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Abstract. This paper introduces a method for linear support vector machine parameter tuning based
on particle swarm optimization metaheuristic, which is used to find the best cost (penalty) parameter
for a linear support vector machine to increase textual data classification accuracy. Additionally,
majority voting based ensembling is applied to increase the efficiency of the proposed method.
The results were compared with results from our previous research and other authors’ works.
They indicate that the proposed method can improve classification performance for a sentiment
recognition task.
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1 Introduction

Textual data analysis is a very challenging area. We need to understand the whole context
of the sentence because even a single word can change the polarity of a sentence, and this
might have a significant impact on particular domains, such as medicine, stock predic-
tion, etc. A support vector machine (SVM) is one of the most frequently used machine
learning algorithms to solve sentiment classification problem in [2, 32]. Its efficiency has
been proved to solve difficult tasks in different domains, such as image classification
in [25], credit risk evaluation in [9], for sensor multifault diagnosis in [10], monitoring
metal-oxide surge arrester conditions in [21], Parkinsonian disorders classification in
[14], forecasting stock market movement direction in [38], sentiment analysis in [27,
28, 30], etc. The authors in [44] reported that a linear SVM achieves the best results
consistently to SVM with different kernels including SVM-Poly. The authors in [7, 16,
26] also reported the linear SVM efficiency for binary text classification. Unfortunately,
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Support vector machine parameter tuning 267

manual hyperparameter selection still remains one of the practical application issues,
while recent literature still does not provide any heuristic rules or rules of thumb for
this task in [41]. Hence, it still requires training multiple classifiers with different sets
of hyperparameters to obtain satisfiable performance. Such hyperparameter optimization
is mostly guided by some heuristics, like genetic algorithm in [24] and [6], particle
swarm optimization (PSO) in [45] and [17], and colony optimization in [22] and [46].
Simple grid search is one of the most common choices to solve this problem [1] as it
often integrated in different machine learning packages, such as LibSVM [5] or scikit-
learn [13], which helps to simplify research pipelines. Particle swarm optimization is
also a very promising option [19, 23, 29]. One of its strengths is combination with other
evolutionary techniques. In [36], the authors proposed an improved quantum behaved
particle swarm algorithm based on a mutation operator. In [47], the authors presented the
SVM parameter optimization technique based on intercluster distance in the feature space
and a hybrid of the barebones particle swarm optimization and differential evolution.
In [21], a differential particle swarm optimization to select parameters for support vector
machines is applied. There are a number of works, which focus on the combined selection
of both features and hyperparameters [31, 42].

Ensembles of classifiers are one of the most challenging areas yet they often result
in increased performance compared to single classifiers. In [34], the proposed ensemble
method is based on static classifier selection involving a majority voting error and forward
search for text sentiment classification. In [35], an ensemble system based on three classi-
fiers, which are combined via a majority voting for the sentiment analysis of textual data is
presented. In [4], the authors reported that their ensemble voting algorithm in conjunction
with three classifiers performed better on Turkish sentiment classification problem.

Motivated by these improvements, this paper proposes a simple method to improve
a linear support vector machine (LSVM) performance for textual data classification. The
rest of the paper is organized as follows. Section 2 briefly introduces the algorithms,
which were used in the experiment. In Section 3, our method is outlined with evaluation
thoroughly described in Section 4 together with a description of datasets, experimental
settings, and results. Finally, Section 5 outlines the conclusions and sets guidelines for
future work.

2 Relevant algorithms

This section describes the algorithms relevant to research presented in this paper: Support
Vector Machines [8, 15] and Particle Swarm Optimization [11].

2.1 Support vector machines

The early foundations for support vector machines were introduced in [3, 8] and later
extensively described in [43]. Basically, they attempt to find the best possible surface to
separate positive and negative training samples in supervised manner. In this section, we
focus on linear SVM [15], which is optimized for large-scale learning and, therefore, is
used in this paper.
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Given training vectors xi ∈ Rn, i = 1, . . . , l, in two class, and a vector y ∈ Rl
such that yi = {1,−1}, a linear classifier generates a weight vector w as the model. The
decision function is

sgn
(
wTx

)
.

L2-regularized L1-loss support vector classifier (SVC) solves the following primal
problem:

min
w

1

2
wTw + C

l∑
i=1

(
max

(
0, 1− yiwTxi

))
,

whereas L2-regularized L2-loss SVC solves the following primal problem:

min
w

1

2
wTw + C

l∑
i=1

(
max

(
0, 1− yiwTxi

))2
. (1)

Their dual forms are:

min
α

1

2
αTQ̄α− eTα,

subject to 0 6 αi 6 U, i = 1, . . . , l,

where e is the vector of all ones, Q̄ = Q + D, D is a diagonal matrix, and Qij =
yiyjx

T
i xj . For L1-loss SVC, U = C and Dii = 0 for all i. For L2-loss SVC, U = ∞

and Dii = 1/(2C) for all i.
L1-regularization generates a sparse solution w. L1-regularized L2-loss SVC solves

the following primal problem:

min
w
‖w‖1 + C

l∑
i=1

(
max

(
0, 1− yiwTxi

))2
, (2)

where ‖ · ‖1 denotes the 1-norm, C > 0 is a penalty parameter; see [15].

2.2 Particle swarm optimization

Particle swarm optimization was introduced in [11]. Let ai(t) denote the position of
particle i in the search space at time step t; unless otherwise stated, t denotes discrete
time steps. The position of the particle is changed by adding a velocity, vi(t), to the
current position, i.e.

ai(t+ 1) = ai(t) + vi(t+ 1) (3)

with ai(0) ∼ U(amin, amax). Velocity vector reflects both the experiential knowledge of
the particle and socially exchanged information from the particle’s neighborhood.

For Global Best PSO, the velocity of particle i is calculated as

vij(t+ 1) = vij(t) + c1r1j(t)
[
bij(t)− aij(t)

]
+ c2r2j(t)

[
b̂j(t)− aij(t)

]
, (4)
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where vij(t) is the velocity of particle i in dimension j = 1, . . . , na at time step t, aij(t)
is the position of particle i in dimension j at time step t, c1 and c2 are positive accel-
eration constants used to scale the contribution of the cognitive and social components,
respectively, and r1j(t), r2j(t) ∼ U(0, 1) are random values in the range [0, 1], sampled
from a uniform distribution. These random values introduce a stochastic element to the
algorithm.

The personal best position, bi, associated with particle i is the best position the particle
has visited since the first time step. Considering minimization problems, the personal best
position at the next time step, t+ 1, is calculated as in [12].

bi(t+ 1) =

{
bi(t) if f(ai(t+ 1)) > f(bi(t)),

ai(t+ 1) if f(ai(t+ 1)) < f(bi(t)),
(5)

where f : Rna → R is the fitness function. As with evolutionary algorithms, the fitness
function measures how close the corresponding solution is to the optimum, i.e. the fitness
function quantifies the performance or quality of a particle (or solution) [12]. The global
best position, b̂(t), at time step t, is defined as

b̂(t) ∈
{
b0(t), . . . , bns

(t)
}
, f

(
b̂(t)
)

= min
{
f(b0(t)

)
, . . . , f

(
bns

(t)
)}
, (6)

where ns is the total number of particles in the swarm. b̂ is the best position discovered
by any of the particles so far – it is usually calculated as the best personal best position.
The global best position can also be selected from the particles of the current swarm, in
which case [12, 48]

b̂(t) = min
{
f
(
x0(t)

)
, . . . , f

(
ans(t)

)}
. (7)

3 The proposed method

The main goal of the proposed method (further as LSVMPSO) is to select penalty (cost)
parameter of the error term C for linear SVM training to increase the accuracy of the
method presented in [27]. The starting C value is defined by using cross-validated grid-
search over a predefined grid of possible C values. Figure 1 and Algorithm 1 present
a modified method, initially introduced in [27], with additional steps (particularly, step 3).
LSVMPSO is depicted in the region bounded by a red rectangle. The dashed line in the
figure represents steps for additional calculations executed before the concrete step of the
main algorithm before it is joined to it.

List of parameters used in algorithms:
classi certain category of sentiment assigned to the text in dataset
tdi set of testing data subsets
Subsetsize size of testing data subset is divided into
Dtrain set of training data
Dtest set of testing data
Traincount count of text instances of the certain class should be selected from

dataset; Traincount = (1/k) · Subsetsize · |Dtrain|/|Dtest|
k number of different classes
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|Dtrain| number of instances in Dtrain

|Dtest| number of instances in Dtest

RLSVM set of LSVM results
LSVM sent class of sentiment

Algorithm 2 contains a pseudo code of the proposed LSVMPSO method. The main idea
of the method presented in [27] is based on the selection of the training data size subject to
the subset of split testing data. Thus, the testing data is split into equal subsets, and the size
of training data is calculated on the basis of the size of the first subset. This is done with
intent that a smaller training dataset would significantly reduce time and computational
effort to train the classifier, which would provide similar or slightly smaller accuracy. This
approach is also extended to majority voting based ensemble (further it is referred to as
CL{n}_LSVMPSO, n – number of classifiers), which will be shown to improve classifi-
cation performance for LSVMPSO as well. However, it introduces additional challenges,
such as a decision on the number of used classifiers (LSVMPSO). The proposed method
should be applicable for both binary and multi-class tasks. The algorithm and diagram of
the proposed method are presented in Algorithm 3 and Fig. 2.14 K. Korovkinas et al.
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Algorithm 1. LSVM_SpeedUP

1. Run data preprocessing on Training and Testing data.
2. Randomly select data of each presented class in Training data.
class1 ← (random.sample(class1,Traincount))
class2 ← (random.sample(class2,Traincount))
classk ← (random.sample(classk,Traincount))
Dtrain ← class1 ∪ class2 ∪ · · · ∪ classk
3. Split Dtrain into Training data for tuning and Testing data for tuning.
C ← LSVMPSO

4. Train LSVM(C) with Dtrain

5. Split testing data in subsets and run on LSVM.
k ← 0
for i = 1: trunc(len(Dtest)/Subsetsize) do

tdi ← Dtest[(k + 1) : (Subsetsize ∗ i), ]
LSVM senti ← EVALUATELSVM(tdi)
RLSVM ← RLSVM ∪ {LSVM senti}
k ← (Subsetsize ∗ i)

end for
if len(Dtest % Subsetsize) > 0 then

tdi+1 ← Dtest[(k + 1) : (len(Dtest)), ]
LSVM senti+1 ← EVALUATELSVM(tdi+1)
RLSVM ← RLSVM ∪ {LSVM senti+1}

end if
Output : Results← RLSVM

Algorithm. 2 LSVMPSO

Require: a set of examples {x, y}, y ∈ Z
1. Find initial LSVM C value using standard grid search based cross-validation procedure
CGs ← GRIDSEARCHCV(Train_data, param_grid = (1, 2, . . . ,m))
accGbest, CGbest ← TRAINLSVM(Train_data, CGs)
2. Declare variables.
Cmin ← CGbest −R
Cmax ← CGbest +R
3. Initialize particles with population size nPs.
C ∼ U(Cmin, Cmax)
v ← 0
for k = 1: nPs do

acc[k]← EVALUATELSVM(C[k], Tuning_data)
end for
accbest ← acc
Cbest ← C
accGbest ← max(accGbest,max(accbest))
CGbest ← max(CGbest,max(Cbest))
4. Run PSO algorithm.
for j = 1: nIteration do

r1 ∼ U(0, 1)
r2 ∼ U(0, 1)
v ← w × v + c1 × r1 × (Cbest −C) + c2 × r2 × (CGbest −C)
C ← C + v
for k = 1: nPs do

if C[k] > 0 then
acc[k]← EVALUATELSVM(C[k], Tuning_data)
accbest[k]← max(accbest[k],acc[k])
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Cbest[k]← max(Cbest[k],C[k])
end if

end for
accbest ← acc
Cbest ← C
accGbest ← max(accGbest,max(accbest))
CGbest ← max(CGbest,max(Cbest))
w ← w × 0.99

end for
Output: CGbest

List of parameters used in algorithms:

nPs the number of particles in the swarm
nIteration number of iterations
C vector with LSVM cost parameters used in each PSO iteration
R the radius; (neighborhood) of CGs where PSO search is performed
CGs vector with cost C values obtained using grid search with cross

validation
acc vector of accuracy obtained with LSVM procedure
velocity vector of the direction and magnitude of the particle movement
Cbest vector with values of optimal C values for each particle
accbest vector with values of the best individual accuracy for each particle
accC vector with values of the optimal C value for each particle
accGbest best global accuracy
CGbest best global C value
c1, c2 acceleration coefficients
r1, r2 random vectors
w coefficient of inertia
param_grid grid of parameters to sequences of allowed values

Further, we present the ensemble extension; here, the main parameters are as follows:

nLSVM number of LSVMPSO classifiers obtained
C number of classes

Algorithm 3. Ensemble LSVMPSO

Require: a set of training data Dtrain = {Train_d1,Train_d2, . . . ,Train_dk}
1. Train LSVMPSO ensemble.
for i = 1: |Dtrain| do

LSVMPSO
i ← LSVMPSO(Train_di)

end for
2. Run all LSVMPSO ensembles on testing data.
for k = 1: nLSVM do

dk ← EVALUATELSVM(LSVMPSO
k ,Testing_data)

end for
Output : argmaxz∈1...C

∑
i=1,...,nLSVM di = z

http://www.journals.vu.lt/nonlinear-analysis
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Figure 2. Ensemble LSVMPSO.

4 Experiments and results
4.1 Dataset

To measure the performance of the introduced method it is evaluated on the largest labeled
datasets available: the Stanford Twitter sentiment corpus dataset1 introduced in [18],
Amazon customer reviews dataset2, and the Amazon3 product data dataset introduced
in [33]. We consider Books, Electronics, Kindle Store, Cell Phones, and Accessories
datasets from the Amazon product data in particular. A brief description of the datasets is
presented in Table 1.

Training and testing data has been preprocessed and cleaned before it was passed as
the input of LSVM algorithm. It included removing redundant tokens, such as hashtag
symbols @, numbers, “http” for links, punctuation symbols, etc. After cleaning was per-
formed, all datasets were checked, and empty strings were removed.

Table 1. The description of datasets.

Dataset Num. of reviews Num. of classes
Stanford Twitter sentiment corpus 1,600,000 2
Amazon customer reviews 4,000,000 2
Books 22,507,155 5
Electronics 7,824,482 5
Kindle Store 3,205,467 5
Cell Phones and Accessories 3,447,249 5

1http://help.sentiment140.com/
2https://www.kaggle.com/bittlingmayer/amazonreviews/
3http://jmcauley.ucsd.edu/data/amazon/
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4.2 Experiments

Two experiments are performed to evaluate our proposed method with our methods
(Subset30K and kmLSVM) presented in earlier works [27, 28]. Ensembles of three
(CL3_LSVMPSO) and five (CL5_LSVMPSO) classifiers, Stanford Twitter sentiment cor-
pus, and Amazon customer reviews datasets are used in these experiments. During the
experiments, the training data is randomly selected from the whole dataset, while the
remaining part is used for testing. To obtain more objective results, 10 iterations of these
experiments were performed, and the results were averaged.

Next, four experiments were done to compare the results with other authors’ works.
The datasets (Books, Electronics, Kindle Store, Cell Phones, and Accessories) used in
[20,37,40] were selected. The descriptions of these datasets are presented in Table 1 (see
Section 4.1). Although the Amazon reviews come in 5-star rating, the aforementioned
authors used only two classes of the presented datasets. According to them, 3-star ratings
are considered as neutral reviews meaning neither positive nor negative, hence instances
with this class were discarded from datasets. The remaining classes were converted to
binary as follows: reviews receiving 1- or 2-star ratings were labeled as “0”, whereas
reviews receiving 4 and 5 stars received a label “1”. As in the first two experiments,
the training data is randomly selected from the whole dataset, and the remaining part
is used for testing. Additionally for Electronics, Cell Phones, and Accessories datasets,
we perform experiments where linear SVM is used together with splitting dataset into
training (70%) and testing (30%) subsets. It can also be observed that all experiments
were performed 10 times to get more accurate results, and the average is taken as the final
result.

Python programming language and scikit-learn [13] library for machine learning were
used to implement and evaluate the proposed method. Linear SVC module, implemented
in terms of LibLinear (a Library for Large Linear Classification4), was used to implement
LSVM functionality. The data was converted to a matrix of TF-IDF (term frequency,
inverse document frequency) features.

Table 2 shows the sizes of training and testing data for LSVM input. In experimental
settings, it is assumed that the testing subset is 30%, therefore, the training data should

Table 2. Dataset splits in experiments.

Dataset Training data Testing data
Stanford Twitter sentiment corpus 70,000 480,000
Amazon customer reviews 70,000 1,200,000
Books 70,000 20,037,414
Electronics 70,000 7,117,716
Kindle Store 70,000 2,828,300
Cell Phones and Accessories 70,000 3,025,090

Ordinary dataset splits for additional experiments
Electronics 5,031,400 2,156,316
Cell Phones and Accessories 2,166,563 928,527

4https://www.csie.ntu.edu.tw/~cjlin/liblinear/
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be 70%, and subset size should be 30,000 instances (30%), then training data calculated
dependently on subset size is 70,000 instances (70%). Then we should split all testing
data into subsets containing 30,000 instances (the last subset is the remainder, and it could
contain less than 30,000 instances) and run them separately one by one on LSVM. Param-
eter R, neighborhood for obtained CGs, where PSO search is performed, is set to 0.1.

For experiments, there is used computer with processor Intel(R) Core(TM)i7-4712MQ
CPU @ 2.30 GHz and 16.00 GB installed memory (RAM).

4.3 Performance evaluation

Effectiveness is measured using statistical measures, which are used often for similar
tasks, particularly, accuracy (ACC), precision (positive predictive value PPV and nega-
tive predictive value NPV ), recall (true positive rate TPR and true negative rate TNR),
harmonic mean of PPV and TPR (F1score). Formulas are presented below [39]:

ACC =
TP + TN

TP + TN + FP + FN
, PPV =

TP

TP + FP
,

NPV =
TN

TN + FN
, TPR =

TP

TP + FN
,

TNR =
TN

TN + FP
, F1score =

2
1

PPV + 1
TPR

,

where TP – count of correctly classified “positive” sentiments, TN – count of cor-
rectly classified “negative” sentiments. FP – count of incorrectly classified “positive”
sentiments. FN – count of incorrectly classified “negative” sentiments. Area under the
Receiver Operating Characteristics (AUC) is also used to measure the quality of the
model predictions.

4.4 Results

All experiments described in Section 4.2 are performed, and the results are compared.
Table 3 gives average results for the proposed method in comparison with Subset30K and
kmLSVM when Stanford Twitter sentiment corpus and the Amazon customer reviews
datasets were used. The distribution of results per iteration is visually depicted in Figs. 3
and 4.

The quality measure of the model’s predictions (AUC) clearly shows that the pro-
posed method and its ensembles outperform the previously proposed methods (Subset30K
and kmLSVM) on both datasets: the Stanford Twitter sentiment corpus dataset and Ama-
zon customer reviews dataset.

Other metrics in terms of – accuracy, PPV, NPV, TPR, TNR, F1score – also show
the superiority of the proposed method compare with Subset30K on both datasets.

The results between LSVMPSO and kmLSVM were also insignificantly better in terms
of accuracy, PPV, TNR on the Stanford Twitter sentiment corpus dataset, while
LSVMPSO lost slightly in terms of NPV , TPR, and F1score. On the Amazon customer
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Table 3. Results of the proposed method.

Method ACC PPV NPV TPR TNR F1score AUC

Stanford Twitter sentiment corpus dataset
Subset30K 76.88% 76.64% 77.11% 77.32% 76.43% 76.98% 85.09%
kmLSVM 77.81% 77.07% 78.59% 79.19% 76.44% 78.12% 85.72%
LSVMPSO 77.90% 77.46% 78.35% 78.70% 77.09% 78.08% 85.75%
CL3_LSVMPSO 78.45% 77.95% 78.97% 79.36% 77.54% 78.64% 86.26%
CL5_LSVMPSO 78.63% 78.12% 79.16% 79.55% 77.72% 78.83% 86.33%

Amazon customer reviews
Subset30K 87.61% 87.69% 87.53% 87.50% 87.71% 87.59% 95.07%
kmLSVM 88.35% 88.85% 87.85% 87.70% 89.00% 88.27% 95.08%
LSVMPSO 88.46% 88.63% 88.28% 88.22% 88.69% 88.43% 95.29%
CL3_LSVMPSO 88.98% 89.16% 88.80% 88.75% 89.21% 88.96% 95.60%
CL5_LSVMPSO 89.11% 89.31% 88.91% 88.85% 89.36% 89.08% 95.65%

Support vector machine parameter tuning 11

Table 3. Results of the proposed method.

Method ACC PPV NPV TPR TNR F1score AUC

The Stanford Twitter sentiment corpus dataset
Subset30K 76.88% 76.64% 77.11% 77.32% 76.43% 76.98% 85.09%
kmLSVM 77.81% 77.07% 78.59% 79.19% 76.44% 78.12% 85.72%
LSVMPSO 77.90% 77.46% 78.35% 78.70% 77.09% 78.08% 85.75%
CL3_LSVMPSO 78.45% 77.95% 78.97% 79.36% 77.54% 78.64% 86.26%
CL5_LSVMPSO 78.63% 78.12% 79.16% 79.55% 77.72% 78.83% 86.33%

The Amazon customer reviews
Subset30K 87.61% 87.69% 87.53% 87.50% 87.71% 87.59% 95.07%
kmLSVM 88.35% 88.85% 87.85% 87.70% 89.00% 88.27% 95.08%
LSVMPSO 88.46% 88.63% 88.28% 88.22% 88.69% 88.43% 95.29%
CL3_LSVMPSO 88.98% 89.16% 88.80% 88.75% 89.21% 88.96% 95.60%
CL5_LSVMPSO 89.11% 89.31% 88.91% 88.85% 89.36% 89.08% 95.65%

Accuracy F1score

76.5

77

77.5

78

78.5

79

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR

76

77

78

79

80

Figure 3. The Stanford Twitter sentiment corpus dataset.

Accuracy F1score

87.5

88

88.5

89

89.5

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR
87

87.5

88

88.5

89

89.5

Figure 4. The Amazon customer reviews dataset.

Nonlinear Anal. Model. Control, 25(x):1–17

Support vector machine parameter tuning 11

Table 3. Results of the proposed method.

Method ACC PPV NPV TPR TNR F1score AUC

The Stanford Twitter sentiment corpus dataset
Subset30K 76.88% 76.64% 77.11% 77.32% 76.43% 76.98% 85.09%
kmLSVM 77.81% 77.07% 78.59% 79.19% 76.44% 78.12% 85.72%
LSVMPSO 77.90% 77.46% 78.35% 78.70% 77.09% 78.08% 85.75%
CL3_LSVMPSO 78.45% 77.95% 78.97% 79.36% 77.54% 78.64% 86.26%
CL5_LSVMPSO 78.63% 78.12% 79.16% 79.55% 77.72% 78.83% 86.33%

The Amazon customer reviews
Subset30K 87.61% 87.69% 87.53% 87.50% 87.71% 87.59% 95.07%
kmLSVM 88.35% 88.85% 87.85% 87.70% 89.00% 88.27% 95.08%
LSVMPSO 88.46% 88.63% 88.28% 88.22% 88.69% 88.43% 95.29%
CL3_LSVMPSO 88.98% 89.16% 88.80% 88.75% 89.21% 88.96% 95.60%
CL5_LSVMPSO 89.11% 89.31% 88.91% 88.85% 89.36% 89.08% 95.65%

Accuracy F1score

76.5

77

77.5

78

78.5

79

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR

76

77

78

79

80

Figure 3. The Stanford Twitter sentiment corpus dataset.

Accuracy F1score

87.5

88

88.5

89

89.5

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR
87

87.5

88

88.5

89

89.5

Figure 4. The Amazon customer reviews dataset.

Nonlinear Anal. Model. Control, 25(x):1–17

Support vector machine parameter tuning 11

Table 3. Results of the proposed method.

Method ACC PPV NPV TPR TNR F1score AUC

The Stanford Twitter sentiment corpus dataset
Subset30K 76.88% 76.64% 77.11% 77.32% 76.43% 76.98% 85.09%
kmLSVM 77.81% 77.07% 78.59% 79.19% 76.44% 78.12% 85.72%
LSVMPSO 77.90% 77.46% 78.35% 78.70% 77.09% 78.08% 85.75%
CL3_LSVMPSO 78.45% 77.95% 78.97% 79.36% 77.54% 78.64% 86.26%
CL5_LSVMPSO 78.63% 78.12% 79.16% 79.55% 77.72% 78.83% 86.33%

The Amazon customer reviews
Subset30K 87.61% 87.69% 87.53% 87.50% 87.71% 87.59% 95.07%
kmLSVM 88.35% 88.85% 87.85% 87.70% 89.00% 88.27% 95.08%
LSVMPSO 88.46% 88.63% 88.28% 88.22% 88.69% 88.43% 95.29%
CL3_LSVMPSO 88.98% 89.16% 88.80% 88.75% 89.21% 88.96% 95.60%
CL5_LSVMPSO 89.11% 89.31% 88.91% 88.85% 89.36% 89.08% 95.65%

Accuracy F1score

76.5

77

77.5

78

78.5

79

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR

76

77

78

79

80

Figure 3. The Stanford Twitter sentiment corpus dataset.

Accuracy F1score

87.5

88

88.5

89

89.5

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR
87

87.5

88

88.5

89

89.5

Figure 4. The Amazon customer reviews dataset.

Nonlinear Anal. Model. Control, 25(x):1–17

Figure 3. Stanford Twitter sentiment corpus dataset.

Support vector machine parameter tuning 11

Table 3. Results of the proposed method.

Method ACC PPV NPV TPR TNR F1score AUC

The Stanford Twitter sentiment corpus dataset
Subset30K 76.88% 76.64% 77.11% 77.32% 76.43% 76.98% 85.09%
kmLSVM 77.81% 77.07% 78.59% 79.19% 76.44% 78.12% 85.72%
LSVMPSO 77.90% 77.46% 78.35% 78.70% 77.09% 78.08% 85.75%
CL3_LSVMPSO 78.45% 77.95% 78.97% 79.36% 77.54% 78.64% 86.26%
CL5_LSVMPSO 78.63% 78.12% 79.16% 79.55% 77.72% 78.83% 86.33%

The Amazon customer reviews
Subset30K 87.61% 87.69% 87.53% 87.50% 87.71% 87.59% 95.07%
kmLSVM 88.35% 88.85% 87.85% 87.70% 89.00% 88.27% 95.08%
LSVMPSO 88.46% 88.63% 88.28% 88.22% 88.69% 88.43% 95.29%
CL3_LSVMPSO 88.98% 89.16% 88.80% 88.75% 89.21% 88.96% 95.60%
CL5_LSVMPSO 89.11% 89.31% 88.91% 88.85% 89.36% 89.08% 95.65%

Accuracy F1score

76.5

77

77.5

78

78.5

79

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR

76

77

78

79

80

Figure 3. The Stanford Twitter sentiment corpus dataset.

Accuracy F1score

87.5

88

88.5

89

89.5

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR
87

87.5

88

88.5

89

89.5

Figure 4. The Amazon customer reviews dataset.

Nonlinear Anal. Model. Control, 25(x):1–17

Support vector machine parameter tuning 11

Table 3. Results of the proposed method.

Method ACC PPV NPV TPR TNR F1score AUC

The Stanford Twitter sentiment corpus dataset
Subset30K 76.88% 76.64% 77.11% 77.32% 76.43% 76.98% 85.09%
kmLSVM 77.81% 77.07% 78.59% 79.19% 76.44% 78.12% 85.72%
LSVMPSO 77.90% 77.46% 78.35% 78.70% 77.09% 78.08% 85.75%
CL3_LSVMPSO 78.45% 77.95% 78.97% 79.36% 77.54% 78.64% 86.26%
CL5_LSVMPSO 78.63% 78.12% 79.16% 79.55% 77.72% 78.83% 86.33%

The Amazon customer reviews
Subset30K 87.61% 87.69% 87.53% 87.50% 87.71% 87.59% 95.07%
kmLSVM 88.35% 88.85% 87.85% 87.70% 89.00% 88.27% 95.08%
LSVMPSO 88.46% 88.63% 88.28% 88.22% 88.69% 88.43% 95.29%
CL3_LSVMPSO 88.98% 89.16% 88.80% 88.75% 89.21% 88.96% 95.60%
CL5_LSVMPSO 89.11% 89.31% 88.91% 88.85% 89.36% 89.08% 95.65%

Accuracy F1score

76.5

77

77.5

78

78.5

79

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR

76

77

78

79

80

Figure 3. The Stanford Twitter sentiment corpus dataset.

Accuracy F1score

87.5

88

88.5

89

89.5

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR
87

87.5

88

88.5

89

89.5

Figure 4. The Amazon customer reviews dataset.

Nonlinear Anal. Model. Control, 25(x):1–17

Support vector machine parameter tuning 11

Table 3. Results of the proposed method.

Method ACC PPV NPV TPR TNR F1score AUC

The Stanford Twitter sentiment corpus dataset
Subset30K 76.88% 76.64% 77.11% 77.32% 76.43% 76.98% 85.09%
kmLSVM 77.81% 77.07% 78.59% 79.19% 76.44% 78.12% 85.72%
LSVMPSO 77.90% 77.46% 78.35% 78.70% 77.09% 78.08% 85.75%
CL3_LSVMPSO 78.45% 77.95% 78.97% 79.36% 77.54% 78.64% 86.26%
CL5_LSVMPSO 78.63% 78.12% 79.16% 79.55% 77.72% 78.83% 86.33%

The Amazon customer reviews
Subset30K 87.61% 87.69% 87.53% 87.50% 87.71% 87.59% 95.07%
kmLSVM 88.35% 88.85% 87.85% 87.70% 89.00% 88.27% 95.08%
LSVMPSO 88.46% 88.63% 88.28% 88.22% 88.69% 88.43% 95.29%
CL3_LSVMPSO 88.98% 89.16% 88.80% 88.75% 89.21% 88.96% 95.60%
CL5_LSVMPSO 89.11% 89.31% 88.91% 88.85% 89.36% 89.08% 95.65%

Accuracy F1score

76.5

77

77.5

78

78.5

79

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR

76

77

78

79

80

Figure 3. The Stanford Twitter sentiment corpus dataset.

Accuracy F1score

87.5

88

88.5

89

89.5

Pe
rc

en
ta

ge
(%

)

Subset30K kmLSVM LSVMPSO CL3_LSVMPSO CL5_LSVMPSO

PPV NPV TPR TNR
87

87.5

88

88.5

89

89.5

Figure 4. The Amazon customer reviews dataset.

Nonlinear Anal. Model. Control, 25(x):1–17

Figure 4. Amazon customer reviews dataset.

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Support vector machine parameter tuning 277

Table 4. Results comparison

Authors Dataset ML method Accuracy
Rain [37] (2013) Books Naïve Bayes 84.50%
Shaikh and Deshpande Naïve Bayes 80.00%
[40] (2016)
Proposed method LSVMPSO 89.50%

CL3_LSVMPSO 89.86%
Rain [37] (2013) Kindle Store Naïve Bayes 87.33%
Proposed method LSVMPSO 91.27%

CL3_LSVMPSO 91.50%
Haque et al. [20] (2018) Electronics LinearSVM 93.52%
Proposed method LSVMPSO 90.14%

CL3_LSVMPSO 90.52%
Ordinary LSVMPSO 93.17%

Haque et al. [20] (2018) Cell Phones LinearSVM 93.57%
Wang et al. [44] (2018) and Accessories Convolutional Neural 85.90%

Network (CNN-S(+))
Contextual Factorization 83.50%
Machine (CFM)
Position-aware 84.20%
Factorization
Machine (PFM)

Proposed method LSVMPSO 90.57%
CL3_LSVMPSO 90.83%
Ordinary LSVMPSO 93.22%

review dataset, LSVMPSO performed slightly better in terms of accuracy, NPV , TNR,
and F1score. In the case of LSVMPSO ensembles, the results are better in all metrics to
compare with kmLSVM and single LSVMPSO.

It is difficult to explicitly compare the results obtained with results in other papers due
to discrepancy in implementations, parameters, or tasks. Therefore, Table 4 presents the
results of comparative analysis based on accuracy when the proposed method is applied
to the same datasets and contains the same number of classes. Dataset splits into training
and testing data are different and demonstrate that sufficient accuracy can be obtained
using a smaller training subset.

Table 4 shows that LSVMPSO and its ensemble of three CL3_LSVMPSO resulted in
higher accuracy compared to [37] and [40] when applied on the largest Books dataset and
Kindle Store dataset [37]. The proposed method and its ensembles also outperform CNN-
S(+), CFM, and PFM when they were applied on Cell Phones and Accessories dataset to
compare with [44].

However, it performed slightly worse compared to [20] when higher accuracy with
Electronics dataset and Cell Phones and Accessories dataset. The introduced method
was also slightly outperformed by linear SVM, while testing with Electronics dataset
and Cell Phones and Accessories dataset. Yet, this approach proved to be efficient to
select the cost parameter C for methods used in [27, 28], as well as ordinary linear SVM
classifier, and allowed them to become competitive when compared to the works of other
authors.

Nonlinear Anal. Model. Control, 25(2):266–281
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5 Conclusions and future work

This paper explores the application of particle swarm optimization metaheuristics to ob-
tain optimal cost parameter C for linear support vector machines. The main goal was to
identify principles to increase accuracy of our methods presented in the previous papers
[27, 28]. The results obtained with LSVMPSO are comparable with the performance of
the aforementioned methods and resulted in improvements in all effectiveness metrics.
Further, it is observed that ensembling results of multiple LSVMPSO classifiers, obtained
with different subsets of dataset, resulted in improved accuracy, compared with a single
classifier. It also shown that the proposed method can be applied separately on ordinary
linear SVM.

The main advantage of the introduced method is that it can be easily applied on any
linear SVM instance for textual data classification tasks on a large datasets and perform
faster than ordinary linear SVM when it is used in combination with our method presented
in [27]. In this paper, we found that using only 70,000 instances for training instead of
more than 20 million (Books dataset) to develop classifier still resulted in performance
comparable to [37,40,44], and the results obtained are also competitive with state-of-the-
art models.

There are several directions to work on the proposed method. First, additional test-
ing would be required to optimize the proposed method for practical applications. This
requires a test for an optimal number of classifiers in the ensemble method in terms of
trade-off for both performance and training/testing time, optimal subset size, as well as to
optimize the implemented particle swarm optimization method for faster convergence to
optimal results. Further, it will be tested with multiclass classification tasks, the function-
ality of built-in SVM implementation.
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