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In this article, a general fractional-order derivative of the Riemann-Liouville type 
with the non-singular kernel involving the Rabotnov fractional-exponential func-
tion is addressed for the first time. A new general fractional-order derivative model 
for the anomalous diffusion is discussed in detail. The general fractional-order 
derivative operator formula is as a novel and mathematical approach proposed to 
give the generalized presentation of the physical models in complex phenomena 
with power law.
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Introduction

General fractional calculus (GFC) [1-4], as a general version of FC acting on the sin-
gular (power-law) kernel, e. g., Liouville [5], Riemann [6], Weyl [7], Sonine [8], Caputo [9] and 
others (see [1]), has been successfully applied to describe some physical processes in complex 
phenomena. The general fractional-order derivatives (FD) and general fractional-order inte-
grals (FI) with the non-singular kernels of the functions, such as the exponential function [10], 
Miller-Ross function [11], Lorenzo-Hartley function [12], Gorenflo-Mainardi function [13], 
Bessel function [14], Mittag-Leffler function [15], Wiman function [16], Prabhakar function 
[17], sinc function [18], and others [19]. 

In 1948, the fractional exponential function, also called the Rabotnov fractional ex-
ponential (RFE) function [1], was proposed by Rabotnov [20] and developed to model the 
internal friction given in [21]. The general FD in the sense of the Liouville-Caputo type with 
the non-singular kernel of the RFE function was reported in [22]. However, the general FD in 
sense of the Riemann-Liouville type with the non-singular kernel of the RFE function have not 
been considered to the best of our knowledge.

By the motivation of the tasks involving the physical phenomena with power-law and 
complex behaviors following the RFE function, the target of the paper is to derive the general 
FD of the Riemann-Liouville type with the non-singular kernel involving the RFE function and 
their properties, and to present a general FD model for the anomalous diffusion. 
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A new GFC of Riemann-Liouville type with the RFE kernel

Suppose that , , 0
+

 ,  , and 0  are the sets of complex numbers, real numbers, 
non-negative real numbers, positive integers and 0 {0}= ∪ , respectively. Let ( , )L a b  be the 
set of those Lebesgue measurable functions on a finite interval ( , )a b ( )a b−∞ ≤ ≤ ≤ +∞  (for 
more details, see [1, 14]). Suppose that ( , )AC a b ( )a b−∞ ≤ ≤ ≤ +∞  and ( , )AC a bκ

( )a b−∞ ≤ ≤ ≤ +∞  are the Kolmogorov-Fomin condition [1, 23], and the Samko-Kil-
bas-Marichev condition [1, 14], respectively. 

General FI with the RFE kernel

The general FI with the RFE kernel on a finite interval ( , )a b  ( )a b−∞ ≤ ≤ ≤ +∞  is 
given:

	 ( )( )( ) ( ) ( ) ( ) ( )= = da a
a

t t t
τ

αα α
τ τ ατ τ γ τ Π Π Μ − − Π ∫  	 (1)

where ( , )L a bΠ∈ , 0γ +∈ , and the RFE function is defined as [1, 20-22]:

	
[ ]

( 1)( 1) 1

0

( )( )
( 1)( 1)

tt
ρ ρ α

α
α

ρ

γγ
ρ α

+ + −∞

=

−
Μ − =

Γ + +∑ 	 (2)

with 0ρ ∈ . 
From eq. (1) we have [22]:

	 ( )( ) ( )
0 0

0

( )= ( ) ( ) ( )dM t t t
τ

α α α
τ τ ατ τ γ τ Π Π = − − Π ∫  	 (3)

where 0a = , ( , )L a bΠ∈  and 0γ +∈ , and from [22], we have:

	 ( )( ) ( )( )= ( ) ( ) ( )dM t t t
τ

α α α
ατ τ γ τ+ +

−∞

 Π Π = − − Π ∫  	 (4)

where ( , )L bΠ∈ −∞  and 0γ +∈ , and from [22] we have:

	 ( )( ) ( )
0 0

0

( )= ( ) ( ) ( )dM t t tα α α
ατ τ γ τ

+∞

+∞ +∞  Π Π = − − Π ∫  	 (5)

where (0, )LΠ∈ +∞  and 0γ +∈ . 

General FD of the Liouville-Caputo type with the RFE kernel

The left-sided general FD of the Liouville-Caputo type without the singular kernel of 
the RFE function on a finite interval ( , )a b  is given as [22]:

	 ( )LC ( ) LC ( ) ( ) (1) (1)( ) ( )= ( ) ( ) ( )da a a
a

M t t t
τ

α α α α
τ τ τ ατ τ τ γ τ   Π = Π Π = − − Π   ∫   	 (6)

and the right-sided general FD of the Liouville-Caputo type with the non-singular kernel of the 
RFE function on a finite interval ( , )a b  as [22]:
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	 ( )LC ( ) LC ( ) ( ) (1) (1)( ) ( )= ( ) ( ) ( )d
b

b b b M t t tα α α α
τ τ τ α

τ

τ τ τ γ τ   Π = Π Π = − − − Π   ∫   	 (7)

where ( , )AC a bΠ∈  and 0γ +∈ .
For 1α =  we have the same results as in [1, 16]. 
The left-sided general FD of the Liouville-Caputo type without the singular kernel of 

the RFE function on a finite interval ( , )a b  is given as [22]:

	 ( )LC ( , ) LC ( , ) ( ) ( ) ( )( ) ( )= ( ) ( ) ( )dn n n n
a a a

a

M t t t
τ

α α α α
τ τ τ ατ τ τ γ τ   Π = Π Π = − − Π   ∫   	 (8)

and right-sided general FD of the Liouville-Caputo type with the non-singular kernel of the 
RFE function on a finite interval ( , )a b  is given as [22]:

	 ( ) ( )LC ( , ) LC ( , ) ( ) ( ) ( )( ) ( )= ( ) 1 ( ) ( )d
b

nn n n n
b b b M t t tα α α α

τ τ τ α
τ

τ τ τ γ τ   Π = Π Π = − − − Π   ∫   	 (9)

where ( , )nAC a bΠ∈ , n∈  and 0γ +∈ .
For 0a =  we have from eqs. (6) and (9) that:

	 ( )LC ( ) LC ( ) ( ) (1) (1)
0 0 0

0

( )= ( )= ( ) ( ) ( )dM t t t
τ

α α α α
τ τ τ ατ τ τ γ τ   Π Π Π = − − Π   ∫   	 (10)

and

	 ( )LC ( , ) LC ( , ) ( ) ( ) ( )
0 0 0

0

( ) ( )= ( ) ( ) ( )dn n n nM t t t
τ

α α α α
τ τ τ ατ τ τ γ τ   Π = Π Π = − − Π   ∫   	 (11)

The left-sided general FD of the Liouville-Caputo type without the singular kernel of 
the RFE function on the real axis  is given as [22]:

	 ( )LC ( ) LC ( ) ( ) (1) (1)( ) ( )= ( ) ( ) ( )dM t t t
τ

α α α α
ατ τ τ γ τ+ + +

−∞

   Π = Π Π = − − Π   ∫   	 (12)

and the right-sided general FD of the Liouville-Caputo type with the non-singular kernel of the 
RFE function on the real axis  as [22]:

	 ( )LC ( ) LC ( ) ( ) (1) (1)( ) ( )= ( ) ( ) ( )dM t t tα α α α
α

τ

τ τ τ γ τ
+∞

− − −    Π = Π Π = − − − Π   ∫   	 (13)

where ( , )ACΠ∈ −∞ +∞  and 0γ +∈ .
The left-sided general FD of the Liouville-Caputo type without the singular kernel of 

the RFE function on the real axis  is given as [22]:

	 ( )LC ( , ) LC ( , ) ( ) ( ) ( )( ) ( )= ( ) ( ) ( )dn n n nt M t t t
τ

α α α α
ατ τ γ τ+ + +

−∞

   Π = Π Π = − − Π   ∫   	 (14)

and right-sided general FD of the Liouville-Caputo type with the non-singular kernel of the 
RFE function on the real axis  is given as [22]:
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	 ( )LC ( ) LC ( ) ( ) ( ) ( )( ) ( )= ( ) ( 1) ( ) ( )dn n nM t t tα α α α
α

τ

τ τ τ γ τ
+∞

− − −    Π = Π Π = − − − Π   ∫   	 (15)

where ( , )nACΠ∈ −∞ +∞ , n∈  and 0γ +∈ .

General FD of the Riemann-Liouville type with the RFE kernel

The left-sided general FD of the Riemann-Liouville type without the singular kernel 
of the RFE function on a finite interval ( , )a b  is defined as:

	 ( )RL ( ) RL ( ) ( )d d( ) ( ) ( ) ( ) ( )d
d da a a

a

M t t t
τ

α α α α
τ τ τ ατ τ τ γ τ

τ τ
   Π = Π = Π = − − Π   ∫   	 (16)

and right-sided general FD of the Riemann-Liouville type with the non-singular kernel of the 
RFE function on a finite interval ( , )a b  as:

	 ( )RL ( ) RL ( ) ( )d d( ) ( ) ( ) ( ) ( )d
d d

b

b b b M t t tα α α α
τ τ τ α

τ

τ τ τ γ τ
τ τ
   Π = Π = Π = − − − Π   ∫   	 (17)

where ( , )L a bΠ∈  and 0γ +∈ .
The left-sided general FD of the Riemann-Liouville type without the singular kernel 

of the RFE function on a finite interval ( , )a b  is defined as:

    ( )RL ( , ) RL ( , ) ( )d d( ) ( ) ( ) ( ) ( )d
d d

n n
n n

a a an n
a

t M t t t
τ

α α α α
τ τ τ ατ τ γ τ

τ τ
   Π = Π = Π = − − Π   ∫   	 (18)

and the right-sided general FD of the Riemann-Liouville type with the non-singular kernel of 
the RFE function on a finite interval ( , )a b  as:

 ( )RL ( , ) RL ( , ) ( )d d( ) ( ) ( ) ( 1) ( ) ( )d
d d

bn n
n n n

b b bn n M t t tα α α α
τ τ τ α

τ

τ τ τ γ τ
τ τ

   Π = Π = Π = − − − Π   ∫   	(19)

where ( , )L a bΠ∈ , n∈ and 0γ +∈ .
For 0a =  we have from eqs. (16) and (19) that:

	 ( )RL ( ) RL ( ) ( )
0 0 0

0

d d( ) ( ) ( ) ( ) ( )d
d d

M t t t
τ

α α α α
τ τ τ ατ τ τ γ τ

τ τ
   Π = Π = Π = − − Π   ∫   	 (20)

and

    ( )RL ( , ) RL ( , ) ( )
0 0 0

0

d d( ) ( ) ( ) ( ) ( )d
d d

n n
n n

n n M t t t
τ

α α α α
τ τ τ ατ τ τ γ τ

τ τ
   Π = Π = Π = − − Π   ∫   	 (21)

The left-sided general FD of the Riemann-Liouville type without the singular kernel 
of the RFE function on the real axis  is defined as:

	 ( )RL ( ) RL ( ) ( )d d( ) ( ) ( ) ( ) ( )d
d d

M t t t
τ

α α α α
ατ τ τ γ τ

τ τ+ + +
−∞

   Π = Π = Π = − − Π   ∫   	 (22)

and right-sided general FD of the Riemann-Liouville type with the non-singular kernel of the 
RFE function on the real axis  as:
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	 ( )RL ( ) RL ( ) ( )d d( ) ( ) ( ) ( ) ( )d
d d

M t t tα α α α
α

τ

τ τ τ γ τ
τ τ

+∞

− − −   Π = Π = Π = − − − Π   ∫   	 (23)

where ( , )LΠ∈ −∞ +∞  and 0γ +∈ .
The left-sided general FD of the Riemann-Liouville type without the singular kernel 

of the RFE function on the real axis  is defined as:

	 ( )RL ( , ) RL ( , ) ( )d d( ) ( ) ( ) ( ) ( )d
d d

n n
n n

n n M t t t
τ

α α α α
ατ τ τ γ τ

τ τ+ + +
−∞

   Π = Π = Π = − − Π   ∫   	(24)

and right-sided general FD of the Riemann-Liouville type with the non-singular kernel of the 
RFE function on the real axis  as:

   ( )RL ( ) RL ( ) ( )d d( ) ( ) ( ) ( 1) ( ) ( )d
d d

n n
n

n n M t t tα α α α
α

τ

τ τ τ γ τ
τ τ

+∞

− − −   Π = Π = Π = − − − Π   ∫   	(25)

where ( , )LΠ∈ −∞ +∞ , n∈  and 0γ +∈ .
For 0( ) (0)ττ =Π = Π  there exists:

	 LC ( ) RL ( )( ) ( ) ( ) (0)a a Mα α α
τ τ ατ τ γτΠ = Π − − Π  	 (26)

General FI via the Prabhakar function

The left-sided general FI of ( )τΠ  is given as [22]:

 ( , ) ( 2) 1 1
1, ( 1)( )= ( ) ( )d ( ) ( ) ( )dn n

a n
a a

t t t t E t t t
τ τ

α α α α
τ α α ατ γ τ τ γ τ− + − +

+ − +   Π Ξ − − Π = − − − Π   ∫ ∫ 	(27)

and the right-sided general FI of ( )τΠ  as:

( , ) ( 2) 1 1
1, ( 1)( ) ( ) ( )d ( ) ( ) ( )d

b b
n n

nb t t t t E t t tα α α α
τ α α α

τ τ

τ γ τ τ γ τ− + − +
+ − +   Π = − Ξ − − Π = − − − − Π   ∫ ∫ 	 (28)

where ( , )L a bΠ∈ , n∈, 0γ +∈ , and ( 2) 1 1
1, ( 1)( ) ( )n

nHα α α
α α αγτ τ γτ− + − +

+ − +Ξ − = −  with the Pra-
bhakar function, given as [1, 24]:

	 ,
0

( )( )
( ) ( ) ( 1)

H
ρ

γ
α β

ρ

γ ρ ττ
ρα β γ ρ

∞

=

Γ +
=

Γ + Γ Γ +∑ 	

The left-sided general FI of ( )τΠ  is given as:

   ( , ) ( 2) 1 1
1, ( 1)( )= ( ) ( )d ( ) ( ) ( )dn n

nt t t t E t t t
τ τ

α α α α
α α ατ γ τ τ γ τ− + − +

+ + − +
−∞ −∞

   Π Ξ − − Π = − − − Π   ∫ ∫ 	 (29)

and the right-sided general FI of ( )τΠ  as:

 ( , ) ( 2) 1 1
1, ( 1)( ) ( ) ( )d ( ) ( ) ( )dn n

nt t t t E t t tα α α α
α α α

τ τ

τ γ τ τ γ τ
+∞ −∞

− + − +
− + − +   Π = − Ξ − − Π = − − − Π   ∫ ∫ 	(30)

where ( , )LΠ∈ −∞ +∞ , n∈, and 0γ +∈ . 
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The properties for the general FD and FI are: 
(I)	 Let ( , )L a bΠ∈  and n∈. Then RL ( , ) ( , )

0 0( ( )) ( )n nα α
τ τ τ τΠ = Π  ,

(II)	 Let ( , )Π∈ −∞ +∞  and n∈. Then ( , ) ( , )RL ( ( )) ( )n nα α τ τ+ + Π = Π  ,
(III)	Let ( , )nAC a bΠ∈  and n∈ . Then LC ( , ) ( , )

00 ( ( )) ( )n nα α
τ τ τ τΠ = Π  , 

(IV)	Let ( , )Π∈ −∞ +∞  and n∈ . Then ( , ) ( , )LC ( ( )) ( )n nα α τ α+ + Π = Π  .
The Laplace transforms of the general FD are:

	
1RL ( ) ( 1) ( ,1)

0 0( ) 1 ( ) (0)G s s sα α α α
τ ττ λ

−− − +   Π = + Π − Π     	 (31)

and

	
11RL ( , ) ( 1) ( 1) 1 ( , )

0 0
0

d( ) 1 ( ) (0)
d

n
n n n nG s s s s

η
α α α η α
τ τη

η
τ λ

τ

−−− + − + − −

=

       Π = + Π − Π        
∑  	 (32)

where the Laplace transform of ( )g τ  is [1]: 

	 [ ]
0

( ) ( ) e ( )dsG g g s gττ τ τ
∞

−= = ∫ 	 (33)

with s∈.
For ( ,1)

0 (0) 0α
τ Π =  we have from eq. (31) that:

	
1RL ( ) ( 1)

0 ( ) 1 ( )G s s sα α α
τ τ λ

−− − +   Π = + Π    	 (34)

A general FD diffusion model with the RFE kernel 

We now consider the anomalous diffusion model containing the general FD of the 
Riemann-Liouville type with the RFE kernel:

	
2

RL ( )
0 2

( , )( , ) xx
x

α
τ

ψ τψ τ ξ ∂∂ =
∂

	 (36)

with the initial condition ( ,1)
0 ( ,0) 0xα

τ ψ =  and the boundary conditions: (0, ) 1ψ τ = , 
( , ) 0, , 0x xψ τ τ→ →∞ > , where ξ  is the diffusivity constant, and 

	 RL ( )
0

0

( , ) ( ) ( , )dx M t x t
τ

α α
τ αψ τ γ τ ψ τ

τ
∂  ∂ = − − ∂ ∫ 	 (37)

With the use of the Laplace transform of eq. (36) with respect to the variable τ , we 
can get:

	

1( 1)2

2

1d ( , ) ( , )
d

s sx s x s
x

α αλψ ψ
ξ

−− − + + = 	 (38)

which, due to the boundary conditions, this implies that:

	

1( 1)1

( 1)

0
( , ) e 1

(1 )

s s
x

x

x s s s

α α

υ

λ
υξ υα α

υ

ξ
ψ λ

υ

−− − + +  ∞− −− − +

=

 
−  
   = = + Γ +∑ 	 (39)
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The general solution for eq. (36) can be represented as: 

	

( 1)

0 0

1 1
1,

0

( ) ( )( , )
(1 ) ( ) ( ) ( 1)

( )
(1 )

x

x t

x

H

υ

ρ α ρ

υ ρ

υ

υα υ α
α υα

υ

ξ υ ρ λ τψ
υ ρα υα υ ρ

ξ
τ λτ

υ

+∞ ∞

= =

∞
− +

+
=

 
−    Γ + − = =  Γ + Γ + Γ Γ + 

 
−  
 = −
Γ +

∑ ∑

∑ 	 (40)

Conclusion

In the present work, we proposed the general FD of the Riemann-Liouville type with 
the non-singular kernel involving the RFE function. With the aid of the presented Laplace trans-
forms, the general FD model for the anomalous diffusion with the solutions containing the Pra-
bhakar function was investigated in detail. The formula of the general FD of the Riemann-Liou-
ville type can be given to explore the mathematical models in physics and engineering practice.
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Nomenclature
x	 –	space co-ordinate, [m]
α	 –	fractional order, [–]

ξ	 –	diffusivity constant, [m2s–1]
τ	 –	time, [s] 
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