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ABSTRACT: Herein, photothermal modification of nanocompo-
site films consisting of hydrated vanadium pentoxide (V2O5·nH2O)
nanoribbons wrapped with graphene oxide (GO) flakes was
performed via 405 nm direct laser irradiation. The combination of
X-ray diffraction, X-ray photoelectron spectroscopy, Raman
scattering, transmission electron microscopy, and scanning
electron microscopy allowed comprehensive characterization of
physical and chemical changes of GO/V2O5·nH2O nanocomposite
films upon photothermal modification. The modified nano-
composite films exhibited porous surface morphology (17.27 m2

g−1) consisting of randomly distributed pillarlike protrusions. The
photothermal modification process of GO/V2O5·nH2O enhanced
the electrical conductivity of nanocomposite from 1.6 to 6.8 S/m. It was also determined that the direct laser irradiation of GO/
V2O5·nH2O resulted in considerable decrease of C−O bounds as well as O−H functional groups with an increase of the laser power
density.
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■ INTRODUCTION

Vanadium pentoxide (V2O5) has gained substantial scientific
interest due to its outstanding properties in many different
applications, such as lithium−ion batteries (LIB),1,2 super-
capacitors,3,4 field-effect transistors,5 sensors,6−8 electrochro-
mic devices,9−11 and actuators.12 This transition-metal oxide is
highly valued because of its affordable cost and high energy
density.13,14 It is almost unique electrode material that is
capable of hosting monovalent as well as multivalent cations.
In contrast to bulk V2O5 properties, enhanced device
performances were reported via application of V2O5 nano-
structures, such as nanowires,15 nanotubes,16 nanobelts,17 and
nanorods.18 These crystalline V2O5 nanostructures can be
synthesized via hydrothermal, solvothermal, or sol−gel
methods. Another type of this transition-metal oxide is
known as hydrated vanadium pentoxide (also known as
“amorphous V2O5” or V2O5 xerogel) with general formula
V2O5·nH2O (where n commonly falls in the range of 0−3). It
can be characterized as a material having short-range order
with an ordered stacking of VO5 bilayers at nanoscale. In
contract to crystalline V2O5 nanoderivatives, V2O5·nH2O (as
an electrode material) has been reported to exhibit higher
electrochemical performance (e.g., discharge potential, energy
density, and cyclic stability) owing to the fast heterogeneous
charge-transfer reactions.19,20 It is also considered that
amorphous or low-crystallinity electrode materials are less
prone to mechanical stress during the large cation hosting and

release processes and thus can provide higher intercalation
capacities than high-crystallinity ones.19 The V2O5·nH2O is
also diversely used in other applications, such as chemical
sensors,21 electrochromic devices,22 catalysis,23 etc. Physical
and chemical vapor deposition apart, V2O5·nH2O is commonly
synthesized via solution-based routes, such as ionic exchange
from NaVO3,

24 hydrolysis and condensation from alkoxide,25

crystalline V2O5 reaction with peroxides,26 or melt-quench-
ing27 in H2O. Like most metal oxides, both V2O5 and V2O5·
nH2O suffer from low electrical conductivity, which limits
implementation of these materials in LIB and supercapacitor
applications.28−30 A common practice is to combine nano-
structured metal oxides with carbonaceous nanoderivatives,
such as carbon nanotubes,31 carbon nanofiber,32 mesoporous
carbon,33 and graphene34 for the enhancement of the
electronic conductivity and their structural stability.35−37

Specifically, the combination of reduced graphene oxide
(rGO) with nanostructured V2O5 was reported to be an
attractive protocol to achieve electrode materials with high
electrochemical performance for supercapacitors due to
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enhanced power and energy densities.38,39 However, common
methods employed to produce rGO-containing nanocomposite
materials, such as hydrothermal40 and solvothermal34 synthesis
routes are not applicable to large-scale process and lack
selectivity. Therefore, exploration and development of novel
strategies is meaningful in this context. Photothermal
modification via direct laser irradiation is one of the most
attractive protocols due to its flexible, economical, selective,
and reliable patterning characteristics.41 Importantly, it was
shown that this protocol allows to obtain the graphene-like
materials with high sp2 content.42 Furthermore, the direct laser
irradiation process is highly tunable and allows one to achieve
different physical and chemical characteristics of the material.43

Based on the above, photothermal modification via direct laser
irradiation is a promising strategy to prepare rGO/V2O5 or
rGO/V2O5·nH2O nanocomposite materials.44

Hereby, we reported on the photothermal modification of
nanocomposite films consisting of hydrated vanadium
pentoxide (V2O5·nH2O) wrapped with graphene oxide (GO)
flakes through 405 nm direct laser irradiation. The laser
modified areas in the GO/V2O5·nH2O films are defined as
rGO/V2O5·nH2O. We have demonstrated that the method
applied produces porous surface morphology of rGO/V2O5·
nH2O. As it will be shown below, the morphological evolution
of surface features is dependent on laser power density (LPD).
The combination of X-ray diffraction (XRD), X-ray photo-
electron spectroscopy (XPS), Raman scattering, transmission
electron microscopy (TEM), and scanning electron micros-
copy (SEM) analytical techniques allowed comprehensive
characterization of physical and chemical changes of GO/
V2O5·nH2O nanocomposite films upon photothermal mod-
ification. General tendencies of changes in the functional
groups depending on LPD were revealed.

■ RESULTS AND DISCUSSION
Characterization of Crystalline V2O5 and V2O5·nH2O.

The diffraction patterns of the crystalline V2O5 and V2O5·
nH2O powders are shown in Figure S1. For the fitting
procedure, the crystallographic information files (CIF) of
crystalline V2O5 and V2O5·nH2O were assembled from refs 45
and 27, respectively. The V2O5 (Figure S1a) has a typical
orthorhombic lattice (Crystallography Open Database (COD)
ID 9012220), space group Pmn 21 (group number = 31) with
a cell parameters a = 11.503 Å, b = 4.368 Å, c = 3.561 Å, α = β
= γ = 90° and the (−2 0 0), (0 −1 0), (−1 −1 0), (−2 −1 0),
(−1 0 −1), (−3 −1 0), (0 −1 −1), (−1 −1 −1), (−3 0 −1),
(−2 −1 −1), (−4 −1 0), (0 −2 0), (−1 −2 0), (−2 −2 0),
(−4 −1 −1), (−6 0 0), (−3 −2 0), (−1 −2 −1) reflexes
observable in the range of 3.0−50.0°. The melt-quenching
process of crystalline V2O5 resulted in formation of V2O5·
nH2O (Figure S1b) with a monoclinic lattice (COD ID
4124512), space group C12/m1 (group number = 12) with a
cell parameters a = 11.700 Å, b = 3.617 Å, c = 11.447 Å, α = γ
= 90°, β = 88.07° and the (0 0 1), (1 1 0) reflexes observable.
The broad and pronounced (0 0 1) reflex of V2O5·nH2O
indicates lamellar ordering (albeit turbostatic) and is consistent
with those reported elsewhere.27 The crystallite size for the
corresponding reflex was determined to be 51.2 Å. The
interplanar spacing (d-spacing) of the (0 0 1) reflex was
determined to be 11.7 Å. It is known that the d-spacing in
V2O5·nH2O varies depending on the amount of H2O
intercalated between V2O5 layers.46,47 The amount of H2O
molecules, n, evaluated from d-spacing of the (0 0 1) reflex was

determined to be n = 1.7, which was found to be higher than
V2O5·nH2O prepared using ion exchange48 with thermal
treatment at 150 °C (n = 1.1) or alkoxide sol−gel49 routes
(n = 0.9, for sample subjected to atmospheric hydrolysis; n =
1.5, for sample prepared with pH = 1) reported previously.
Several works reported that the amount of H2O can
considerably change the structural properties of V2O5·
nH2O.

8,17,50,51 It is known that up to 250 °C H2O loss is
reversible, while between 250 °C and 320−350 °C, H2O
molecules are removed from the lattice without a chance to be
absorbed afterward at room temperature conditions, resulting
in V2O5·0.1H2O; at 350 °C and above, V2O5 crystallizes into
Shcherbinaite with the orthorhombic structure.52,53

The structure information on crystalline V2O5 and V2O5·
nH2O was further obtained via Raman scattering, as depicted
in Figure S2. The Raman spectrum of crystalline V2O5 (Figure
S2a) exhibits a number of bands among which the band
located at 994 cm−1 is attributed to the VO stretching
vibration.54 The V−O stretching vibration is located at 702
cm−1.55 The band at 528 cm−1 is attributed to the V3−O
stretching vibration.56 The V−O−V bending vibrations are
observed at 482, 405, and 304 cm−1.55,57 The band at 284
cm−1 is assigned to VO bending vibration.56−58 The O−V−
O bending vibration is observed at 197 cm−1.59 The V−O−V
skeleton bending vibration is observed at 145 cm−1.55,59

Similar vibrational modes of functional groups can be observed
in the Raman spectrum of V2O5·nH2O (Figure S2b). In
contrast to V2O5,, the observed bands in V2O5·nH2O spectrum
exhibit broadening and their positions are slightly shifted due
to water intercalation.
The XPS was employed for the analysis of the chemical

properties of crystalline V2O5 and V2O5·nH2O. Figure S3
shows the XPS V 2p and O 1s high-resolution spectra with
deconvoluted components. Because of the orbital splitting, the
energy level of V 2p splits into the V 2p3/2 and V 2p1/2. The
deconvoluted components in the XPS V 2p3/2 and V 2p1/2
high-resolution spectra of crystalline V2O5 and V2O5·nH2O
were attributed to V3+ (515.05 and 521.69 eV; 515.01 and
522.51 eV), V4+ (515.9 and 522.75 eV; 515.84 and 523.34 eV),
and V5+ (517.2 and 524.33 eV; 517.11 and 524.61 eV)
oxidation states.60 It is evident that the major part of V 2p
spectra consists of V5+. The O 1s photoemission line was
deconvoluted into three components. The two components of
crystalline V2O5 located at 529.99 and 530.38 eV were
attributed to the O2− ions61 and V−O linkage in the V2O5
while the component at 531.82 eV was assigned to the OH−

groups.62 These components of V2O5·nH2O in XPS O 1s
spectra were located at 529.92 eV, 530.94 eV, and 532.36 eV.
The OH− group component is much more pronounced in the
XPS O 1s spectra of V2O5·nH2O due to its hydrated state.
Further, the TEM analysis of V2O5·nH2O was performed for

characterization of morphology. Figure S4 shows the TEM
image of V2O5·nH2O nanostructures formed via the melt-
quenching process. The obtained nanostructures exhibited
ribbonlike particle morphology,46,63 which is in line with V.
Petrikov et al.27 The observed morphology of V2O5·nH2O
nanoribbons (Figure S4) is in good agreement with XRD
results.

Characterization of GO. Figure S5 shows XRD diffraction
pattern of GO. In the XRD diffraction pattern, the broad and
distinct (0 0 1) reflex with a d-spacing of 7.9 Å was observable,
indicating the presence of GO, consistent with results reported
elsewhere.64,65
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The Raman spectrum of GO is depicted in Figure S6. The
deconvoluted G1 and G2 bands are located at 1596 cm−1 and
1545 cm−1, while the D band is at 1350 cm−1. The 2D and D
+G bands are observed at 2697 and 2925 cm−1, respectively.
The statistical reliability factor (R2) for fitting Gaussian
components was found to be R2 ≥ 0.97. The D band arises
from the defect-induced breathing modes of sp2 rings.66 The
G1 component is associated with the in-plane stretching
vibration.67 The G2 component can be attributed to the bond
angle disorder and surface functional groups (O−H).66,68 The
ID/IG1

69 and IG2/IG1
66 intensity ratios were found to be 0.98

and 0.52 for GO. The second order overtone, 2D, is due to the
two-phonon double resonance, while the D+G band is
attributed to higher structure disorder of GO.70

Chemical properties of GO were investigated using XPS.
The XPS O 1s and C 1s high-resolution spectra are depicted in
Figure S7. The first deconvoluted component at 531.2 eV in
the O 1s spectrum (Figure S7a) is attributed to O−CO,
while the second and the third component at 532.4 and 533.6
eV to C−O and O−H chemical bonds.71,72 Five deconvoluted
components in the C 1s photoemission line (Figure S7b)
located at 283.6 eV, 284.8 eV, 285.6 eV, 286.7 eV, and 288.3
eV were assigned to the CC/C−C, C−C, C−O/C−O−C,
C−O, and CO chemical bonds, respectively.64,72,73

TEM image of GO is depicted in Figure S8. The GO flakes
have a folded and corrugated sheet structure with numerous
wrinkles. It can be observed, that the GO sheets are relatively
large, indicating relatively low damage of the sheet structure
produced by the mechanical stirring method.
Characterization of GO/V2O5·nH2O and rGO/V2O5·

nH2O Nanocomposite Films. TEM inspection was
performed for as prepared GO/V2O5·nH2O nanocomposite
and is depicted in Figure 1. It can be seen that V2O5·nH2O
nanoribbons are wrapped with GO sheets and are no longer
easily distinguishable.

SEM analysis was performed to inspect the surface features
of GO/V2O5·nH2O nanocomposite films. The SEM micro-
graphs of GO/V2O5·nH2O nanocomposite surface are shown
in Figure 2, indicating a uniform and wrinkled surface of the
film. It is known that GO can have different surface
morphologies, which can be highly influenced by the pH of
the system74 and the deposition method.75 It can be observed
from the SEM images that the intersection of wrinkles
assembled into starlike microstructures. Similar microstruc-

tures were observed in our previous work,42 where only GO
films were studied. This is an indication that the resultant
nanocomposite film morphology is mainly governed by GO
sheets and V2O5·nH2O nanoribbons in the system have no
observable influence at this point. Additionally, SEM
observations also imply that V2O5·nH2O nanoribbons are not
distinguishable from GO sheets on the surface of nano-
composite film, which is consistent with TEM results, that
V2O5·nH2O nanoribbons are wrapped with GO sheets.
Figure 3 shows SEM micrographs of rGO/V2O5·nH2O

nanocomposite films where direct laser irradiation took place
in the grayish rectangle areas with LPD varied. In Figure 3a−d,
LPD was varied in the range of 1.69−2.71 × 105W/cm2. The
rGO/V2O5·nH2O areas in the SEM micrographs are easily
distinguishable indicating that the photothermal modification
process took place.
In contrast to GO/V2O5·nH2O, the observed surface

morphology of rGO/V2O5·nH2O is significantly different. In
all cases, the surface of rGO/V2O5·nH2O is covered with
randomly distributed pillarlike protrusions with the size in the
range from several nanometers to tens of micrometers,
exhibiting porous surface morphology. The specific surface
area of rGO/V2O5·nH2O was determined to be 17.27 m2 g−1,
more than 4 times higher than that of GO/V2O5·nH2O (3.84
m2 g−1). This is a very promising result considering LIB,
supercapacitor, and sensor applications as it can improve the

Figure 1. TEM micrograph of GO/V2O5·nH2O nanocomposite.

Figure 2. SEM micrographs at different magnification scale of GO/
V2O5·nH2O nanocomposite films.
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resultant energy storing capacity as well as sensor response

with lower operating temperature and efficient detection

characteristics. Importantly, SEM micrographs at 500×
magnification (Figure 3) revealed morphological tendency,

which is dependent on the LPD: with the increase of LPD the

pillarlike protrusions are prone to form clusters with increasing

size. Quantitative data for morphological changes of cluster

formation with LPD is depicted in Figure S9. Additionally, the

Figure 3. SEM micrographs at different magnification scales of rGO/V2O5·nH2O nanocomposite films. The direct laser irradiation took place in the
grayish rectangle areas. LPD (a) 1.69, (b) 2.03, (c) 2.37, and (d) 2.71 × 105 W/cm2 varied, respectively.

Figure 4. Deconvoluted high-resolution XPS: V 2p, O 1s, and C 1s spectra of (a1 and b1) GO/V2O5·nH2O and (a2 and b2) rGO/V2O5·nH2O
nanocomposite films. Thick red lines show experimental data, thin black lines show the envelope, and thick dashed lines show the fitted
components.
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increase of LPD produced more nanometer-scale protrusions
across the surface, e.g., from 2.37 to 2.71 × 105 W/cm2

produced 12% more nanometer-scale protrusions. Fractional
areas of all surface features constituted of 18.5 (1.69 × 105 W/
cm2), 18.6 (2.03 × 105 W/cm2), 27.8 (2.37 × 105 W/cm2),
and 26.5% (2.71 × 105 W/cm2). SEM observations suggest
that photothermal modification of GO/V2O5·nH2O results in
formation of rGO/V2O5·nH2O with heterogeneous surface
morphology having a combination of micro- and nanoscale
structural features.
The characteristic XRDGI pattern of rGO/V2O5·nH2O

nanocomposite film (LPD of 2.71 × 105 W/cm2) is shown
at Figure S10. After direct laser irradiation of GO/V2O5·nH2O,
the d-spacing for the (0 0 1) reflex of V2O5·nH2O was found to
be 10.3 Å, indicating removal of water molecules from the
lattice with n = 1.5 (before modification n = 1.7). The
crystallite size for the (0 0 1) reflection was found to be 54.4 Å,
consistent with TEM. Another peak in the XRDGI pattern
corresponds to rGO (0 0 2) reflex with d-spacing of 3.5 Å. The
broadening in the rGO (0 0 2) indicates poor ordering of the
stacked layers.
Figure S11 shows baseline-corrected Raman spectrum of

rGO/V2O5·nH2O nanocomposite film (LPD of 2.71 × 105 W/
cm2). It can be seen that Raman spectrum exhibits character-
istic bands attributed to V2O5·nH2O (104−1170 cm−1) and
rGO-deconvoluted bands by Gaussian components: G1(1600
cm−1), G2(1535 cm−1), D (1353 cm−1), 2D (2714 cm−1) and
D+G (2936 cm−1); R2 ≥ 0.97. The highest laser power
density produced rGO in the nanocomposite system with ID/
IG1 and IG2/IG1 ratios of 0.98 and 0.36. In contrast to GO, the
considerable decrease in IG2/IG1 ratio was observed for rGO,
which indicates more ordered structure67 and removal of
functional groups.68

The I−V curves of GO/V2O5·nH2O and rGO/V2O5·nH2O
(LPD of 2.71 × 105 W/cm2) nanocomposite films are depicted
in Figure S12. The I−V curve of rGO/V2O5·nH2O nano-
composite shows ohmic characteristics which demonstrates
that the photothermal modification process of GO/V2O5·
nH2O enhanced the conductivity of nanocomposite film. The
electrical conductivity values for GO/V2O5·nH2O and rGO/
V2O5·nH2O were determined to be 1.6 and 6.8 S/m. In
contrast, V2O5 was reported to suffer from low electrical
conductivity, which is in the range of 10−2−10−3 S/cm.28

The effect of photothermal modification on the chemical
states of GO/V2O5·nH2O was investigated via XPS. The
deconvoluted XPS V 2p, O 1s, and C 1s high-resolution
spectra of GO/V2O5·nH2O and rGO/V2O5·nH2O (LPD of
2.71 × 105 W/cm2) are shown in Figure 4. Similarly as in
crystalline V2O5 and V2O5·nH2O (Figure S3), the deconvo-
luted components of GO/V2O5·nH2O and rGO/V2O5·nH2O
in the XPS V 2p3/2 and V 2p1/2 photoemission lines where
assigned to V3+ (514.7 and 521.28 eV; 514.5 and 521.83 eV),
V4+ (515.77 and 522.97 eV; 515.66 and 523.03 eV), and V5+

(517.02 and 524.58 eV; 517.03 and 523.03 eV) oxidation
states.
The deconvoluted components of GO/V2O5·nH2O and

rGO/V2O5·nH2O (LPD of 2.71 × 105 W/cm2) in XPS O 1s
spectra were assigned to V−O linkage in the V2O5(530.15 and
530.24 eV), O−CO (531.35 and 531.33 eV), C−O (532.21
and 532.25 eV), and O−H (532.94 and 533.08 eV) chemical
bonds.62,70,72 The intensity decrease of C−O component at
532.25 eV for rGO/V2O5·nH2O (Figure 4a2) indicates the
removal of carbon−oxygen bounds. The additional component

of GO/V2O5·nH2O and rGO/V2O5·nH2O observed in XPS O
1s spectra at 534.09 and 534.18 eV is related to water
molecules.76−78 In the case of GO/V2O5·nH2O, the latter
component is significantly weaker as compared to rGO/V2O5·
nH2O, because H2O molecules are tightly bound to their
position in between GO and V2O5 layers. These XPS results
are in line with the results reported in ref 79. Evolution of
water molecules and changes in the O−H groups with LPD are
summarized in Figure S13. The relative fraction of each
component was calculated by dividing its area (Ax) by the total
area (ATot) of all O 1s components. The deconvoluted
components of GO/V2O5·nH2O and rGO/V2O5·nH2O in XPS
C 1s spectra were assigned to C−C (284.41 and 284.31 eV),
C−O/C−O−C (285.15 and 285.3 eV), C−O (286.41 and
286.26), CO (288.03 and 287.95 eV), and OC−OH
(290.05 and 289.88 eV) bounds, and π−π* shakeup transition
(292.9 and 292.85 eV), respectively.80,81 Again, decreased
intensity of the C−O component at 286.26 eV for rGO/V2O5·
nH2O (Figure 4b2) indicates the removal of carbon−oxygen
bounds. The summary of C−O chemical bond changes
depending on the LPD for rGO/V2O5·nH2O nanocomposite
films is shown in Figure S14. Relative fraction of the C−O
component was calculated by dividing the Ax by the ATot of all
C 1s components. It is evident, that the removal of carbon−
oxygen bounds took place up to the LPD of 2.03 × 105 W/
cm2. Afterward, the relative fraction of C−O chemical bonds
remained steady at ∼0.1, indicating that no more breakup of
carbon−oxygen bonds with increasing LPD. For GO/V2O5·
nH2O, the C−C/C−O ratio was determined to be 1.3, while
after photothermal modification to rGO/V2O5·nH2O with the
LPD of 1.69 × 105 W/cm2 it increased up to 5.0, indicating
∼83% conversion of GO to rGO. The GO reduction with the
LPD of 2.03 × 105 W/cm2 resulted in nearly complete
restoration of aromatic π → π system with the C−C/C−O
ratio of 5.98 (∼99% conversion of GO to rGO) remained
steady in the range of 5.98−6.0 for higher laser power
densities.

■ CONCLUSIONS
The photothermal modification of GO/V2O5·nH2O via 405
nm direct laser irradiation has been studied. The nano-
composite system consisted of nanoribbons wrapped with
graphene oxide (GO) flakes. The melt-quenching process
produced V2O5·nH2O nanoribbons having a monoclinic lattice,
space group C 1 2/m1 (group number = 12) with a cell
parameters a = 11.700 Å, b = 3.617 Å, c = 11.447 Å, α = γ =
90°, β = 88.07° and the (0 0 1), (1 1 0) reflexes observable.
After direct laser irradiation of GO/V2O5·nH2O via the d-
spacing for the (0 0 1) reflex of V2O5·nH2O was found to be
10.3 Å (before modification, 11.7 Å), indicating removal of
water molecules from the lattice with n = 1.5 (before
modification, n = 1.7). The XRD and Raman analyses
confirmed that photothermal modification reduced GO to
rGO as evident from broad (0 0 2) reflex in XRDGI pattern
and decrease of IG2/IG1 intensity ratio from 0.52 to 0.36 in
Raman spectra. The rGO/V2O5·nH2O nanocomposite films
exhibited porous surface morphology (17.27 m2 g−1)
consisting of randomly distributed pillarlike protrusions with
the size in the range from several nanometers to tens of
micrometers. It was determined that with the increase of LPD,
the pillar-like protrusions are prone to form clusters with
increasing size. The direct laser irradiation of GO/V2O5·nH2O
enhanced the electrical conductivity of nanocomposite from
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1.6 to 6.8 S/m. It was determined that the photothermal
modification process results in considerable decrease of C−O
bounds as well as O−H functional groups with increase of
LPD. The GO/V2O5·nH2O nanocomposite can be further
used in lithium−ion batteries, supercapacitors, and sensor
applications.
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