due to the higher phased array probe frequency of 5 MHz and the complex 

multilayer structure of the specimen, not only defects are reflected, but also very high noise due to 

the structure of the specimen. However, the resolution of defects in the sample is quite clear. Fig. 4.4 

depicts scan images of the defects no 3, 6, 9 and 12 with the same depth (5 mm) but different diameters 

(3, 4, 5 and 6 mm), respectively. 

 

Fig.4.4. Scan images of defects no 3,6,9 and 12 with the same depth of 5 mm but different diameter 

Fig. 4.5 shows scan images of the defects no 1, 4, 7 and 10 with the same depht (0.4 mm) but different 

diameter (3, 4, 5 and 6 mm), respectively.  
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Fig.4.5. Scan images of defects no 1,4,7 and 10 with the same depth of 0.4 mm but different diameter 

Fig. 4.6 presents scan images of the defects no 10, 11, and 12 with the same diameter (6 mm) but 

different depth (0.4, 2.7 and 5 mm), respectively.  

 

Fig.4.6. Scan images of defects no 10,11 and 12 with the same diameter of 6.0 mm but different depth 
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Fig. 4.7 shows scan images of the defects no 1, 2, and 3 with the same diameter (3 mm) but different 

depth (0.4, 2.7 and 5 mm), respectively. Obviously, a brighter image is obtained when there is a defect 

inside the material (defect no 11) than when it is very close to the surface (defects no 12 and 10). 

 

Fig.4.7. Scan images of defects no 1,2 and 3 with the same diameter of 3.0 mm but different depth 

Experimental studies can only confirm the fact established during CIVA modeling that the accuracy 

of determining the location of a defect in a material depends on its distance from the surface. The 

location of the defect is more accurately determined when it is inside the material than when it is 

close to the surface. 

Analyzing experimental results of a specimen with defects of different diameter and depth, the 5 MHz 

phased array probe was found to be suitable for detecting defects in constructions and parts made of 

carbon fiber composites. Using the aforementioned phased array probe, it is relatively easy to find 

defects in the composite material. 
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5. Conclusions 

1. The analysis of non-destructive control methods has shown that the most suitable method for 

investigating the quality of carbon fiber composite parts and constructions is ultrasonic. The 

ultrasonic method is more appropriate when specimens are to be tested under field conditions 

because the equipment of the method is much simpler and results are obtained faster. 

2. In the CIVA environment, a computer-based experimental model was developed and a computer-

based measurement simulation was performed. Based on CIVA results, it is concluded that 5 MHz 

phased array probes are more suitable for real experiment than 5 MHz single-element transducers 

used in aviation because the absolute errors with phased array probe did not exceed 1 mm in all 

measurements.  

3. Based on CIVA results, the parameters of the phased array probe were determined for the real 

experiment: the frequency of the phased array probe is 5 MHz, and the necessity of the delay line 

(wedge). The delay line is used to facilitate the analysis of received signals in relatively thin parts 

tests when a phased array probe is also used for transmitting and receiving signals.  

4. The obtained measurement results allow us to maintain that for ultrasonic measurements for 

carbon fiber composite using both the single-element transducer and the phased array, the distance 

to the defect can be determined more accurately in the presence of a defect inside the material (at 

a 2.7 mm depth). In this case, the maximum absolute error obtained is only 0.06 mm while when 

the defect is close to the surface of the sample, the error can reach 0.16 mm. 

5. Studies performed in determining the lateral size of the defect in the carbon fiber specimen allow 

to state the fact that significantly more accurate results were obtained using a phased array than 

that using a single-element transducer, because the use of a phased array allows to determine the 

defect size with 1 mm absolute error, while measuring with a single-element transducer, in 

individual cases, the absolute error can increase up to 7 mm. 

6. Experimental studies with OLYMPUS OMNISCANMX flaw detector confirm the results of the 

CIVA simulation and allow to conclude that ultrasonic measurements are reliable in detecting 

defects of various sizes and dislocations in composite materials. 
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